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Abstract – We address the problem of performing decision tasks, and in par-
ticular classification and recognition, in the space of dynamical models in order
to compare time series of data. Motivated by the application of recognition of
human motion in image sequences, we consider a class of models that include lin-
ear dynamics, both stable and marginally stable (periodic), both minimum and
non-minimum phase, driven by non-Gaussian processes. This requires extending
existing learning and system identification algorithms to handle periodic modes
and non-minimum phase behaviour, while taking into account higher-order statis-
tics of the data. Once a model is identified, we define a kernel-based cord distance
between models that includes their dynamics, their initial conditions as well as
input distribution. This is made possible by a novel kernel defined between two
arbitrary (non-Gaussian) distributions, which is computed by efficiently solving
an optimal transport problem. We validate our choice of models, inference algo-
rithm, and distance on the tasks of human motion synthesis (sample paths of the
learned models), and recognition (nearest-neighbor classification in the computed
distance). However, our work can be applied more broadly where one needs to
compare historical data while taking into account periodic trends, non-minimum
phase behaviour, and non-Gaussian input distributions.

Index Terms –System Identification, Blind Deconvolution, Non-minimum Phase,
Distance, Kernel, Hammerstein, Transport, Wasserstein, Non-Gaussian, Time
Series.
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1 Introduction

Our goal is to perform decision tasks, including detection and recognition, in the space of

dynamical models. For example, if we view a walking person as a dynamical system, we

are interested in detecting her in an image sequence, recognizing her gait and possibly her

identity. Endowing the space of dynamical models with a metric and a probabilistic structure

is a long-standing problem because, even for linear models, such a space is highly non-linear.

In comparing dynamical models one has to consider all of their components: The states

and their dynamics, the measurement maps, the initial conditions, and the inputs or noise

distributions. Different components may play different roles depending on the application;

for instance, one may want to discard the transient behavior or the input distribution, but

it is important to have machinery to account for all if needed.1 We will concentrate on a

class of models that is sufficiently general to capture many of the applications of interest in

dynamic vision, and at the same time tractable in the sense of yielding, for the most part,

closed-form (i.e. non-iterative) inference algorithms. As we explain in the next paragraph

these are marginally stable, non-minimum phase linear models with non-Gaussian inputs.

Linear non-Gaussian models (Hammerstein)

Let y(t) ∈ Rm, t = t0, t1, . . . be the measured signal, sampled at discrete time intervals. Our

goal is to describe its temporal behavior via a dynamical model. Under mild assumptions

[23] y(t) can be expressed as an instantaneous function of some “state” vector x(t) ∈ Rn that

evolves in time according to an ordinary differential equation (ODE) driven by some deter-

ministic or stochastic “input.” In general, both the measurement map from x(t) to y(t) and

the state equation that describes the ODE are non-linear, and complex dynamic phenomena

such as hysteresis, phase transitions, turbulence, or delays require dedicated analytical tools.

However, many non-linearities can be eliminated by proper choice of coordinates or immersion

1For the case of human gaits, one can think of the periodic dynamics as limit cycles generating nominal input
trajectories, the stable dynamics governing muscle masses and activations, the initial conditions characterizing
the spatial distribution of joints, and the input depending on the actual gait, the terrain, and the neuromuscular
characteristics of the individual.
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into a higher-dimensional spaces [26]. Indeed one can test the hypothesis that a given time

series of measurements come from a linear model [21], as we do in Sect. 5 for the case of

human motion. We will therefore restrict our attention to linear dynamical models of the

type


x(t + 1) = Ax(t) + v(t) x(t0) = x0

y(t) = Cx(t) + w(t) {v(t), w(t)} IID∼ q(·)
(1)

where v(t) and w(t) are stochastic inputs jointly described by the density q(·).2 They can

be though of as errors that compound the effects of unmodeled dynamics, linearization resid-

uals, calibration errors and sensor noise. For this reason they are often collectively called

input (state) and output (measurement) “noises.” The density q(·) can be Gaussian or non-

Gaussian. Given the linearity assumption on the model, the Gaussianity of the noise can be

easily tested. For the case of human gaits, this reveals strongly non-Gaussian statistics (see

Fig. 1). For reasons that will become clear shortly, we assume that the noise process is tem-

porally independent, or white. Since one can interpret a white non-Gaussian independent and

identically distributed (IID) process as a Gaussian one filtered through a static non-linearity,

we are left with considering so-called Hammerstein models, that are linear models with static

input non-linearities [18].

In the system identification literature [29, 41] it is customary to consider (1) as a description

of the second-order statistics of the data (mean and covariance sequences). Indeed, there is

an entire equivalence class of models of the form (1) that yield the same mean and covariance

[27] and, therefore, one usually chooses the model that is stable and minimum-phase, i.e. the

one with both poles and zeros inside the complex unit circle [29, 41, 34]. One can easily allow

marginally stable modes (i.e. poles on the unit circle) provided that they are not “disturbed”

by the input noise v(t).3 These describe periodic modes of the signal that are useful in many

2Deterministic inputs can be easily accounted for as a limiting case, and will therefore not be considered
here.

3More precisely, the simple eigenvalues of A on the unit circle must correspond to unreachable components
of the state, see later sections for more details.
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applications, for instance in the analysis of gaits, as we describe in the next section.

However, when the inputs are non-Gaussian, models that are equivalent up to second-order

may not, in general, produce the same higher-order statistics. In particular all (marginally)

stable models with matching second-order statistics differ in their phase, which depends on

the location of their zeros. Therefore, in our models we will have to forgo the minimum-phase

assumption. This is appropriate for the case of human motion, where the underlying system

is only marginally stable (there is a strong periodic component) and non-minimum phase: In

fact, the body is a collection of inverted penduli, and the inverted pendulum is the prototypical

example of non-minimum phase system.

Thus, the models we will consider are marginally stable, non-minimum phase of the form

(1) with non-Gaussian input and output noises.

Goals and contributions

For this class of models we are interested in performing blind identification, i.e. to infer the

model M
.
= {A, C, x0, q(·)} from a time series {y(t1), . . . , y(tn), . . . }, and then to perform

classification by endowing the space of such models with a distance d(M1, M2). We wish to

solve these tasks as much as possible without resorting to computationally intensive itera-

tive optimization. Unfortunately, the current literature does not provide a solution to these

tasks: Most algorithms either assume minimum-phase stable models [34] or involve itera-

tive optimization [12, 42]. Similarly, model comparison is currently performed using spectral

information [13, 31] that does not consider phase information, inputs or initial conditions.

Recent work using kernels to compare dynamical models [44] only considers the inputs if they

are identical (in which case the distance depends only on the transient behavior) or if they

are independent (in which case the distance is not affected by the input). So, in order to ac-

complish our task of performing decisions in the space of models we will have to make several

contributions to the state of the art:

• Develop closed-form system identification algorithms (ID) for linear models with periodic

modes, extending the work on subspace algorithms [34],
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• develop closed-form ID for non-minimum phase models, extending [34],

• develop closed-form blind ID of Hammerstein models with non-Gaussian inputs, extend-

ing the work of [18],

• introduce a novel distance between models that allows proper comparison of the input

distributions. We will do so using kernels, thus extending the work of [44].

We will test our algorithms on the problems of human gait synthesis (ID) and recognition

(distance). Along the way, we will

• point out relationships between our approach and traditional subspace ID, independent

component analysis (ICA), kernels, and the problem of optimal transport and the asso-

ciated Wasserstein distance.

