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Abstract

Recent suboptimality studies of leading placement tools have
drawn attention to the limitations of currently available
benchmarking techniques. Available synthetic circuits with
known optimal placements lack both mixed size objects and
non-local nets, and their optimal placements contain zero
white space. In order to identify and quantify deficiencies re-
maining in existing placement algorithms, two new classes of
benchmarking circuits with known optimal or provably near-
optimal placements are introduced. The first has non-local
nets and is derived by netlist transformation from a precom-
puted placement of a given circuit. The second supports
a user-specified amount of uniformly randomly distributed
white space and is derived from a precomputed placement of
the macros in the netlist. An adaptation of this second set
of benchmarks is used to estimate separately the suboptimal-
ity of global placement and that of legalization and detailed
placement. Experiments on the new benchmarks highlight
deficiencies in leading academic tools and indicate promising
new directions for placement research.

1 Introduction

Placement is a critical step in VLSI design. Interconnect de-
lay dominates system performance, and placement determines
the interconnect more than any other step in physical design.
The complexity of modern designs, however, makes estimation
of suboptimality difficult [12, 19, 13]. Studies on simplified,
synthetic benchmarks with known optimal-wirelength place-
ments (PEKO [6]) initially suggested that many leading tools
may produce solutions with excess wirelength from 60% up to
150% or more. These results have generated wide interest in
both industry [11] and academia [15, 17, 19]. Recent progress
in placement [4, 5, 14, 1] has reduced the wirelength gap on
PEKO to about 12%—-40%.

The PEKO benchmarks, however, have well-known limita-
tions. Although their cell counts, net counts, and net-degree
statistics match corresponding quantities in standard indus-
trial benchmarks [2], the PEKO circuits are simplified in three
key ways, in order to guarantee known optimal solutions.
First, all cells are squares of the same size. Second, the known
optimal placements for the PEKO circuits are packed layouts
with zero white space. Third, all nets in an optimal PEKO
placement are local — the netlist of a PEKO circuit is de-
fined over cells arranged in a regular array, with adjacent cells
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grouped into local nets of minimum half-perimeter wirelength
(HPWL).

Subsequent studies [8, 13] derived useful lower bounds on
the HPWL suboptimality of placements of circuits with more
realistic netlists. However, it is not known how close the
bounds are to the the true suboptimality gaps. The PEKU
circuits [8] add non-local nets to packed, uniform-grid PEKO
layouts but sacrifice any assurance of optimality. Zero-change
netlist transformations [13] preserve both module shapes and
core utilization, but they quantify the sensitivity of a place-
ment tool to netlist changes, not the suboptimality of a given
placement on a given netlist.

The benchmarks described in this paper directly address
several of the shortcomings in existing suboptimality bench-
marks. Two new sets of placement examples are constructed,
one targeting the role of non-local nets in suboptimality, and
another targeting the role of white space and large variations
in module sizes. The first set, MC, is a set of standard-cell
circuits with non-local nets in known optimal placements. A
given netlist is modified so as to render a given placement
for it optimal for the new netlist. Cell dimensions and loca-
tions are not changed, net-degree statistics are matched ex-
actly, and over 60% of the original netlist is left unchanged.
The second set, PWS, incorporates a parametrized percent-
age of white space into a mixed-size placement which pre-
cisely matches given macro dimensions and locations as well
as the net-degree distributions of the ISPD 2005 benchmark
suite [16]. HPWL for the placements generated for the Pws
circuits are proven to be less than 3% above optimal for most
cases and within 8% of optimal on all cases.

Typically, mixed size placement proceeds in three stages:
global placement, legalization, and detailed placement. In
practice, global placement is terminated when iterations are
observed to make little or no reduction in the objective and the
module-area distribution is sufficiently uniform. How much of
the optimality gap left by contemporary methods should be
attributed to deficiencies in global-placement algorithms, and
how much to legalization and detailed placement? On a real
circuit, there is no way of knowing how far a cell is from its
nearest optimal location, at any stage. On circuits with known
optimal or near-optimal placements, however, it is possible to
evaluate precisely the quality of any of the three engines in
isolation from its counterparts. Thus, the benchmark circuits
described here provide a more precise means of quantifying the
relative effectiveness of the methods used in the three stages.
Results estimating the separate suboptimality contributions
of global placement and legalization and detailed placement
are described in Section 4.
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2 MC Benchmark Construction

Each MC example has an optimal-wirelength placement in
which over 50% of the nets are non-local. Module shapes,
core utilization, and net-degree statistics match corresponding
quantities in a given benchmark exactly. The MC construction
is described in this section.

