Simultaneous Consensus Tasks: A Tighter Characterization of Set-Consensus

Yehuda Afek¹, Eli Gafni², Sergio Rajsbaum³, Michel Raynal⁴, and Corentin Travers⁴

¹ Computer Science Department, Tel-Aviv University, Israel 69978. afek@math.tau.ac.il

² Department of Computer Science, UCLA, Los Angeles, CA 90095, USA.

eli@cs.ucla.edu

³ Instituto de Matemáticas, UNAM, D. F. 04510, Mexico.

rajsbaum@math.unam.mx

⁴ IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France. raynal|ctravers@irisa.fr

Abstract. We address the problem of solving a task $T = (T_1, ..., T_m)$ (called (m, 1)-BG), in which a processor returns in an arbitrary one of m simultaneous consensus subtasks $T_1, ..., T_m$. Processor p_i submits to T an input vector of proposals $(prop_{i,1}, ..., prop_{i,m})$, one entry per subtask, and outputs, from just one subtask ℓ , a pair $(\ell, prop_{j,l})$ for some j. All processors that output at ℓ output the same proposal.

Let d be a bound on the number of distinct input vectors that may be submitted to T. For example, d = 3 if Democrats always vote Democrats across the board, and similarly for Republicans and Libertarians. A wait-free algorithm that immaterial of the number of processors solves T provided $m \ge d$ is presented. In addition, if in each T_j we allow k-set consensus rather than consensus, i.e., for each ℓ , the outputs satisfy $|\{j \mid prop_{j,\ell}\}| \le k$, then the same algorithm solves T if $m \ge \lceil d/k \rceil$.

What is the power of $T = (T_1, ..., T_m)$ when given as a subroutine, to be used by any number of processors with any number of input vectors? Obviously, T solves *m*-set consensus since each processor p_i can submit the vector $(id_i, id_i, ...id_i)$, but can *m*-set consensus solve T? We show it does, and thus simultaneous consensus is a new characterization of set-consensus.

Finally, what if each T_j is just a binary-consensus rather than consensus? Then we get the novel problem that was recently introduced of the Committee-Decision. It was shown that for 3 processors and m = 2, the simultaneous binary-consensus is equivalent to (3, 2)-set consensus. Here, using a variation of our wait-free algorithms mentioned above, we show that a task, in which a processor is required to return in one of m simultaneous binary-consensus. Thus, while set-consensus unlike consensus, has no binary version, now that we characterize m-set consensus through simultaneous consensus, the notion of binary-set-consensus is well defined. We have then showed that binary-set-consensus is equivalent to set consensus as it was with consensus.

1 Introduction

The Borowsky-Gafni simulation scheme relies on the realization that there is a readwrite algorithm by which n processors involved in n simultaneous sub-consensus-tasks $T_1, ..., T_n$, can reach consensus in a wait-free manner in at least some T_k , though kis unknown a priori. Thus we can define the (m, 1)-BG task: processor p_i starts with some input value v_i and has to output a pair (ℓ, v_j) for some $1 \le \ell \le m$, and v_j is the initial proposal of some p_j in the participating set. All processors that output with first argument ℓ have to output the same value.

One can think of a variation of (m, 1)-BG in which the inputs are *m*-vectors and processors that output at T_k are to output the same k entry from one of the vectors. But it is easy to see that the vector problem solves the value problem by each processor p_i inputing $(v_i, v_i, ..., v_i)$, as well as the value problem solving the vector problem by associating vectors with values, and then for value v_i when output at k, a processor substitutes the kth entry of the associated vector. Henceforth the presentation proceeds with the value version.

In the BG simulation [3, 4], we use n agreement protocols and rely on the fact that if the first agreement is not resolved then there is a processor "stuck" in the middle of the first agreement protocol and consequently we can proceed with one processor less. Here, when we have n proposals rather than n processors, we show a variant agreement protocol by which in each agreement protocol that does not terminate we, lose a proposal rather than a processor. Thus a sequence of n agreement protocols will solve the (m, 1)-BG task, $m \ge n$.

