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Abstract
Vertical integration (3D ICs) has demonstrated the potential to reduce inter-block wire latency through

flexible block placement and routing. However, there is untapped potential for 3D ICs to reduce intra-
block wire latency through architectural designs that can leverage multiple silicon layers in innovative
ways. Furthermore, it is particularly challenging to simultaneously explore the physical design space and
microarchitectural space for vertical integration. The physical design space typically has no information on
the microarchitectural impact of latency optimization, and the microarchitectural space has no information
on the physical design impact of different architectural alternatives.

We make the following contributions in this paper: (1) the introduction of port partitioning, a new
approach to constructing multi-layer blocks, (2) the extension of a microarchitectural exploration tool to
include the ability to model multi-layer blocks and to consider these blocks as alternative implementations
of single layer architectural blocks on the fly, within a single floorplanning run, and (3) the evaluation of
vertical integration on a design driver using this framework.

For this design driver, we see an average 36% improvement in performance (measured in BIPS) over
a single layer architecture, and a 29% improvement in performance over a multi-layer architecture with
single layer blocks. The on-chip temperature is kept below 40◦C.

1 Introduction and Motivation
Vertical integration [20, 27, 32, 29, 12] leverages multiple layers of silicon to allow physical designers more
flexibility in component layout. One approach to using this technology is to place single-layer (i.e. 2D)
blocks in one of the silicon layers and running both horizontal and vertical interconnect between blocks. The
flexibility that this design affords has the potential to dramatically reduce inter-block interconnect latency in
a design [7, 1, 2, 6].

However, this approach does little to help intra-block wire latency. And despite the advantage of almost
completely eliminating inter-block wire latency, we find that the placement of 2D blocks in two layers
improves performance by 6% on average for a particular architecture (described in section 5). Additional
gains from the use of vertical integration must attack the intra-block wire latency.

Furthermore, the emergence of technology like vertical integration can have a dramatic impact on mi-
croarchitecture design – a field that is heavily reliant on physical planning and technological innovation.
However, physical planning is not meaningful without consideration for microarchitectural loop sensitivi-
ties: some loose loops [3] are better able to tolerate latency than others [28]. A floorplan with a 5% reduction
in wirelength may actually be better than a floorplan with a 7% reduction in wirelength – if the former re-
duces the length of more critical microarchitectural loops than the latter. Similarly, architectural innovations
are not meaningful without understanding their physical design implications.
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Recently, the MEVA-3D [6] framework was proposed to bridge the gap between physical planning and
microarchitectural design. The framework uses microarchitectural loop sensitivities in the floorplanning
process to guide block placement. With this framework, architects can obtain accurate loop latencies to
feed to a cycle-accurate simulation framework. This can help evaluate the impact of new and emerging
technologies on microprocessor design.

In this paper, we explore the architectural impact and potential of finer granularity vertical integration,
where individual blocks are placed across multiple layers. The challenge from the architectural side is the
construction of blocks that can span multiple layers. The challenge for physical design is to automate the
process of placing blocks in multiple layers.

To address these challenges, we make the following contributions:

• 3D Architectural Blocks: We propose port partitioning, an approach to place architectural blocks like
register files, issue queues, and caches in multiple silicon layers. We compare port partitioning with
wordline/bitline partitioning [30] with respect to area, timing, power, and required vertical intercon-
nect.

• 3D Microarchitectural and Physical Design Co-Optimization: We extend the MEVA framework [6] to
handle fine-grain 3D exploration. Our modified framework can automatically choose between 2D and
3D implementations of a given block. Given a frequency target, an architectural netlist, and a pool of
alternative block implementations, this framework can find the best solution in terms of performance
(in BIPS), temperature, or both.

• 3D Design Driver Exploration: Using our modified framework, we explore the design space of differ-
ent partitioning schemes for a particular design driver architecture, using one to four layers of silicon.
In addition to exploring the use of single layer and multilayer blocks, we consider growing the sizes
of different architectural structures, using the timing slack from vertical integration. In some cases,
the timing slack can enable the use of larger instruction or scheduling windows, or larger caches.

