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Abstract

We prove that graphs can be embedded randomly into `p (for any p ≥ 1) with expected distortion
polynomial in k, where k is the bandwidth of the graph. This implies the existence of an infinite family
of graphs which embed well into `p, which is surprising since trees do not form such a class, having a
lower bound of Ω(log log n) for `2 embedding. Our results extend to graphs of bounded tree-bandwidth
when the target metric is `1, or when we allow an additional term of size O(log log n) in our distortion.

1 Introduction

Metric embedding is a powerful technique with many applications in approximation algorithms. The idea
is to find a one-to-one function to transform a source metric into a target metric. The distortion of the
embedding measures the expansion and contraction of the distance function under this transformation. For
embedding to be useful, the target metric should have properties which enable us to produce better algorith-
mic results; typical target metrics include trees, graphs of low tree width, and the infinite normed spaces.
The class of possible source metrics should be as broad as possible, and the distortion should be low.

In this paper, we will focus our attention on embedding finite graph metrics into the normed spaces
`p. The main result in this area is the work of Bourgain [4], showing that any metric with n nodes can be
embedded into high-dimensional `p with distortion bounded by O(log n). Subsequent work has proven this
to be tight (the particular metrics which are hard to embed are based upon expander graphs) [14]. For this
reason, attention has turned to producing infinite graph families where better results are possible. The major
result of this form is by Rao [20], showing that any graph family which excludes minor M can be embedded
into `p with distortion O(|M |3

√
log n). The dependence on |M | has been improved [13], but there are lower

bounds indicating that we cannot embed even tree-width two graphs into `2 with distortion Ω(
√

log n) [17].
In fact, even trees have matching bounds of Θ(

√
log log n) for embedding into `2 [5, 15]. Since we’d like

to find infinite families which embed with constant distortion, research in this direction has changed focus
to the special case of the `1 metric, for which a number of results are now known [8, 11, 18].

Our work revives the interest in embedding infinite graph families into `p for p > 1. We show that
graphs of bandwidth k can be embedded into `p with distortion polynomial in k. Of course, for this to be
possible it is critical to observe that trees can have unbounded bandwidth. This implies that graph bandwidth
may have interesting connections to `2-embedding. We make use of the technique of iterative embedding
previously introduced in [7], partitioning a low bandwidth graph into many small pieces and embedding
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each one separately. We thereby produce an `1 embedding with no contraction and bounded expansion; by
a carefully selected local embedding technique and improved methods for combining the pieces, we will
additionally improve the distortion to polynomial in the bandwidth (previous results were exponential in the
bandwidth). Since the `p distance between two coordinates cannot exceed the `1 distance, this implies an `p

embedding which also has bounded expansion. We additionally observe that for any pair of nodes x, y, our
technique guarantees that a small number of coordinates (at most k) support the entire distance between x
and y. This allows us to bound the contraction of the `p embedding, and to prove our main result.

We can extend our result to tree-bandwidth as defined by [7]. Since all trees have tree-bandwidth one,
we will not be able to embed into `p with distortion dependent only on the tree bandwidth. Instead, we show
that we can embed into `p with distortion O(k4 + kαp(T )) where αp(T ) ≤ O(

√
log log n) is the minimum

distortion to embed the tree decomposition T into `p. This gives a polynomial-in-k distortion result for `1

embedding, and also improves over previous results in `p by replacing the dependence on
√

log n with a
dependence on

√
log log n.

1.1 Related Work

A great deal of recent work has concentrated on achieving tight distortion bounds for `1 embedding of
restricted classes of metrics. For general metrics with n points, the result of Bourgain[4] showed that
embedding into `1 with O(log n) distortion is possible. A matching lower bound (using expander graphs)
was introduced by LLR [14]. It has been conjectured by Gupta et al. [11], and Indyk [12] that the shortest-
path metrics of planar graphs can be embedded into `1 with constant distortion. Gupta et al. [11] also
conjecture that excluded-minor graph families can be embedded into `1 with distortion that depends only on
the excluded minors. In particular, this would mean that for any k the family of treewidth-k graphs could
be embedded with distortion f(k) independent of the number of nodes in the graph1. Such results would be
the best possible for very general and natural classes of graphs.