Now that we generalized the (m, 1)-BG task to any number of processors, we investigate the relationship between m and the power of the consensus that each task provides. Suppose that in each task T_j , we do not require consensus but rather k-set consensus. Thus, we have m subtasks $T_1, ..., T_m$ and processors output (ℓ, v_j) for some $1 \le \ell \le m$ and for each $\ell : |\{v_j \mid (\ell, v_j) \in output\}| \le k$. We call this task (m, k)-BG.

Our second result is that (m, k)-BG is read-write wait-free solvable for any number of processors, if the number of initial choices d satisfies $m \ge \lceil d/k \rceil$. Thus if we allow each T_j to solve 2-set consensus, then m can be half the number of initial choices. Alternatively, it can just be reduced to the consensus case: just solve (m, 1)-BG and group the outputs 1 to k, k + 1 to 2k, etc.

Until this point we investigated what variation of BG tasks can be solved wait-free. We then turn to BG tasks with parameters that do not render it solvable and wonder about the power of these tasks.

Suppose we are given an (m, 1)-BG task as a subroutine. Since each subtask does consensus, it trivially solves *m*-set consensus by ignoring the subtask index. Can *m*-set consensus solve *m*-BG? Notice that (m, 1)-BG associates different output values with different subtasks. Our (m, 1)-BG algorithm answers this question on the affirmative. By using *m*-set consensus, the number of initial choices *n* becomes *m*, and then we can wait-free solve the (m, 1)-BG.

What if each subtask in the (m, 1)-BG task is a binary-consensus rather than consensus? We refer to this problem as m-BG-Binary. If m = 1 then we have our beloved consensus and it is known how to transform binary-consensus into consensus by repeated consensus on the binary representation of the eventual output value (A different approach is presented in [14].). But what if m = 2? When we try repeated binaryconsensus, at the first invocation p_i may get a value from T_1 and in the second from T_2 . How do you build a prefix under these conditions?

The question of the (m, 1)-BG task when each subtask is a binary consensus and the input is a binary vector with entry for each subtask was recently investigated in [10, 11]. Thus, in subtask T_j if all input values to T_j are 0, only 0 can be returned for T_j . The problem was called the *m*-Committee-Decision problem as the connection to (m, 1)-BG was not realized. Obviously BG tasks encompass Committee-Decision as the proposed values are vectors and when returning a vector for T_j , one projects on the *j*th entry. Thus the interesting direction is to show that Committee-Decision encompasses BG tasks.

Using explicit topological arguments, it was shown in [10, 11] that 2-Committee-Decision when used by 3 processors is equivalent to (3, 2)-set consensus. Here, as a simple corollary we show that (m, 1)-BG for n processors is equivalent to (n, m)-set consensus. Thus we show the equivalence between BG tasks and Committee-Decision.

The paper is organized as follows. We first outline the various tasks we deal with (section 2). We then outline the rather simple agreement algorithm that wait-free solves (m, 1)-BG for $m \ge n$ (sections 3 and 4). We then show a bit more involved construction that reduced (m, 1)-BG to *m*-Committee-Decision, or alternatively referred to as *m*-BG-Binary (section 5). We conclude with a discussion of the merits of characterizing set-consensus through simultaneous-consensus (section 6).

2 **Problems Definitions and Preliminaries**

In all the paper, we are interested in wait free algorithms [12].

2.1 Computational Model

Processor model The system consists of an arbitrary number of processors [9, 15] that we denote $p_1, p_2, ...$ In a run a *participating* processor p_i wakes up with some initial value $input_i$. The inputs value are taken from a set Input of size n. It is important to notice that n denotes the maximal number of values participating processors wake up with. The number of processors that participate in a run is unknown to the processors.

A processor can crash. Given a run, a processor that crashes is said to be *faulty*, otherwise it is *correct* in that execution. Each processor progresses at its own speed, which means that the system is asynchronous.

Coordination model The processors communicate and cooperate through atomic multi-reader/multi-writer registers. To simplify algorithm descriptions, *write-snapshot* objects [1,3] are also available to the processors.

