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Abstract

The paper presents a variational framework to compute first and second or-
der statistics of an ensemble of shapes undergoing deformations. Geometrically
“meaningful” correspondence between shapes is established via a kernel descrip-
tor that characterizes local shape properties. Such a descriptor allows retaining
geometric features such as high-curvature structures in the average shape, unlike
conventional methods where the average shape is usually smoothed out by generic
regularization terms. The obtained shape statistics are integrated into segmentation
as a prior knowledge. The effectiveness of the method is demonstrated through ex-
perimental results with synthetic and real images.

1 Introduction

(a) (b) (c)

Figure 1: (a) Examples of 10 overlapped corpus callosum shapes. (b) Shape distribu-
tion with mean (black line) and deviation (dots with colors). (c) Segmentation result of
corpus callosum in a MRI image using shape information.

Our goal is to compute statistics of an ensemble of shapes that capture their first-
order (average) and second-order (deviation) properties. These can be used to define
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and learn a prior model on the set of shapes, which in turn is key in applications such
as image registration, segmentation, and shape classification. The process is illustrated
pictorially in Fig. 1 and is important in medical image analysis and computational
anatomy [13]. Along the way, we seek for a way to establish “meaningful” correspon-
dence between any pair of shapes, where “meaning” entails respect of the local shape
context as we will make precise shortly. We restrict our attention to planar shapes,
represented as planar, closed, simple curves, not necessarily smooth, although some of
the ideas naturally extend to three dimensional embedded surfaces.

There are many ways to represent shapes, and to endow them with a metric and
probabilistic structure. The simplest is a (finite-dimensional) collection of points mod-
ulo the action of a finite-dimensional group. The ensuing theory has been nicely
worked out (see [8] and references therein) and the inference algorithms are simple
and efficient, but the power of these methods is severely limited in applications where
there are no well-defined “landmark points,” or there is no time to manually select
them, as is the case in the analysis of massive data sets in computational anatomy.

Infinite-dimensional representations of shapes as templates (grayscale or binary
images representing continuous closed curves) under the action of infinite-dimensional
domain deformations were pioneered by Grenander [12]. The basic premise is that
each object of interest (shape) is obtained from a representative element (template)
through the transitive action of the deformation group. That is, given a template, any
other shape can be “reached” by applying a suitable domain deformation. The set
of shapes can then be endowed with a probability structure by placing a measure on
the deformation group, which allows defining a “mean,” a “covariance function” and
a Gibbs-type (Langevin) distribution on shapes. Alternatively, one can define a (cord)
distance and define a notion of “average shape” as the element (itself a shape) that min-
imizes the distance from the ensemble. Such notions of “average” or “mean,” however,
are not well-defined in absolute terms, since the distance between any two shapes can
be made arbitrarily small by a transitive action of the group. To make these notions
well-posed one has to introduce regularization on the set of possible domain deforma-
tions, and the resulting statistics depend crucially on the choice of regularizer [6, 19].
In [28] the deformation is separated into a finite-dimensional group that acts at zero
cost, and a diffeomorphism, whose energy is minimized. Still the resulting average is
an expression of the choice of regularizer, which destroys important shape information
present in the ensemble data. The problem of a meaningful shape average is bypassed
in [5] by defining second-order statistics directly from pairwise distances between any
two elements of the ensemble. However, first-order statistics are important in many
application domains, so the problem of defining a meaningful average remains.

All these difficulties arise due to the infinite-dimensionality of the representation,
and are not present in the finite-dimensional case. The assumption that any shape can
be reached by a domain deformation, and the absence of local context information in
the representation makes it such that any point in a template can be transformed to any
other point in a target shape, and the determination of correspondence is left to generic
regularization terms such as elasticity priors. Another issue that is often overlooked
in the existing literature is the fact that correspondence, and hence ensemble statistics,
are only meaningful when computed relative to a scale, so one is left with tweaking the
amount of smoothness in the regularizer by guessing the amount of “noise” in the data.
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In this paper, we introduce the use of local shape context in the computation of first
and second-order ensemble statistics. This is, to the best of our knowledge, novel, and
constitutes our contribution. We exploit existing scale-spaces of local features [15] to
capture the local shape context. We exploit the resulting notion of “meaningful” cor-
respondence [15] to define and efficiently compute ensemble statistics: We introduce
a notion of “meaningful mean” and “sample covariance” of the ensemble, and exploit
the linearity of the deformation field to perform principal component analysis. These
statistics can be used to define a normal distribution in the set of shapes, which can be
used as a prior for segmentation, registration, or classification. Our contribution is the
introduction of these statistics, and simple algorithms to compute them, and to infer
their values from the ensemble.