2.1 Monotone Chains

The definition of a monotone chain in a netlist uses simple
ideas from both graphs and hypergraphs. First, consider a
path P in a graph G whose vertices lie in the plane. Let P
consist of n consecutive edges (e1,..., ep) connecting n+ 1 ver-
tices (vo,...,Un ), vertex v; with coordinates (z;, y;) and edge e;
connecting vertices v;—1 and v;. Then P is monotone if and
only if, for every ¢ € {1,...,n}, |z, — z;| < |zn — z;—1| and
|lyn — ¥i| < |yn — yi—1|- Hence, a path in a graph embedded
in the plane is monotone if and only if the Manhattan dis-
tance between its two terminal vertices equals the sum of the
Manhattan lengths of its edges.

In a hypergraph, a hyperpath is a finite sequence of hyper-
edges in which each hyperedge intersects with its predecessor
and successor. If the nodes (modules) of a hypergraph (netlist)
are placed in the plane, the total length of a hyperpath is the
sum of the HPWLs of its hyperedges (HPWL denotes minimum
bounding-box half-perimeter). An edge e = (v, w) is called
the equivalent edge of a hyperedge h of a hypergraph in the
plane, if (i) its vertices v and w are in h and (ii) e’s minimum-
HPWL bounding box is the same as h’s minimum-HPWL bound-
ing box. A hyperedge in the plane may have zero, one, or two
equivalent edge(s).

A path P is called the equivalent path of a hyperpath H in
a hypergraph in the plane, if there is a one-to-one correspon-
dence between the edges of P and the hyperedges of H, such
that every edge of P is the equivalent edge of its correspond-
ing hyperedge in H. A monotone chain is a hyperpath which
has an equivalent path that is monotone.

Assuming that no two vertices can occupy the same loca-
tion, neighboring hyperedges in a monotone chain have ex-
actly one vertex in common. These common vertices form
the equivalent monotone path. The two terminal vertices of
a monotone chain are the terminal vertices of its equivalent
path. Hence, the length of a monotone chain equals the HPWL
of the edge defined by the chain’s two terminals.

Observation 2.1 If the terminal vertices of a monotone
chain P = (hi,ha,...,hs) of a hypergraph G are fized in the
plane, there is no other planar embedding of hypergraph G
which reduces the length of P.

A local net is a hyperedge the HPWL of which is the minimum
possible, subject to some spacing constraints between vertices.
From Observation 2.1, it is evident that a placement has op-
timal HPWL if all its non-local nets can be partitioned into
netwise-disjoint monotone chains with fixed endpoints.

2.2 The MC Algorithm

Starting from the placement of the real benchmark, sets of
nets are identified that can be grouped together into netwise-
disjoint monotone chains between well-separated fixed termi-
nals. Local nets in the given placement are not modified. The
main steps of the MC algorithm are sketched below.
Placement generation — The MC generator requires a
placement of the original netlist. This placement is held fixed,

while the netlist is changed so that the given placement attains
the optimal HPWL for the modified netlist.

Net categorization — The nets of the original hyper-
graph are divided into three different categories depending on
the placement of their pins:

(1) locally optimal-HPWL nets

(ii)  nets that do not have equivalent edges

(iii) nets with equivalent edges.
Nets of Type (ii) cannot be members of monotone chains and
are therefore modified. Nets of Type (iii) are labeled accord-
ing to the directions of the monotone chains of which they
can be members: from lower left toward upper right, or from
lower right to upper left. Some of these nets can be members
of chains in either direction.

Chain generation — As illustrated in Figure 1, sets of
nets that can be members of the same chain are identified
along with sets of empty regions that must later be filled by
nets in order to complete the monotone chains. All nets of
Type (iii) are assigned to chains during this step.

Chain removal — In our experiments, the number of
empty regions created during chain generation is higher than
the number of nets of Type (ii). Hence, to preserve netlist
statistics, some of the chains generated are removed in order to
reduce the number of empty regions and increase the number
of available nets.

Gap covering — In the final step, empty regions between
nets in chains are filled by new nets. Each new net replaces
some available net in the original netlist. The new net includes
the two pins defining the equivalent edge of the bounding box
of its empty region £ as well as additional pins selected from
within £ in order to match the degree of the replaced net.
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Figure 1: Example of chain generation. (a) Net A has already
been added to the chain. A search for a new net takes place in
region R. (b) Net B is selected to be added to the chain. (c)
A gap is inserted between nets A and B, that will be covered
later by a new net. A new search is initiated for nets in region
R’.

Experiments reported in Section 4 suggest that, on the 2004
FastPlace-IBM standard-cell circuits with 20% white space,
non-local nets probably do not represent a significant source
of suboptimality for these tools. In order to amplify the sub-
optimality observed on mixed-size cases as much as possible,
the PWs benchmarks described next include only local nets by
default.