A write-snapshot WS object provides the processors with a single operation denoted WRITESNAPSHOT(). It is a one-shot object in the sense that each processor can invoke WS at most once. A processor p_i invokes WS.WRITESNAPSHOT (v_i) , and if it does not crash during the invocation, obtains a set of value s_i . The sets returned satisfy the two following properties:

- Self containment: $v_i \in s_i$,
- Comparability : $\forall i, j : i \neq j \Rightarrow s_i \subseteq s_j \lor s_j \subseteq s_i$.

Such an object can be implemented on top of multiple-reader/multiple-writer registers for an arbitrary number of processors [7].

2.2 The Problems

(m,1)-BG In the (m,1)-BG problem, processors are trying to simultaneously solve m instances of the consensus problem. Each processor is required to decide in at least one of these instances. There are m consensus subtasks $T_1, ..., T_m$. Processor p_i wakes up with a private value v_i and is required to return a pair (ℓ, v_j) such that $1 \le \ell \le m$ and the value v_j has been proposed by some p_j . All processors that return first argument ℓ have to agree and return the same v_j . More precisely, each processor has to decide a pair (ℓ, v) such that:

- Termination: No processor takes infinitely many steps without deciding.
- Validity: If a processor p_i decides (ℓ, v_j) then $\exists j$ such that processor p_j wakes up with value v_j .
- Agreement: $\forall \ell, 1 \leq \ell \leq m : |\{v_j : (\ell, v_j) \text{ is decided by some processor }\}| \leq 1$.

(*m,k*)-BG The (m,k)-BG task is a generalization of the (m, 1)-BG problem. As in (m, 1)-BG, processors have to return a pair (ℓ, v) . The processors that return first argument ℓ may return cumulatively at most k distinct values. The pairs returned have to satisfy the validity and termination properties of the (m, 1)-BG problem and the following agreement property:

- $\forall \ell, 1 \leq \ell \leq m : |\{v_i : (\ell, v_i) \text{ is decided by some processor }\}| \leq k.$

k-Set Consensus The *k*-set consensus problem is a generalization of consensus where processors must decide on at most *k* different values that have been previously proposed [5]. When k = 1, the problem boils down to the standard consensus problem [6]. Each processor is required to decide a value subject to the following conditions:

- Agreement: at most k distinct values are decided.
- Termination: no processor takes infinitely many steps without deciding.
- Validity: a decided value is an initial input value for some participating processor.

It is shown in [2, 13, 16] that in a system of $\alpha > k$ processors, the k-set consensus problem has no wait free solution when processors may have distinct input values.

m-Committee-Decision or *m*-BG-Binary In the binary consensus problem, processors start with either 0 or 1 and are required to eventually agree on one of their initial value. Suppose now that processors are provided with a collection of binary consensus objects B_1, \ldots, B_m but are not guaranteed to obtain a response from each object, even if they propose a value in each binary consensus. A processor p_i is only guaranteed to obtain a response from one object B_j and j is not known a priori. Moreover, j may change from invocation to invocation.

More precisely, this coordination scheme is captured by the *m*-Committee-Decision problem [11]. In the *m*-Committee-Decision problem, processors are trying to solve *m* binary consensus instances called committees and each processor is required to make a decision for at least one of them. More explicitly, each processor p_i initially proposes a vector $V_i \in \{0, 1\}^k$ (i.e., $V_i[c], 1 \le c \le k$ is p_i 's proposal for the *c*-th committee) and decides a pair (c, v) such that:

- Termination: No processor takes infinitely many steps without deciding.
- Validity: If a processor decides (c, v) then $\exists j$ such that $v = V_j[c]$.
- Agreement: Let p_i and p_j be two processors that decide (c_i, v_i) and (c_j, v_j) respectively. $c_i = c_j \Rightarrow v_i = v_j$.

3 Wait-Free Solution to (m, 1)-BG, n Initial Values, $m \ge n$

Processor p_i marches in order through T_1 followed by T_2 , etc. In T_i a processor writes an input value to its cell. The input to T_1 is the input it wakes up with. The input to T_j is adopted from T_{j-1} .