Since Okamura and Seymour [18] showed that outerplanar graphs can be embedded isometrically into
`1, there has been significant progress towards resolving several special cases of the aforementioned con-
jecture. Gupta et al. [11] showed that treewidth-2 graphs can be embedded into `1 with constant distortion.
Chekuri et al. [8] then followed this by proving that k-outerplanar graphs can be embedded into `1 with
constant distortion. Note that all these graph classes not only have low treewidth, but are planar. We give
the first constant distortion embedding for a non-planar subclass of the bounded treewidth graphs.

Rao [20] proved that any minor excluded family can be embedded into `1 with distortion O(
√

log n).
This is the strongest general result for minor-excluded families. Rabinovich [19] introduced the idea of
average distortion and showed that any minor excluded family can be embedded into `1 with constant
average distortion.

Graphs of low treewidth have been the subject of a great deal of study. For a survey of definitions
and results on graphs of bounded treewidth, see Bodlaender [2]. More restrictive graph parameters include
domino treewidth [3] and bandwidth [9], [10].

1 There is a lower bound of Ω(log k) arising from expander graphs.
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2 Definitions: Bandwidth and Tree-Bandwidth

Given two metric spaces (G, ν) and (H,µ) and an embedding Φ : G→ H , we say that the distortion of the
embedding is ‖Φ‖ · ‖Φ−1‖ where

‖Φ‖ = max
x,y∈G

µ(Φ(x),Φ(y))
ν(x, y)

,

‖Φ−1‖ = max
x,y∈G

ν(x, y)
µ(Φ(x),Φ(y))

Parameter ‖Φ‖ will be called the expansion of the embedding and parameter ‖Φ−1‖ is called the con-
traction.

We now define bandwidth and tree-bandwidth.

Definition 2.1. Given graph G = (V,E) and linear ordering f : V → {1, 2, ..., |V |} the bandwidth of f is
max{|f(v)− f(w)||(v, w) ∈ E}. The bandwidth of G is the minimum bandwidth over all linear orderings
f .

Definition 2.2. Given a graph G = (V,E), we say that it has tree-bandwidth k if there is a rooted tree
T = (I, F ) and a collection of sets {Si ⊂ V |i ∈ I} such that:

1. ∀i, |Si| ≤ k

2. V =
⋃

Si

3. the Si are disjoint

4. ∀(u, v) ∈ E, u and v lie in the same set Si or u ∈ Si and v ∈ Sj and (i, j) ∈ F .

5. if c has parent p in T , then ∀v ∈ Sc,∃u ∈ Sp such that d(u, v) ≤ k.

Note that if graph G has tree-bandwidth k, we can assume that d(v, p(v)) ≤ 1 while incurring only
O(k) distortion.

We will now show a relationship between bandwidth and tree-bandwidth. In particular, we will show that
any of bandwidth k embeds into a graph of tree-bandwidth k with low distortion. This will enable us to focus
our efforts on embedding graphs of bounded tree-bandwidth into `p. We observe that the inverse relationship
is not true since trees have tree-bandwidth one but do not embed with low distortion into bounded bandwidth
graphs. The proof of the following theorem will be given in appendix A.

Theorem 2.3. Any graph with bandwidth k can be embedded with distortion O(k4) into a graph with
tree-bandwidth k.

2.1 Relating Tree-Bandwidth to Treewidth

A major conjecture in metric embedding states that any graph with treewidth k can be embedded into `1

with distortion dependent only upon k. Of course, no similar conjecture can hold for `2; even for graphs
of treewidth 2 we have a lower bound of Ω(

√
log n) [17]. While this paper will not resolve the conjecture,

there are interesting relationships between tree-bandwidth (which we will show how to embed into `1 with
distortion polynomial in k) and treewidth. We will explore these relationships here.

We will first make some definitions regarding DFS-trees, and relate them to treewidth and tree-bandwidth.
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Definition 2.4. (i) Given a connected graph G = (V,E), a DFS-tree is a rooted spanning subtree T =
(V, F ⊂ E) such that for each edge (u, v) ∈ E, v is an ancestor of u or u is an ancestor of v in T .

(ii) The value of DFS-tree T is the maximum over all v ∈ V of the number of ancestors that are adjacent
to v or a descendent of v.

