
Simultaneous Consensus Tasks:
A Tighter Characterization of Set-Consensus

Yehuda Afek1, Eli Gafni2, Sergio Rajsbaum3, Michel Raynal4, and Corentin Travers4

1 Computer Science Department, Tel-Aviv University, Israel 69978.
afek@math.tau.ac.il

2 Department of Computer Science, UCLA, Los Angeles, CA 90095, USA.
eli@cs.ucla.edu

3 Instituto de Matemáticas, UNAM, D. F. 04510, Mexico.
rajsbaum@math.unam.mx

4 IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France.
raynal|ctravers@irisa.fr

Abstract. We address the problem of solving a task T = (T1, ...Tm) (called
(m, 1)-BG), in which a processor returns in an arbitrary one of m simultaneous
consensus subtasks T1, ...Tm. Processor pi submits to T an input vector of pro-
posals (propi,1, ..., propi,m), one entry per subtask, and outputs, from just one
subtask !, a pair (!, propj,l) for some j. All processors that output at ! output
the same proposal.
Let d be a bound on the number of distinct input vectors that may be submitted to
T . For example, d = 3 if Democrats always vote Democrats across the board, and
similarly for Republicans and Libertarians. A wait-free algorithm that immaterial
of the number of processors solves T provided m ≥ d is presented. In addition,
if in each Tj we allow k-set consensus rather than consensus, i.e., for each !,
the outputs satisfy |{j | propj,!}| ≤ k, then the same algorithm solves T if
m ≥ #d/k$.
What is the power of T = (T1, ..., Tm) when given as a subroutine, to be used by
any number of processors with any number of input vectors? Obviously, T solves
m-set consensus since each processor pi can submit the vector (idi, idi, ...idi),
but can m-set consensus solve T ? We show it does, and thus simultaneous con-
sensus is a new characterization of set-consensus.
Finally, what if each Tj is just a binary-consensus rather than consensus? Then we
get the novel problem that was recently introduced of the Committee-Decision. It
was shown that for 3 processors and m = 2, the simultaneous binary-consensus
is equivalent to (3, 2)-set consensus. Here, using a variation of our wait-free al-
gorithms mentioned above, we show that a task, in which a processor is required
to return in one of m simultaneous binary-consensus subtasks, when used by
n processors, is equivalent to (n, m)-set consensus. Thus, while set-consensus
unlike consensus, has no binary version, now that we characterizem-set consen-
sus through simultaneous consensus, the notion of binary-set-consensus is well
defined. We have then showed that binary-set-consensus is equivalent to set con-
sensus as it was with consensus.

1 Introduction

The Borowsky-Gafni simulation scheme relies on the realization that there is a read-
write algorithm by which n processors involved in n simultaneous sub-consensus-tasks
T1, ..., Tn, can reach consensus in a wait-free manner in at least some Tk, though k
is unknown a priori. Thus we can define the (m, 1)-BG task: processor pi starts with
some input value vi and has to output a pair (!, vj) for some 1 ≤ ! ≤ m, and vj is the
initial proposal of some pj in the participating set. All processors that output with first
argument ! have to output the same value.
One can think of a variation of (m, 1)-BG in which the inputs are m-vectors and

processors that output at Tk are to output the same k entry from one of the vectors. But
it is easy to see that the vector problem solves the value problem by each processor
pi inputing (vi, vi, ..., vi), as well as the value problem solving the vector problem by
associating vectors with values, and then for value vi when output at k, a processor
substitutes the kth entry of the associated vector. Henceforth the presentation proceeds
with the value version.
In the BG simulation [3, 4], we use n agreement protocols and rely on the fact that

if the first agreement is not resolved then there is a processor “stuck” in the middle
of the first agreement protocol and consequently we can proceed with one processor
less. Here, when we have n proposals rather than n processors, we show a variant
agreement protocol by which in each agreement protocol that does not terminate we,
lose a proposal rather than a processor. Thus a sequence of n agreement protocols will
solve the (m, 1)-BG task,m ≥ n.
Now that we generalized the (m, 1)-BG task to any number of processors, we in-