At T_j a processor writes its input, returns an atomic snapshot of input values and posts its snapshot in shared memory. If it then sees a snapshot of values of cardinality one, it returns this value for T_j and quits. Else, it adopts the minimum value from one of the posted snapshots (maybe its own) and proceeds with it to T_{j+1} (figure 1).

The observation is that the number of distinct values proposed to T_j is at most n - (j - 1), thus a processor that arrives at T_n is guaranteed to get a snapshot of size one at T_n and to return.

```
in shared memory: WS[1, \ldots, m]; array of write-snapshot objects.
                        SS[1, \ldots, m][1, \ldots, m] array of mwmr registers, initially \perp.
function (m, 1)-BG(v_i)
(01) est_i \leftarrow v_i;
(02) for r_i = 1 to m do
(03)
            S_i \leftarrow WS[r_i]. WRITESNAPSHOT(est_i);
(04)
            SS[r_i, |S_i|] \leftarrow S_i;
            for \ell = 1 to m do ss[\ell] \leftarrow SS[r_i, \ell] enddo;
(05)
(06)
            if ss[1] \neq \bot then return(r_i, ss[1])
                            else est_i \leftarrow \min(ss[\ell]) s.t. (\ell \in \{1, \ldots, m\}) \land (ss[\ell] \neq \bot)
(07)
(08)
            endif
(09) enddo
```

Fig. 1. (m, 1)-BG algorithm, n initial value, $m \ge n$, code for p_i .

4 Wait-Free Solution to (m, k)-BG, *n* Initial Values, $m \geq \lceil \frac{n}{k} \rceil$

At each T_i , a processor tries to choose a value that appears in a snapshot of size k or less. The observation is that going from T_j to T_{j+1} at least k values are left behind. The algorithm is described in figure 2.

in shared memory: $WS[1, \ldots, m]$; array of write-snapshot objects. $SS[1, \ldots, m][1, \ldots, m]$ array of mwmr registers, initially \perp . function (m, k)-BG (v_i) (01) $est_i \leftarrow v_i$; (02) for $r_i = 1$ to *m* do $S_i \leftarrow WS[r_i]$. WRITESNAPSHOT (est_i) ; (03)(04) $SS[r_i, |S_i|] \leftarrow S_i;$ (05)for $\ell = 1$ to m do $ss[\ell] \leftarrow SS[r_i, \ell]$ enddo; if $\exists \ell, 1 \leq \ell \leq k : ss[\ell] \neq \bot$ then return $(r_i, \min(ss[\ell]))$ (06)else $est_i \leftarrow \min(ss[\ell])$ s.t. $(\ell \in \{1, \ldots, m\}) \land (ss[\ell] \neq \bot)$ (07)(08)endif (09) enddo

Fig. 2. (m, k)-BG algorithm, n initial values, $m \ge \lfloor \frac{n}{k} \rfloor$, code for p_i .

4.1 **Proof of the Protocol**

In the following, we say that a value v is proposed at stage $r, 1 \le r \le m$ if it exists a processor p_i that starts stage r with $est_i = v$. For each $r, 1 \le r \le m$, let I[r] be the set of values proposed at stage r.

Lemma 1. (Validity) Let (ℓ, v) be a pair decided by some processor. v is a proposed value.

Proof Let p_i be a processor that decides (ℓ, v) at stage r. Let us observe v is taken from the set of input values of stage r, i.e., $v \in I[r]$. Moreover, $\forall r', 2 \leq r' \leq m$, $I[r'] \subseteq I[r'-1]$ (line 07). As I[1] = the set of values the processors wake up with and $v \in I[r] \subseteq I[1]$, validity follows. $\Box_{Lemma \ 1}$

Lemma 2. (Termination) A correct processor eventually decides.

Proof We first observe that $\forall r, 1 \leq r \leq m : |I[r]| \leq n - k(r-1)$ (Observation O1). Let us assume for contradiction that there is a correct processor p_i that does not decide. This means that p_i marches through stages $1, 2, \ldots, m$ without deciding. In particular, at stage m, p_i obtains a snapshot $S_i \subseteq I[m]$. It follows from O1 that $|S_i| \leq |I[m]| \leq n - k(m-1)$. Moreover, as $m \geq \lceil n/k \rceil$, we obtain

 $|S_i| \leq n - k(\lceil n/k \rceil - 1) \leq k$, from which we conclude that p_i decides at stage m (line 06): a contradiction.