(iii) The edge stretch of DFS-tree T is the the maximum over all v, w ∈ V of the distance d(v, w) where
w is an ancestor of v and w is adjacent to v or a descendent of v.

We use the following definition of treewidth due to T. Kloks and related in a paper of Bodlaender [2]:

Definition 2.5. Given a connected graph G = (V,E), the treewidth of G is the minimum value of a DFS-tree
of a supergraph G′ = (V,E′) of G where E ⊂ E′.

The following proposition follows immediately from the definition of tree-bandwidth:

Proposition 2.6. Given a connected graph G = (V,E), the tree-bandwidth of G is the minimum edge
stretch of a DFS-tree of G.

Thus, treewidth and tree-bandwidth appear to be related in much the same way that cutwidth and band-
width are related (see [2] for instance). The close relationship between treewidth and tree-bandwidth is
cemented by the following observation:

Lemma 2.7. Any metric supported on a weighted graph G = (V,E) of treewidth-k can be embedded with
distortion 4 into a weighted graph with tree-bandwidth-O(k)

Thus, a technique for embedding weighted tree-bandwidth-k graphs into `1 with O(f(k)) distortion
would immediately result in constant distortion `1-embeddings of weighted treewidth-k graphs.

2.2 Bounded Bandwidth Example

We give an example of a graph of bandwidth at most 2k − 1 which is not planar. This implies that the
constant distortion `1-embedding techniques of [18, 11, 8] will not apply.

Construct G in the following manner:

1. Consider k points connected in an arbitrary way.

2. Add k new points connected to each other and the previous k points in an arbitrary way.

3. Repeat step 2 an arbitrary number of times.

Clearly the graph G generated in this way has bandwidth ≤ 2k − 1. However, note that if k ≥ 3 and some
set of 2k consecutively added points contains K3,3 or K5 then G is not planar.

2.3 Bounded Tree-Bandwidth Example

To show that bounded tree-bandwidth graphs form a broader class than the bounded bandwidth graphs
consider the following example. Let G = (V ′, E′) consist of k copies of an arbitrary tree T = (V,E).
Construct G′ from G as follows:

1. For x ∈ V , let {x1, ..., xk} be the k copies of x in V ′.

2. For each x ∈ V , connect {x1, ..., xk} in an arbitrary way.
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While the resulting graph G′ clearly has tree-bandwidth k, a complete binary tree of depth d has bandwidth
Ω(d) [9], thus G′ may have bandwidth Ω(log n).

Note again that if k ≥ 5 and G′ contains K3,3 or K5 then G′ is not planar and thus previous constant
distortion `1-embedding techniques cannot be applied.

Also note that there are trees T with |V | = n such that any `2-embedding of T has distortion Ω(
√

log log n) [5].
Since Rao’s technique embeds first into `2 this gives a lower bound of Ω(

√
log log n) on the distortion

achievable using Rao’s technique to embed G′ into `1. The technique presented in this paper embeds these
examples into `1 with distortion depending only on k.

Apart from being interesting from a technical viewpoint, bounded tree-bandwidth graphs may also be
a good model for phylogenentic networks with limited introgression/reticulation [16]. This is a fruitful
connection to explore, though it is outside the scope of this paper.

3 Local Embedding

Given a graph G of tree-bandwidth k, and a tree-bandwidth decomposition (T = (I, F ), {Xi|i ∈ I}) of G,
we will construct a collection of clusterings for Xi which approximately preserves the metric of G restricted
to Xi. Furthermore, these clusterings will not be constructed independently; they will be built in a way that
is sensitive to the structure of the decomposition (T = (I, F ), {Xi|i ∈ I}) of G. We will match coordinates
to each cluster and assign a nonzero value to the coordinate if and only if a point is a member of the cluster.
These coordinates can be thought of as providing an embedding into `p for any p ≥ 1.

3.1 Metric Sensitive Clustering

Given any set Xi from the tree-bandwidth decomposition of G, the shortest path metric of G induces a
metric on the points of Xi. We will refer to this metric as the metric of Xi.

