
CoXML: A Cooperative XML Query Answering System

Shaorong Liu and Wesley W. Chu

University of California, Los Angeles, Computer Science Department
Los Angeles, California, 90095 USA

{sliu, wwc}@cs.ucla.edu

Abstract

XML has become the standard format for infor-
mation representation and data exchange. The
heterogeneity nature of XML data creates the
need for approximate query answering. In this pa-
per, we present a cooperative XML (CoXML) sys-
tem that provides user-specific approximate query
answering. The key features of the system in-
clude: 1) a query relaxation language that al-
lows users to specify approximate search condi-
tions and to control the approximate search pro-
cess; 2) a relaxation index structure for systematic
and scalable query relaxation; and 3) both content
and structure similarity metrics for evaluating the
relevancies of approximate answers. We evaluate
our system with the INEX 05 test collections. The
results reveal that our language allows users to
effectively specify their relaxation specifications
and thus enables the system to provide answers
with more relevancy. The results also demonstrate
the effectiveness of the similarity metrics. Fur-
ther, compared to other systems in INEX 05, our
relaxation features enable our system to retrieve
approximate answers with more relevancy.

1 Introduction
The increasing use of XML in scientific data reposito-
ries, digital libraries and Web applications has increased
the need for flexible and effective methods to search these
repositories. For example, the Initiative for the Evaluation
of XML retrieval (INEX)[4] was established in 2002 and
has prompted researchers worldwide to evaluate the effec-
tiveness of XML retrieval methods.

There are two major paradigms for searching XML data:
content-only queries and structure-and-content queries.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 32nd VLDB Conference,
Seoul, Korea, 2006

Queries with both structure and content conditions are
more expressive and thus yield more accurate searches than
content-only queries. XML structures, however, are often
complex and heterogeneous due to the flexible nature of the
XML data model. For example, there are about 170 distinct
tags and more than 1000 distinct paths in the INEX XML
dataset. Thus, it is difficult and unrealistic for users to com-
pletely grasp the structural properties of the data and spec-
ify the exact structure constraints in queries. To remedy
this condition, we propose a cooperative XML (CoXML)
query answering system that relaxes query conditions to
less restricted forms to derive approximate answers.

Approximate query answering has been well-studied in
the relational model(e.g., [12]), which typically enlarges
the scopes of value conditions in queries. In the XML
model, queries contain both content and tree-like structure
conditions. Thus, in addition to relaxing content condi-
tions, we also need to approximately match structure con-
ditions in queries to derive approximate answers.

In addition, approximate query answering is usually
user-specific. Different users may have different specifi-
cations about which conditions to relax and how to relax
such conditions for the same query. The first step towards
user-specific approximate query answering is to provide a
query language that allows users to include their personal-
ized relaxation specifications. Most existing XML query
languages (e.g., XPath, XQuery), however, only allow the
specifications of exact conditions. Thus, we need a query
language for user-specific approximate searching.

Further, with the explosive increase in the amount of
XML data available, it is essential to have a systematic and
scalable method for approximate query answering. Most
existing work on XML relaxation(e.g., [6]) derive relaxed
queries online based on the relaxation types (as introduced
in Section 2.3) applicable to a query, which may not be
scalable. In addition, existing work do not provide relax-
ation controls during approximate searching, which may
yield undesired approximate answers.

Finally, after query relaxation, a list of approximate an-
swers will be generated. These approximate answers shall
be ranked based on their relevancies to both the structure
and content conditions in queries. Most existing ranking
models (e.g., [21], [18], [14]) only measure the content
similarities between queries and answers, and thus are in-

adequate for ranking approximate answers that use struc-
ture relaxations. Recently, [7] provided seminal studies on
XML structure scoring properties and proposed a family of
structure scoring functions similar to thetf*idf used in IR.
The functions, based on the frequencies of query structures
in data, guarantee that the closer an answer is to a query, the
higher the structure score of the answer will be. XML data
provides rich semantics in addition to structure frequencies.
Thus, it is essential to fully utilize data semantics in design-
ing scoring functions to improve accuracy.

In this paper, we address the challenges as follows:
First, we propose an XML approximate searching lan-

guage that enriches the standard tree-structured queries
(i.e., twigs) with relaxation constructs and controls. Relax-
ation constructs specify which conditions to approximate
during search; and relaxation controls guide the approxi-
mate search process. These new features in our language
allow users to specify their approximate search more effec-
tively, which in turn enables the system to provide answers
with more relevancy.