We feel that each item in isolation is a useful contribution to the field, and in particular

the introduction of transport-based kernels in Sect. 4.2 that could find application in other

domains outside gait analysis. More importantly, we feel that the ensemble yields a unified

picture and proposes a coherent method that allows classification of linear systems without

many of the restrictions implicitly or explicitly present in much of the existing work.

Main ideas

The space of dynamical models, even linear ones, is strongly non-linear, and few attempts

have been made to compute geodesic distances that would take the geometry of the space into

account. More common is to define cord-distances that do not come from a metric. The most

recent example is the work of Smola and coworkers [44] that define a kernel, i.e. an inner

product in the embedding space of the output time series, and use that to define a distance.

The kernel can be decomposed into a sum of terms, allowing the user to discount undesired

elements (e.g. input, initial condition etc.) from the distance. Unfortunately, in order to

compare two models M1, M2, the method proposed in [44] requires knowledge of the joint

density of the noises, i.e. p(v1, w1, v2, w2), which is seldom available.
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The main idea of our method is to identify a model that generates the same output statistics

(of all orders) of the original system, but that has a canonical input that is strongly white and

with independent components. Then all the information content of the input is transferred to

the model, that becomes non-linear (Hammerstein). One can then proceed to define a kernel

in a manner similar to [44], but extended to take into account the non-linearity. This can be

done by solving an optimal transport problem which, given a finite amount of data, can be

done in closed-form.

Identification of the model can be conceptually broken down into steps: First, without loss

of generality, we transform (1) in the form:
x(t + 1) = Ax(t) + Kn(t)

y(t) = Cx(t) + n(t).

(2)

Under our assumptions the noise n(t) is temporally (strongly) white, and its components are

weakly independent (uncorrelated). Note that, in general, the system above is non-minimum

phase. This step shall be described in Sections 2 and 3. Then we normalize this model to

make the components of the noise strongly independent. This is equivalent of performing

independent component analysis (ICA) n(t) = Dε(t), yielding a model of the form
x(t + 1) = Ax(t) + Bε(t)

y(t) = Cx(t) + Dε(t)

(3)

with B = KD and the components of ε are independent zero-mean unit-variance IID processes

ε(t) =

[
ε1(t) ε2(t) · · · εm(t)

]>
, εi(t)

IID∼ qi(εi) , E[ε(t)ε(t)>] = I. (4)

and ε can be written in terms of a canonical (e.g. uniform, or Gaussian) noise u:
x(t + 1) = Ax(t) + Bf(u(t)) x(t0) = x0

y(t) = Cx(t) + Df(u(t))

(5)

Now we can define a kernel, and therefore a distance, on the representation of the model
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M = {A, B, C,D, x0, f} that takes into account the dynamics, measurement map, initial

conditions, and the input statistics of the model. The hypothetical experiment to compare

two models consists of randomly generating a scalar IID sequence distributed uniformly in

[0 1], feeding it to the two models, and then compare their outputs.

2 Linear Models for Non-Gaussian Stationary Processes

In this section we introduce a linear dynamical system representation of stationary non-

Gaussian processes with periodic modes. We use the notation ŷ(t|t − 1) to denote the best

(minimum variance) linear predictor of y(t) given its past history {y(t− 1), y(t− 2), .....} [29].

It is well known (first part of Wold’s decomposition theorem [38, 35]) that every stationary

random process y(t) can be decomposed into two parts

y(t) = yd(t) + ys(t) (6)

where yd(t) is a purely deterministic (PD) process which can be predicted exactly as a linear

combination of its past (i.e. yd(t) = ŷd(t|t − 1)) , and ys(t) is a purely non-deterministic

(PND) process (or “purely stochastic,” hence the choice of subscript s), uncorrelated from

yd(t), for which the one step ahead prediction error ys(t) − ŷs(t|t − 1) is different from zero

in mean square. From Wold’s decomposition theorem [38], the PND part4 can be given an

infinite moving average representation of the form ys(t) =
∑∞

τ=0 H(τ)e(t− τ), where H(τ) is

a sequence of matrices such that H(0) = I ,
∑∞

τ=0 |Hij(τ)|2 < ∞ and e(t) is the innovation

process e(t)
.
= ys(t)− ŷs(t|t− 1); e(t) is uncorrelated E[e(t)e>(s)] = 0 for t 6= s.

Our tests in Sect. 5 suggest that for human gait data the linearity assumption leads

to a good approximation of higher order statistics as well. This induces us to postulate a

decomposition of the same form:

ys(t) =
∞∑

τ=0

G(τ)n(t− τ) (7)

4Usually only zero-mean processes are considered. However, the mean can be thought of as a PD component
and hence included in yd(t).
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where G(0) = I ,
∑∞

τ=0 |Gij(τ)|2 < ∞ and n(t) is a strongly white (independent) process.

Note that in general H(τ) needs not be equal to G(τ), as we shall discuss later. It is possible

to show that the PD component yd(t) can be represented as the superposition of (possibly

infinitely many) sinusoidal signals. However, from a practical standpoint, we can assume

that yd(t) is the superposition of a finite number of sinusoids and hence can be represented,

for t > t0, as the output of an autonomous system of state dimension nd xd(t + 1) = Adxd(t)

yd(t) = Cdxd(t)
(8)

with the constraint that Ad has simple eigenvalues on the unit circle. Without loss of

generality the pair (Ad, Cd) can be taken to be observable [8]. From stationarity of yd, xd(t)

is also stationary and Pd = Var{xd(t)} satisfies the homogeneous Lyapunov equation Pd =

AdPdA
>
d . Since the choice of basis in the state space is arbitrary, one can choose it so that

Pd = I; with this canonical choice, we have

AdA
>
d = I (9)

showing that, in this particular basis, Ad needs to be orthogonal.

Similarly, it is possible to give a state space realization to the representation (7) in the form xs(t + 1) = Asxs(t) + Ksn(t)

ys(t) = Csxs(t) + n(t)
(10)

where xs(t) ∈ Rns . Defining the aggregate state x(t) = [x>d (t) x>s (t)]>, x(t) ∈ Rn, we obtain
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a generative model of the the stationary process y(t) ∈ Rm in state-space form (2) with

A =

 Ad 0

0 As

 |λi(Ad)| = 1, i = 1, .., nd |λj(As)| < 1, j = 1, .., ns

K =

 0

Ks

 C =

[
Cd Cs

]
x(t) =

 xd(t)

xs(t)

 , xd(t) ∈ Rnd , xs(t) ∈ Rns

E [n(t)] = 0 , E
[
n(t)n(t)>

]
= R , n(t) IID. (11)

where xd(t) and xs(t) are the deterministic and stochastic components of the state correspond-

ing to (6) and x0 =

[
x>0d x>0s

]>
is the initial condition. Notice that the only assumption we

have on the input process n(t) is that its samples are identically distributed and statistically

independent.

Standard ID techniques provide the minimum-phase system estimate, that is the one that

has zeros inside the unit circle |λ(A −KC)| ≤ 1. However, the minimum-phase assumption

typically does not hold for articulated mechanical systems such as the human body [33]. We

do not assume that the underlying model is minimum-phase and, exploiting the fact that data

are not Gaussian, we use higher-order temporal statistics to estimate a linear system of the

form (11) (minimum or non-minimum phase) that best matches the observations.

Finally, we extend the model (11) to include higher-order spatial statistics by assuming

the instant mixing model (4) for the input process n(t) = Dε(t). That is, n(t) is a linear

transformation of the process ε(t) whose components have non-Gaussian distributions qi and

are both temporally and spatially statistically independent. Estimating the mixing matrix D

and the IID processes εi(t) from n(t) is a standard independent component analysis (ICA)

[14], for which efficient learning algorithms exist [6].