vestigate the relationship between m and the power of the consensus that each task
provides. Suppose that in each task Tj , we do not require consensus but rather k-set
consensus. Thus, we havem subtasks T1, ..., Tm and processors output (!, vj) for some
1 ≤ ! ≤ m and for each ! : |{vj |(!, vj) ∈ output }| ≤ k. We call this task (m, k)-BG.
Our second result is that (m, k)-BG is read-write wait-free solvable for any number

of processors, if the number of initial choices d satisfies m ≥ $d/k%. Thus if we allow
each Tj to solve 2-set consensus, then m can be half the number of initial choices.
Alternatively, it can just be reduced to the consensus case: just solve (m, 1)-BG and
group the outputs 1 to k, k + 1 to 2k, etc.
Until this point we investigated what variation of BG tasks can be solved wait-free.

We then turn to BG tasks with parameters that do not render it solvable and wonder
about the power of these tasks.
Suppose we are given an (m, 1)-BG task as a subroutine. Since each subtask does

consensus, it trivially solvesm-set consensus by ignoring the subtask index. Canm-set
consensus solve m-BG? Notice that (m, 1)-BG associates different output values with
different subtasks. Our (m, 1)-BG algorithm answers this question on the affirmative.
By usingm-set consensus, the number of initial choices n becomesm, and then we can
wait-free solve the (m, 1)-BG.
What if each subtask in the (m, 1)-BG task is a binary-consensus rather than con-

sensus? We refer to this problem asm-BG-Binary. Ifm = 1 then we have our beloved
consensus and it is known how to transform binary-consensus into consensus by re-
peated consensus on the binary representation of the eventual output value (A different

approach is presented in [14].). But what if m = 2? When we try repeated binary-
consensus, at the first invocation pi may get a value from T1 and in the second from T2.
How do you build a prefix under these conditions?
The question of the (m, 1)-BG task when each subtask is a binary consensus and

the input is a binary vector with entry for each subtask was recently investigated in
[10, 11]. Thus, in subtask Tj if all input values to Tj are 0, only 0 can be returned for
Tj . The problem was called the m-Committee-Decision problem as the connection to
(m, 1)-BGwas not realized. Obviously BG tasks encompass Committee-Decision as the
proposed values are vectors and when returning a vector for Tj , one projects on the jth
entry. Thus the interesting direction is to show that Committee-Decision encompasses
BG tasks.
Using explicit topological arguments, it was shown in [10, 11] that 2-Committee-

Decision when used by 3 processors is equivalent to (3, 2)-set consensus. Here, as a
simple corollary we show that (m, 1)-BG for n processors is equivalent to (n,m)-set
consensus. Thus we show the equivalence between BG tasks and Committee-Decision.
The paper is organized as follows. We first outline the various tasks we deal with

(section 2). We then outline the rather simple agreement algorithm that wait-free solves
(m, 1)-BG form ≥ n (sections 3 and 4). We then show a bit more involved construction
that reduced (m, 1)-BG to m-Committee-Decision, or alternatively referred to as m-
BG-Binary (section 5). We conclude with a discussion of the merits of characterizing
set-consensus through simultaneous-consensus (section 6).

2 Problems Definitions and Preliminaries

In all the paper, we are interested in wait free algorithms [12].

2.1 Computational Model

Processor model The system consists of an arbitrary number of processors [9, 15] that
we denote p1, p2, . . . In a run a participating processor pi wakes up with some initial
value inputi. The inputs value are taken from a set Input of size n. It is important to
notice that n denotes the maximal number of values participating processors wake up
with. The number of processors that participate in a run is unknown to the processors.
A processor can crash. Given a run, a processor that crashes is said to be faulty,

otherwise it is correct in that execution. Each processor progresses at its own speed,
which means that the system is asynchronous.