In the next subsections we will recall existing results on local features (Sect. 1.1)
and meaningful correspondence (Sect. 1.3) in order to introduce our notation and ter-
minology and make the paper self-contained. In the next two sections we introduce
the first-order (Sect. 2) and second-order statistics (Sect. 3), and integrate them into
segmentation as a prior knowledge (Sect. 4 ). Then, we will illustrate their use in
experiments on real examples (Sect. 5).

1.1 Definitions and Notation

(a) (b) σ = 7 (c) σ = 15 (d) σ = 55

Figure 2: (a) Schematic illustration for the calculation of shape feature. (b)-(d) Exam-
ples of feature Rσ of (a) with different scales (image size is 200× 200).

In this section we introduce a representation of shape together with a notion of
feature that characterizes geometrical properties of the shape up to a given scale. By
(planar) shape we mean a closed, bounded and connected region D ⊂ R2 with finite
perimeter, represented by a characteristic function

S(x) = SD(x) =

{
1 if x ∈ D,
0 if x 6∈ D

(1)

defined for x ∈ Ω ⊂ R2, with D ⊂ Ω. This can be visualized as a binary image, where
Ω is the rectangular image domain, as in Fig. 2 (a). By feature we mean any statistic
of the data, that is any deterministic function(al) of S. In particular, we consider multi-
scale features F defined by linear functionals with a family of kernels K indexed by a
scale σ: Specifically, σ ∈ R+, K : R2 × R+ → R+; (x, σ) 7→ Kσ(x). For instance,
we consider the isotropic Gaussian kernel

Kσ(x) =
1

σ
√

2π
e−

|x|2

2σ2 .
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For example, a linear feature is a functional Fσ : L1(Ω) → L1(R2); S(x)|x∈Ω 7→
Kσ ∗ S(x) .= Fσ(x|S) where the convolution is defined by

Kσ ∗ S(x) =
∫

Ω

Kσ(x− y)S(y)dy, ∀ x ∈ R2. (2)

Notice that the feature changes the domain of definition of S, although for kernels
with finite support and Ω is sufficiently bigger than D this is inconsequential. Similar
features have been used before in the literature by Thompson et al. [23] and Manay
et al. [17], among others [11, 26, 14]. It should be noticed that in the limit where
σ → 0 they constitute a proper scale-space that can be related to the curvature of
the boundary of D, ∂D, albeit it does not entail computation of derivatives (hence
the name “integral invariant signatures” sometimes used for Fσ(x|S)). However, the
scale-space representation is only in the limit, and in general this feature destroys the
boundary information present in S.

For these reasons, we prefer to work with a non-linear feature designed to retain
boundary information:

Rσ : L1(Ω) → L1(R2) (3)
S(x) 7→ Rσ(x|S) .= S(x) (Kσ ∗ (1− S(x))) .

This feature may seem complicated at first, but it is indeed quite intuitive as illus-
trated in Fig. 2 (a), and the results with different scales are shown in (b)-(d). It is also
more easily computed than other popular representations, for instance the (signed) dis-
tance function d(x) = dist(x, ∂D), and captures the “context” of the given shape, in
the sense that the value of the feature at a point is a local statistic of the shape in a
neighborhood of that point. This can be thought of as extensions of ideas of [1] to
infinite-dimensional representations, albeit for complexity reasons only the first order
statistic (mean realtive to the kernel K) is computed, rather than the entire distribution
(discrete histogram) as in [1].

1.2 Domain Deformations and Distance Between Shapes
Given two shapes, S1, S2 : Ω → {0, 1}, under the assumptions above it is possible to
transform one into the other by a warping, that is a domain deformation h : Ω → R2

such that h(Ω) = Ω and

S1(x) = S2(h(x)), ∀ x ∈ Ω. (4)

In deformable templates, h is chosen to be an infinite-dimensional group that acts
transitively on the set of shapes, so that it is possible to transform any shape (tem-
plate) into any other (target), that is to achieve the equal sign in (4). The distance
between shapes is defined as the energy of such a warping. Because h is infinite-
dimensional, there are infinitely many warpings that satisfy (4), so the distance is de-
fined as the one that minimizes such an energy in a suitably chosen class [12], for
instance d(S1, S2)