Our goal is that of finding optimal, in some sense, estimates of the parameters of the

combined model (2, 11, 4) that is the matrices A, K, C, the initial state x0, the mixing matrix

D and the input distributions qi.
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3 Inference criteria and learning algorithms

In order to estimate the parameters of the dynamical model (11) and the input distribu-

tion (4) we propose a two-stage learning approach. Our method differs from common blind

deconvolution/system identification approaches in that it handles critically stable systems,

i.e. system with poles on the unit circle.5 Another main distinction from common gradient-

based approaches such as [12, 42] is that we do not require solving computationally expensive

high-dimensional optimization problems with many local minima. We propose a non-iterative

suboptimal approach that provides a direct estimate in closed form. This approximate so-

lution can also be used as an initial guess for any gradient-based learning algorithm if so

desired.

First we construct the set of linear systems Ml = {A, Kl, C,Rl}, l = 1, · · · , L which match

the second order statistics of the data. This is known as the stochastic realization problem

[27]. All models matching the second order statistics share the same A, C matrices, that

can be estimated by subspace identification techniques [34]; now we shall extend subspace

techniques to handle the presence of PD components yd(t).

The set of matrices Kl, Rl, l = 1, · · · , L, can be obtained solving a Riccati equation once

(A, C) have been computed [28]. Then for each system we compute its inverse and use

it to estimate the input process nl(t) and the initial state x0 from a realization of y(t). An

independence test based on higher-order statistics of nl(t) is used to select the system Ml which

best matches the observed process y(t). Finally the mixing matrix and the input distributions

in (4) are estimated using an efficient independent components analysis algorithm [6].

3.1 Estimating Second-Order Statistics

Standard approaches to estimation of periodic signals corrupted by white noise, such as MU-

SIC [39], ESPRIT [37] and related algorithms [24, 17], discard non-periodic modes. However,

5Our model (11) should not be confused with cointegrated models used in econometrics (see e.g. [3]) where
the state components corresponding to eigenvalues on the unit circle are reachable, i.e. are affected by the
noise n(t), implying non-stationarity of the output process y(t).
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such modes are of paramount importance in our application and, therefore, these algorithms

cannot be applied directly. We claim that the standard subspace procedure can be modified

so as to infer models of the form (2, 11); the methodology we propose shall also provide a

natural criterion to estimate the number of PD components. The procedure is composed of

two steps: First, standard subspace identification [43, 34] is applied to the signal y(t) as if

there was no PD component. It is possible to show, but beyond the scope of this paper,

that as the number of data grows, the algorithm guarantees a consistent estimate of the

parameters of the minimum-phase system describing the data. However, with finite data we

get an estimate of the system matrices which, with an appropriate choice of basis T , are of

the form:

T−1ÂT =

 Âd 0

0 Âs

 T−1K̂ =

 K̂d

K̂s

 ĈT =

[
Ĉd Ĉs

]
(12)

where in general neither |λ(Âd)| = 1 nor K̂d = 0. Therefore, we adopt a second step to

guarantee that both |λ(Âd)| = 1 and K̂d = 0. In order to do so, we need to review the basic

steps performed in subspace identification which we shall modify to our purpose.

Let us define Yt
.
= 1√

N
[y(t), y(t+1), .., y(t+N−1)] and Xt

.
= 1√

N
[x(t), x(t+1), ...x(t+N−1)].

The number of columns N here depends on the number of data available. As discussed in

[11], subspace identification can be seen as a two step procedure as follows:

1. Construct a basis X̂t for the state space via suitable projection operations on data

sequences (Hankel data matrices).

2. Given (coherent) bases for the state space at time t, (X̂t), and t + 1, (X̂t+1), compute

the least-squares solution to X̂t+1 ' AX̂t + K(Yt − ĈXt)

Yt ' CX̂t

(13)

Since we do not need to modify the first step, we refer the reader to [43, 11] for details. As

for the second step, we need to solve it while enforcing the constraint that the estimated A
11



matrix has nd eigenvalues6 lying on the unit circle. In order to do so, we follow the steps:

1. solve (13) in the least-squares sense obtaining (Â, Ĉ, K̂);

2. compute the eigenvalue decomposition of Â and let T be the change of basis; estimate

nd as the number of eigenvalues of Â which are “close” to the unit circle and whose cor-

responding eigenspace is “almost unreachable”7 using the input matrix K̂. Without loss

of generality we assume the first nd elements of the state span this “almost” unreachable

subspace so that, with this choice of basis (12) holds with K̂d ' 0 and |λ(Âd)| ' 1. It is

possible to devise theoretically sound statistical tests for performing this decision using

recent results on the asymptotic properties of subspace estimators [2, 9] that go beyond

our scope here. We only note that this corresponds to estimating the subspace of the

state space which generates the PD components, including its dimension nd. In fact,

with this choice of basis, the state matrix Ẑt
.
= T−1X̂t can be partitioned as follows:

Ẑt = T−1X̂t =

 Ẑd
t

Ẑs
t

 Ẑt+1 = T−1X̂t+1 =

 Ẑd
t+1

Ẑs
t+1

 .

Without loss of generality it is possible to chose T so that Ẑd
t (Ẑd

t )> = I. Note also that

this implies Ẑd
t+1(Ẑ

d
t+1)

> ' I. This shall be useful later on.

It is straightforward to show that solving the least-squares problem (13) with this new

choice of basis Ẑt corresponds exactly to changing basis in the estimated state matrices

Â, K̂, Ĉ, i.e. Â = TÂT T̂−1, K̂ = TK̂T , Ĉ = ĈT T−1 where

ĈT
.
= arg minCT

‖Yt − CT Ẑt‖F

ÂT , K̂T = arg minAT ,KT
‖Ẑt+1 − AT Ẑt −KT (Yt − ĈT Ẑt)‖F

(14)

Note also that, using the fact that the rows of Yt − ĈT Ẑt are orthogonal to the rows of

Ẑt, the problem of estimating ÂT can be further simplified to:

6Recall that nd is not known a priori and should be estimated from data. Like all model selection tech-
niques, there is a design parameter involved in our procedure.

7This means that the restriction of the pair (Â, K̂) to the desired subspace is nearly unreachale.
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ÂT = arg minAT
‖Ẑt+1 − AT Ẑt‖F (15)

Since, by construction (see equations (12), (14)), ÂT has a block diagonal structure

ÂT = diag{Âd, Âs}, the matrices Âd, Âs can be obtained via:

Âd = arg minAd
‖Ẑd

t+1 − AdẐ
d
t ‖F Âs = arg minAs

‖Ẑs
t+1 − AsẐ

s
t ‖F (16)

Therefore, with this choice of basis, we can decouple the identification of the PD and

PND components, making it easier to introduce the constraints |λ(Ad)| = 1 and Kd = 0.