Observation O1 $\forall r, 1 \leq r \leq m : |I[r]| \leq n - k(r-1).$

Proof of O1 As there are at most n proposed values and these values are the input ones at stage 1, $|I[1]| \le n$. Let us assume that the observation is true at stage $r, 1 \le r < m$. Let p_i be a processor that proposes a value at stage r + 1. At stage r, p_i updates its estimate with a value picked in a snapshot of size > k. Moreover, there are at most |I|r|| - k such snapshots and for each of them, only one value can be picked by the processors (line 07). Consequently, at most |I[r]| - k values can be proposed at stage r+1, from which we obtain $|I[r+1]| \le |I[r]| - k \le n - kr$. End of the proof of O1

 $\Box_{Lemma 2}$

Lemma 3. (Agreement) $\forall r, 1 \leq r \leq m : |\{v : \exists p_i \text{ that decides } (r, v)\}| \leq k.$

Proof Let r be a stage number. The values decided by processors that return at stage r are picked in a snapshot of size k or less (line 06). Since these snapshots contain cumulatively at most k distinct values, at most k distinct values are decided at stage r. $\Box_{Lemma 3}$

5 (m, 1)-BG from *m*-BG-Binary

Let the number of initial values be n > m. We show how to use (n - 1)-BG-Binary to reduce the number of initial values by at least 1 to n-1. Obviously m-BG-Binary implements *j*-BG-Binary for all $j \ge m$.

Thus the scheme is to start with the n initial values, reduce it to n-1 then to n-2and until m. At this point we have at most m initial values and we can wait free solve (*m*, 1)-BG.

To reduce the number of initial values from n to n-1, we go through n-1 stages $T_1, ..., T_{n-1}$. In each stage we post initial value, snapshot, post snapshot, and then read snapshots. The algorithm is described in figure 3.

If a processor sees posted snapshot of size 1 containing some v_i but no snapshot of size 2, then it returns v_i . Otherwise it adopts the smallest value in some snapshot of size 2 or more and continues to the next stage.

If a processor finishes stage T_{n-1} without returning, it invokes the (n-1)-BG-Binary object. The observation to make is that in all stages there are posted snapshots of size 2. Otherwise 2 values would have been left behind at some stage and the processor should have terminated by the end of stage T_{n-1} .

Now come the voting step in which the processor goes to the n - 1-BG-Binary object. At committee j it will observe the snapshot posted at T_j . There is a snapshot of size 2 containing two values. We associate the smaller value with 0 and the larger with 1. If the processor also sees a snapshot of size 1 posted, it votes for that value. Thus a processor that quits without voting is guaranteed that the value it choses for T_i will be voted for by all.

in shared memory: $WS[1, \ldots, m]$ array of write-snapshot objects $SS[1,\ldots,m][1,\ldots,m+1]$ array of mwmr registers, initially \perp function (m, 1)-BGFROMBGBINARY (v_i) (01) $est_i \leftarrow v_i$; (02) for $r_i = 1$ to *m* do (03) $S_i \leftarrow WS[r_i]$. WRITESNAPSHOT (est_i) ; (04) $SS_i[r_i, |S_i|] \leftarrow S_i;$ for j = 1 to m do $ss[j] \leftarrow SS[r_i, j]$ enddo; (05)if $(ss[1] \neq \bot) \land (ss[2] = \bot)$ then return $(r_i, ss[1])$ (06)(07)else $est_i \leftarrow \min(ss[j])$ s.t. $(j \in \{2, \ldots, m\}) \land (ss[j] \neq \bot)$ (08)endif (09) enddo % If p_i has not succeeded in T_1, \ldots, T_m , it uses *m*-BG Binary to decide % (10) foreach $r \in \{1, ..., m\}$ do let v_m (resp. v_M) be the smallest value (resp. greatest) value in SS[r, 2]; (11)case $(v_m \in SS[r, 1])$ then $V_i[r] \leftarrow 0$ (12) $(v_M \in SS[r, 1])$ then $V_i[r] \leftarrow 1$ (13)then $V_i[r] \leftarrow 0$ or 1 arbitrarily (14)default (15)endcase (16) enddo (17) $(c_i, d_i) \leftarrow m$ -BGBINARY (V_i) ; (18) if $d_i = 1$ then return $(c_i, \max(SS[c_i, 2]))$ else return $(c_i, \min(SS[c_i, 2]))$ endif