Let n = |V |. Let δ = log2 n.
Let C be an ordered collection of δ clusterings of the points of Xi. We will use Cj to denote the jth

clustering of C. We will call Cj valid for Xi if the following properties hold:

1. if d(x, y) > 2j then Cj separates x, y

2. if d(x, y) ≤ 1
k2j then Cj clusters x, y

We will call Cj almost-valid for Xi if the following properties hold:

1. if d(x, y) > 2j+1 then Cj separates x, y

2. if d(x, y) ≤ 1
k2j−1 then Cj clusters x, y

We will say the ordered collection C is almost-valid for Xi if Cj is almost-valid for Xi for every j. On
occasion we will omit the Xi and simply say that C is valid or almost-valid when the set Xi is clear from
context.

Theorem 3.1. A valid clustering Cj can be constructed for any set Xi.

Proof. To build the clustering at scale j connect all pairs of points x, y where d(x, y) ≤ 1
k2j . Let clusters

correspond to the resulting connected components.
Since there are at most k nodes in Xi, each connected component has diameter ≤ 2j . Furthermore,

distinct clusters are separated by distance ≥ 1
k2j .
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We can use an almost-valid clustering to construct an embedding of the set Xi into `p. This is done by
associating a weight with each clustering Cj . We then associate a coordinate with each cluster in Cj , such
that points not belonging to that cluster have value zero in the associate coordinate, and points in that cluster
have value equal to the weight.

Theorem 3.2. If we apply weight 2j+2 to clustering Cj from an almost-valid collection of clusterings C,
then the resulting `p embedding of Xi does not contract any distances and expands distances by at most a
factor of 32k.

Proof. Consider some x, y with 2j < d(x, y) ≤ 2j+1.
We observe that x, y will be clustered by Cj+2+log k since d(x, y) ≤ 2j+1 ≤ 1

k2j+1+log k. Thus the
embedded distance between x and y will be at most 2Σm≤j+1+log k2m+2 ≤ k2j+5 ≤ 32kd(x, y), which
bounds the expansion.

On the other hand, x, y will be separated by Cj−1 (and Cm for m < j− 1) since d(x, y) > 2j . Thus the
embedded distance between x and y will be at least 2j+1 ≥ d(x, y), implying no contraction.

4 Global Embedding

4.1 Inheriting Clusterings and Timers

We would now like to use the bounded tree-bandwidth of G to embed the entire graph into `p with minimal
distortion. We will use the proximity of points in Xi to points in Xp(i) to show that we can force agreement
between valid clusterings of sets which are adjacent in the tree-bandwidth decomposition.

For each scale j with 0 ≤ j ≤ δ we will have a timer τj . When we embed the root of the tree-
bandwidth decomposition, we will initialize τj to a value selected uniformly from [0, 2j−2

k − 1] and we will
compute a valid collection of clusterings for the root. Whenever we embed some super-node Xi in the
tree-bandwidth decomposition, we will copy the values of τj from its parent. We then increment the value
of τj for every j such that there exist two points x, y in the current super-node whose distance apart satisfies
1
k2j−1 ≤ d(x, y) ≤ 2j+1. For every j such that τj < 2j−2

k we inherit clustering Cj from the parent. Each
node will belong to the same cluster in this clustering that its parent node belonged to. On the other hand, if
τj = 2j−2

k then we will define a new valid clustering Cj for the points of Xi, and then reset τj to be zero.
We now prove a sequence of lemmata which bound the distance between parent and child nodes, as well

as the distance between two nodes in the same super-node Xi.

Lemma 4.1. The clusterings we use for Xi are almost-valid.

Proof. Consider some clustering Cj that is not almost-valid. It follows that there is some pair x, y ∈ Xi

such that d(x, y) ≤ 1
k2j−1 but where x, y are in different clusters, or that there is some pair x, y ∈ Xi

such that d(x, y) > 2j+1 but where x, y are in the same cluster. We will consider the first case (the proof
for of contradiction the second case is similar). We backtrack to the most recent time when we replaced
cluster Cj . At that time, there were some ancestors of x, y which we will call a(x), a(y). Suppose that
d(a(x), a(y)) > 1

k2j . Since at each step the parent of a node is adjacent to the child, we conclude that there
is a sequence of nodes connecting a(x) to x and similarly a(y) to y. There must have been more than 2j−2

k
super-nodes in the intervening time that would have updated the timer τj . This contradicts the manner in
which the timers work. On the other hand, suppose d(a(x), a(y)) ≤ 1

k2j . In this case when we produced
clustering Cj it was valid, so a(x) and a(y) were in the same cluster. But then x, y inherit the clustering
of their ancestors, so they too would be in the same cluster, contradicting the assumption that they are in
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different clusters. Since in any case we have a contradiction, we conclude that in fact the clusterings are
almost-valid.