3 PWS Benchmark Construction

We refer to our placement suboptimality benchmarks with
parametrized white space as Pws. As shown in Figure 2, the
PWs generator produces a benchmark closely approximating
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Set grid-resolution limit Ng.

Ny target net-degree histogram
. Pmac  macro placement in core region R
input N target number of standard cells
Pws target white-space fraction

Gmnc = <2viepmac a(m) Ja(R).
Gws = min{Pws, 1 — ¢mac — Nec/NG}.

sc 1= mac ws-

Ng := Ngc/¢sc-

if (NG > Ng) then
Ng := Ngj; ¢sc 1= sc/NG§ dws ;=1 — Pdmac — Psc-

end if

Snap Pmac into G, truncating macros as necessary;
mark grid cells assigned to macros.

Nyws 1= ¢ws - Ng-

repeat
Randomly select unvisited non-macro grid cell c.
if (the spatial neighbors of ¢ remain spatially

connected in G when c is removed) then
Mark c as white space and decrement Ny.
end if
until (Nyws == 0 or
every non-macro grid cell has been examined)
if (Nws > 0) report failure and exit end if
Mark all unmarked grid cells as standard cells;
V := {macros} U {standard cells}.

Following Figure 3, generate a minimal netlist
“backbone” Ep, a connected set of local nets
consistent with Nx which covers V.

while (N still has nonzero entries and

available locations for local nets still exist)
Randomly select an available location p for a local net
if (no new local net can be generated at p) then
remove p from list of available local-net locations.
else
generate a local net of maximum possible degree k
still represented in Ngx. Decrement Ny [k].
end if
end while
output the placement suboptimality benchmark netlist

Figure 2: The PWS Benchmark Generator

the following four targets: (i) net-degree histogram Ny, (ii)

input C := () = set of vertices contained in nets

B := () = set of vertices not yet in C but spatially
adjacent (in G) to at least one vertex in C.

Create a local net e at a random location.

Insert all v € e into C and all G-neighbors of e into B.

while (B is not empty)

Select an as yet unconnected grid cell b € B and a
connected grid cell ¢ € C such that b and ¢ are
adjacent in G. Cell b may be either a standard cell
or a grid cell assigned to the boundary of an as yet
unconnected macro. Cell ¢ may be either a
standard cell or an as yet unconnected grid cell
assigned to the boundary of a connected macro.

Create a net e containing b and ¢ and containing as
many other standard cells as possible, up to the
maximum target net degree remaining in Ng.

if (N [|e]] > 0) then decrement Ny [|e|]

else
k:=min{j|j > |e| and N [j] > 0}.
decrement Ny [k] and increment Nu [k — |e|],

end if

for (allv €e)
remove v from B and insert it into C.
for ( each grid neighbor w of v )

if (w &€ e and w ¢ C) insert w into B end if
end for

end for

end while
output minimal connected netlist Ep covering all v € V

Figure 3: PWS Netlist Backbone Generator

given placement P... of all macros, (iii) number of standard
cells N,., and (iv) white space fraction ¢w.. The ith compo-
nent of vector Ny is the target number of nets of cardinality .
A macro is any module, fixed or movable, with height greater
than the standard-cell row height. The generator places N
standard cells between macros and defines nets locally such
that the total HPWL of the given placement is no more than
a small, explicitly computed factor (1.00-1.08) above opti-
mal for the final benchmark. Connectivity of the constructed
netlist is ensured by inserting white space in such a way that
all remaining cells and macros form a spatially connected set
in the placement region.

As described in Figure 2 and below, the Pws generator pro-
ceeds in 4 stages:

1. Input target statistics; definition of uniform grid G; def-
inition of mapping fe which snaps a given macro place-
ment Ppa. into G.

2. Designation of white-space grid-cells, leaving cells and
macros spatially connected.

3. Construction of the netlist backbone (Figure 3), a mini-
mal connected set of local, near-optimal-HPWL nets con-
necting all cells and macros.

4. Construction of additional, optimal-HPWL local nets to
match target netlist statistics as closely as possible.

An optional additional stage for the addition of optimal-HPWL
non-local nets is described in Section 4.

Every legal mixed-size placement induces a complicated
partition R = Rmac U Rsc U Rws of its placement region R
into three disconnected subregions: Rmac occupied by macros,
Rsc by standard cells, and Ryws left as white space. The
PWS generator preserves a given macro placement P,.. pre-
cisely with respect to a fixed core region R. Let a(S) de-
note the area of subregion S. Region R is neither shrunk nor
expanded relative to the macros — both a(R) and a(Rmac)
are held fixed. Instead, standard cells are uniformly shrunk
or inflated to attain a higher or lower white-space targets,
respectively. With this fixed-outline and fixed-macro-layout
strategy, Gmac = a(Rmac)/a(R) is fixed, and it is evident that
white space cannot be increased beyond the space left to it by
the macros and standard cells:

Pwe 1= Pmac — e
where ¢..'" denotes the minimum fraction of R which can be
left for standard cells. The exact value of ¢2'™ is determined
by storage and run-time considerations, as described next.