Second, we introduce a relaxation index structure called
XML Type Abstraction Hierarchy (XTAH) to provide sys-
tematic and scalable query relaxation. Given a specific
twig, XTAH clusters its structurally relaxed twigs into
multi-level groups based on relaxation operations (as in-
troduced in Section 2.4) and distances. Each group in an
XTAH contains a set of twigs that correspond to a specific
relaxation specification. Thus, XTAH can efficiently re-
lax a query based on the query’s relaxation specifications
by consulting the corresponding group. Further, due to its
multi-level organization, XTAH can relax a query at differ-
ent granularities by traversing up and down the hierarchy.

Third, we evaluate XML structure similarity as inversely
proportional to the total cost of the relaxation operations
in a way similar to tree editing distances. We propose a
semantics-oriented model for measuring a relaxation op-
eration cost. The cost model differentiates twigs that use
different relaxation operations, even though the twigs may
have the same occurrence frequency in data. We also pro-
pose a function that combines structure distance and con-
tent similarity to measure the overall relevancy.

We have implemented the CoXML system, which takes
a relaxation-enabled query, derives approximate answers
guided by relaxation indexes, and ranks the answers based
on their structure and content relevancies. We evaluate
the quality of approximate query answering provided by
CoXML using the INEX test collection, the benchmark
collection for evaluating the effectiveness of XML search.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce the foundation for XML relaxation.
In Section 3, we present an overview of our CoXML sys-
tem architecture and we introduce the relaxation language
in Section 4. In Section 5, we propose a relaxation index
structure and describe how to use it to guide relaxation. In
Section 6, we present the semantics-oriented structure dis-
tance and the overall ranking function. Section 7 present
empirical evaluation studies and Section 8 provides related

article

title body

section“data mining”

“frequent itemset”

$1

year

2000

$3$2 $4

$5

Figure 1: A sample XML twig

work. We conclude the paper in Section 9.

2 Foundation of XML Relaxation
2.1 XML Data Model

We model an XML document as an ordered, labeled tree
where each element is represented as a node and each
element-to-sub-element relationship is represented as an
edge between the corresponding nodes. We represent each
nodeu as a triple (id, label, <text>), whereid uniquely
identifies the node,label is the name of the corresponding
element or attribute, andtextis the corresponding element’s
text content or attribute’s value.Textis optional because not
every element has a text content.

2.2 XML Query Model

A fundamental construct in most existing XML query lan-
guages is the tree-pattern query ortwig, which selects ele-
ments and/or attributes with specified tree structures. Thus,
we use the twig as our basic query model. Similar to the
tree representation of XML data, we model a twig as a
rooted tree. For example, Fig. 1 illustrates a sample twig,
which searches for articles with a title on “data mining”, a
year in2000and a body section about “frequent itemset.”
The twig consists of five nodes, where each node is asso-
ciated with an uniqueid next to the node. The IDs of the
twig nodes can be skipped when the labels of all the nodes
are distinct. The text under a twig node, shown in italic, is
the content (or value) constraint on the node, which is to be
processed in a non-Boolean style.

Now we shall introduce the notations for the twigs.
Given a twigT , we useT.root, T.V and T.E to repre-
sent its root, nodes and edges respectively. Given a twig
nodev (v ∈ T.V), we usev.label to denote the name of the
node’s corresponding element or attribute. An edge from
nodeu to v, denoted aseu,v, represents either a parent-
to-child (i.e., “/”) or an ancestor-to-descendant (i.e., ”//”)
relationship betweenu andv. The term “twig” and “query
tree” will be used interchangeably throughout this paper.

2.3 XML Query Relaxation Types

In the XML model, there are two types of query relax-
ations: value relaxation and structure relaxation. A value
relaxation expands a value scope to allow the matching of
additional answers. A structure relaxation relaxes the con-
straint on a node or an edge in a twig to derive approxi-
mate answers. Value relaxation, which has been success-
fully used in relational models, is orthogonal to structure
relaxation. In this paper, we focus on structure relaxation.

article

title body

paragraph“data
mining”

“frequent
itemset”

year

2000

article

title body

section“data
mining”

“frequent
itemset”

year

2000

article

title section

“data
mining”

“frequent
itemset”

year

2000

(a)Node re-label (b)Edge relax (c)Node delete

Figure 2: Examples of structure relaxations for Fig.1

Many structure relaxation types have been proposed
([16], [22], [6]). We use the following three structure re-
laxation types, similar to the ones proposed in [6], which
capture most of the relaxation types used in previous work.