3. Solve the constrained least-squares problem: arg min|λ(Ad)|=1 ‖Ẑd
t+1 − AdẐ

d
t ‖F . Note

that, in the ideal case, Ẑd
t+1 = AdẐ

d
t so that I = Ẑd

t+1(Ẑ
d
t+1)

> = AdẐt(Ẑ
d
t )>A>

d =

AdA
>
d where the first and last equality follows from the choice of basis which guarantees

Ẑd
t (Ẑd

t )> = I. This implies that Ad needs to be an orthogonal matrix. This observation

is the “sample version” of (9) for the second-order moments of xd(t). Therefore, we

obtain the following matrix Procrustes problem

Âc
d = arg min

Ad∈O(nd)

‖Ẑd
t+1 − AdẐ

d
t ‖F (17)

that can be easily solved using the singular value decomposition of Ẑd
t+1(Ẑ

d
t )> [19, 22]:

Âc
d = UaV

>
a , Ẑd

t+1(Ẑ
d
t )> = UaΣaV

>
a (18)

4. The remaining system parameters are computed as follows:

(a) Using the estimated Âc
d of the previous step and Ĉd from the block decomposi-

tion (12) define an estimate of the “deterministic” observability matrix Γ̂>d (N)
.
=[

Ĉ>
d (Âc

d)
>Ĉ>

d ...
(
(Âc

d)
N−1

)>
Ĉ>

d

]
; define also Y

.
= [y>(1), .., y>(N)]>. Estimate

(in the least squares sense) the initial condition x̂0 from Y ' Γ̂dx0 +Ys, minimizing

the norm of Ys. This allows us to remove the PD component and extract

Ŷs
.
= Y − Γ̂d(N)x̂0 = (I − Γ̂d(N)(Γ̂>d (N)Γ̂d(N))−1Γ̂d(N))Y.
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From the vector Ŷs
.
= [ŷ>s (1), .., ŷ>s (N)]> estimate the “stochastic” parameters

Âs, Ĉs, Λ̂s ' Var{ys(t)} and Ĝs ' E
[
ys(t)x

>
s (t + 1)

]
using [43]. This pre-filtering

step, used to remove the PD component, is similar to the prefiltering step used in

the orthogonal decomposition algorithm described in [36, 10].

(b) Estimate R̂l and (K̂s)l solving the Riccati equation as described in the technical

report [5] 8. The index l refers to the different solutions of the Riccati equation.

The estimated (constrained) state matrices are then given by

Âc =

 Âc
d 0

0 Âs

 K̂c
l =

 0

(K̂s)l

 Ĉc =

[
Ĉd Ĉs

]

and noise variance E[nl(t)n
>
l (t)] ' R̂l.

Without delving into details (see [5] for derivations), the discrete Riccati equation provides

a finite number L of solutions corresponding to picking, for each zero-pair of the system,

either the zero inside the unit circle or its conjugate reciprocal. This allows us to efficiently

recover all the systems (11) generating the same second-order statistics of y(t). Each solution

l = 1, · · · , L corresponds to a different factorization of the power spectrum Sy(z), and is

given by the same internal dynamics A, C but different input-related matrices {Kl, Rl}. In

the end, we have a set of candidate models M = {A, Kl, C,Rl} (11) which are parametric

representations of the second-order statistics of the data. In order to choose among these

the one which most closely matches the statistics of y(t), we need to investigate higher-order

temporal dependencies.

3.2 Temporal Independence and Phase Estimation

In this section we deal with the problem of estimating the phase of (11), that is selecting from

a finite set of linear systems Ml = {A, Kl, C, Rl} l = 1, . . . , L the one which best matches the

temporal statistics of the process y(t). Our approach is similar to the one proposed in [7] for

8The input-to-state matrix K is computed via the Riccati equation. Only the PND components enter in
this calculation while we force K̂d = 0 in the estimated model.
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scalar signals, in that we use the inverse system M−1
l = {A−KlC, Kl, −C} to estimate the

white input nl(t). However, we cannot assume that the components of nl(t) are independent,

therefore we cannot use a standard contrast function (e.g. kurtosis or negentropy)9 to select

the best match, as done in [7].

If we choose a model Ml with phase structure different from the underlying true system,

we introduce higher-order temporal correlations in the estimated input nl(t), equivalently to

filtering the true input process n(t) with an all-pass filter. In this case nl(t) is still temporally

uncorrelated, but its samples are no longer independent:

E[nl(t)nl(s)
>] = 0 , p(nl(t), nl(s)) 6= p(nl(t))p(nl(s)).

Therefore, the best model for the dynamics of the process y(t) is the one producing the input

nl(t) most temporally independent. We introduce a simple measure of temporal independence

for white processes using the third-order cumulant function10, which for a zero-mean scalar

process x(t) is defined as:

cum3x(τ1, τ2)
.
= E [x(t)x(t− τ1)x(t− τ2)] . (19)

It is easy to see that this function is symmetric, so it is sufficient to consider the nonredundant

region 0 ≤ τ2 ≤ τ1. If the samples x(t) are independent, then the third-order cumulant is an

impulse centered in zero: cum3x(τ1, τ2) = δ(τ1, τ2)E[x(t)3] , x(t)
IID∼ p(x).

Given a realization of x(t), we can measure its temporal independence using the normalized

cross-correlation between the sample third cumulant and the impulse function:

ρ(x)2 .
=

ˆcum2
3x(0, 0)∑N

i=−N

∑N
j=−N ˆcum2

3x(i, j)
(20)

where ideally N → ∞ but in practice it is sufficient to take the sum for a small number of

9A contrast function Ψ allows to discriminate a signal with independent components from its linear
combinations by the property: Ψ(Qn(t)) ≤ Ψ(n(t)) ,∀Q : QQT = I. Unfortunately this cannot be used for
selecting the most temporal independent among the candidate input processes nl(t).

10Notice that we tacitly assume that the input distribution is not symmetric, as it is the case for human
motion applications. Otherwise, the third-order statistics would be identically zero, and it would be necessary
to derive a temporal independence test from the fourth-order cumulants.
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time lags. We can easily extend this independence score to a multivariate process x by taking

the product of the scores computed independently on each component xk:

ρ(x)2 =
m∏

k=1

ρ(xk)
2 =

m∏
k=1

ˆcum2
3xk

(0, 0)∑N
i=−N

∑N
j=−N ˆcum2

3xk
(i, j)

(21)

Notice that deconvolving a non-minimum phase system in order to recover the input is a non-

trivial process. The zeros outside the unit circle in the original system M become unstable

poles of the inverse system M−1. Then, unless we resort to approximations (such as [32]),

the input signal cannot be computed in a causal fashion. In our application we can afford to

operate offline, so we perform exact inversion. In brief, we decompose the inverse system in

causal and acausal part by applying a similarity transformation that partitions A into stable

and unstable components. Then we run the causal part forward in time and the acausal part

backward in time. We repeat this process for every system Ml and we pick the one that

produces the input nl(t) with the highest independency score (21).

With the inverse system, we also estimate the initial state x0 associated to the realization

y(t). For nonminimum phase systems, in addition to the initial state x0 we obtain a final state

xT which is the initial value for the a-causal part of the inverse system.

3.3 Estimating Spatial Statistics

Given the dynamical system M matching the dynamics of the gait process and the estimated

IID input process n(t), the last step is to use the higher order statistics to estimate the

mixture model (4). This is a standard independent component analysis problem, and several

approaches have been proposed for its solution. We applied the CubICA algorithm [6] which,

unlike many others does not require manually tuning of parameters. It is based on joint

diagonalization of third- and fourth-order cumulants.

The output of the ICA algorithm is the invertible mixing matrix D. We can recover the

original signal ε(t) (up to sign and permutation ambiguities) by:

ε(t) = D−1n(t) (22)
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It is important to notice that the recovered input (22) matches the true input process (4) up to

a sign ambiguity (we obtain the same y(t) if we multiply each input εi(t) and the corresponding

i-th column of D by −1) and an arbitrary permutations of its components. We will consider

these ambiguities later when we define kernels for input processes.

Since ε(t) has independent components, we represent the distribution qi of εi(t) by its sample

histogram.

4 Kernels for Linear Systems

In this section we will define kernels for dynamical systems of the form (3, 4) with input

ε(t) ∈ Rm, state x(t) ∈ Rn and output y(t) ∈ Rm. Here we only assume that the input

is a unit variance IID stationary process with independent components. In the next section

we will complete the model (3, 4) to include the higher-order statistics of the process y(t) by

explicitly representing the distribution of the input components εi(t).