In addition to helping latency, this reduction in wire RC delay can reduce power dissipation. However,
the stacking of components can adversely impact the temperature of the microprocessor. It is therefore es-
sential for any study using vertical integration to make use of accurate temperature modeling to demonstrate
the effectiveness of any architecture. All of our explorations are enhanced with a state-of-the-art, accurate,
temperature simulator tool. We also consider automated thermal via insertion to help mitigate the impact of
temperature.

The rest of the paper is organized as follows: We review the prior work on 3D integration technology,
microarchitectural exploration techniques, and block modeling in Section 2. Next, we detail and evaluate
our 3D architectural blocks in Section 3. Our 3D block placement enhancements are detailed in Section 4.
We finally explore a design driver microarchitecture in Section 5 and then conclude in Section 6.

2 Related Work
In this section we focus on the most relevant prior work to our study.

2.1 3D Technologies
While a number of 3D IC fabrication technologies have been proposed [17, 22, 19], we consider the use
of wafer bonding [1, 2, 7] in this study. In this technology, fully processed wafers are bonded together,
and devices are fabricated on these wafers. Interlayer vias that connect different layers are etched after
metalization and prior to wafer bonding. Two main kinds of wafer bonding strategies have been evaluated in
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Figure 1: Face-to-Back and Face-to-Face integration technologies

prior work [2, 7]: Face-to-Back (F2B) placement and Face-to-Face (F2F) placement (Figure 1). Vias in F2B
cut through device layers in addition to metal layers. In F2F placement, the top device layer is flipped to face
the lower device layer. Metal layers are placed between the facing device layers. Hence, vias cut through
metal layers only. However, F2F cannot scale beyond two layers without also employing F2B layers.

2.2 3D Microarchitectural Exploration
MEVA-3D [6] is an automated exploration framework that can explore a 3D design space for an optimal
placement of 2D architectural blocks into multiple device layers. MEVA-3D optimizes a cost function that
is configured to weigh latencies of critical microarchitectural loops, temperature, and die area. The critical
loop latency is the sum of individual block latencies along the loop and inter-block wire latencies. Critical
loop latencies relate to performance (IPC) as in [28]. The algorithm returns a floorplan with the best overall
performance, temperature and die area for a given target frequency. MEVA-3D leverages SimpleScalar [4]
to validate its performance estimate. MEVA-3D can also perform automated thermal via insertion to help
mitigate areas of high power density. However, MEVA-3D does not currently support the exploration of 3D
designs using 3D blocks.

Ozturk et. al. proposed a 3D topology optimization algorithm [21]. The algorithm considers the optimal
placement of a few processor cores that are associated with a large number of storage blocks. The algorithm
is able to improve performance by placing these cores and blocks in 3D so that the cores are closer to
their most frequently accessed storage blocks. However, this algorithm does not consider the placement of
actual microarchitectural blocks such as the ALU, issue queue, branch predictor, etc, and does not consider
the latency reduction of critical microarchitectural loops. The algorithm is also not able to explore the
placement of 3D-designed blocks.

2.3 2D and 3D Block Modeling
Prior work has provided block models for various architectural structures including caches [31], register
files [9, 23], and wakeup and select logic [23]. CACTI [31, 25, 26] is an analytical model that provides
timing, area, and power results for different cache configurations. CACTI models different levels of asso-
ciativity, multiporting, sub-banking, and ideally scales to different feature sizes using 0.80µm cache data.
Tsai et al [30] extended CACTI to explore 3D cache designs. However, they only consider folding blocks
by wordlines or bitlines, and not by port partitioning. In addition, they do not explore the impact of this
3D design on the overall microarchitecture (i.e. performance, temperature, layout), or the impact of 3D
stacking on area in general. Puttaswamyy et al. [14] showed the delay benefit and the reduction of power
consumption in a stacked cache design by bank-stacking or array-splitting. There has been no prior work
that explores partitioning cache ports. Palacharla et al [23] built detailed transistor-level models for critical
structures in dynamically scheduled processors, analyzing critical timing paths and the scalability of these
structures. However, this study is limited to single layer structures.
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3 3D Architectural Block Design and Modeling
To reduce intra-block interconnect latency, we evaluate two main strategies for designing blocks in multiple
silicon layers: block folding and port partitioning. Block folding implies either a vertical or horizontal
folding of the block - potentially shortening the wirelength in one direction. Port partitioning places the
access ports of a structure in different layers - the intuition here is that the additional hardware needed for
replicated access to a single block entry (i.e. a multiported cache) can be distributed in different layers,
which can greatly reduce the length of interconnect within each layer. In this section, we describe the use of
these strategies for the issue queues and various cache-like blocks in our design driver architecture.