• Node RelabelWith this relaxation type, a node can
be relabeled to similar or equivalent labels according
to domain knowledge. We useRel(u, l) to represent a
relaxation operation that renames a nodeu to labell.
For example, the twig in Fig. 1 can be relaxed to that in
Fig. 2(a) by relabeling the nodesectionto paragraph.

• Edge Generalization With an edge relaxation, a
parent-to-child edge (’/’) in a twig can be general-
ized to an ancestor-to-descendant edge (’//’). We use
Rel(eu,v) to represent a generalization of the edge be-
tween nodesu andv. For example, the twig in Fig. 1
can be relaxed to that in Fig. 2(b) by relaxing the edge
between nodesbodyandsection.

• Node DeletionWith this relaxation type, a node may
be deleted while preserving the “superset” property.
We useDel(v) to denote the relaxation of deleting
a nodev. Whenv is a leaf node, it can simply be
removed. Whenv is an internal node, the children
of nodev will be connected to the parent ofv with
ancestor-descendant edges (“//”). For instance, the
twig in Fig. 1 can be relaxed to that in Fig. 2(c) by
deleting the internal nodebody. Since the root node in
a twig is a special node representing the search con-
text, we assume that any twig root cannot be deleted.

2.4 Properties of XML Relaxation

Let us now introduce definitions and lemmas related to
query relaxation.

Definition 1 Valid Relaxation OperationGiven a twigT ,
a relaxation operationr is valid forT if:

• r=Rel(u, l) is valid if u ∈ T.V andu.label 6= l;

• r=Del(u) is valid if u ∈ T.V andu 6= T.root;

• r=Rel(eu,v) is valid if eu,v ∈ T.E andeu,v = ‘/’;

We user(T) to represent the twig transformed fromT
by applying the relaxation operationr.

Definition 2 Valid Relaxation Operation SequenceGiven
a twigT , a sequence of relaxation operationss = r1;...;rn

is a valid forT if ∀ ri ∈ s, ri is a valid relaxation operation
for Ti, whereTi = ri(Ti−1) andT0 = T .

Given a twigT and a relaxation operation sequences,
we uses(T) to represent the twig obtained by applying
each relaxation operation ins to T .

Definition 3 Relaxed TwigGiven two twigsT1 andT2, we
call T2 a relaxed twig ofT1 if there exists a relaxation op-
eration sequences s.t. s is valid w.r.t.T1 ands(T1) = T2.

Definition 4 Redundant Relaxation OperationGiven a
twig T and a relaxation operation sequences, a relaxation
operationr is redundant ins if s(T) = s′(T), wheres′ = s
- r, i.e., a sequence obtained by deletingr froms.

For example, given the twig in Fig. 1 and a relaxation
operation sequences = Rel(e$1,$4);Del($4), the relaxation
operationRel(e$1,$4) is redundant ins. This is because ap-
plying a single relaxation operationDel($4) has the same
effect as applying the sequences to the twig.

Definition 5 Non-redundant Relaxation Operation Se-
quenceGiven a twigT , a relaxation operation sequence
s is non-redundant if each relaxation operationr in s is
non-redundant.

By definition 5, we have the following properties about
non-redundant relaxation operation sequences.

Lemma 1 Given a twig T , a relaxation operation se-
quences=r1;...;rn is non-redundant if and only ifs sat-
isfies the following properties:

1. ∀ ri ∈ s, if ri=Rel(eu,v), then∀ j (i < j ≤ n), rj 6=
Del(u) andrj 6= Del(v);

2. ∀ ri, rj ∈ s, if ri=Rel(u) andrj=Rel(v), thenu 6= v;

3. ∀ ri, rj ∈ s, if ri=Rel(u) andrj=Del(v), thenu 6= v;

The first property states that if a non-redundant relax-
ation operation sequences contains a relaxation operation
on an edgeeu,v, then s cannot contain a deletion of ei-
ther nodes (i.e.,u or v) on the edge. The second property
states that a non-redundant relaxation operation sequence
cannot contain two node re-label relaxation operations on
the same node. Finally, the third property states that a non-
redundant relaxation operation sequence cannot contain a
node re-label followed by a deletion of the same node.