Given two models {A, B, C,D, x0}, {A′, B′, C ′, D′, x′0} and the unit-variance inputs ε(t), ε′(t),

we obtain the following outputs y(t), y′(t):

y(t) = CAtx0 + Dε(t) +
t−1∑
i=0

CAiBε(t− 1− i)

y′(t) = C ′(A′)tx′0 + D′ε′(t) +
t−1∑
i=0

C ′(A′)iB′ε′(t− 1− i). (23)

If the inputs are Gaussian or they have the same higher-order statistics, we can define kernels

between models (23) by assuming the same input:

ε′(t) = ε(t) (24)

This allows us to compute the correlation matrix Σ between y(t) and y(t)′ by marginalizing

over the common noise ε(t):

Σ [({A, B, C,D, x0}, {A′, B′, C ′, D′, x′0}]
.
= Eε

[
∞∑

t=1

e−λtWy′(t)y(t)>

]
(25)
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where there is an exponential discounting term e−λt , λ ≥ 0 and a user-defined symmetric

weight matrix W . From (23) we have:

Σ [{A, B, C,D, x0}, {A′, B′, C ′, D′, x′0}] = Σ [{A, C, x0}, {A′, C ′, x′0}] + (26)

+ Σ [D, D′] + Σ [{A, B, C}, {A′, B′, C ′}]

where:

Σ [{A,C, x0}, {A′, C ′, x′0}] =
∞∑

t=1

e−λtWC ′(A′)tx′0x
>
0 (A>)tC> (27)

Σ [D,D′] = Eε

[ ∞∑
t=1

e−λtD′ε′(t)ε(t)>D>

]
(28)

Σ [{A,B,C}, {A′, B′, C ′}] = Eε

[ ∞∑
t=1

e−λt
t−1∑
i=0

C ′(A′)iB′ε(t− 1− i)′ε(t− 1− i)>B>(A>)iC>

]
(29)

The correlation on the initial state (27) can be computed as in [44]:

Σ[{A, C, x0}, {A′, C ′, x′0}] = WC ′V C> , V = e−λA′x′0x
>
0 A> + e−λA′V A> (30)

The correlation on the measurement noise (28) is:

Σ[D, D′] = (eλ − 1)−1WD′UD> (31)

where U
.
= Eε[ε

′(t)ε(t)>], and since we assume the same (24) unit variance input (4) , we

have U = I. Later we will use the input correlation matrix U to include the effect of the

higher-order statistics of the input distributions. The correlation on the state noise (29) is:

Σ [{A, B, C}, {A′, B′, C ′}] = (eλ − 1)−1WC ′Ṽ C> , Ṽ = B′UB> + e−λA′Ṽ A> (32)

Then, from the output correlation matrix (25), we can define the trace kernel kt as:

kt({A, B, C,D, x0}, {A′, B′, C ′, D′, x′0})
.
= Eε

[
∞∑

t=1

e−λty(t)>Wy′(t)

]
= (33)

= trΣ [{A, B, C,D, x0}, {A′, B′, C ′, D′, x′0}](34)
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and the determinant kernel kd as:

kd({A, B, C,D, x0}, {A′, B′, C ′, D′, x′0})
.
= Eεdet

[
∞∑

t=1

e−λty′(t)y(t)>

]
=

= detΣ [{A, B, C,D, x0}, {A′, B′, C ′, D′, x′0}] (35)

where, without loss of generality, we assume detW = 1. Using the Binet-Cauchy theorem on

compound matrices, in [44] it is shown that functions of the form (34, 35) are dot products in

an embedding space and they define positive definite kernels.

The trace kernels (34) provide some advantages with respect to the determinant kernels

(35)11. There is also an interesting connection between trace kernels and the H2 norm for linear

systems commonly used in optimal control 12. Given the autonomous system M = {A, C, x0},

consider the Single Input Multiple Output linear system M̃ = {e−λ
2 A, x0, C, 0}. It is easy

to see that the trace kernel kt(M, M) is the squared H2 norm of M̃ :

kt({A, C, x0}, {A, C, x0}) = ||{e−
λ
2 A, x0, C,0}||2H2

Similar relations hold for the input related trace kernels.

The proposed kernels can be used to define a distance in the space of linear models. Let

M = {A, B, C,D, x0}, M ′ = {A′, B′, C ′, D′, x′0} be two such models, then the kernel distance

d(M, M ′) is defined as:

d(M, M ′) = k(M, M) + k(M ′, M ′)− 2k(M, M ′) (36)

This is a crucial ingredient to perform classification in the space of dynamical models.

11First they allow for more efficient computations in the case of high-dimensional data, since they can be
computed from a n × n matrix derived from the dot product (33) instead of the determinant kernel which
need to use the high-dimensional correlation matrix (27) (see [44] for details on calculations). When the
measurements y(t) are images, trace kernels are indeed the only computationally doable option. Another
advantage of trace kernel compared to determinant kernels is that they do not introduce ambiguities on the
sign of the correlation. For example if y(t) has an even number of independent components and y′(t) = −y(t),
then the determinant kernel will give the same score as when the two processes are the same, while the trace
kernel correctly identifies their negative correlation. Finally, the linearity of trace kernels allows to decompose
the final result as the sum of the single contributions, that is initial state evolution (30) and input distribution
(31, 32).

12The H2 norm of a stable system is defined as the Frobenius norm of its impulse response.
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4.1 Initial State Alignment

Consider the case of two sequences generated by the same periodic process, observed with a

phase delay τ . Using any identification algorithm we will estimate two systems {A, C, x0},

{A′, C ′, x′0} that, although representing the same signal, have very different initial states

and consequently exhibit little similarity according to the kernels defined on the initial state

correlation (27). Thus, in order to make the kernels invariant to delays, we introduce an

alignment process that evolves the initial states x0, x
′
0 for τ, τ ′ ≥ 0 steps respectively so that

the kernels (34, 35) are maximized. That is, we define the aligned kernel ka between initial

states as:

ka({A, B, C,D, x0}, {A′, B′, C ′, D′, x′0}) = max
(τ,τ ′)∈T

k({A, B, C,D,Aτx0}, {A′, B′, C ′, D′, A′τ ′x′0})

(37)

where T ⊂ N2 is the set of delays that we want our kernels to be invariant to. Unfortunately

(37) is a system of exponential equations for which, to the best of our knowledge, no closed

form solution is available.

Given that in many applications the period of dominant modes is short, we can afford to

solve (37) by exhaustive search. Assuming that the aligning delay is no greater than T , we

search for the maximum of (37) in the following set of 3T + 1 delays:

T = {(0, 0), (1, 0), · · · , (T, 0), (0, 1), · · · , (0, T ), (1, 1), . . . , (T, T )} (38)

When λ = 0, the symmetric delays τ = τ ′ > 0 can be omitted. They are however required in

the general case in order for (37) to be a positive kernel.