Lemma 4.2. When we embed Xi, at most O(k log k) timers will be incremented.

Proof. We first observe that a single distance can increment at most O(log k) timers. Consider building
the minimum spanning tree on the nodes of Xi, where the weight of an edge equals the distance between
its endpoints. There are k − 1 edges in this spanning tree. Now consider any pair of points x, y in Xi.
Consider the path P (x, y) through the spanning tree. If the distance between x, y is less than the length of
the longest spanning tree edge in P (x, y), then we could produce a better spanning tree by removing that
longest edge and replacing it with (x, y). On the other hand, the distance between x, y cannot exceed the
length of P (x, y) which is at most (k − 1) times the length of the longest spanning tree edge in P (x, y).
Thus every distance is within a factor of k of the length of some spanning tree edge. Distances within a
factor of k of a particular distance can increment only O(log k) timers, so we get at most O(k log k) timers
incremented in total.

Lemma 4.3. For any timer τj which is incremented, the probability of defining a new clustering Cj for Xi

is exactly k
2j−2 ; for any timer τj which is not incremented, the probability of defining a new clustering Cj

for Xi is zero.

Proof. We always maintain that timers have value at most 2j−2

k −1, so we can only define a new clustering Cj

if we increment timer τj . The number of times τj has been incremented since the root node is deterministic,
so there is exactly one initial value for τj such that we will define a new clustering Cj . Since the initial
values were determined uniformly at random, the lemma follows.

Theorem 4.4. The coordinates used for the clusterings guarantee that the expected embedded distance
between x ∈ Xi and p(x) ∈ Xp(i) is no more than O(k2 log k).

Proof. Inherited clusterings don’t create any distance between parent and child – the same coordinate will
be given the same values. The coordinates where x and p(x) differ are those corresponding to clusterings Cj

where we defined a new clustering. Whenever this happens, we will have x and p(x) in different clusters, so
we will have a pair of coordinates one of which is 2j+2 and the other of which is zero for x, with p(x) being
exactly the opposite. For any Cj where we incremented the timer, the probability of this mismatch will be

k
2j−1 . Applying linearity of expectations, we can conclude that the expected `1 distance between parent and
child is at most O(k2 log k). Since the `p distance can never exceed the `1 distance (for p > 1) we have the
same bound for `p.

5 Bounding Overall Distortion

We will add a few new coordinates to our metric. In particular, we compute an embedding of the tree de-
composition of the graph into `p. This embedding will be non-contracting, and will guarantee an expansion
of at most α. In general we can guarantee that α ≤ O(

√
log log n) because the tree decomposition is a tree.

For `1, we have α = 1. Of course, for some special tree decompositions (such as those arising from a low
bandwidth graph) we will be able to better refine our value of α. We will now bound the `p distortion of our
embedding.

Theorem 5.1. Our algorithm embeds tree-bandwidth k graphs into `p with distortion O(k3 log k + kα)
where α is the distortion for embedding the tree decomposition into `p.

7



Proof. We will lose a factor of k because of our assumption that parent and child nodes are always adjacent
(distance one) instead of distance at most k. Now consider two points x, y in the original graph. We consider
three cases:

1. If x, y are in the same super-node in the tree decomposition, then we simply combine theorem 3.2
with lemma 4.1 to see that their embedded distance via the clusterings does not contract the real
distance and does not expand the real distance by more than O(k). We observe that the coordinates
corresponding to the tree decomposition will be identical for x and y and will therefore have no effect.

2. If x, y are in adjacent super-nodes, then assume without loss of generality that y is in the parent
super-node and x in the child. Let p(x) be the parent of x. Now E[dE(y, x)] ≤ E[dE(y, p(x))] +
E[dE(p(x), x)] by applying triangle inequality and linearity of expectation to the embedded dis-
tances. Since y and p(x) are in the same super-node, we can apply the previous case to this dis-
tance. For the distance between x and its parent, we apply theorem 4.4. Combining these yields
E[dE(y, x)] ≤ O(α + k2 log k), where the additional α comes from the coordinates corresponding to
the tree decomposition. On the other hand, we also guarantee that dE(y, x) ≥ (dE(y, p(x))p+∆p)1/p

where ∆ ≥ 1 is the embedded distance in the tree decomposition. This gives us dE(y, x) ≥ 1
2d(y, x)

and bounds the contraction.