A tight lower bound on the optimal half-perimeter wire-
length (HPWL) of each Pws benchmark is obtained by map-
ping the given macro layout Pna.. into a uniform rectangular
integer grid G of square cells over which all nets are defined.
The mapping is denoted by fg : Puae = 2¢, where 2¢ denotes
the set of all subsets of grid cells in G. Each macro is iden-
tified by the mapping fe¢ with a distinct rectangular subset
of grid cells in G. A nonoverlapping macro placement ensures
that the grid-cell subsets associated with distinct macros are
disjoint. Each center of each grid cell represents a candidate
pin location. Pin locations on macros are restricted to grid-
cells on macro boundaries and kept distinct. I.e., the center of
each grid-cell along any macro’s boundary can serve as a pin
for at most one net. For simplicity, however, all pins on each
standard cell are located at the same point at the center of
that cell; i.e., the center of each standard cell may represent
several pins for several different nets.

With all ¢ pins of a given net placed at distinct grid-cell
centers, the minimum HPWL of a ¢-pin net in such a grid is
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r+s—2, where r = |—\/f -| and s = [t/r]. This result is easily
derived by packing the t square grid cells of the net into a
rectangle of least possible perimeter. However, as shown in
Figure 4, the optimal HPWL for a ¢-pin net may be attained
by pin configurations with bounding boxes of different shapes.

olef-]

hd
olelele®

o-|-& -0
[ ]
@

(@) (b)

Figure 4: On a uniform square grid, the optimal HPWL of a
7-pin net (4 grid units) can be attained by pin configurations
with either of the two bounding boxes shown as dashed line
segments.

In order to construct a local net of optimal or near optimal
HPWL containing a small subset of rectilinearly connected seed
pin locations, rectangles of gradually increasing sizes contain-
ing the seeds are recursively examined. Each such rectangle
is a rectangular subset of grid-cells containing the seed loca-
tions and representing a bounding box for a candidate net. In
addition to the seeds, it may contain white space, standard
cells, or grid-cells on the boundaries or interiors of macros. Of
these, the available pin locations are the standard cells and the
grid-cells on macro boundaries which have not yet been used
as pins in other nets. As long as the number of available, rec-
tilinearly connected pin locations in each such rectangle R is
high enough to ensure optimal HPWL of the corresponding net,
four larger rectangles containing R may also be considered. As
shown in Figure 5, a rectangle is enlarged by adding to it a row
or column of grid-cells along one of its four edges. Hence, the
candidate rectangles for a given set of seeds form a quad-tree,
the rectangles increasing in size along any path from root to
leaf. Rectangles are enlarged until either optimal-HPWL can-
not be obtained or the maximum-degree net remaining in Ny
can be formed.

As is suggested by the labeling in Figure 5, incremental enu-
meration of distinct candidate optimal-HPWL bounding boxes
amounts to the enumeration of distinct finite sequences {d;},
where each d; € {n, s,e,w} represents the direction of enlarge-
ment at the ith step, and N = 1,2,... is the total number
of enlargements for a given box. Two sequences of the same
length IV are distinct if and only if the numbers of occurrences
of all the symbols {n, s, e, w} are not the same for both. E.g.,
ns and sn are equivalent and lead to the same bounding box
containing the initial seed box, but nse and nsn are distinct.
The number of distinct sequences of length NV is the number of
ways p4(IN) that the integer NV can be expressed as the sum of 4
nonnegative integers; asymptotically, p4(NN) grows with order
N3/6." However, sequences for suboptimal bounding boxes
(such as ree and rew in Figure 5) and their descendants can
be easily avoided.

To further reduce search time, rectangles after a certain
level in the quad-tree are enlarged in only one of the most
promising directions, i.e., a direction containing the most
available pin locations.

I The precise expression is pa(N) = (N% + 6N? + 11N + 6) /6, which
is the coefficient of z"V in the Taylor series for (1 —z)™* = (1+z+z>+
23 4 ..)*, assuming |z| < 1 [3].

(r

9/ N ()

?

/ /N a

(rnn) (rns) (rne) (rnw)

(rss)  (rse) (rsw)
Figure 5: The first level of local search for the largest optimal-
HPWL net containing a given 5-pin seed. After the first level,
many duplicate (e.g., rsn) and suboptimal (e.g., ree) cases at
the subsequent levels can be pruned.