Fig. 3. (m, 1)-BG from m-BG-Binary, n initial values, n = m + 1, code for p_i .

5.1 Proof of the Protocol

We first prove the observation stated in the algorithm description (Lemma 4). Wait-free termination directly follows from the protocol text. We use Lemma 4 in the proofs of validity (Lemma 5) and agreement (Lemma 6).

Lemma 4. Let p_i be a processor that returns at line 18. When p_i reads SS[1,2], $SS[2,2], \ldots, SS[m,2]$ at line 11, we have $\forall 1 \leq r \leq m : SS[r,2] \neq \bot$.

Proof Let us assume for contradiction that the lemma is false. This means that it exists a process p_i that returns at line 18 and a stage number $R, 1 \le R \le m$ such that p_i does not see a snapshot of size 2 posted at stage R. More precisely, when p_i reads SS[R, 2] in the second phase of the protocol (line 11), $SS[R, 2] = \bot$. Let τ be the time at which this occurs. As a processor can post in SS[R, 2] only a snapshot of size 2 obtained at stage R (line 04), it follows that $\forall \tau' \le \tau : SS[R, 2] = \bot$.

As p_i proceeds to the second phase of the protocol, it tries to decide in each T_r , $1 \le r \le m$. We show that that p_i decides in the first phase of the protocol (at line 06): a contradiction. The proof consider two cases according to the value of R.

- m = R. Let us observe that the first phase of the protocol is the (m, k)-BG protocol instantiated with k = 1 in which processors wake up with at most n = m+1 values.

Consequently, observation O1 stated and proved in Lemma 2 is still valid. It then follows that at most (m + 1) - (m - 1) = 2 values can be proposed at stage m.

As p_i proceeds to the second phase of the algorithm, it obtains a snapshot at stage m. Moreover, when p_i tries to decide at stage r, $SS[r, 2] = \bot$. Consequently, p_i obtains a snapshot of size 1 and does not see a snapshot of size 2, from which we conclude that p_i decides at line 06 in the first phase of the algorithm.

- m > R. Let us first remark that at most m - R values can be proposed at stage R + 1 before time τ . The values proposed at stage R + 1 are taken among the smallest values in snapshots of size ≥ 2 posted at stage R. As at most (m + 1) - (R - 1) values are proposed at stage R (Observation O1 in Lemma 2), at most (m + 1) - (R - 1) distinct snapshots can be posted in that stage. Moreover, as values proposed at stage R + 1 are picked in snapshots of size > 1 and no snapshot of size 2 is posted before time τ ($SS[R, 2] = \bot$ before time τ), it follows that at most (m+1) - (R-1) - 2 = m - R values can be proposed in stage R + 1 before time τ .

We can think of stages T_{R+1}, \ldots, T_m as a (m-R, 1)-BG protocol. It follows from the remark above that, before time τ , the size of the set of input values to this (m-R, 1)-BG protocol is at most m-R. As this protocol solves the (m-R, 1)-BG task if the number of distinct input values is $\leq m-R$ (section 3), a processor cannot marches through T_{R+1}, \ldots, T_m before time τ without deciding. Hence, as p_i tries to decide in T_{R+1}, \ldots, T_m before time τ , p_i decides in some T_r at line 06.

 $\Box_{Lemma \ 4}$

Lemma 5. (Validity) Let (ℓ, v) be a pair decided by some processor. v is a proposed value.