4.2 Kernels for Arbitrary Input Distributions

In this section we will introduce the last crucial element of our approach, a kernel between

arbitrary IID processes. Given a random variable x with density function p and cumulative

distribution function F : R 7→ [0, 1]:
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x ∼ p(x) , F (a) =

∫ a

−∞
p(x)dx = P [x ≤ a] (39)

we can use the quantile function F−1 (i.e. the inverse of the distribution function) to transform

a uniform variate u ∈ U[0, 1] into a random variable distributed according to F :

u ∈ U[0, 1] → F−1(u) ∼ p(x). (40)

Thus, we can define a kernel between pairs of (scalar) random variables x, x′ having distri-

butions F, F ′ as the correlation between the two random variables obtained by applying the

same uniform u to the quantile functions F−1, F ′−1 :

k(x, x′) = Eu∼U[0,1][F
−1(u)F ′−1(u)] =

∫ 1

0

F−1(u)F ′−1(u)du (41)

Consider the linear manifold13 H of random variables with zero mean and finite variance

defined on the same probability space (Ω,F , P ). It is well known [38] that H can be made

into an Hilbert space introducing the inner product 〈x, x′〉 .
= E[xy]. Then, (41) is a dot

product and consequently a positive definite kernel. The distance induced by this kernel:

dW (x, x′) = k(x, x) + k(x′, x′)− 2k(x, x′) =

∫ 1

0

|F−1(u)− F ′−1(u)|2du (42)

is known for probability distributions as Wasserstein, Mallows or Ornstein distance [30, 4].

It is more generally defined for two (possibly multidimensional) probability densities P and

Q as dW (P, Q)2 = infJ{EJ [(X − Y )>(X − Y )] : (X,Y ) ∼ J, X ∼ P, Y ∼ Q}, where the

infimum is taken over all the joint densities J which have marginals equal to P and Q. This

distance represents the solution to the Monge-Kantorovich mass transfer problem, and can

be interpreted as the minimum amount of work that is required to transport a mass of soil

with distribution P to an excavation having distribution Q. For discrete distributions, the

Wasserstein distance is equivalent to the Earth mover’s distance, a metric commonly used for

measuring texture and color similarities.

13I.e. the space of finite linear combinations of random variable in (Ω,F , P ), closed with respect to conver-
gence in mean square.
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From (42), we can compute the kernel between input distributions k(x, x′) from their

Wasserstein distance dW (x, x′). Using the change of variable x = F−1(u), it is easy to see that

the kernel k(x, x) gives the second moment of x: k(x, x) =
∫ 1

0
|F−1(u)|2du =

∫∞
−∞ x2p(x)dx =

E[x2]. Substituting (4.2) in (42) we obtain:

k(x, x′) =
1

2

(
E[x2] + E[x′2]− dW (x, x′)

)
(43)

In case of zero-mean unit variance E[x2] = E[x′2] = 1, we have simply k(x, x′) = 1− 1
2
dW (x, x′).

Although this expression is attractive, in the case of discrete distributions it is more efficient

to compute the kernel by directly evaluating the integral (41). We can define a kernel between

scalar IID processes x(t), x′(t) as:

k(x(t), x′(t))
.
= Eu

[
∞∑

t=1

e−λtF−1(u(t))F ′−1(u(t))

]
= (eλ − 1)−1Eu

[
F−1(u)F ′−1(u)

]
(44)

The kernel (44) can be extended to multivariate processes. Given an IID process ε(t) ∈ Rm

with independent components, it can be modeled as the output of its m quantile func-

tions F−1
i to m independent uniform processes ui(t), i.e. ε(t) = f(u(t)) , where f(u(t)) =[

F−1
1 (u1(t)) · · · F−1

m (um(t))

]
. Then, given two IID processes ε(t), ε′(t) ∈ Rm with inde-

pendent components, they can be represented as outputs of two vector functions f, f ′ to the

same input u:

ε(t) = f(u(t)) , ε′(t) = f ′(Π(σ)u(t)) (45)

where σ ∈ S(m) (symmetric group of order m) is a permutation of the input representing

correspondences between the elements of the two processes, i.e. each component i of ε is

correlated with the component σi of ε′ : E[εiε
′
σi

] 6= 0, E[εiε
′
j] = 0 j 6= σi, and Π(σ) = [πij] is

the permutation matrix corresponding to σ, i.e. πiσi
= 1, πij = 0 ∀j 6= σi.

If the processes ε(t), ε′(t) are inputs to a linear model of the form (2), the permutation

σ represents the inherent ambiguity of the model, since we can obtain equivalent systems

by rearranging the input elements εi(t) and the columns of the mixing matrix D. A direct

consequence of this ambiguity is that the order in which the input components are recovered

by the ICA algorithm is arbitrary. Additionally, there is a sign ambiguity, that is we can
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change the sign of any εi(t) and of the corresponding i-th column of D (see Sect. 3.3).

Using (45), we can compute the correlation matrix U between vector processes ε(t), ε′(t)

with correspondences σ as:

U(σ)
.
= Eu

[
∞∑

t=1

e−λtf ′(Π(σ)u(t))f(u(t))>

]
=

= Π(σ)



k(ε1(t), ε
′
σ1

(t)) 0 · · · 0

0 k(ε2(t), ε
′
σ2

(t)) · · · 0

...
...

. . .
...

0 0 · · · k(εm(t), ε′σm
(t))


(46)

Given the correspondences σ, we can define the trace kernel between ε(t) and ε′(t) as:

kt(ε(t), ε
′(t); σ) = tr

(
Π(σ)>|U(σ)|

)
=

m∑
i=1

|k
(
εi(t), ε

′
σi

(t)
)
| (47)

where we use the absolute value of the correlation between input components to resolve the

sign ambiguity. This is a symmetric positive function of the input distributions, therefore is

a positive definite kernel [40]. If the correspondences σ are unknown, we can compute the

optimal trace matching σ̂t as the solution to the maximum-weight assignment problem defined

by the m×m Gram matrix K =
[
|k(εi(t), ε

′
j(t))|

]
:

σ̂t
.
= arg max

σ∈S(m)
kt(ε(t), ε

′(t); σ) = arg max
σ∈S(m)

m∑
i=1

∣∣k(εi(t), ε
′
σi

(t))
∣∣ (48)

Similarly, we can define the determinant kernel kd as:

kd(ε(t), ε
′(t); σ) = |detU(σ)| =

m∏
i=1

∣∣k (
εi(t), ε

′
σi

(t)
)∣∣ (49)

which is a pointwise product of kernels and so is a kernel [40]. In this case the optimal

matching σ̂d is the solution to the assignment problem defined by the log-kernel matrix Klog =[
log

∣∣k(εi(t), ε
′
j(t))

∣∣]:
σ̂d

.
= arg max

σ∈S(m)
kd(εi(t), ε

′
σi

(t); σ) = arg max
σ∈S(m)

m∑
i=1

log
∣∣k(εi(t), ε

′
σi

(t))
∣∣ (50)
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The optimal matching problems (48, 50) can be solved in O(m3) using the Hungarian algo-

rithm [25]. We use these results to extend the kernels between linear systems (34, 35) to include

the effect of the input distributions. To do so, we apply the correlation matrix U(σ) given

in (46) in the calculation of the matrices for measurement noise Σ[D, D] (31) and state noise

Σ[{A, B, C}, {A′, B′, C ′}] (32). For trace kernels (34), we apply the correlation U(σ̂t) corre-

sponding to the optimal assignment σ̂t solution to the additive matching problem (48). For

determinant kernels (35) we apply U(σ̂d) from the solution σ̂d to the multiplicative assignment

problem (50).

5 Experiments

5.1 Linearity and Gaussianity tests

We conducted simple tests for Gaussianity and linearity based on third-order temporal statis-

tics [21]. Let cum3y be the third-order cumulant of the stationary scalar process y(t). The

bispectrum S3y is defined as the bidimensional Fourier transform of the cumulant:

S3y(f1, f2) =
∑∞

τ1=−∞
∑∞

τ2=−∞ cum3y(τ1, τ2)e
−j2πf1τ1e−j2πf2τ2 . The bicoherence bic3y(f1, f2) of

y(t) is defined as:

bic3y(f1, f2) =
S3y(f1, f2)√

S2y(f1 + f2)S2y(f1)S2y(f2)
(51)

where is S2y(f) the power spectrum of y(t).