3.1 Issue Queues
The issue queue is a critical component of out-of-order microprocessor performance and power consump-
tion. Recent research [6] has shown that every additional pipeline stage of latency seen in the scheduling
loop causes an average 5% performance degradation. Moreover, Folegnani and Gonzalez [10] have found
that the issue queue is responsible for an average 25% of a processor’s total power consumption.

The issue queue stores renamed instructions and performs out-of-order instruction scheduling. The issue
queue we studied in this paper is based on Palacharla’s implementation [23]. There are two main stages
of issue queue functionality: the wakeup stage where tags from completing register values are compared
against input register tags stored in issue queue entries, and a selection stage where ready instructions (as
determined by the wakeup stage) are selected for execution.

Each issue queue entry must track and compare the input register tags required by a given instruction
in that entry. Figure 2 shows a single CAM cell used to store one bit of a register tag for an issue queue
entry. Assuming that at most four register values can be written back each cycle, and at most four new
instructions can enter the issue queue each cycle, an individual cell would have four different 1-bit tags to
compare against and have four write ports. In a processor with a 128-entry physical register file, register
tags are 7-bits. Therefore each row would need seven CAM cells for each operand, for a total of fourteen
CAM cells. In general, an n-entry issue queue has n such rows.

In the wakeup stage, the match lines for each issue queue entry are precharged high and the tag lines are
driven with the register tags of completed instructions. A match line only remains high if the register tag
stored at the issue queue entry is the same as a certain one of the register tags driven on the tag lines. If any
match line for a given input register remains high, the ready bit for that operand is set in the issue queue.
Once both ready bits are set, the operand is eligible for issue (i.e. has woken up). In this stage, most of the
delay comes from tag broadcasting and matching.

In the selection stage, the select logic picks instructions to execute [23] among all instructions that are
eligible for issue.

For example, a selection tree for a 32-entry issue queue consists of three levels of arbiters. Each arbiter
takes four input requests (i.e. four eligible instructions) and grants one request (i.e. selects one eligible
instruction). In general, an N-entry issue queue needs a selection tree of level L = log4N .

In the issue queue, the delay due to wakeup logic contributes a large portion of the overall delay. Our
simulations show that wakeup takes about 60% of the delay in a 32-entry issue queue with four incoming
register tags to compare against, and four access ports. A significant contributor to delay is the wire latency
of the tag bits and match lines. A 3D integrated issue queue can significantly reduce the length of these
wires.
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Figure 2: (a): A Single IQ Cell with Four Tag Lines and Four Access Ports. Over 99% of the area is occupied by tags
and access ports.
(b): Port Partitioning. Tags and access ports are distributed into two layers. Width and height of each bit

are reduced by half, and area by 75%.

3.1.1 3D IQ Design: Block Folding

One way to reduce tag line wire delay is to fold the issue queue entries and place them on different layers.
Figure 3 (a) shows a single layer issue queue with four incoming register tags that are compared against
entries in the issue queue. In Figure 3(b), the issue queue is folded into two sets and they are stacked in two
layers. This approach effectively shortens the tag lines.

3.1.2 3D IQ Design: Port Partitioning

In an issue queue with four tag comparison ports and four read/write ports, as shown in Figure 2(a), most of
the silicon area is allocated to ports. The wire pitch is typically five times the feature size [25, 26, 23]. For
each extra port, the wire length in both X and Y directions is increased by twice the wire pitch [25, 26]. On
the other hand, the storage, which consists of 4 transistors, is twice the wire pitch in height, and has a width
equal to the wire pitch. Hence, in a cell as shown in Figure 2(a), the storage area is less than 1% of the total
area, while tags and access ports occupy over 99% of the total area.