Coordination model The processors communicate and cooperate through atomic multi-
reader/multi-writer registers. To simplify algorithm descriptions,write-snapshot objects
[1, 3] are also available to the processors.
A write-snapshot WS object provides the processors with a single operation de-

noted WRITESNAPSHOT(). It is a one-shot object in the sense that each processor can
invokeWS at most once. A processor pi invokesWS .WRITESNAPSHOT(vi), and if it
does not crash during the invocation, obtains a set of value si. The sets returned satisfy
the two following properties:

– Self containment: vi ∈ si,
– Comparability : ∀i, j : i '= j ⇒ si ⊆ sj ∨ sj ⊆ si.

Such an object can be implemented on top of multiple-reader/multiple-writer regis-
ters for an arbitrary number of processors [7].

2.2 The Problems

(m,1)-BG In the (m, 1)-BG problem, processors are trying to simultaneously solve m
instances of the consensus problem. Each processor is required to decide in at least one
of these instances. There are m consensus subtasks T1, ..., Tm. Processor pi wakes up
with a private value vi and is required to return a pair (!, vj) such that 1 ≤ ! ≤ m and
the value vj has been proposed by some pj . All processors that return first argument !
have to agree and return the same vj . More precisely, each processor has to decide a
pair (!, v) such that:

– Termination: No processor takes infinitely many steps without deciding.
– Validity: If a processor pi decides (!, vj) then ∃j such that processor pj wakes up
with value vj .

– Agreement: ∀!, 1 ≤ ! ≤ m : |{vj : (!, vj) is decided by some processor }| ≤ 1.

(m,k)-BG The (m, k)-BG task is a generalization of the (m, 1)-BG problem. As in
(m, 1)-BG, processors have to return a pair (!, v). The processors that return first ar-
gument ! may return cumulatively at most k distinct values. The pairs returned have
to satisfy the validity and termination properties of the (m, 1)-BG problem and the
following agreement property:

– ∀!, 1 ≤ ! ≤ m : |{vj : (!, vj) is decided by some processor }| ≤ k.

k-Set Consensus The k-set consensus problem is a generalization of consensus where
processors must decide on at most k different values that have been previously proposed
[5]. When k = 1, the problem boils down to the standard consensus problem [6]. Each
processor is required to decide a value subject to the following conditions:

– Agreement: at most k distinct values are decided.
– Termination: no processor takes infinitely many steps without deciding.
– Validity: a decided value is an initial input value for some participating processor.

It is shown in [2, 13, 16] that in a system of α > k processors, the k-set consensus
problem has no wait free solution when processors may have distinct input values.

m-Committee-Decision or m-BG-Binary In the binary consensus problem, processors
start with either 0 or 1 and are required to eventually agree on one of their initial value.
Suppose now that processors are provided with a collection of binary consensus objects
B1, . . . , Bm but are not guaranteed to obtain a response from each object, even if they
propose a value in each binary consensus. A processor pi is only guaranteed to obtain a
response from one object Bj and j is not known a priori. Moreover, j may change from
invocation to invocation.

More precisely, this coordination scheme is captured by them-Committee-Decision
problem [11]. In them-Committee-Decision problem, processors are trying to solvem
binary consensus instances called committees and each processor is required to make a
decision for at least one of them. More explicitly, each processor pi initially proposes a
vector Vi ∈ {0, 1}k (i.e., Vi[c], 1 ≤ c ≤ k is pi’s proposal for the c-th committee) and
decides a pair (c, v) such that:

– Termination: No processor takes infinitely many steps without deciding.
– Validity: If a processor decides (c, v) then ∃j such that v = Vj [c].
– Agreement: Let pi and pj be two processors that decide (ci, vi) and (cj , vj) respec-
tively. ci = cj ⇒ vi = vj .