3. If x, y are in distinct, non-adjacent super-nodes, then there is some path Q through the tree-bandwidth
decomposition separating their super-nodes. We will prove our bound by induction on the length of
this path, with the base case being covered in the previous case where the super-nodes are adjacent.
Inductively, we find the shortest path in the original metric between x and y, and observe that it
must visit some node z in each super-node Z lying on the path Q. Since z is closer in the tree-
bandwidth decomposition to both x and y, we can inductively write dE(x, z) ≤ O(k2 log k)d(x, z)
and similarly for dE(x, y). Applying triangle inequality along with the fact that d(x, y) = d(x, z) +
d(y, z) completes the induction and gives us the desired bound on the expansion.

We now need to bound the contraction. We let Q be the path through the tree decomposition between
the super-nodes containing x and y. We consider Z to be the common ancestor of the super-nodes
containing x and y, and let x′, y′ be closest nodes in Z to x and y respectively. The coordinates
representing clusters guarantee that dE(x, y) ≥ dE(x′, y′) since x and y inherit clusterings from their
ancestors. The tree decomposition coordinates give dE(x, y) ≥ |Q|. Since x′, y′ are in the same
super-node we have dE(x′, y′) ≥ d(x′, y′), and because of the parent-child distance of one we can
guarantee that d(x′, y′) ≥ d(x, y)− |Q|. Combining these yields:

dE(x, y) ≥ max[d(x, y)− |Q|, |Q|] ≥ 1
2
d(x, y)

Thus we have expansion by at most O(k2 log k+α) and contraction by at most a factor of two. Of course,
this was assuming parent and child are adjacent, and removing that assumption gives us an additional k. We
can eliminate contraction by simply doubling the values of all coordinates (which increases expansion by a
factor of two).

In general we will have α ≤ O(
√

log log n) as this is the bound for embedding trees into `p. However,
in the case of graphs with bounded bandwidth we should be able to do better.

Theorem 5.2. If graph G has bandwidth k, then we can embed G into `p with distortion O(k7 log k).
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Proof. We make use of our result in theorem 2.3 to embed the original metric into a graph metric of bounded
tree bandwidth. The distortion of this embedding is O(k4). We then embed that graph into `p. Consider
the tree decomposition produced in the proof of theorem 2.3. There is a single “spine” of the graph, along
which we have potentially many branches. Each branch is recursively constructed with bandwidth k − 1. If
we use one coordinate to represent the position on each branch, this yields an isometric `1 embedding for
the tree. In `p, we observe that any point has at most k nonzero coordinates in this system, which implies
that the `p distance is within a factor of k of the `1 distance. Thus we have α ≤ k for this particular tree
bandwidth decomposition, which completes the proof.

We can additionally de-randomize the embedding of bounded tree-bandwidth graphs into `p. Note
that this does not immediately de-randomize the embedding of bounded bandwidth into `p because the
embedding of bandwidth into tree-bandwidth was also randomized.

Theorem 5.3. We can de-randomize the tree-bandwidth embedding into `p with only constant factor loss in
the distortion bounds.
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A Proof of Theorem 2.3

Definition A.1.

• A far point f is a point that has no leftward edge in the bandwidth ordering.

• A connecting path of a far point f is a path beginning at f and ending at v where φ(v) < φ(f).

• The minimum connecting path of f is the connecting path with the smallest maximum index.

• The magnitude of a far point f is the length of the minimum connecting path.

• The max index of the minimum connecting path of f is at least magnitude(f) + index(f)− 1
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Input: Assume we are given graph G = (V,E) with bandwidth-k. We will refer to the nodes of G according
to the ordering.