One strategy to attack the tag and port requirements is port partitioning, which places tag lines and ports
on multiple layers, thus reducing both the height and width of the issue queue. The reduction in tag and
matchline wire length can help reduce both power and delay. The selection logic also benefits from this, as
the distance from the furthest issue queue entry to the arbiter is reduced. This will speed up the comparison
and also reduce power consumption.

3.2 Caches
Caches are commonly found architectural blocks with regular structures - they are composed of a number
of tag and data arrays. Figure 4(a) demonstrates a high level view of a number of cache tag and data arrays
connected via address and data buses. Each vertical and horizontal line represents a 32-bit bus – we assume
two ports on this cache, and therefore the lines are paired. Each box of the figure is a tag or data array,
which is composed of a mesh of horizontal wordlines and vertical bitlines. Every port must have a wordline
for each cache set and a pair bitlines for each bit in a cache set. The regularity of caches means that their
components can easily be subdivided – the tag and data arrays for example can easily be broken down into
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Figure 3: Issue Queue Partitioning Alternatives: (a) An issue queue with 4 tag lines. (b) Block Folding: dividing the
issue queue entries into two sets and stacking them. The tags are duplicated in every layer. Only the X-direction length
is reduced. (c) Port Partitioning: the four tags are divided into two tags on each layer. Both X and Y direction lengths
are reduced.
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Figure 4: Cache Block Alternatives (a) A 2-Ported Cache: the two lines denote the input/output wires of two ports. (b)
Wordline Folding: Only Y-direction length is reduced. Input/output of the ports are duplicated. (c) Port Partitioning:
Ports are placed in two layers. Both X and Y direction length are reduced.
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subarrays. We make use of CACTI [26] to explore the design space of different subdivisions and find an
optimal point for performance, power, and area.

3.2.1 3D Cache Design: Block Folding

Prior research [30] looks into two folding options: wordline and bitline folding. In the former, the word-
lines in a cache sub-array are divided and placed onto different silicon layers. The wordline driver is also
duplicated. The gain from wordline folding comes from the shortened routing distance from predecoder to
decoder and from output drivers to the edge of the cache.

Similarly, bitline folding places bitlines into different layers. This approach needs to duplicate the pass
transistor. The sense amplifier can be duplicated to improve timing performance at a cost of increased
power consumption. The cost is significant because sense amplifiers can make up a significant portion of
total cache energy consumption. The other approach is to share sense amplifiers across layers, but this
dramatically reduces the improvement in timing.

Our investigation shows that wordline folding has a better access time and lower power dissipation in
most cases compared with a realistic implementation using bitline folding. In this paper, we only present
results using wordline folding.

3.2.2 3D Cache Design: Port Partitioning

The port partitioning strategy that we proposed for the issue queue can also be leveraged for caches. For
example, a 3-ported structure would have a port area to cell area ratio of approximately 18:1. Hence, there
is a significant advantage to partitioning the ports and placing them onto different layers. In a two layer
design, we can place two ports on one layer, one port and the SRAM cells on the other layers. The width
and height are both approximately reduced by a factor of two, and the area by a factor of four.

3.3 Other Cache-Like Architectural Blocks
Register files are similar to caches, sharing the regularity of a cache. We therefore adapt our CACTI to
model this structure as well. However, they are not associative and typically have more ports than caches
do. Register files dissipate relatively large amounts of power due to their porting requirements, and the
size of the physical register file can constrain the size of the instruction window in a dynamically scheduled
superscalar processor. We will consider the same folding schemes for the register files as we used for caches.

The register mapping units, load-store queue, and branch predictors can be approximated using only the
data array portion of the cache.

3.4 Modeling Methodology
We assume a supply voltage of 1.0V and a 70nm process technology. Transistor and wire scaling param-
eters are derived from [30, 18], and we assume copper interconnect in our simulation. Further transistor
parameters are obtained from [5]. The 3D via resistance is estimated to be 10−8Ωcm2 [30]. The height
of the 3D vias is assumed to be 10µm per device layer. Current dimensions of 3D via sizes vary from
1µm × 1µm to 10µm × 10µm [30, 8]. As 3D technology advances, the 3D via size will decrease even
further. In this study, we assume the via pitch is 1.4µm. An area of 0.7µm × 0.7µm is reserved for each
3D via for the upper layers in F2B technology.