Ideally, the resolution of grid G should be high enough to
capture all macro and cell dimensions exactly. Our prototype
implementation simplifies the definition of f¢ in two ways.
First, Pnac is represented in floating point; macro positions
and dimensions are expressed as fractions of chip dimensions
prior to their conversion to integer grid units. Macro dimen-
sions are truncated in G as needed to snap macros into the
grid. Because this change in units occasionally causes abut-
ting macros in Pp.. to overlap in G, a small fraction of macros
may be discarded to prevent overlap. Second, each standard
cell is represented by just one of the square grid cells of G
— variations in standard-cell width are ignored. These two
assumptions significantly reduce the size of G necessary to ac-
curately represent Pn... However, the resolution of G must
still be large enough that
(i) each macro has nonzero height and width
(ii) the number of grid cells not used for macros is large enough
to form both the requested number of standard cells V.. and
the requested fraction of white space @uws.

4 Experiments

Four sets of experiments with leading academic placement
tools are reported. The first is on standard-cell MC circuits
generated from the 2004 FastPlace-IBM benchmarks. The sec-
ond is on mixed-size PWS circuits derived from the ISPD 2005
suite. The third considers the impact of introducing chains of
optimal-HPWL nets into a PWS benchmark. The fourth exam-
ines the suboptimality of legalization and detailed-placement
engines in isolation from their global-placement counterparts
on a parametrized adaptation of the PWSs circuits.

4.1 Non-local Nets (MC)

All Mc benchmarks used in our experiments are generated
from the FastPlace [7] versions of the 2002 IBM/ISPD bench-
marks [2]. The white space in these test cases is approx-
imately 20%. The FastPlace-IBM benchmarks modify the
original IBM benchmarks by replacing macros with standard
cells. However, the MC algorithm can also be applied to ex-
amples with macros for the generation of mixed-size circuits
with known optimal placements. Although no new pads are
explicitly inserted, most existing pads are connected to several
nets each to allow for more chains.

The Mc benchmark generator described in the previous sec-
tion requires as input both a netlist and an initial “seed” place-
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ment of that netlist. Dragon 3.01 [18] and mPL4 [9] were used
to seed separate suites of MC benchmarks. Using other placers
as seeds was observed to have negligible impact on final results,
even when the placer used to create the seed placements was
run on the resulting MC netlists.

The McC suite matches the FastPlace-IBM benchmarks ex-
actly in number of cells, cell areas, number of nets, and net-
degree distribution. Roughly 60-70% of the nets in the origi-
nal and synthetic benchmarks are identical, and the distribu-
tions of net lengths in the optimal placement of the synthetic
benchmarks are nearly identical to those of their seed place-
ments on the original netlists. Moreover, the cell-degree dis-
tributions of the original and synthetic benchmarks are very
similar (the degree of a cell is the number of nets containing
the cell). Almost 80% of the cells in an MC netlist have a
cell-degree difference at most 1 from their corresponding cells
in the original netlist. Detailed statistics are shown in Fig-
ures 6 and 7.

7000
6000 =
5000
4000 -
3000 -
2000 -

1000 {
0 I

0 1 2 3 4 5 >5

Cell degree difference

# of cells

Figure 6: The cell-degree difference (in absolute values) distri-
bution between the cells of mPL-MC01 and their correspond-
ing cells in FastPlace-ibm01.

O FastPlace-ibm01
B MPL-PEKOMCO01

# of cells

16-32% 3264%

0-1%  12%  24% =64%

WL relative to chip size

4-8% B-16%

Figure 7: The wirelength distribution (relative to the chip
half-perimeter) of the nets in FastPlace-ibm01 (as placed by
mPL4) and the nets in mPL-MCO01 (in their optimal place-
ments).

Results for programs APlace 2.0 [14], mPL6-XDP [5, 10],
and Capo 9.5 [1] on the Dragon-MC suite are shown in Fig-
ure 8. Very similar results (not shown) were obtained for all
the tools on the mPL4-MC suite. The overall results show
very good performance by all tools on all the benchmarks, re-
gardless of which tool generates the initial placement used to
seed the benchmark construction. The worst reported quality
ratio by any of the placers on any benchmark is 1.07. We at-

11 T T
APlacel.0 ——
Cap09.5 -3¢
1.08 - mPL6-XDP -

1.06

1.04 +

Quality Ratio

1.02

100000 150000 200000 250000
#cells

0 50000

Figure 8: Results of some leading academic tools on MC
Circuits seeded by Dragon 3.01 placements of FastPlace-IBM
Benchmarks.