Since we are only interested in non-redundant relaxation
operation sequences, we assume that every relaxation oper-
ation sequence is non-redundant. One interesting property
about non-redundant relaxation operation sequences is that
they are un-ordered. That is, changing the orders among
the relaxation operations in a sequence does not affect the
relaxed twig produced by the sequence. We formalize this
property as follows:

Lemma 2 Given a twigT and a relaxation operation se-
quences, wheres is valid for T , let s′ be any permutation
of the relaxation operations ins, thens′(T) = s(T).

Relaxation
Engine

Ranking
Module

Relaxation
Index Builder

Relaxation
Indexes

relaxation-enabled
XML query

ranked
results

XML
Database Engine

XML
Documents

CoXML

Relaxation
Engine

Ranking
Module

Relaxation
Index Builder

Relaxation
Indexes

Relaxation
Indexes

relaxation-enabled
XML query

ranked
results

XML
Database Engine

XML
Documents

XML
Documents

CoXML

Figure 3: The CoXML system architecture

For example, given the twig in Fig. 1, letr1 be an oper-
ation re-labeling node$5 to paragraphandr2 be an oper-
ation relaxing the edge between nodes$4 and$5. The se-
quencer1;r2 has the same relaxation effect as the sequence
r2;r1 on the twig.

By Lemma 2, given a twigT , we have the following
upper bounds for the number of relaxed twigs ofT .

Lemma 3 Given a twigT with m distinct relaxation op-
erations applicable toT , there are at most2m different re-
laxed twigs ofT .

There are at most
(
m
1

)
+ ... +

(
m
m

)
= 2m combinations of re-

laxation operations. By Lemma 2, each combination gen-
erates at most one relaxed twig. Thus, there are at most2m

relaxed twigs ofT .

3 CoXML Architecture

In Fig.3, we present the architecture of our cooperative
XML (CoXML) query answering system. The system con-
tains two major parts: off-line components for building re-
laxation indexes and online components for processing and
relaxing queries, and ranking results.

• Building relaxation indexes
TheRelaxation Index Builderconstructs relaxation in-
dexes, XML Type Abstraction Hierarchy (XTAH), for
a set of document collections.

• Processing, relaxing queries and ranking results
When a user posts a query, theRelaxation Enginefirst
sends the query to anXML Database Engineto search
for answers that exactly match the structure conditions
and approximately satisfy the content conditions in
the query. If enough answers are found, theRanking
Moduleranks the results based on their relevancies to
the content conditions[18] and returns the ranked re-
sults to the user. If there are no answers or insuffi-
cient results, then theRelaxation Engine, based on the
user-specified relaxation constructs and controls, con-
sults the relaxation indexes for the best relaxed query.
The relaxed query is then resubmitted to theXML

Database Engineto search for approximate answers.
TheRanking Moduleranks the returned approximate
answers based on their relevancies to both structure
and content conditions in the query. This process will
be repeated until either there are enough approximate
answers returned or the query is no longer relaxable.

The CoXML system can run on top of any existing
XML database engine (e.g., BerkeleyDB[1], Tamino[5],
DB2XML[2]) that retrieves exactly matched answers.

4 XML Query Relaxation Language
Query relaxation is often user-specific. Different users may
have different preferences for the conditions to be approx-
imated in the same twig. For example, for the twig in
Fig. 1, one user may prefer relabeling the leaf nodesection
to deleting the internal nodebody, because the user consid-
ers an article with a component similar to asectionnode on
“frequent itemset” in the body part as being relevant. An-
other user, however, may consider that only asectionnode
may contain deep discussions on “frequent itemset,” such
as ”algorithms for mining frequent itemset.” The second
user may then reject the relaxation operation of relabeling
the nodesection. Therefore, it is essential for an XML
approximate query answering system to provide a query
language that allows users to include their personalized re-
laxation specifications (e.g., which conditions to relax and
how to relax these conditions).

A number of XML approximate search languages have
been proposed. Most extend standard query languages with
constructs for specifying approximate content conditions
(e.g., XIRQL[14] and NEXI[25]). XXL[23] is a flexible
XML search language that includes constructs for users to
specify approximate structure and content conditions. It,
however, does not allow users to control the relaxation pro-
cess. It may be often the case that users may want to specify
their preferences over multiple relaxable query conditions.
In addition, most existing XML query languages do not al-
low users to specify non-relaxable query conditions. For
instance, the second user in the example above may want
to specify that the nodesectioncannot be relaxed.