We have modified 3D-CACTI [30] to model caches and cache-like structures. First, we add port parti-
tioning to 3D-CACTI in addition to wordline/bitline folding. Second, we add area estimation, including the
area impact of 3D vias on the transistor layer. Both 3D bonding technologies are available: F2B and F2F.
We validated our modifications to 3D-CACTI with HSpice.
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Figure 5: The improvement in area, power and timing for dual layer vertical integration.

We implemented our issue queue models using HSpice to obtain accurate timing and power data. The
area of the issue queue is approximated by 3D-CACTI using a similarly sized cache. Our 2D issue queue is
derived from Palacharla et al’s model [23].

3.5 3D Block Performance
Figure 5 demonstrates the effectiveness of 3D block design on area, power, and timing for dual layer F2F
blocks. The y-axis is normalized to the area of a single layer baseline block. The x-axis represents different
folding techniques for each architectural block investigated. The letters in the label of a bar represents the
type of folding: either port partitioning (PP) or block folding (BF). All results are shown normalized to the
2D implementation of the block. In F2F technology, the via starts from the surface of one layer and ends on
the surface of the other layer. Therefore, vias do not impact the layout of transistors.

For the issue queue (IQ), delay is reduced by 27% with BF. PP sees even more improvement (37%
reduction in delay). PP reduces both tag wire lengths and match wire lengths, and wire lengths to the
selection logic. On the other hand, BF only reduces tag wire lengths. The match wire lengths are even
increased due to 3D via insertions for every tag and bit line. As a result, we observe over 70% reduction
in area for PP, with only a 20% reduction for BF. Note that the area shown is the maximal area in any one
layer for that block, and while the footprint of the block may be reduced, the sum of the area occupied in all
layers may actually increase relative to the 2D baseline.

The power consumed in CMOS circuits is represented as P = 0.5 ∗ a ∗ f ∗ C ∗ V dd2, where f is
the clock frequency, a is the activity factor, V dd is the supply voltage and C is the switching capacitance.
The power consumption rate is proportional to the switching capacitance. In BF, although tag wire lengths
for each layer are reduced, the tag wires are duplicated on different layers. The aggregate wire length is
still the same. In addition, there is an increase in match line lengths mentioned above. Thus, the total
switching capacitance is slightly increased due to the increased total wire length. As a result of this, the
power consumption of BF is slightly increased. On the other hand, PP is able to reduce power consumption
by 29%.

For the caches and cache-like structures, PP is extremely effective in heavily ported structures. For
example, the register file with PP sees a 27% reduction in delay, a 17% reduction in power, and an impressive
70% reduction in area. However, for structures with fewer ports, BF can be more effective. The data cache
sees a 30% reduction in delay with BF, and a 23% reduction in delay with PP. While PP does reduce both
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Figure 6: The improvement in area for multilayer F2B vertical integration.
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Figure 7: The improvement in timing for multilayer F2B vertical integration.

wordline and bitline length, this reduction is proportional to the number of ports that can be partitioned to
other silicon layers. For structures with very few ports, BF is able to reduce wordline length more than
PP. Hence in structures that have significant wordline delay, the overall reduction in delay with BF can be
greater than PP.

The diversity in benefit from these two approaches demonstrates the need for a tool to flexibly choose
the appropriate implementation based on the constraints of an individual floorplan.

3.5.1 Scaling to Multiple Silicon Layers

For a dual layer implementation, F2F is able to outperform F2B since the 3D vias in F2B impact the silicon
footprint in the top silicon layers. For example in the PP results, the F2B area is about 5% larger than that
of F2F due to the increased silicon footprint. The delay and power consumption are larger than those of F2F
as well. However, F2B allows more layers to be stacked. It may be possible to stack two F2Fs in back to
back fashion; however, we do not consider this alternative in this paper.

Figures 7, 8, and 6 show timing, power, and area results (respectively) with F2B blocks for two, three,
and four layers of silicon. All measurements are normalized to the performance of a single layer block. In
general, we observe that the reduction of area, power and delay is further increased as the number of layers
is increased.