circuit Noc | Nimac | Nuets | dmac | g | O | pmax
PWS-Al 216180 63 233982 0.43 [ 0.24 0.30 1.01
PWS-A2 264793 159 299358 0.62 | 0.21 0.29 1.03
PWS-A3 474287 723 531843 0.62 | 0.25 0.28 1.03
PWS-A4 531245 1329 563521 0.49 | 0.37 0.38 1.03
PWS-B1 280141 32 301577 0.17 | 0.46 0.46 1.01
PWS-B2 583514 | 23084 624625 0.38 | 0.38 0.40 1.03
PWs-B3 | 1137839 3778 | 1265913 0.67 | 0.14 0.24 1.08
PWS-B4 | 2237605 8170 | 2469988 0.38 | 0.35 0.40 1.03
Ng. | average number of standard cells
Nmac | number of macros.
Nyets | average number of nets.
mac | Macro-area utilization.
¢° | original benchmark’s white-space fraction.
Pwe | maximum white-space fraction attained by the generator.
Pmax | Mmaximum ratio of generated HPWL to its lower bound.
Table 1: PWS benchmark circuit statistics, with notation.

Averages and maxima are taken over the 4 different white-
space values by which each circuit is parametrized. Standard
deviations of N,. range from 0.5% to 4.2% of N,.; standard
deviations of Nyets range from 10% to 16% of Npets.

tribute this result to the increased range of optimal locations
available to modules in multi-pin nets of monotone chains.

4.2 Parametrized White Space (PWS)

The PWSs approach gives the user control over the layout of the
macros. In the ISPD 2005 benchmarks, all macro locations are
prespecified for all circuits anyway, except bigblue3. For our
construction based on bigblue3, we extracted movable macro
locations from the placement generated for it by APlace [14]
for the ISPD 2005 placement contest [20].

Each pws local net’s construction proceeds by depth-limited
local search from a given subset of adjacent grid cells. A
small amount of HPWL suboptimality is tolerated in some nets
to simplify the implementation.? The optimal and attained
HPWLS of the individual nets are simply added up to deter-
mine the limit on the total HPWL suboptimality in the final
benchmark. These limits are shown in Table 1. On some
circuits, nets e in the source netlist with more than a few hun-
dred pins are represented by small subsets of high-degree nets
whose pin counts sum to |e|.

2However, we still refer to the placements as optimal, because the
set of modules in each net is rectilinearly connected and hence supports
an optimal routed wirelength of the net.
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| T mPL6 I APTace 2.0 I Capo 9.5 |
[ ckt\ ws [[ pack T 5% [ 10% [ 20% [ max [| pack [ 5% [ 10% [ 20% | max || pack [ 5% [ 10% [ 20% | max |

PWS-A1 1.80 1.35 1.48 1.70 1.80 1.33 1.50 1.22 1.15 1.54 6.17 3.33 3.14 3.05 2.67
PWS-A2 2.11 1.48 1.48 1.36 1.54 3.46 fail fail 3.65 2.29 8.06 4.01 3.85 3.53 3.12
PWS-A3 4.32 2.14 1.52 1.41 1.33 2.27 1.23 1.14 1.13 1.10 4.10 2.10 1.93 1.53 1.33
PWS-A4 4.39 1.50 1.32 1.51 1.24 1.70 1.29 1.23 1.34 1.44 3.09 2.08 1.92 1.62 1.35
PWs-B1 — 1.30 1.34 1.30 1.24 — 1.44 1.32 1.17 1.33 — 2.50 2.42 2.08 1.77
PWS-B2 — 2.10 2.16 1.64 1.39 — 1.25 1.26 1.58 1.44 — 2.42 2.13 1.83 1.51
PWS-B3 — 1.54 1.62 1.99 2.02 — 2.14 1.59 2.02 2.23 — 2.49 2.10 1.89 1.91
PWS-B4 — 1.51 1.46 1.71 mem — 1.26 1.21 1.16 1.33 — mem mem mem mem
[Averages || 3.16 || 1.61 | 1.55 | 1.58 | 1.51 || 2.10 || 1.45 [ 1.28 | 1.65 | 1.50 || 5.5 ][ 2.70 | 2.50 | 2.22 | 1.96 ]

Table 2: Results for mPL6, APlace 2.0, and Capo 9.5 on the PWS-ISPD2005 suboptimality benchmarks. Displayed are
quality ratios of total computed HPWL to near-optimal HPWL upper bounds. Results with uniformly distributed white space
are shown for 5%, 10%, 20%, and the maximum possible white space values. For PWS-adaptecl—4, quality ratios are also
shown for benchmarks with optimal zero-white-space layouts (“pack”) on the left side of the core region and 10% white space
on the right. “mem” denotes an out-of-memory error. Capo 9.5 was run with option -noHMetis on PWS-a3, PWS-a4, and all
four of the packed benchmarks; otherwise, all tools are in default mode in all cases.