If y(t) is Gaussian, then its bispectrum is zero S3y(f1, f2) ≡ 0 and the squared sample

estimate of the bicoherence |b̂ic3y(f1, f2)|2 is a central chi-squared random variable. A simple

chi-squared test can then be devised to check for Gaussianity [21].

Additionally, the bicoherence can be used to test for linearity. If y(t) is linear and non-

Gaussian, i.e there exists some IID signal n(t) such that (7) holds, then bic3y(f1, f2) is a non-

zero constant, and a test based on the comparison between sample and theoretical interquartile

ranges of the corresponding chi-squared distribution can be derived [21].

We applied these tests to a dataset of 566 sequences of human gaits from the CMU motion
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capture dataset [1]. Each motion component is treated separately as a scalar process, and in

Fig. 1 we show the aggregated results, which can be interpreted as follows:

• bic3y(f1, f2) is non-zero with near-one probability, hence human motion data are non-

Gaussian processes.

• estimated and theoretical bic3y(f1, f2) interquartile ranges are quite close, therefore the

linearity hypothesis cannot be rejected.

This suggests modeling walking motions using a non-Gaussian linear process.

5.2 Linear Models for Synthesis

The goal of this first set of experiments is to validate the proposed models in synthesizing

human motion. Given a motion sequence, we apply the learning algorithms of section 3 to

estimate the parameters of our linear non-Gaussian models (5), and then use the inferred

models to synthesize new motion. To demonstrate the flexibility of our approach we apply it

to three representations of human motion:

• video: sequence of moving subject, images are centered and scaled on the moving body

• markers: 3D marker positions (from motion capture)

• angles: joint angles describing the pose of an articulated 3D human body model (from

motion capture)

In these experiments we use two publicly available datasets, the CMU motion capture [1]

and the CMU mobo dataset [20]. We show results for:

• video: fast walking sequence (340 frames), directory moboJpg/04002/fastWalk/vr03 7

in the CMU Mobo dataset. The images have been scaled to 128 × 128 pixels and

converted to 8-bit grayscale.

• markers: walking sequence 02 01.c3d from CMU motion capture, consisting of 343

frames describing the 3D positions of 41 markers attached to the subject body.

25



• angles: sequence 02 01.amc from CMU mocap (same as above), this time motion is

represented as 52 joint angles of a skeletal model plus 6 DOFs for the reference frame.

The first step is to remove mean and linear trends from the original data. This is necessary

given that our models represent zero-mean stationary processes. The best linear fit is removed

from 3D position data, while in body joint angles and image data no significant linear trend

is observed and so only the mean is subtracted. For synthesis, mean and linear trends are

added back to the output sequence produced by the learned model to give the final motion.

A second preprocessing step consists in applying principal component analysis (PCA) to

reduce the dimensionality of the observations. This step is not required theoretically but

necessary in practice since we are dealing with short realizations (few hundred frames) of

high-dimensional processes. For motion capture data, we verified experimentally that 8 PCA

bases are sufficient to synthesize sequences that are perceptually indistinguishable from the

original. For image data, the required dimensionality is higher, in the sequence shown here

we use 16 components.

Given a low-dimensional motion sequence y(t), we use the subspace identification algorithm

of section 3.1 to estimate the set of models Ml = {A, Kl, C,Rl} l = 1, · · · , L representing

the second-order statistics of the observed process. For estimating the state sequence (13)

we adopted the algorithm described on page 131 of [34]. We determined experimentally

the dimensions (nd, ns) of the deterministic and stochastic components of the process to be

(8, 8), (6, 6) and (6, 6) respectively for the video, marker and angle motion data sequences.

Then using the closed-form equations derived in 3.1 in the appendix we obtain the matrice

estimates Âd, Âs, Ĉs, Ĉd, Gs and Λ̂s. By solving the Riccati equation [5] we obtain the set

of input-related matrices Kl, Rl generating the same second-order statistics of y(t). In our

experiments we noticed that zeros with very small norm undermine the robustness of the

subsequent deconvolution step. We overcame this problem by introducing a threshold on the

minimum norm of reflected zeros, here set to 0.1. The threshold helps also pruning the number

of combinations to be considered, tipically giving 2- to 8-fold reductions.
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For each candidate model Ml = {A, Kl, C,Rl}, we use its inverse M−1
l to deconvolve the

process y(t) and recover the white input nl(t), and the initial state x0. Then for each input

sequence we compute the third-order temporal independence score ρ(nl) (21) (setting N = 10)

and select the model Ml̂ that provides maximum independence: l̂ = arg maxl ρ(nl). In Fig.

2 we show the independence scores for the candidate models computed from the three test

sequences. We see that the minimum phase model is never the most temporally independent,

thus providing further evidence that human dynamics is not minimum phase.

The last inference step is the estimation of the mixing matrix D and the input component

distributions qi. As described in section 3.3, D is estimated using a standard ICA algorithm

[6], while the input distributions qi are represented by sample histograms. Fig. 3 shows some

component distributions estimated from the data sequences.

Once we have the parameters {Â, B̂, Ĉ, D̂, x̂0} of the linear model (3) and the distributions

qi of the input components εi, we can generate a new sequence with the same temporal and

spatial statistics of the original motion. We start by setting x(0) = x̂0. Then for t = 1, · · · , T :

• form ε(t) by independently drawing εi(t) ∼ qi(εi)

• apply the input ε(t) to the linear system (3) to obtain the synthetic output y(t)

• apply the PCA basis to lift the generated signal y(t) to the measurement space.

• add mean and linear trends back to obtain the final motion.

In Fig. 4 we show some sample frames of synthesis for motion capture data (both marker

positions and joint angles) from minimum-phase and optimal non-minimum phase systems.

As expected, motion produced by the non-minimum phase model is perceptually closer to the

original.

For video sequences, the low quality of the synthetic images due to the linear PCA projection

does not allow to visually appreciate the difference between outputs of minimum and non-

minimum phase models. However, as we show in Fig. 5, correctly representing periodic modes

and non-Gaussian statistics allows to largely outperform the results obtained with standard

Gaussian linear models such as “dynamic textures” [16].
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5.3 Kernels for Gait Recognition

In this section we present results on the applications of the proposed kernels for non-Gaussian

systems (34) to the problem of classifying human gaits. These experiments are based on the

CMU Mobo dataset [20]. The goal is to identify the 4 classes of walking motions (normal

walk, fast walk, walk with ball and walk on inclined treadmill) performed by the 24 subjects

in the dataset. We use only the sequences taken from the same viewpoint (camera vr03 7 ).

Each sequence is 340 frames long.

Directly modeling gait video sequences using linear systems of the form (5) is a viable

approach to synthesis but does not yield satisfactory results for recognition problems. It is

necessary to derive a representation insensitive to changes in background, illumination and

appearance of the subject performing the motion, and a simple choice are binary silhouettes

of the moving body. We used the ones provided in the Mobo dataset, obtained by simple

differencing with a background image followed by thresholding. Given that the extracted

silhouettes are rather noisy (in particular in the inclined walk sequences large parts of the

treadmill are labeled as foreground), we derive a set of coarse features providing a robust

description of the shape. After evaluating several alternatives including PCA projection and

Hu moments, we found that the projection features proposed in [15] are robust and effective

representations for human silhouettes.