Proof Let p_i be a processor that decides (ℓ, v) . If p_i decides in the first phase of the protocol (at line 06), v is contained in a posted snapshot of size 1. If p_i decides in the second part of the protocol, it follows from line 18 and Lemma 4 that v is contained in a posted snapshot of size 2. In both cases, v belongs to some snapshot posted in the first phase of the protocol.

As already observed, the first part of the protocol is the (m, 1)-BG protocol. As the proof of validity in the (m, 1)-BG protocol does not depend on the number of values processors wake up with (Lemma 1), we can reuse it here. In particular, it is shown in Lemma 1 that all posted snapshots are included in the set of values processors wake up with, from which we conclude that v is a proposed value. $\Box_{Lemma 5}$

Lemma 6. (Agreement) $\forall \ell, 1 \leq \ell \leq m : p_i \text{ returns } (\ell, v_i) \text{ and } p_j \text{ returns } (\ell, v_j) \Rightarrow v_i = v_j.$

Proof In the following, we say that a processor p_i decides in slot ℓ if it returns (ℓ, v) at line 06 or at line 18. We show that for any slot $\ell, 1 \leq \ell \leq m$, at most one value is decided. Let D_{ℓ} be the set of processes that decide in slot ℓ . Let us consider a slot ℓ such that $D_{\ell} \neq \emptyset$. We consider three cases:

- Each processor p_i that belongs to D_ℓ returns at line 06. Due to the atomic snapshot properties, at most one snapshot that contains only one value can be returned by the object $WS[\ell]$. It then follows from lines 06-07 that processors $\in D_\ell$ decide the same value.
- Each processor that belong to D_{ℓ} returns at line 18. This means that each processor $p_i \in D_{\ell}$ gets back a pair (ℓ, d_i) from the *m*-BGBINARY object. Due to the agreement property of the object, $\exists d \in \{0, 1\}$ such that $\forall p_i \in D_{\ell}, d_i = d$. Moreover, due to Lemma 4, when $p_i \in D_{\ell}$ reads $SS[\ell, 2]$ at lines 11 and 18,

 $SS[r, \ell] \neq \bot$. It then follows from line 18 and the fact that $\exists d$ such that $\forall p_i \in D_\ell$: $d_i = d$ that each processor that belongs to the set D_ℓ chooses the same value in $SS[\ell, 2]$ and agreement follows.

- Some processors that belong to D_{ℓ} return at line 06 and other processors at line 18. Let C be the set of processors that invoke the m-BGBINARY object (a processor in C does not necessarily decides in slot ℓ). Among them, let p_c be the first processor that reads $SS[\ell, 1]$. This occurs at time τ . If p_c sees a value v, every processor in C proposes v for committee ℓ (lines 12-13). Therefore, v is the only value that can be decided in slot ℓ through the m-BGBINARY object and agreement follows.

Suppose that p_c does not see a snapshot of size 1 ($SS[\ell, 1] = \bot$) in slot ℓ . We claim that no process can decide at line 06 in slot ℓ : a contradiction with the case assumption. To prove the claim, let us observe that when p_c reads $SS[\ell, 1]$ (lines 12-12), $SS[\ell, 2] \neq \bot$ (Lemma 4). Thus, a process that subsequently reads $SS[\ell, 1] \neq \bot$ reads also $SS[\ell, 2] \neq \bot$ and cannot decide in slot ℓ at line 06.

 $\Box_{Lemma 6}$

6 Conclusion

Simultaneous consensus was first introduced in [10, 11] where it was shown using explicit topological arguments that 3 processors two committees is equivalent to (3, 2)-set consensus. The approach of interpreting algorithms through the prism of simultaneous consensus was then followed in [8] where it proved beneficial in obtaining a clear proof of robustness. Here, we close the circle. We utilize the observation that the BG simulation [2, 4] is also about simultaneous consensus, to adopt a completely algorithmic approach to the question. Through this algorithmic approach that adopts ideas from BGs, we show that simultaneous consensus in a clear way captures consensus and set consensus. Moreover, it is a stronger paradigm than set-consensus. It trivially implements set-consensus, but it took some work to show that set consensus implements it. We expect this new view of set-consensus to prove beneficial in the future.