For the issue queue (IQ) with PP, area reduction increases to 80% with 3 layers, and to 90% with 4
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Figure 8: The improvement in power for multilayer F2B vertical integration.
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Figure 9: Impact of Via Size on Timing using F2B, Port Partitioning

layers. Reduction in issue queue delay increases to 43% with 3 layers, and to 50% with 4 layers. Reduction
in power consumption grows as high as 38% with 4 layers.

For the issue queue with block folding, there is less reduction in area and delay with additional layers.
However, the impact on match line wire length from stacking more layers increases the power consumption
for folding to 9% with 4 layers.

3.5.2 Impact of 3D Bonding Technology

3D via size has rapidly scaled down as 3D bonding technology has advanced. 3D via size has reduced from
10µm to 1.75µm in MIT Lincoln Laboratory’s 3D process technology [15] at 180nm. We expect the 3D
via size to continue to scale at smaller feature sizes. In this paper, we have assumed a 0.7µm via size for a
70nm feature size.

To demonstrate the impact of scaling via size, we plot the performance of the register file for via sizes
ranging from 2.5µm to 0.5µm in 70nm technology. The via pitch is twice the via size. The register file has
four read ports and four write ports. A single cell size is approximately 5.6µm x 5.6µm. In F2B bonding
technology, 3D vias occupy silicon area in all layers except for the bottom layer. Taking 2-Layer partitioning
as an example, when via size is 2.5µm, the best solution is to place seven ports in the bottom layer, and one
port in the top layer, which only slightly reduces the wirelength. When the via size is scaled to 0.5µm, the
best solution places four ports in each layer. The wirelength is almost cut in half in both X and Y directions.
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Figure 10: Impact of Via Size in Power using F2B, Port Partitioning

As shown in Figures 9 and 10, the larger reduction in wirelength reduces both delay and power as the via
size is scaled from 2.5µm to 0.5µm.

4 3D Block Placement
Microprocessor throughput, as measured in IPC, is influenced by the latency of critical architectural loops
such as the scheduling loop, branch resolution loop, inter-cluster communication loop, etc [28]. Vertical
integration can help to reduce the latency of these critical loops. Critical loops differ in the magnitude of
their impact on throughput, and therefore the exploration of the use of vertical integration on microprocessor
design requires consideration for both physical design and architecture. Existing work on this type of co-
design exploration [6] has only explored the use of vertical integration to reduce inter-block latency in these
critical loops. However, as demonstrated in section 3, there is tremendous potential for vertical integration to
reduce the latency of blocks along critical loops. In this section, we detail our modifications to the co-design
framework of [6].

4.1 MEVA-3D Flow
MEVA-3D [6] is an automated physical design and architecture performance estimation flow for 3D archi-
tectural evaluation which includes 3D floorplanning, routing, interconnect pipelining, automated thermal
via insertion, and associated die size, performance, and thermal modeling capabilities.

First, MEVA-3D takes a microarchitectural configuration, a target frequency, architectural critical path
sensitivities, and power density estimates and uses 2D/3D floorplanning to optimize for performance and
temperature. Then routing and thermal via planning are performed to provide physical design information to
our microprocessor simulation. Critical loop latencies are passed from the floorplanner to the simulator for
accurate determination of performance. MEVA-3D makes use of the SimpleScalar [4] simulator to obtain
performance in IPC and utilization counts of individual blocks.

4.2 Enhancements to MEVA-3D
MEVA-3D currently only considers 2D architectural blocks. We make the following modifications to extend
it to 3D blocks. In the following section, we will make use of this modified framework to explore an
architectural design driver.
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Processor Width 6-way out-of-order superscalar, two integer execution clusters
Register Files 128 entry integer (two replicated files), 128 entry FP
Data Cache 8KB 4-way set associative, 64B blocksize
Instruction Cache 8KB 2-way set associative, 32B blocksize
L2 Cache 4 banks, each 128KB 8-way set associative, 128B blocksize
Branch Predictor 8K entry gshare and a 1K entry, 4-way BTB
Functional Units 2 IntALU + 1 Int MULT/DIV in each of two clusters

1 FPALU and 1 MULT/DIV

Table 1: Architectural parameters for the design driver used in this study.