Therefore, we propose an XML relaxation language that
allows users to specify approximate search conditions and
to control the relaxation process. We represent a relaxation-
enabled query as a tupleQ =(T ,R, C,S), where:

• T is a twig as described as Section 2.2;

• R is a set of relaxation constructs specifying which
conditions inT may be approximated when needed;

• C is a boolean combination of relaxation controls stat-
ing how the query shall be relaxed;

• S is a stop condition indicating when to terminate the
relaxation process.

The execution semantics for a relaxation-enabled query
Q is as follows: first, we search for answers that exactly

match the query; and then we test the stop conditionS to
check whether there is any need to relax the query. If the
stop condition holds, the answers are returned to the user.
Otherwise, we repeatedly relax the twigT based on the
relaxation constructsR and controlsC until either the stop
conditionS is met or the twigT is no longer relaxable.

Given a relaxation-enabled queryQ, we useQ.T ,Q.R,
Q.C andQ.S to represent its twig, relaxation constructs,
controls and stop condition respectively. Note that a twig is
required to specify a relaxation-enabled query, while relax-
ation constructs, controls and stop condition are optional.
When only a twig is presented in a query, we repeatedly
relax the twig to the (next) best relaxation candidate (i.e., a
relaxed twig that is (next) closest to the original twig based
on a distance function) until the twig is no longer relaxable.

A relaxation construct for a queryQ can be in any of the
following forms:

• Rel(u), whereu ∈ Q.T .V , specifies that the nodeu
may be relabeled when needed;

• Del(u), whereu ∈ Q.T .V , specifies that the nodeu
may be deleted if necessary;

• Rel(eu,v), whereeu,v ∈ Q.T .E, specifies that the
edgeeu,v may be generalized when needed.

The relaxation controls for a queryQ is a conjunction
of any of the following forms:

• !r, wherer ∈ {Rel(u), Del(u), Rel(eu,v) | u, v ∈
Q.T .V , eu,v ∈Q.T .E}, specifies that the nodeu can-
not be relabeled or deleted, or the edge between nodes
u andv cannot be generalized;

• Prefer(u, l1, ..., ln), whereu ∈ Q.T .V , states that
the nodeu is preferred to be relabeled to labelsl1, ...,
ln when needed;

• Reject(u, l1, ..., ln), whereu ∈ Q.T .V , specifies a
list of unacceptable labels for the nodeu;

• RelaxOrder(r1, ..., rn), whereri ∈Q.R (1≤ i ≤ n),
specifies the relaxation orders among the relaxation
constructs inR: r1 should be applied beforer2 and so
on so forth1;

• UseRType(rt1, ..., rtk), whererti ∈ {NodeRelabel,
NodeDelete, EdgeRelax} (1≤ i ≤ k≤ 3), specifies the
set of relaxation types allowed to be used. By default,
all three relaxation types may be used.

A stop conditionS is either:

• AtLeast(n), wheren is a positive integer, specifies
the minimum number of answers to be returned; or

1Note that the RelaxOrder clause is different from Lemma 2. Lemma 2
states changing the orders among relaxation operations in a sequence does
not change the relaxed twig produced by the sequence; while RelaxOrder
clause control the orders of relaxed twigs generated.

article

title body

section“data
mining”

“frequent itemset”

$1

year

2000

$3$2 $4

$5

R= {Rel(e$4,$5), Del($3)}

C = !Del($4) ∧ !Rel(e$1,$2) ∧ !Rel(e$1, $4) ∧
UseRType(NodeDelete, EdgeRelax)

S= AtLeast(20)

Figure 4: An example of a relaxation-enabled XML query

• d(Q.T , T ′) ≤ τ , whereT ′ stands for a relaxed twig
andτ a distance threshold, specifies that the relaxation
should be terminated when the distance between the
original twig and a relaxed twig exceeds the threshold.