3 Wait-Free Solution to (m, 1)-BG, n Initial Values,m ≥ n

Processor pi marches in order through T1 followed by T2, etc. In Ti a processor writes
an input value to its cell. The input to T1 is the input it wakes up with. The input to Tj

is adopted from Tj−1.
At Tj a processor writes its input, returns an atomic snapshot of input values and

posts its snapshot in shared memory. If it then sees a snapshot of values of cardinality
one, it returns this value for Tj and quits. Else, it adopts the minimum value from one
of the posted snapshots (maybe its own) and proceeds with it to Tj+1 (figure 1).
The observation is that the number of distinct values proposed to Tj is at most

n − (j − 1), thus a processor that arrives at Tn is guaranteed to get a snapshot of size
one at Tn and to return.

in shared memory: WS [1, . . . , m]; array of write-snapshot objects.
SS[1, . . . , m][1, . . . , m] array of mwmr registers, initially ⊥.

function (m, 1)-BG(vi)
(01) esti ← vi;
(02) for ri = 1 tom do
(03) Si ← WS [ri].WRITESNAPSHOT(esti);
(04) SS[ri, |Si|] ← Si;
(05) for ! = 1 tom do ss[!] ← SS[ri, !] enddo;
(06) if ss[1] '= ⊥ then return(ri, ss[1])
(07) else esti ← min(ss[!]) s.t. (! ∈ {1, . . . , m}) ∧ (ss[!] '= ⊥)
(08) endif
(09) enddo

Fig. 1. (m, 1)-BG algorithm, n initial value,m ≥ n, code for pi.

4 Wait-Free Solution to (m, k)-BG, n Initial Values,m ≥ "n

k
#

At each Ti, a processor tries to choose a value that appears in a snapshot of size k or
less. The observation is that going from Tj to Tj+1 at least k values are left behind. The
algorithm is described in figure 2.

in shared memory: WS [1, . . . , m]; array of write-snapshot objects.
SS[1, . . . , m][1, . . . , m] array of mwmr registers, initially ⊥.

function (m, k)-BG(vi)
(01) esti ← vi;
(02) for ri = 1 tom do
(03) Si ← WS [ri].WRITESNAPSHOT(esti);
(04) SS[ri, |Si|] ← Si;
(05) for ! = 1 tom do ss[!] ← SS[ri, !] enddo;
(06) if ∃!, 1 ≤ ! ≤ k : ss[!] '= ⊥ then return

`

ri, min(ss[!])
´

(07) else esti ← min(ss[!]) s.t. (! ∈ {1, . . . , m}) ∧ (ss[!] '= ⊥)
(08) endif
(09) enddo

Fig. 2. (m, k)-BG algorithm, n initial values,m ≥ # n
k
$, code for pi.

4.1 Proof of the Protocol

In the following, we say that a value v is proposed at stage r, 1 ≤ r ≤ m if it exists a
processor pi that starts stage r with esti = v. For each r, 1 ≤ r ≤ m, let I[r] be the set
of values proposed at stage r.

Lemma 1. (Validity) Let (!, v) be a pair decided by some processor. v is a proposed
value.

Proof Let pi be a processor that decides (!, v) at stage r. Let us observe v is taken
from the set of input values of stage r, i.e., v ∈ I[r]. Moreover, ∀r′, 2 ≤ r′ ≤ m,
I[r′] ⊆ I[r′ − 1] (line 07). As I[1] = the set of values the processors wake up with and
v ∈ I[r] ⊆ I[1], validity follows. !Lemma 1

Lemma 2. (Termination) A correct processor eventually decides.

Proof We first observe that ∀r, 1 ≤ r ≤ m : |I[r]| ≤ n − k(r − 1) (Observa-
tion O1). Let us assume for contradiction that there is a correct processor pi that
does not decide. This means that pi marches through stages 1, 2, . . . ,m without de-
ciding. In particular, at stage m, pi obtains a snapshot Si ⊆ I[m]. It follows from
O1 that |Si| ≤ |I[m]| ≤ n − k(m − 1). Moreover, as m ≥ $n/k%, we obtain

|Si| ≤ n − k($n/k% − 1) ≤ k, from which we conclude that pi decides at stage m
(line 06): a contradiction.