.= minh ‖h‖ subject to (4), where h is a diffeomorphism and ‖ · ‖
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is some chosen norm of integral form. This can be rephrased as a variational problem,
for instance

d(S1, S2) = inf
h∈H

∫
Ω

|S1(x)− S2(h(x))|dx + α‖h‖H , (5)

where H is some function space, for instance L2(Ω → Ω). The first term in the above
sum, which we indicate with Edata(S1, S2|h), describes the data fidelity, that is how
well the warped template fits the target, whereas the second is a regularization term to
render the problem well posed; α is a Lagrange multiplier. The regularization term,
which we indicate with Ereg(h), can be taken for example from linear elasticity

Ereg(h) =
1
2

∫
Ω

{
λ(div h)2 + 2µ

2∑
i,j=1

(εij(h))2
}

dx, (6)

where λ, µ > 0 are the Lamé coefficients of the material under deformation,

div h = (h1)x1 + (h2)x2 , εij(h) =
1
2

(
(hi)xj + (hj)xi

)
.

1.3 “Meaningful” Correspondence
A distance between shapes, as defined above, implicitly determines a correspondence
between them: a point x in the interior of the set that defines S1, that is SS1 = 1,
is mapped to a point h(x) in the interior of the set that defines S2, SS2 ◦ h(x) = 1;
similarly for the exterior, or background, and the boundary of such a set.

Since the data fidelity term can be made zero by infinitely many warpings h, it
alone does not establish a unique correspondence, which is therefore determined by
the choice of regularization term Ereg. In this sense we say that the correspondence
determined by a generic regularizer (one depending only on h), such as (6), is mean-
ingless: choose a different regularizer, you get a different correspondence even for the
same data. One would like a meaningful correspondence to map corners to corners,
and straight segments to straight segments. But the regularizer is “dumb,” it does not
know about corners or straight edges, and so the resulting correspondence. The same
considerations apply to registering grayscale templates, rather than binary ones [19].

The lack of meaning in correspondence is due to the basic premise of deformable
templates, that the group is infinite-dimensional and acts transitively on the template.
The problem disappears when the group is finite-dimensional, as in [8], or when the
data is not in the same orbit1 of the template [28]. Since we want to maintain the
flexibility that comes from an infinite-dimensional warp h (we do not want to constrain
it to be finite-dimensional, or to discretize it at the outset), we need to either make the
regularizer “smart,” i.e. dependent on the data S1, S2, or to change the data fidelity
term Edata so that it can support a meaningful notion of correspondence.2

1Each template S defines an orbit via the group h, S ◦ h, that has the structure of an equivalence class.
2Furthermore, the notion of correspondence is only meaningful if it is associated to a notion of scale, as

argued eloquently in [17].
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We opt for this second approach, where the “meaning” of correspondence is given
by the notion of local context, captured by the feature defined in (3). For instance,
if the value of the feature at a point x ∈ Ω of the template is “distinctive,” in the
sense that no other point has the same value, it can be uniquely matched on the target.
For these “distinctive” points, correspondence is determined by the data fidelity term.
The regularizer is only needed to fill in loci of points that have constant feature value,
i.e. where the feature is uninformative. Following this rationale, we introduce a new
measure of data fidelity between two shapes S1 and S2 as

Eshape(h|S1, S2) =
∫

Ω

|Rσ(x|S1)−Rσ(h(x)|S2)|2dx (7)

and define their meaningful correspondence relative to the feature Rσ with the mini-
mizer of the ernergy

h∗ = arg min
h

Eshape(h|S1, S2) + Ereg(h),

where Ereg is a generic “dumb” regularizer such as (6). In the next section we will
show how this definition can be used to compute meaningful shape statistics.

(a) Shape 1 (b) Shape 2 (c) (d)

Figure 3: (a) and (b). Examples of rectangular shapes with bumps at different locations.
(c) Average shape without taking into account shape feature. (d) Average shape with
taking into account shape feature.

1.4 Noise and Violations of the Model
The premise of deformable templates that each target can be reached from the template
by the action of a domain deformation is challenged when the data (images or shapes)
are corrupted by noise (e.g. segmentation errors for planar shapes, quantization of
the pixel grid) or by unmodeled phenomena (e.g. specularities in grayscale images,
occlusions), since the modeling power of the infinite-dimensional group transformation
is wasted in over-fitting [12]. This issue is addressed by regularizing the warpings,
again at the expense of making the final result crucially dependent on the choice of
regularizer.