1. G′ ← G

2. root← v ∈ V such that φ(v) = 1

3. give each edge weight 1

4. For each far point fi do:

(a) li ← endpoint of minimum connecting path of fi

(b) mi ← magnitude(fi)

(c) Randomly choose ci ∈ [φ(fi), φ(fi) + mi − 1]

5. Consider the indices ci in increasing order and do:

(a) δ ← mi

(b) for each edge e that crosses ci do:

i. weight(e)← weight(e) + 2kδ

(c) consider the connected components that would result from cutting all edges crossing ci

(d) let current be the component that contains fi

(e) star ← {}; target← li; threshold← mi

(f) while root, target /∈ current and δ ≥ threshold do:

i. star ← Boundary(current)
⋃
{connector}

ii. let C be the component containing target

iii. current← current
⋃

C

iv. if far point fj is the far point with the largest magnitude in current do
A. target← lj

B. threshold← mj

C. connector ← the last edge in the minimum connecting path of fj that crosses ci

(g) Identify the midpoints of all edges in star - this will create new point p in G′

(h) if root ∈ current, we call p a spine point otherwise we call it a connecting point

(i) the connected components to the left of ci formed by removing p are called the hanging compo-
nents of p

Figure 1: Algorithm REMOVE-FAR-POINTS
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Our embedding is as follows: We apply algorithm REMOVE-FAR-POINTS. This gives us a graph G′.
Let GS be G′ with the hanging components of all spine points removed. First note that GS has bandwidth-k
and has the property that every v ∈ GS has a leftward edge. Next note that each hanging component H of a
spine point p has bandwidth≤ k−1. We will then apply the algorithm REMOVE-FAR-POINTS recursively
to each hanging component H with the corresponding spine point as the root of H .

Lemma A.2. After one application of REMOVE-FAR-POINTS, each far point belongs to a hanging com-
ponent of exactly one spine point.

Proof. Basically, the idea is that once edges get clustered, they do not get split up.
Same component before cut implies same component after.
Every component must eventually merge into the root component.
Essentially, when component A merges into component B, all edges of A merge into B.

Claim A.3. The minimum connecting distance of a component is greater than its diameter.

Proof. The proof is by induction on the number of far points in the connected component. If there is only
one far point in component C, then the magnitude of the shortest minimum connecting path is mi and the
diameter is ≤ mi.

Assume C has t far points. Assume statement is true for components with < t far points. Assume C
has far point fj with a shortest minimum path which does not lie in C, and largest far point fi which has
magnitude mi > mj . Consider when the components Ci, Cj of fi and fj merged. fi was the largest far
point in Ci, so if ci had connected Ci, Cj , then the minimum connecting path of fj would also have been
included in C which is a contradiction. Thus, it must have been cj that connected Ci, Cj .

Lemma A.4. GS has bandwidth ≤ k and has the property that every v ∈ GS has a leftward edge.

Proof. Clearly replacing edges by a star does not increase the bandwidth. By the previous lemma, all far
points have been removed and our algorithm adds no new far points.

Lemma A.5. For any index i, there are at most k far points whose minimum connecting paths can cross i.

Proof. Fix index i. No far point with index greater than i can have a minimum connecting path which
crosses i. Assume x, y are far points with indices less than i. Assume WLOG that x appears before y in the
ordering. Let P (x), P (y) be the minimum connecting paths of x, y respectively. Assume P (x), P (y) both
cross index i. Let x′, y′ be the first points on the paths P (x), P (y) respectively which have edges crossing
index i. If x′ = y′, then there is a path from y to x which does not cross index i. This contradicts the
definition of P (y) as the minimum connecting path. Thus, distinct far points must have distinct first nodes
which have edges crossing i. Since the bandwidth is k, there be at most k such distinct nodes which have
rightward edges crossing i. Thus, at most k far points have minimum connecting paths that cross i.

Theorem A.6. For an unweighted graph G of bandwidth-k the distortion of our embedding is O(k4).

Proof. The theorem is an immediate consequence of the following lemmas:

Lemma A.7. REMOVE-FAR-POINTS does not contract any distance.
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Proof. We never decrease the weight of any edge, so contraction can only occur when we replace a set of
edges crossing a cut with a star.

Consider the star formed at index ci. Cutting ci would create at most k connected components to the left
of ci. We only cluster components together when they are less than mi apart.

Claim A.8. Every component that does not contain root has a far point with magnitude greater than the
diameter of the component.