Observation O1 ∀r, 1 ≤ r ≤ m : |I[r]| ≤ n − k(r − 1).
Proof of O1 As there are at most n proposed values and these values are the input ones
at stage 1, |I[1]| ≤ n. Let us assume that the observation is true at stage r, 1 ≤ r < m.
Let pi be a processor that proposes a value at stage r + 1. At stage r, pi updates its
estimate with a value picked in a snapshot of size > k. Moreover, there are at most
|I[r]| − k such snapshots and for each of them, only one value can be picked by the
processors (line 07). Consequently, at most |I[r]| − k values can be proposed at stage
r + 1, from which we obtain |I[r + 1]| ≤ |I[r]| − k ≤ n − kr. End of the proof of O1

!Lemma 2

Lemma 3. (Agreement) ∀r, 1 ≤ r ≤ m : |{v : ∃pi that decides (r, v)}| ≤ k.

Proof Let r be a stage number. The values decided by processors that return at stage
r are picked in a snapshot of size k or less (line 06). Since these snapshots contain
cumulatively at most k distinct values, at most k distinct values are decided at stage r.

!Lemma 3

5 (m, 1)-BG fromm-BG-Binary

Let the number of initial values be n > m. We show how to use (n − 1)-BG-Binary
to reduce the number of initial values by at least 1 to n − 1. Obviously m-BG-Binary
implements j-BG-Binary for all j ≥ m.
Thus the scheme is to start with the n initial values, reduce it to n− 1 then to n− 2

and until m. At this point we have at most m initial values and we can wait free solve
(m, 1)-BG.
To reduce the number of initial values from n to n− 1, we go through n− 1 stages

T1, ..., Tn−1. In each stage we post initial value, snapshot, post snapshot, and then read
snapshots. The algorithm is described in figure 3.
If a processor sees posted snapshot of size 1 containing some vj but no snapshot of

size 2, then it returns vj . Otherwise it adopts the smallest value in some snapshot of size
2 or more and continues to the next stage.
If a processor finishes stage Tn−1 without returning, it invokes the (n − 1)-BG-

Binary object. The observation to make is that in all stages there are posted snapshots of
size 2. Otherwise 2 values would have been left behind at some stage and the processor
should have terminated by the end of stage Tn−1.
Now come the voting step in which the processor goes to the n − 1-BG-Binary

object. At committee j it will observe the snapshot posted at Tj . There is a snapshot of
size 2 containing two values. We associate the smaller value with 0 and the larger with
1. If the processor also sees a snapshot of size 1 posted, it votes for that value. Thus a
processor that quits without voting is guaranteed that the value it choses for Tj will be
voted for by all.

in shared memory: WS [1, . . . , m] array of write-snapshot objects
SS[1, . . . , m][1, . . . , m + 1] array of mwmr registers, initially ⊥

function (m, 1)-BGFROMBGBINARY(vi)
(01) esti ← vi;
(02) for ri = 1 tom do
(03) Si ← WS [ri].WRITESNAPSHOT(esti);
(04) SSi[ri, |Si|] ← Si;
(05) for j = 1 tom do ss[j] ← SS[ri, j] enddo;
(06) if (ss[1] '= ⊥) ∧ (ss[2] = ⊥) then return(ri, ss[1])
(07) else esti ← min(ss[j]) s.t. (j ∈ {2, . . . , m}) ∧ (ss[j] '= ⊥)
(08) endif
(09) enddo