In our formulation of the problem, where local context features are matched, rather
than naked templates, this issue is attacked on two fronts. First, the choice of feature
can be made to reduce the effects of specific noise sources, for instance pixelization
or irregularity of the contour [17]. Second, matching is associated with a scale σ, and
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(a) (b) (c) (d)

Figure 4: Comparison of average shapes obtained from two rectangular shapes with
bumps at different locations. (a) Deformation fields that deform original shapes into
the average shape using the method without shape feature. (b) Average shape using the
method without shape feature superimposed the original shapes (red). (c) Deformation
fields that deform original shapes into the average shape using the method with shape
feature. (d) Average shape using the method with shape feature superimposed the
original shapes (red). (The parameters σ = 7, α = 0.005, λ = 0.5, µ = 1 are used and
image size is 100× 100).

therefore one can adaptively search for the best scale in matching pairs. Examples of
feature values with varying scales are illustrated in Fig. 2. Note that σ can be thought
of as a regularization parameter, but one that is adapted to the data, rather than being a
generic smoothness term.

2 Shape Averaging
Given an ensemble of shapes {S1, S2, · · · , Sn}, one of the simplest statistics of prac-
tical interest is their average shape3 defined as yet another shape M that is on average
closest to the ensemble. In other words, we look for M that minimizes

n∑
i=1

d(M,Si).

If we chose as distance d(M,S) = minh

∫
Ω
|M(x) − S(h(x))|dx, without a regular-

izer, the mean would not be well-defined, because such a distance can be made zero for
any shape M .4 If we regularize the distance, the resulting average will be dependent on
the choice of regularizer, hence “meaningless” in the same sense of the correspondence

3Note that we do not yet use the notion of mean shape since we have not yet defined a distribution of
measures on the set of shapes.

4This point was also raised by [5], who bypassed it by avoiding a notion of average shape and looking
instead at the matrix of pairwise distances dij = d̃(Si, Sj) with respect to a cordal distance d̃.
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discussed above, and indeed notice that the determination of the mean also defines its
correspondence to each of the given shapes Si. Therefore, we adopt a new definition
of average shape relative to the feature Rσ as follows.

Since we are looking for a shape M represented by a binary image, in order to
guarantee its structure we write it explicitly as a Heaviside function M = H(φ) where
H(φ) : Ω → {0, 1} and φ : Ω → R is an implicit representation of M : φ ≥ 0 inside
the average shape or on its boundary, and φ < 0 outside the average shape. The average
shape is then defined by the function φ.

In order to find the shape average, therefore, we minimize the energy

E =
n∑

i=1

∫
Ω

|Rσ(x|H(φ))−Rσ(h(x)|Si)|2dx + αEreg(h), (8)

with respect to φ and h1, . . . , hn, where

Rσ(x|H(φ)) = H(φ)(x)(Kσ ∗ (1−H(φ))(x).

We do so via alternating minimization and gradient descent. The associated Euler-
Lagrange equations are solved iteratively by first fixing hi’s and performing one step
in the opposite direction of the gradient of E with respect to φ:

∂φ

∂t
= δ(φ)

{
(Kσ ∗ (1−H(φ))) ·

n∑
i=1

[
Rσ(H(φ);x)

−Rσ(Si;hi(x))
]
−Kσ ∗

[
H(φ) ·

n∑
i=1

(
Rσ(H(φ);x)

−Rσ(Si;hi(x))
)]}

,

where t ≥ 0 is the iteration index. Then, fixing φ, we perform an iteration in the
opposite direction of the gradient of E with respect to hi = (hi,1, hi,2):

∂hi

∂t
= (Rσ(H(φ);x)−Rσ(Si;hi(x)))

·
{
− (∇Si ◦ hi) · (Kσ ∗ (1− Si ◦ hi))

+ (Si ◦ hi) · (Kσ ∗ ∇Si) ◦ hi

}
+

(
µ4h + (λ + µ)∇(div h)

)
.

We initialize the iteration with a generic shape average (e.g. a circle) or with the aver-
age of the signed distance functions of Si’s as in [16].

3 Shape Variations
In order to analyze the variability of an ensemble {S1, S2, · · · , Sn} relative to the
average shape M we compute second-order statistics by finding the principal modes
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Figure 5: Average shape results obtained from 10 different corpus callosum shapes
using our method. (First row) Original shapes. (Second row) Warped shapes to the
average shape. (Third row) Deformation fields that represent the warping of the shapes
to the average shape. (The parameters σ = 7, α = 0.01, λ = 0.5, µ = 1 are used and
image size is 120× 200).

of the sample covariance. Because the ensemble is obtained from the average via a
warping, Si(hi) ' M , and warpings are vector fields that can be composed linearly,
this can be performed by simple linear statistical analysis, that is principal component
analysis (PCA).