Quality ratios of mPL6-XDP, APlace 2.0, and Capo 9.5 are
listed in Table 2. The results show substantial variation both
between tools and across different white-space values.

both
and

4.3 Suboptimality under
Parametrized White Space
Non-local Nets

The preceding results separate the impact of white space and
mixed-size modules from that of non-local nets. However, the
MC and PWS techniques can be combined into a single set of
suboptimality benchmarks supporting parametrized percent-
ages of both non-local nets and white space. A combination
derived from the PWS construction (Figure 2) was tested on
the mixed-size IBM01 benchmark from the ICCAD2004 test
suite [1], as follows. Following the construction of the PWS
netlist backbone (Figure 3), monotone chains of non-local nets
are constructed as follows.

1. The set of all boundary pads and candidate pin locations
of fixed macros is partitioned by a simple heuristic into
pairs of fixed terminals, such that the terminals in each
pair are relatively far apart.

2. For each pair of terminals, designate one terminal in the
pair as the start, and another as the end. A chain of
non-local nets is iteratively constructed for the pair of
terminals by the following sequence of steps (compare to
Figure 1).

(a) Randomly select an available pin location in the
bounding box of the end terminal and the net cor-
ner pin most recently added to the the chain. The
selected location is the next net corner pin.

(b) Randomly select additional pins in the resulting

bounding box of that new net-corner pin location

and the preceding net-box corner pin to populate
the net.

Net-box corner-pin locations are selected at randomized
distances from one another approximately 1/10 of the
width or height of the placement region, until the end
terminal of the chain is reached.

Results of APlace 2.0, Capo 10, and mPL6, all run in default
mode, are shown for the combined pwsMc IBM01 benchmark
in Table 3, both without and with non-local nets. Macros
larger than 10 cell rows high were treated as fixed, their bound-
aries thus supplying some additional terminal locations. As

With Local Nets Only

APlace | Capo | mPL
ibmO0I-T0WS 1.20 1.88 1.31
ibm01-40WS 1.40 1.96 1.27
Averages 1.30 1.92 1.29

With Chains of Optimal-hpwl Non-local Nets
iﬂ"ﬁ:’s % APlace | Capo | mPL
ibm01-10WS 0.15 . 1.11 1.49 1.16
ibm01-40WS 0.13 0.68 1.08 1.67 1.10
Averages 1.10 1.58 1.13

Table 3: HPWL Suboptimality of APlace 2.0, Capo 10, and
mPL6, compared on 10% and 40% white-space versions of a
PWS circuit derived from the ICCAD 2004 IBM01 mixed-size
benchmark, both without (top) and with (bottom) the addi-
tion of optimal-HPWL nonlocal nets. Approximately 13,15%
of the nets in the second set are nonlocal, accounting for
57%,68% of total HPWL.

expected, the presence of monotone chains of non-local nets
decreases all placers’ suboptimality ratios.

4.4 Suboptimality of Detailed Placement

Optimal global placements (0GP) parametrized by bin size
were generated from the optimal Pws placements as follows.
Uniform rectangular bin grids of user-specified dimensions
were superimposed. Cells and macros centered in the same
bin were moved to the bin center, where they were placed
concentrically. These OGP placements were then used as
benchmarks for detailed placement by mPL6-XDP [5, 10] and
APlaceDP [14]. Each PwWs circuit can generate several differ-
ent OGP circuits, one for each bin size. The DP engines were
run on a set of these OGP circuits, and the rate of degrada-
tion in their quality with respect to bin size and white-space
value was observed. For each of the different white-space val-
ues, the quality ratios obtained by the DP engines were av-
eraged over the 8 different circuits. The result is illustrated
in Figure 9. The benchmarks reveal opposite trends in these
engines with respect to increasing white space. For these test
cases, XDP’s performance degrades as white space increases,
while APlaceDP’s improves. APlace’s cell-swapping strategy
may have some advantage on these benchmarks, because the
standard cells in these test cases are all of uniform size and
shape. Under higher white space, the size of the set of candi-
date swaps is reduced, making successful swaps more likely to
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be found. On the other hand, XDP’s local-window-based re-
finement is apparently a drawback on the higher-white-space
cases, where larger scale moves are apparently needed.

15
APlace Movable —+—
APlace Fixed -
14 L XDP Movable - |
: XDP Fixed -3
el
< 13 |
24
2
S 121 “Hf
%
1.1
1 L L
5 10 20 max

% of WS

Figure 9: Average quality ratios of APlaceDP and XDP over
the 8 different netlists of OGP DP benchmarks.