% If pi has not succeeded in T1, . . . , Tm, it usesm-BG Binary to decide %
(10) foreach r ∈ {1, . . . , m} do
(11) let vm (resp. vM) be the smallest value (resp. greatest) value in SS[r, 2];
(12) case (vm ∈ SS[r, 1]) then Vi[r] ← 0
(13) (vM ∈ SS[r, 1]) then Vi[r] ← 1
(14) default then Vi[r] ← 0 or 1 arbitrarily
(15) endcase
(16) enddo
(17) (ci, di) ← m-BGBINARY(Vi);
(18) if di = 1 then return

`

ci, max(SS[ci, 2])
´

else return
`

ci, min(SS[ci, 2])
´

endif

Fig. 3. (m, 1)-BG fromm-BG-Binary, n initial values, n = m + 1, code for pi.

5.1 Proof of the Protocol

We first prove the observation stated in the algorithm description (Lemma 4). Wait-free
termination directly follows from the protocol text. We use Lemma 4 in the proofs of
validity (Lemma 5) and agreement (Lemma 6).

Lemma 4. Let pi be a processor that returns at line 18. When pi reads SS[1, 2],
SS[2, 2], . . ., SS[m, 2] at line 11, we have ∀1 ≤ r ≤ m : SS[r, 2] '= ⊥.

Proof Let us assume for contradiction that the lemma is false. This means that it exists
a process pi that returns at line 18 and a stage number R, 1 ≤ R ≤ m such that pi does
not see a snapshot of size 2 posted at stage R. More precisely, when pi reads SS[R, 2]
in the second phase of the protocol (line 11), SS[R, 2] = ⊥. Let τ be the time at which
this occurs. As a processor can post in SS[R, 2] only a snapshot of size 2 obtained at
stage R (line 04), it follows that ∀τ ′ ≤ τ : SS[R, 2] = ⊥.
As pi proceeds to the second phase of the protocol, it tries to decide in each Tr,

1 ≤ r ≤ m. We show that that pi decides in the first phase of the protocol (at line 06):
a contradiction. The proof consider two cases according to the value of R.

– m = R. Let us observe that the first phase of the protocol is the (m, k)-BG protocol
instantiated with k = 1 in which processors wake up with at most n = m+1 values.

Consequently, observation O1 stated and proved in Lemma 2 is still valid. It then
follows that at most (m + 1) − (m − 1) = 2 values can be proposed at stagem.
As pi proceeds to the second phase of the algorithm, it obtains a snapshot at stage
m. Moreover, when pi tries to decide at stage r, SS[r, 2] = ⊥. Consequently, pi

obtains a snapshot of size 1 and does not see a snapshot of size 2, from which we
conclude that pi decides at line 06 in the first phase of the algorithm.

– m > R. Let us first remark that at most m − R values can be proposed at stage
R + 1 before time τ . The values proposed at stage R + 1 are taken among the
smallest values in snapshots of size ≥ 2 posted at stage R. As at most (m + 1) −
(R − 1) values are proposed at stage R (Observation O1 in Lemma 2), at most
(m + 1) − (R − 1) distinct snapshots can be posted in that stage. Moreover, as
values proposed at stage R+1 are picked in snapshots of size> 1 and no snapshot
of size 2 is posted before time τ (SS[R, 2] = ⊥ before time τ), it follows that at
most (m+1)− (R−1)−2 = m−R values can be proposed in stageR+1 before
time τ .
We can think of stages TR+1, . . . , Tm as a (m−R, 1)-BG protocol. It follows from
the remark above that, before time τ , the size of the set of input values to this
(m−R, 1)-BG protocol is at mostm−R. As this protocol solves the (m−R, 1)-
BG task if the number of distinct input values is ≤ m − R (section 3), a processor
cannot marches through TR+1, . . . , Tm before time τ without deciding. Hence, as
pi tries to decide in TR+1, . . . , Tm before time τ , pi decides in some Tr at line 06.

!Lemma 4

Lemma 5. (Validity) Let (!, v) be a pair decided by some processor. v is a proposed
value.