This linear compositionality is one of the key advantages of working within the
framework of deformable templates. Other shape representations, for instance signed-
distance functions, are not closed under linear operations.

In order to perform PCA we first compute the average deformation field:

µ =
1
n

n∑
i=1

hi.

Then, the sample covariance of the deformation fields is constructed by:

Σ =
1
n

n∑
i=1

(hi − µ)(hi − µ)T .
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The principal modes of variation are the eigenvectors vi of the covariance Σ, and a
deformation h can be approximated using the first k eigenvectors vi, i = 1, . . . , k
corresponding to the largest eigenvalues λi by:

h = µ +
k∑

i=1

αivi

where αi ∈ R are weights for the different modes. An instance of a shape S within the
ensanble can be approximated by projection onto the principal modes along with the
representative average shape, that is by finding the coefficients αi such that

S ' M(µ +
k∑

i=1

αivi)

in the L2 norm. In the experimental section we will show the average shape and prin-
cipal modes of variation of a number of real ensenbles of shapes.

The shape average and principal modes of variation, together with the linear struc-
ture of the deformation fields, can be used to define a Gaussian distribution in an en-
senble of shapes: {Si}i=1,...,n ∼ N (µ,Σ), with µ and Σ defined above. This can be
used as a prior for segmentation as illustrated in Sect. 4.

Note that the definition of a shape average and covariance via linear statistical anal-
ysis of diffeomorphic domain deformations is not new, and in fact is one of the staples
of deformable templates. What is different here is that such deformations are computed
not based on the naked template, but based on the feature Rσ , which includes a notion
of scale and induces a correspondence based on local context.

v1 v2 v3

Figure 6: Three principal modes of variation obtained from the warping in Fig. 5.

4 Segmentation using a shape prior
Analysis of medical images often requires the detection of anatomical structures. The
process of “segmenting” these structures from the images using only low-level infor-
mation (e.g. intensity values) is often unsatisfactory because of low contrast, noise
and the intrinsic variability of the target shape, so top-down information, in the form
of prior knowledge on the anatomical structure of interest learned from examples, can
greatly benefit the analysis [30, 31, 9].
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−18
√

λi 0 18
√

λi

v1

v2

v3

Figure 7: Shape statistics from the shapes shown in Fig. 5. Three principal modes vi,
i = 1, 2, 3 shown in Fig. 6 are used with weights αi ∈ {−18

√
λi, 0, 18

√
λi}. α = 0

means the average.

Incorporating prior knowledge in segmentation is an important area of work in
medical imaging with many significant contributions. In this section we explore the
use of our representation and shape statistics in segmentation using the level set frame-
work [21] as commonly done in segmentation [2, 22, 3, 29, 27]. We evolve the bound-
ary of the shape via an embedding function φ, which is a convenient mean to compute
our feature, and also allows easy computation of a measure of dissimilarity to the target
shape [25].

The basic underlying model we use is [20] and the numerical scheme is [3]. Our
prior is essentially a Gaussian density learned using PCA from a set of training shapes,
incorporated into level-set segmentation, following the line of work pioneered by [29,
16, 7, 18]. Our goal here is to illustrate the role of the shape context, hence we keep
the statistical model as simple as possible. Finite-dimensional models for registration
have also been used in [24, 4].

To illustrate our approach, assume that we have a training set of shapes S1, ..., Sn,
and compute their average shape M as in Sect. 2. As a byproduct, we get the deforma-
tions h1, ..., hn that warp each Si into the average shape M . Following the derivation
in Sect. 3 we construct a deformable template M(µ +

∑k
i=1 αivi), allowing the scalar

weights αi to vary, as illustrated in Figures 7 and 10. Now we wish to detect a shape
defined by the unknown binary function H(φ) in a given image I , such that H(φ) is
also close to M(µ +

∑k
i=1 αivi). We consider the energy function

inf
φ,αi

E(φ, αi) = Eseg(φ) + βEprior(φ, αi),
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where for the first term we use [3] as given by:

Eseg(φ) = γ
∫
Ω
|∇H(φ)|dx

+
∫
Ω
|I(x)− c+|2H(φ)dx +

∫
Ω
|I(x)− c−|2H(−φ)dx,

where γ is a constant and

Eprior(φ, αi) =
∫

Ω

∣∣∣H(φ)−M(µ +
k∑

i=1

αivi)
∣∣∣2dx,

where αi is optimized within the range [−η
√

λi, η
√

λi] for a constant η as in [10]
where they used η = 3.