4.2.1 Architectural Alternative Selection

3D component design gives us different configurations for each component: the number of layers that the
component will occupy. When we choose another configuration for a component, the dimensions, timing
characteristics, and power values change as well, which usually results in a significant change to the floor-
plan. In order to explore the combinations of the different configurations, we introduce a new type of move
in the optimization approach, called architecture alternative selection. When a new configuration is selected,
the 2D dimensions, layer information, and delay information are updated. Accordingly, the distribution of
the power, including leakage, is updated for all blocks in the design. The new packing result may be accepted
or rejected depending on the cost function evaluation.

4.2.2 Cube Packing Engine

Because of the limitation of the packing engine used in MEVA-3D, each component can only occupy one
layer, and therefore 3D components are not allowed in the original MEVA-3D flow. To enable the packing
of 3D components which may occupy more than one layer, we constructed a new packing engine which is
a true 3D packing engine – 3D components in our design can be treated as cubic blocks to be packed in
3D space. The dimension of the block in the Z direction represents the layer information. The 3D packing
algorithm is extended from the CBL floorplanner [16].

Our 3D CBL(3-Dimensional Corner Block List) packing system represents the topological relationship
between cubic blocks with a triple (S,L,T), where each element is a list. List S records the packing sequence
by block names. List L and T represent the topological relationship between cubic blocks in terms of
covering other packed blocks.

We use simulated annealing to optimize the cubic packing. The number of layers is given as a constraint
on the maximal height in the Z direction of the packing. We extended the floorplanner to optimize chip area,
performance (using microarchitectural loop sensitivities), and temperature at the same time.

5 Microarchitectural Exploration
In this section, we use the modified MEVA framework to investigate the ability of vertical integration to
reduce both intra-block and inter-block architectural latencies.

We constructed a design driver based loosely on the Alpha 21264 [13], and along with the architectural
blocks from Section 3 (functional unit blocks are based on [6]), we feed this driver into our modified version
of MEVA-3D. The architectural parameters are shown in Table 1. We measure architectural performance on
all 26 programs of the SPEC CPU2000 suite.
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Figure 11: Performance speedup for dual silicon layer architectures relative to a single layer architecture.

Figure 11 presents performance results relative to a single layer design driver. The first bar represents
the benefit from using two layers of silicon with 2D blocks (as in [6]) and the second bar represents the
benefit from using two layers of silicon with 3D blocks. All three configurations (single layer, dual layer 2D
blocks, dual layer 3D blocks) are running at 4GHz. On average, the use of 2D blocks in a two layer design
improves performance by 6%. Since the blocks themselves do not take advantage of vertical integration, any
performance gain can only come from a reduction in the inter-block wire latency. For example, the branch
misprediction loop has a total latency of 815ps at 4GHz for a single layer design – 238ps of this total latency
is from inter-block wire delay. When using 2D blocks in two layers, this inter-block wire delay is reduced
to only 63ps. However, the overall reduction in path delay is not enough to reduce the loop by a cycle of
our 4GHz clock. Thus, while timing slack is certainly increased, the benefit of this has not been exploited in
Figure 11. When we allow MEVA-3D to select 3D block alternatives, we see a performance improvement
of 23% on average over the single layer architecture. This can be attributed to the ability of 3D blocks to
reduce the intra-block latency of critical processor loops.

We show floorplans for all three architectures in Figure 12. The single layer design occupies 3.4 ×

3.4mm2 in one silicon layer. The dual layer design with 2D blocks occupies 2.8 × 2.8mm2 in each silicon
layer. The dual layer design with 3D blocks occupies 2.3 × 2.3 mm2 in each silicon layer.

Temperature issues are considered to be a major concern for vertical integration. Therefore, an accurate
and fast thermal simulation framework was very crucial for our experimental analysis. We used the finite
element method (FEM) based CFD-ACE+ temperature simulator [24]. Further details on heat sink and
thermal parameters we used can be found in [24]. Figure 13 presents the average core temperature for the
single layer architecture (shown at left) and the dual layer architecture with 3D blocks (the hottest layer is
shown at right). The average and maximum temperature for the single layer architecture was 30.6◦C and
32.7◦C. The average and maximum temperature for the dual layer architecture with 2D blocks was 30.6◦C
and 32.6◦C. The average and maximum temperature for the dual layer architecture with 3D blocks was
30.3◦C and 34.1◦C.