Proof Let pi be a processor that decides (!, v). If pi decides in the first phase of the
protocol (at line 06), v is contained in a posted snapshot of size 1. If pi decides in the
second part of the protocol, it follows from line 18 and Lemma 4 that v is contained in
a posted snapshot of size 2. In both cases, v belongs to some snapshot posted in the first
phase of the protocol.
As already observed, the first part of the protocol is the (m, 1)-BG protocol. As the

proof of validity in the (m, 1)-BG protocol does not depend on the number of values
processors wake up with (Lemma 1), we can reuse it here. In particular, it is shown in
Lemma 1 that all posted snapshots are included in the set of values processors wake up
with, from which we conclude that v is a proposed value. !Lemma 5

Lemma 6. (Agreement) ∀!, 1 ≤ ! ≤ m : pi returns (!, vi) and pj returns (!, vj)
⇒ vi = vj .

Proof In the following, we say that a processor pi decides in slot ! if it returns (!, v)
at line 06 or at line 18. We show that for any slot !, 1 ≤ ! ≤ m, at most one value is
decided. Let D! be the set of processes that decide in slot !. Let us consider a slot !
such that D! '= ∅. We consider three cases:

– Each processor pi that belongs toD! returns at line 06. Due to the atomic snapshot
properties, at most one snapshot that contains only one value can be returned by
the objectWS [!]. It then follows from lines 06-07 that processors ∈ D! decide the
same value.

– Each processor that belong to D! returns at line 18. This means that each proces-
sor pi ∈ D! gets back a pair (!, di) from the m-BGBINARY object. Due to the
agreement property of the object, ∃d ∈ {0, 1} such that ∀pi ∈ D!, di = d.
Moreover, due to Lemma 4, when pi ∈ D! reads SS[!, 2] at lines 11 and 18,
SS[r, !] '= ⊥. It then follows from line 18 and the fact that ∃d such that ∀pi ∈ D! :
di = d that each processor that belongs to the set D! chooses the same value in
SS[!, 2] and agreement follows.

– Some processors that belong toD! return at line 06 and other processors at line 18.
Let C be the set of processors that invoke them-BGBINARY object (a processor in
C does not necessarily decides in slot !). Among them, let pc be the first processor
that reads SS[!, 1]. This occurs at time τ . If pc sees a value v, every processor in C
proposes v for committee ! (lines 12-13). Therefore, v is the only value that can be
decided in slot ! through them-BGBINARY object and agreement follows.
Suppose that pc does not see a snapshot of size 1 (SS[!, 1] = ⊥) in slot !. We
claim that no process can decide at line 06 in slot !: a contradiction with the case
assumption. To prove the claim, let us observe that when pc reads SS[!, 1] (lines 12-
12), SS[!, 2] '= ⊥ (Lemma 4). Thus, a process that subsequently reads SS[!, 1] '=
⊥ reads also SS[!, 2] '= ⊥ and cannot decide in slot ! at line 06.

!Lemma 6

6 Conclusion

Simultaneous consensus was first introduced in [10, 11] where it was shown using ex-
plicit topological arguments that 3 processors two committees is equivalent to (3, 2)-set
consensus. The approach of interpreting algorithms through the prism of simultaneous
consensus was then followed in [8] where it proved beneficial in obtaining a clear proof
of robustness. Here, we close the circle. We utilize the observation that the BG sim-
ulation [2, 4] is also about simultaneous consensus, to adopt a completely algorithmic
approach to the question. Through this algorithmic approach that adopts ideas from
BGs, we show that simultaneous consensus in a clear way captures consensus and set
consensus. Moreover, it is a stronger paradigm than set-consensus. It trivially imple-
ments set-consensus, but it took some work to show that set consensus implements it.
We expect this new view of set-consensus to prove beneficial in the future.
Atomic-Snapshots Shared-Memory is a higher level construct than SWMR Shared-

Memory, and yet equivalent to it. Later Immediate-Snapshot Memories were proved to
be even a higher level construct than Atomic-Snapshots. There, when “higher level”
can be interpreted precisely as “less executions” it is a consequence of [2, 13, 16] that
Immediate-Snapshots is the end of the road. Is simultaneous consensus the end of the
road for set-consensus? Will there be a sense in which one may find even a tightest
characterization of set-consensus? While we leave this question open, we feel that at

the least it is now easier to motivate set-consensus through simultaneous consensus.
Simultaneous consensus comes across as a bit less of “an invention of bored theorists,”
than the question of “electing multiple values.” Multiple fronts is natural in life while
multiple-leaders is less so.