Fig. 4 presents an example of a relaxation-enabled
query. The minimum number of answers to be returned
for the query is 20. If there are insufficient exactly matched
answers available, then the edge betweenbodyandsection
may be generalized and the nodeyearmay be deleted when
needed. The relaxation controls specify that the nodebody
cannot be deleted during relaxation. For instance, asec-
tion about “frequent itemset” in an article’s appendix part
is irrelevant. Also, the edge betweenarticle andtitle, i.e.,
article/title, and the edge betweenarticle andbody, i.e.,ar-
ticle/body, cannot be generalized. For instance, an article
with a reference to another article with a title on ”data min-
ing” is irrelevant. Finally, onlyedge relaxationandnode
deletionrelaxation types may be used.

A relaxation-enabled XQuery, termed as RLXQuery,
has been developed. RLXQuery extends the standard XML
query language (XQuery) with relaxation constructs, con-
trols and stop conditions presented above. Interested users
may refer to [17] for details.

5 XML Relaxation Index

In this section, we present a relaxation index structure that
provides systematic and scalable guidance to the relax-
ations of XML queries.

Given a queryQ, there are an exponential number of
relaxed queries forQ (Lemma 3). For example, a twig
with 5 nodes may have 10 relaxation operations applica-
ble to the twig, which in the worst case may have210 (i.e.,
1024) relaxed twigs. Therefore, deriving relaxed queries
online may not be very efficient when there are many re-
laxation operations applicable to a query. Further, during
query relaxation, we usually need to compute similarities
(or distances) between twigs, which often requires infor-
mation from XML data. For example, in [7], each relaxed
twig is associated with an “inverse document frequency,”
which requires the computations of the number of ”docu-
ments” that exactly match the relaxed twig. Online com-
puting twig similarities or distances may not be scalable.
Thus, we need a systematic approach for scalable query re-
laxation.

Many queries to the same XML dataset usually share
the same or similar tree structures but with different con-
tent conditions. For example, the INEX 05 [4] test collec-
tion contains 17 distinct content-and-structure queries, in

article

title body

section“sensor
network”

year

2004

“multicast routing”

article

title body

paragraph“sensor
network”

“multicast routing”

year

2004

(a) (b)

Figure 5: An example of re-using relaxed twigs for relaxing
queries with the same tree structure

which 5 queries (about 30%) use the same structure. Struc-
turally relaxed twigs for a queryQmay be re-used to guide
the relaxations of queries with the same structure as that of
Q. For example, the structure of the twig in Fig. 5(a) is
the same as that of the twig in Fig. 1. Thus, the twig in
Fig. 2(a), a relaxed twig of Fig. 1, may be used for relax-
ing the twig in Fig. 5(a), as shown in Fig. 5(b). Further,
the similarity between the twig structure in Fig. 1 and that
in Fig. 2(a) can be used to measure the structure closeness
of the relaxed twig in Fig. 5(b) to that in Fig. 5(a). This
motivates us to build relaxation indexes for frequently used
twig structures, which may be obtained using data mining
techniques. We then use the relaxation indexes to guide the
relaxations of queries with the same (or similar) structures
as those frequently used twig structures.

5.1 XML Type Abstraction Hierarchy - XTAH

Our goal for constructing relaxation index structures is
two-folded: 1)re-using relaxed twigs to guide the relax-
ation of queries with the same (or similar) structures as
those frequently used twig structures; and 2)efficiently
searching relaxed twigs for queries with any relaxation con-
structs and/or controls, which are essentially boolean com-
binations of relaxation operations.

To this end, we propose an XML relaxation index struc-
ture, called XML Type Abstraction Hierarchy (XTAH). An
XTAH for a frequently-used twig structureT , denoted as
XTT , is a hierarchical cluster of the relaxed twigs ofT
based on their corresponding relaxation operations and dis-
tances. More specifically, an XTAH is a multi-level labeled
cluster with two types of nodes: internal and leaf nodes.
A leaf node is a relaxed twig ofT . An internal node rep-
resents a cluster of relaxed twigs using similar relaxation
operations. The label of an internal node is the common re-
laxation operations (or types) used by the relaxed twigs in
the cluster. The higher level an internal node in an XTAH,
the more general the label of the internal node, the less re-
laxed the twigs in the internal node. Such an organization
provides two significant advantages: 1)we can efficiently
locate relaxed twigs satisfying a given relaxation construct
and/or control by traversing to internal nodes whose labels
satisfy the relaxation constructs and/or controls; and 2)we
can relax a query at different granularities by traversing up
and down an XTAH.