Proof. Fix component C which does not contain root. Let v be the minimum index point in C, thus it is a
far point. The minimum connecting path of v must connect it to a point outside of C. The maximum index
on this path exceeds ci. Thus, the magnitude of v must be greater than the number of points in C.

Thus, every component with the exception of the last component has diameter ≤ mi. Thus, the maxi-
mum distance between the endpoints of any pair of edges that is replaced by a star is (k− 1)2mi + 2 which
is less than 2kmi which is the length of the shortest path through the new star.

Lemma A.9. The expected expansion of embedding REMOVE-FAR-POINTS is O(k3).

Proof. By linearity of expectation, it is enough to bound the stretch of arbitrary edges.
Fix edge e = (u, v). Since G has bandwidth-k, e can only cross k − 1 indices. The expected stretch of

e is at most the sum of the expected stretches of these k − 1 indices. Let us bound the expected stretch of
edges across a given index.

Assume the minimum connecting path of far point fi crosses index t. The chance that fi causes the
edges across t to be stretched is 1/(mi − 1). The stretch of edge e that crosses index t is 2k ·mi.

A critical point here is that the minimum connecting path of a far point fi never crosses an edge of
weight > 1. If such a path did pass through a stretched edge, it would have to pass through some connecting
point p. But this would mean that fi already has a spine point. Thus, minimum connecting paths in a graph
that has already been processed are no longer than they were in the original graph.

So, for a particular edge there are at most k − 1 indices at which a far point can stretch that edge. By
Lemma A.5 there are at most k far points whose minimum connecting paths can cross any index t. Finally,
the expected stretch of edges across an index caused by a particular far point is≤ 2k ·mi. Thus, the expected
stretch of an edge is ≤ k · (k − 1) · 2k ·mi

1
mi−1 = O(k3)

As noted in the lemma, the distortion generated by each application of REMOVE-FAR-POINTS is
additive and since there are at most k − 1 applications that affect a given edge, the expected distortion is
O(k4).

B Proof of Lemma 2.7

Lemma B.1. Assume we are given weighted graph G = (V,E) with treewidth-k. There exists an embedding
with distortion ≤ 2 into the shortest path metric of a weighted graph G′ = (V ′, E′) with max degree 3 and
treewidth-k + 1.
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Proof. Assume WLOG that all weights are greater than 1. Multiply the weight of each edge by n2. Consider
a width-k tree decomposition (T, {Si}) of G. Expand each treenode Si into a sequence of

(
k+1
2

)
treenodes

so that each treenode has at most 1 edge.
Assume (x, y) ∈ Si. Assume x is incident on 2 edges in ancestors of Si. Replace Si with 2 treenodes

Si,1, Si,2 as follows: Let Si,1 contain new node x′ in addition to all the nodes of Si and weight 1 edge (x, x′).
Let Si,2 contain all the nodes of Si except that x′ replaces x and edge (x′, y) replaces (x, y). Now replace
x with x′ in all the original descendents of Si which are now descendents of Si,2. Repeat process for y if
necessary. Repeat for descendent treenodes.

This process does not contract any distance and does not expand any distance by more than n2+n
n2 ≤ 2

Theorem B.2. (From [3]) Given graph G = (V,E) with treewidth-k and max degree d. Then G has domino
treewidth ≤ (9k + 7)d(d + 1)− 1.

Lemma 2.7. Any metric supported on a weighted graph G = (V,E) of treewidth-k can be embedded with
distortion 4 into a weighted graph with tree-bandwidth-O(k).

Proof. Given graph G = (V,E) with treewidth-k, we can apply Lemma B.1 to get graph G′ which by
Theorem B.2 has domino treewidth ≤ 108k +191. This means that it has a tree decomposition (T, {Si}) of
width ≤ 108k + 191 in which no node appears more than twice.

We will then take each node and replace it by 2 nodes connected by an edge so that no node appears
more than once. The resulting graph has bounded tree-bandwidth except that it violates property 5. We can
ensure that the graph has bounded tree-bandwidth by adding an edge between each violating point and a
point in the parent treenode. If we then assign a weight equal to the distance in graph G′ then adding these
additional edges does not affect the shortest path distances in the graph. The resulting graph G′′ satisfies the
properties claimed.
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