References

1. Afek Y., H. Attiya, Dolev D., Gafni E., Merrit M. and Shavit N., Atomic Snapshots of Shared
Memory. Proc. 9th ACM Symposium on Principles of Distributed Computing (PODC’90),
ACM Press, pp. 1–13, 1990.

2. Borowsky E. and Gafni E., Generalized FLP Impossibility Results for t-Resilient Asyn-
chronous Computations Proc. 25th ACM Symposium on the Theory of Computing
(STOC’93), ACM Press, pp. 91-100, 1993.

3. Borowsky E. and Gafni E., Immediate Atomic Snapshots and Fast Renaming (Extended
Abstract). Proc. 12th ACM Symposium on Principles of Distributed Computing (PODC’93),
ACM Press, pp. 41-51, 1993.

4. Borowsky E., Gafni E., Lynch N. and Rajsbaum S., The BG Distributed Simulation Algo-
rithm. Distributed Computing, 14(3):127–146, 2001.

5. Chaudhuri S., More Choices Allow More Faults: Set Consensus Problems in Totally Asyn-
chronous Systems. Information and Computation, 105:132-158, 1993.

6. Fischer M.J., Lynch N.A. and Paterson M.S., Impossibility of Distributed Consensus with
One Faulty Process. Journal of the ACM, 32(2):374-382, 1985.

7. Gafni E., Group-Solvability. Proc. 18th Int. Symposium on Distributed Computing
(DISC’04), Springer Verlag LNCS #3274, pp. 30–40, 2004.

8. Gafni E. and Kouznetsov P., Two Front Agreement with Application to Emulation and Ro-
bustness. to appear.

9. Gafni E., Merritt M. and Taubenfeld G., The Concurrency Hierarchy, and Algorithms for Un-
bounded Concurrency. Proc. 21st ACM Symposium on Principles of Distributed Computing
(PODC’01), ACM Press, pp. 161–169, 2001.

10. Gafni E. and Rajsbaum S., Musical Benches. Proc. 19th Int. Symposium on Distributed Com-
puting (DISC’05), Springer Verlag LNCS # 3724, pp. 63–77, September 2005.

11. Gafni E. and Rajsbaum S., Raynal M., Travers C., The Committee Decision Problem. Proc.
Theoretical Informatics, 7th Latin American Symposium (LATIN’06), Springer Verlag LNCS
#3887, pp. 502-514, 2006.

12. Herlihy M.P., Wait-Free Synchronization. ACM Transactions on programming Languages
and Systems, 11(1):124-149, 1991.

13. Herlihy M.P. and Shavit N., The Topological Structure of Asynchronous Computability.
Journal of the ACM, 46(6):858-923, 1999.

14. Mostefaoui A., Raynal M.and Tronel F., From Binary Consensus to Multivalued Consensus
in Asynchronous Message-Passing Systems. Information Processing Letters, 73:207-213,
2000.

15. Merrit M., Taubenfeld G., Computing with infinitely many processes. Proc. 14th Int. Sym-
posium on Distributed Computing (DISC’00), Springer Verlag LNCS #1914, pp. 164–178,
October 2000.

16. Saks, M. and Zaharoglou, F., Wait-Free k-Set Agreement is Impossible: The Topology of
Public Knowledge. SIAM Journal on Computing, 29(5):1449-1483, 2000.