Atomic-Snapshots Shared-Memory is a higher level construct than SWMR Shared-Memory, and yet equivalent to it. Later Immediate-Snapshot Memories were proved to be even a higher level construct than Atomic-Snapshots. There, when "higher level" can be interpreted precisely as "less executions" it is a consequence of [2, 13, 16] that Immediate-Snapshots is the end of the road. Is simultaneous consensus the end of the road for set-consensus? Will there be a sense in which one may find even a tightest characterization of set-consensus? While we leave this question open, we feel that at the least it is now easier to motivate set-consensus through simultaneous consensus. Simultaneous consensus comes across as a bit less of "an invention of bored theorists," than the question of "electing multiple values." Multiple fronts is natural in life while multiple-leaders is less so.

References

- Afek Y., H. Attiya, Dolev D., Gafni E., Merrit M. and Shavit N., Atomic Snapshots of Shared Memory. *Proc. 9th ACM Symposium on Principles of Distributed Computing (PODC'90)*, ACM Press, pp. 1–13, 1990.
- Borowsky E. and Gafni E., Generalized FLP Impossibility Results for t-Resilient Asynchronous Computations Proc. 25th ACM Symposium on the Theory of Computing (STOC'93), ACM Press, pp. 91-100, 1993.
- Borowsky E. and Gafni E., Immediate Atomic Snapshots and Fast Renaming (Extended Abstract). Proc. 12th ACM Symposium on Principles of Distributed Computing (PODC'93), ACM Press, pp. 41-51, 1993.
- Borowsky E., Gafni E., Lynch N. and Rajsbaum S., The BG Distributed Simulation Algorithm. *Distributed Computing*, 14(3):127–146, 2001.
- Chaudhuri S., More Choices Allow More Faults: Set Consensus Problems in Totally Asynchronous Systems. Information and Computation, 105:132-158, 1993.
- Fischer M.J., Lynch N.A. and Paterson M.S., Impossibility of Distributed Consensus with One Faulty Process. *Journal of the ACM*, 32(2):374-382, 1985.
- Gafni E., Group-Solvability. Proc. 18th Int. Symposium on Distributed Computing (DISC'04), Springer Verlag LNCS #3274, pp. 30–40, 2004.
- 8. Gafni E. and Kouznetsov P., Two Front Agreement with Application to Emulation and Robustness. *to appear*.
- Gafni E., Merritt M. and Taubenfeld G., The Concurrency Hierarchy, and Algorithms for Unbounded Concurrency. *Proc. 21st ACM Symposium on Principles of Distributed Computing* (*PODC'01*), ACM Press, pp. 161–169, 2001.
- Gafni E. and Rajsbaum S., Musical Benches. Proc. 19th Int. Symposium on Distributed Computing (DISC'05), Springer Verlag LNCS # 3724, pp. 63–77, September 2005.
- Gafni E. and Rajsbaum S., Raynal M., Travers C., The Committee Decision Problem. Proc. Theoretical Informatics, 7th Latin American Symposium (LATIN'06), Springer Verlag LNCS #3887, pp. 502-514, 2006.
- 12. Herlihy M.P., Wait-Free Synchronization. ACM Transactions on programming Languages and Systems, 11(1):124-149, 1991.
- 13. Herlihy M.P. and Shavit N., The Topological Structure of Asynchronous Computability. *Journal of the ACM*, 46(6):858-923, 1999.
- Mostefaoui A., Raynal M.and Tronel F., From Binary Consensus to Multivalued Consensus in Asynchronous Message-Passing Systems. *Information Processing Letters*, 73:207-213, 2000.
- Merrit M., Taubenfeld G., Computing with infinitely many processes. Proc. 14th Int. Symposium on Distributed Computing (DISC'00), Springer Verlag LNCS #1914, pp. 164–178, October 2000.
- Saks, M. and Zaharoglou, F., Wait-Free k-Set Agreement is Impossible: The Topology of Public Knowledge. SIAM Journal on Computing, 29(5):1449-1483, 2000.