We minimize E(φ, αi) by an alternating procedure using the Euler-Lagrange equa-
tions and time-dependent regularization t > 0:

∂φ

∂t
= δ(φ)

[
γdiv

( ∇φ

|∇φ|

)
− |I − c+|2 + |I − c−|2

−2β
(
H(φ)−M(µ +

k∑
i=1

αivi)
)]

,

and for i = 1, ..., k

∂αi

∂t
= 2β

∫
Ω

(H(φ)−M(µ +
k∑

i=1

αivi))(∇M · vi)dx,

where ∇M is evaluated at µ +
∑k

i=1 αivi.

Figure 8: A set of 12 different hand shapes.

5 Experiments
In this section, we present experimental results to illustrate the performance of our
model in matching, in the computation of shape statistics, and in their exploitation
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v1 v2 v3

Figure 9: Three principal modes of variation obtained from the warping in Fig. 8.

−6
√

λi 0 6
√

λi

v1

v2

v3

Figure 10: Shape statistics from the shapes shown in Fig. 8. Three principal modes vi,
i = 1, 2, 3 shown in Fig. 9 are used with weights αi ∈ {−6

√
λi, 0, 6

√
λi}. α = 0

means the average.

to perform segmentation. We begin with simple but demonstrative examples using
synthetic shapes that have distinctive geometric features, then move on to real images.

In Fig. 4 we compare our proposed method with a conventional scheme without
shape context to compute the average shape of two rectangular objects with “bumps”
at different locations. The average shape obtained by conventional warping is affected
by the choice of regularizer, and has therefore smooth corners; our average shape,
instead, preserves significant geometric features that are present in the original shapes.
This is due to the meaningful correspondence enforced by matching context features,
instead of naked templates.

We now apply the proposed method to compute statistics of an ensemble of real
data of corpi callosi from 10 different individuals shown in the first row of Fig. 5. We
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first compute the average shape shown at the middle column in Fig. 7, together with
the warped shapes in the second row in Fig. 5 and the deformation fields between each
shape and the average are presented in the third row of Fig. 5. We apply PCA to the
obtained deformation fields and the first three principal modes are shown in Fig. 6. In
Fig. 7 we illustrate the shape variability captured by the second-order statistics relative
to the average (middle column) via the variations (first and last columns) based on
varying weights αi ∈ {−18

√
λi, 18

√
λi} of the first three principal modes vi, i =

1, 2, 3.
We repeat these experiments on 12 different hand shapes shown in Fig. 8. The

average shape is computed together with the domain deformations. The three principal
modes of variation v1, v2, v3 are shown in Fig. 9. In Fig. 10, we illustrate the variability
from the average shape by changing the weights αi for vi, with αi ∈ {−6

√
λi, 6

√
λi}.

Figure 11: Segmentation results on a brain MRI image (top row) and its noisy version
(bottom row). (Left column) Source images. (Middle column) Segmentations without
shape prior. (Right column) Segmentations with shape prior. The average shape shown
in Fig. 7 and the three principal modes shown in Fig. 6 are used for the shape prior
model. (The parameters γ = 105, β = 4500 (top), β = 5000 (bottom) are used and
image size is 200× 200).

Finally, in Fig. 11 we illustrate the use of our prior for segmentation using the
average shape and the three principal modes as a shape prior. The corpus callosum
in the original data does not exhibit enough contrast to allow successful segmentation
using only low-level (intensity) data. However, using a shape prior allows successful
segmentation and adaptation to the target shape.

6 Conclusions and Discussion
We have exploited a local feature that captures shape context to establish meaning-
ful correspondence between shapes in an ensemble, and used that to compute shape
statistics of the first (average) and second order (variance). These are computed using
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infinite-dimensional deformation fields and an integral kernel that is robust to noise
and deviation from the ideal deformable template model. Also, we have computed the
statistics by performing principal component analsyis on the set of deformation fields
from each shape to the average. Satisfactory experimental results on real and synthetic
data have been shown to validate the proposed method when compared with analysis of
the naked templates. We also have introduced a segmentation algorithm using a shape
prior that is modeled by the proposed shape statistics via meaningful correspondences
and shown promising segmentation results.
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