In Fig. 6 we show a sample image from background subtraction and the corresponding

representation with the projection features. Given a binary silhouette, the projection features

encode the distance of the points on the silhouette from lines passing through its center of

mass. The bounding box of the silhouette is divided uniformly in 2n region, n to each side

of the projection line, and for each region the average distance from the line is computed. In

our experiments we used 2 lines (horizontal and vertical) and n = 8 features on both side, for

a total 32 components (Fig. 6).

On the feature trajectories extracted from a video sequence, we apply the proposed learning

algorithm to estimate the parameters of the linear non-Gaussian model (5). As before, in

order to obtain better estimates it is advisable to reduce the dimensionality of the data by
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PCA projection, here we use m = 8 components. The parameters of the learned models are

nd = 8 components for the deterministic and ns = 4 components for the stochastic part. We

observed that in this case the effect of phase is marginal. This may be due the coarseness

of the representation, which masks the fine discriminative power of the higher-order temporal

statistics.

Once a set of model parameters {A, B, C,D, x0, q1, · · · , qm} are estimated from each se-

quence in the dataset, we can apply the kernels (34, 35) to measure similarity between models.

In these experiments we used the trace kernels, which offer computational advantages over

determinant kernels and allow to separate the effects of the stochastic and periodic compo-

nents.

First we investigate the effects of the proposed alignment of initial conditions on the perfor-

mances of kernel in matching gait processes. Aligning the initial states proves to be particularly

effective when the correction is restricted to the periodic part of the model {Ad, Cd, x0,d}. In

Fig. 7 we compare the standard trace kernel on the initial condition correlation (30) (as in

[44]) to the aligned kernel as defined in (37), with maximum delay T = 20 (38). We can see

how the aligned kernel provides a similarity measure which is insensitive to delays, while the

standard kernel exhibits a periodic behaviour.

For each learned model pair in the dataset we then proceed to compute the full trace

kernels (34). These are made of two terms: The similarity between the deterministic part of

the systems encoded in periodic components and aligned initial states (37), and the matching

between the stochastic parts, represented by kernels between input statistics (31, 32). In Fig.

8 we plot the confusion matrices showing the distances (36) between learned models defined

by initial state trace kernels (left) and the full trace kernels, including input distributions

(right). It is evident that the inclusion of the stochastic part modeled by the input statistics

improves the gait discrimination performances, visible by the block diagonal structure of the

corresponding confusion matrix and the higher number of same-gait nearest neighbor matches.
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Figure 1: Linearity and Gaussianity tests on 566 sequences of walking, running, jumping, hop-
ping, climbing and limping from the CMU motion capture dataset. The motion is represented
with 58 degrees of freedom (DOFs): 3 coordinates for global position, 3 angles for global
orientation, and 52 joint angles describing the body pose. The scalar test [21] is conducted
independently once on each motion data component of each sequence, here for each DOF
we show mean and standard deviation of the results in error bar plots. (a) Probability that
the bispectrum of the observed sequence is zero. Since this probability is very low, we can
conclude that the bispectrum is non-zero and thus human motion data is non-Gaussian. (b)
Ratio of theoretical (assuming linearity hence constant bichoerence) vs. sample interquartile
bicoherence ranges (in log scale). The distribution around zero of the log-ratio suggests that
the linearity hypothesis cannot be ruled out.

0 1 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 7 7 8
0

0.5

1

1.5

2

2.5

3
x 10

−3

Reflected zeros

ρ(n
)

Video sequence

0 1 1 2 2 2 3 3 3 3 4 4 4 5 5 6
0

1

2

3

4

5

6

7

8

9
x 10

−3

Reflected zeros

ρ(n
)

Marker sequence

0 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 6
0

1

2

3

4

5

6

7

8

9
x 10

−3

Reflected zeros

ρ(n
)

Joint angle sequence

(a) (b) (c)

Figure 2: Temporal dependence for human motion input processes. We show the independence
score (21) of the deconvolved white input as vertical bars, one for each possible realization
(minimum and non-minimum phase) of the second-order statistics of the data. The values are
sorted by number of unstable zeros of the corresponding model, reported below each bar. We
see how the minimum phase input is never the mostly temporal independent. Results for: (a)
video sequence of fast walking from the Mobo dataset, having ns = 8 and L = 32 candidate
models; (b) marker sequence, ns = 6 and L = 16; (c) joint angle sequence, ns = 6 and L = 32.
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Figure 3: Input component distributions. We show the sample histograms computed on the
components of the IID non-Gaussian input ε(t) to the non-minimum phase system estimated
from three human motion sequences (see Fig. 2): (a) walking sequence from the Mobo dataset,
(b) marker sequence and (c) joint angle sequence. From these plots we can see that the
estimated input distributions have long asymmetrical tails and thus are non-Gaussian.

Figure 4: Synthesis results for models learned from motion capture data, both for marker
positions (first three rows) and joint angle representations (last three rows). For each group,
the first row shows the original sequence, the second row displays the synthesis obtained
with the minimum phase system, while the last row shows the synthesis from the opti-
mal non-minimum phase system. It is perceivable (see also the movies, downloadable from
http://www.cs.ucla.edu/~bissacco/dynamicICA) the better fidelity of the non-minimum
phase synthesis to the character of the original motion.
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Figure 5: Comparison between our non-Gaussian linear models and standard Gaussian ARMA
models (dynamic textures [16]). We set the dimension of the state in both systems to 16, as-
signing in our model nd = 8 components to the periodic part and ns = 8 components to
the stochastic part. First row shows original sequence after PCA projection, second row
displays corresponding frames produced by a dynamic texture model, last row is output
of our model. These few frames are sufficient to show the ability of our model to deliver
better quality in the synthesis (notice how images are less blurry and more synchronized
with the original compared to dynamic textures), thus validating the importance of explic-
itly representing periodic modes and high-order statistics. See also the entire movies at
http://www.cs.ucla.edu/~bissacco/dynamICA.

Figure 6: Sample silhouettes and associated shape features. First and fourth columns shows
some sample background subtraction frames from the gait dataset [20]: walking with ball,
normal walk, fast walk and inclined walk. Superimposed to the binary silhouette we plot the
bounding box (red) and the horizontal and vertical lines passing through the center of mass
used to extract the features. On columns (2, 5) and (3, 6) we show the features obtained by
computing the distance of the points on the two sides of the silhouette to respectively the
vertical and horizontal lines, discretized to nf = 8 values.
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Figure 7: Standard vs. aligned kernels on initial conditions. Here we show the kernel distances
between a model learned from a segment of a walking sequence and the set of models learned
form the following segments of the same sequence. The x axis denotes the time delay between
the two sequences, while on y we plot the kernel distances, both for the standard (30) (dashed
line) and aligned (37) (solid line) kernels, where the latter are computed with maximum delay
T = 20 (38). We see how periodic bias present in the standard kernel practically disappears
when using the aligned kernel.
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Figure 8: State and input kernel distances. We show the confusion matrices representing
trace kernel distances between non-Gaussian linear models learned from walking sequences in
the Mobo dataset. There are 4 motion classes and 24 individuals performing these motions,
for a total of 96 sequences. For each sequence we learn a linear model (5) and then measure
distance between models by the trace kernels. On the left we show results using kernels on
initial states only, on the right we display the confusion matrix obtained from the trace kernels
that include the effect of the input (34). For each row a cross indicates the nearest neighbor.
It is clear how the additional information provided by the input statistics results in improved
gait classification performances: we have 17 (17.7%) nearest neighbors mismatches (i.e. closest
models that do not belong to the same gait class) using the state-only distance, while only 9
(9.3%) with the complete trace kernel distance.
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