Results on the oGP benchmark derived from the pws-
adaptec2 benchmark with 10% uniformly distributed white
space are summarized in Figure 10. Results are shown for
two scenarios: one in which all macros are held fixed, and
hence only standard cells are aggregated into bin centers, and
another in which both kinds of objects are moved from their
locations in the known near-optimal placement to the near-
est bin center. The results of these experiments show that
the quality of detailed placement deteriorates fairly rapidly as
the bin size increases, even for these uniformly accurate global
placements. For bin sizes up to 4 x 4, macro legalization is not
a primary source of suboptimality, but for larger bin sizes, it
is.

3 : . ;
APlace Movable —+—
2.8 APlace Fixed - X A
26 L XDP Movable - |
: XDP Fixed — 0 [0
24+ 1

Quality Ratio

Bin Size

Figure 10: Suboptimality of APlaceDP and XDP on the
OGP DP benchmarks generated from PWS-adaptec2 with
10% white space.

The 0GP benchmarks provide a means of estimating how
much of a placer’s suboptimality is attributable to its global
placement, and how much to legalization and detailed place-
ment. Table 4 compares the suboptimality observed for XDP
on 2 x 2 OGP cases to that observed for mPL6-XDP, including
both GP and XDP, on the corresponding PWS source circuits

from which the OGP cases are derived. Subtracting the ob-
served XDP suboptimality on the 2 x 2 OGP benchmark from
the total mPL6-XDP = mPL6GP+XDP suboptimality on the
corresponding PWS benchmark gives an estimate of the mPL6
GP suboptimality. It should be noted, however, that these
suboptimality values are not truly additive, for at least two
reasons. First, the starting configuration for XDP on the oGgp
benchmark is very different from its starting configuration on
the corresponding PWs benchmark. Second, relative module
positions in a global placement below the resolution of the 2 x2
OGP grid will typically be used as hints during legalization and
DP to improve results.

%WS | GP DP | Total
5 51% | 10% 61%
10 46% 9% 55%
20 39% | 1% 56%
40 20% | 22% 51%

Table 4: Estimated suboptimality of mPL6 global (GP) and
detailed placement (DP) engines. The GP estimate is ob-
tained simply by subtracting the observed DP quality ratio
obtained on the 2 x 2 OGP benchmark from the overall qual-
ity ratio observed for the corresponding PWS benchmark.

Figure 11 displays line segments between modules’ placed
locations and their optimal locations in a small PWS test-
case (IBMO02) constructed with 5% white space from the IC-
CAD2004 mixed-size suite [1]. Results for both global and
detailed placements of APlace 2.0 and mPL6-XDP are shown.
From these plots, it is clear that displacement errors are not at
all randomly distributed, and, on the contrary, display large-
scale systematic bias. We observe similar trends in displace-
ment plots for other tools on other PWS circuits and at other
white-space fractions. We conclude that, even when each cell
in a global placement is very close to (one of) its optimal lo-
cation(s), further reduction in the objective can often only be
achieved by moving large subsets of cells simultaneously by
small amounts. Iterative, local, window-based refinement will
not remove the systematic error.

5 Conclusions

Two new sets of synthetic benchmark circuits with known
optimal-HPWL or near-optimal-HPWL placements have been
presented. The MC set quantifies the role of non-local nets
in suboptimality; the PWS set quantifies the role of white
space and modules of mixed size. Experiments with lead-
ing academic placement tools support three main conclusions.
First, as shown in Table 2, different tools produce widely
varying results on some of the mixed-size PWS benchmarks.
Hence, these benchmarks can be used to identify deficiencies
in tools producing relative poor results. Second, the presence
of netwise-disjoint chains of nets linking pairs of numerous,
well-distributed, fixed terminals appears to make wirelength-
driven placement by contemporary methods considerably less
difficult. Third, the accumulation of small but systematic er-
rors in the placement of local nets appears to be a greater
source of suboptimality than the total error in identifying and
placing non-local nets. The corrective action needed to fur-
ther reduce that suboptimality, whether taken during global
placement, legalization, or detailed placement, must consider
simultaneous motion of large subsets of objects in order to be
effective. Restriction to subsets localized in an arbitrary way
is, in general, insufficient to improve on existing results.
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APlace 2.0 GP

ol :
e i, RESFi

o Pl

APlace 2.0 DP

Figure 11: Individual module displacements from optimal on the PWS-ICCAD(4-IBM(2 benchmark with 5% white space.
Displacements of both global and detailed placements are shown for APlace (top) and mPL6-XDP (bottom). The HPWL
quality ratios observed on this benchmark are 1.45 for APlace and 1.23 for mPL.
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