Thermal vias can help to relieve thermal problems in 3D microarchitectures. We used the algorithm
proposed in [11] for thermal via insertion. In our multi-layer designs, we designate 5% of the area as dead
space on each layer, which provides sufficient space for thermal vias.

5.1 Scaling Architectural Sizes
Even in the 3D block architecture, there are still cases where we are able to increase the timing slack within
a given cycle of a critical loop, without actually reducing the number of cycles in that critical loop. Figure 14
presents one approach to leveraging this extra slack: we double the size of the data cache, issue queue, and
register file.
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Figure 16: BIPS performance for different clock frequencies.

Figure 15 shows the timing performance when three structures are scaled from the default size to 16
times larger. As shown in the figure, using 3D integration technology, the access latency of double-sized
structures is still less than in 2D. The register file and data cache can even quadruple their sizes while still
outperforming the default blocks in 2D. In this paper, we limit our study to doubled sizes.

As shown in Figure 14, the performance is increased by an additional 5% with a doubled cache, an
additional 1% with a doubled register file, and an additional 7% with a doubled IQ. The best performance is
observed when doubling the size of all three structures. Overall, there is a 36% gain over the 2D architecture
and a 13% gain over the 3D architecture with our default block sizes.

These larger structures will dissipate more power than regular-sized 3D blocks. But despite the increase
in power, the increased area of these larger designs saw an average slight decrease in temperature of 0.8◦C
for the case where all three resources were doubled. The maximal temperature in this case was 34.1◦C.

5.2 Frequencies
The results presented so far feature a 4GHz clock frequency. Figure 16 demonstrates the performance in
BIPS when using different clock frequencies: 3GHz, 4GHz, and 5GHz. The first bar is the single layer
architecture, the second bar is the dual layer architecture with 2D blocks, and the final bar is the dual layer
architecture with 3D blocks.

At 3GHz, the larger latency of wire using 2D architecture or 2D blocks is better tolerated by the more
forgiving clock rate – but the use of 3D blocks can still provide a 10% gain over a single layer architecture.
The overall performance at 5GHz decreases slightly from 4GHz due to the lengthened critical loops at a
higher frequency.

5.3 Number of Layers
In this subsection, we demonstrate the performance of vertical integration when scaling beyond two silicon
layers. Figure 17 illustrates this gain for 4GHz architectures. Due to the challenge in scaling to more layers
with F2F blocks, we only use F2B in this study.

The performance of two layers in this figure is slightly worse than in Figure 11. The F2B bonded blocks
used in this section perform slightly worse than F2F blocks because of the impact of 3D vias on the silicon
layer.

The first bar shows the performance when using only 2D blocks, and as shown in the figure, there is little
gain from scaling the number of silicon layers for this design driver. Without tackling intra-block latency,
even the near elimination of inter-block latency can only improve performance by so much. However, the
gain from 3D blocks over the single layer architecture grows from 22% at two layers to 28% at four layers.
Although inter-block wire latencies have been nearly eliminated in two layers, the latency reduction in
four-layer microarchitectural blocks further reduced cycles in critical loops.
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Figure 17: Performance when scaling the number of silicon layers.

There is little gain from two layers to three layers using 3D blocks. As shown in Figure 7, many
architectural blocks have little or no reduction in latency from two layers to three layers. Furthermore, while
there was an increase in slack for many critical loops, there was no overall reduction in cycles for these
critical loops. However, it would certainly be possible to leverage this slack in other ways.

6 Summary
Vertical integration has tremendous potential to reduce both inter-block and intra-block wire latency. We
have proposed and evaluated tag partitioning for the issue queue, for caches, and for cache-like blocks.
And we have enhanced the MEVA-3D exploration framework to evaluate the use of 3D blocks in multiple
layers of silicon. When using two layers of silicon with 3D blocks, we see an average 36% improvement
in performance over a single layer architecture and 29% improvement in performance over two layers with
single layer blocks, for the architectural design driver we explored. Temperature is kept below 40◦C using
a two heat sink F2F design.
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