Fig. 6 shows a sample XTAH for the twig in Fig. 1.2 For
ease of references, we associate each node in the XTAH

2Due to space limit, we only show part of the XTAH here.

with an unique ID, where the IDs of internal nodes are pre-
fixed with I and the IDs of leaf nodes are prefixed withL.
Each leaf nodeLi is a relaxed twig of the twig in Fig. 1.
Each internal nodeIj represents a group of relaxed twigs
that are closer to each other and use similar relaxation op-
erations. For example, all the relaxed twigs in the group
represented by the internal nodeI4 use the relaxation oper-
ationRel(e$1,$2).

Given a relaxation operationr, letIr be an internal node
with a label{r}. That is,Ir represents a group of relaxed
twigs whose common relaxation operation isr. Due to the
tree-like organization of clusters, each relaxed twig belongs
to only one cluster (i.e., one internal node), while a relaxed
twig may use multiple relaxation operations. Thus, it may
be the case that not all the relaxed twigs that use the relax-
ation operationr are within the group ofIr. For example,
the relaxed twigL5, which uses two operationsRel(e$1,$2)
andRel(e$4,$5), is not included in the internal node that
represents{Rel(e$4,$5)}, i.e., I6. This is because the re-
laxed twigL5 may belong to either groupI4 and groupI6

but is closer to the twigs in groupI4.
To support efficient searching or pruning of relaxed

twigs that use a relaxation operationr, we add a virtual link
from the internal nodeIr to an internal nodeIj whereIj is
not a descendant node ofIr but the relaxed twigs withinIj

use the relaxation operationr. By doing so, relaxed twigs
using the relaxation operationr are either within the group
Ir or within the groups that are connected toIr by virtual
links. For example, the internal nodeI6 is connected to the
internal nodesI25 andI36 via virtual links. All the relaxed
twigs using the relaxation operationRel(e$4,$5) are within
the groups represented by internal nodesI6, I25 andI36.

5.2 Assigning Internal Representatives in XTAH

The relaxation process for a queryQ= {T ,R, C, S} is es-
sentially an interactive process of finding a relaxed query
that is (next) closest to the original query and satisfies the
relaxation controlsC (i.e., the best relaxed query) until ei-
ther the stop conditionS is met orQ is no longer relaxable.
To achieve this, a brute force approach is to check all the re-
laxed twigs on the leaf level, which is obviously inefficient.
To remedy this condition, we propose to assign representa-
tives to internal nodes, where a representative summarizes
the distance characteristics of all the relaxed twigs covered
by the internal node. Internal node representatives facili-
tate the searching for the best relaxed query by traversing
an XTAH in a top-down fashion, where the path is deter-
mined by the distance properties of the representatives.

We propose to use M-tree [13] for assigning representa-
tives to internal nodes in an XTAH. M-tree provides an effi-
cient access method for similarity search in “metric space,”
i.e., where object similarities are defined by a distance
function with non-negativity, symmetry and triangle prop-
erties. Given a tree organization of data objects where all
the data objects are at the leaf level, M-tree assigns a data
object covered by an internal nodeI to be the representative
object ofI. Each representative object stores the covering

{Del($4)}

...…

node_relabel node_delete

relax

…

…

...

I0

{Rel(e$4, $5)}I6{Rel(e$4, $5)}I6

{Rel(e$1,$2),
Rel(e$1,$3)}

I15 {Rel(e$1,$2),
Rel(e$1,$3)}

I15

{Del($2)}I10 {Del($2)}I10 I14

edge_relaxI1 edge_relaxI1 I2 I3

{Rel(e$1,$2)}I4 {Rel(e$1,$2)}I4

I36 {Del($2),
Rel(e$4, $5)}

I36 {Del($2),
Rel(e$4, $5)}

L1 article

title body

section

year

L1 article

title body

section

year

article

title body

section

year

L2 article

title body

section

year

L2 article

title body

section

year

article

title body

section

year

L5 article

title body

section

year

L5 article

title body

section

year

article

title body

section

year

…

{Rel(e$1,$2),
Rel(e$4,$5)}

I25 L10 article

title body

section

year

L10 article

title body

section

year

… … article

year body

section

L16 article

year body

section

L16

…article

year body

section

L15 …article

year body

section

L15

…

L25 article

title sectionyear

L25 article

title sectionyear

article

title body

section

$1

year$3$2 $4

$5

T

Virtual links

cluster-to-sub-
cluster edges

Figure 6: An example of XML relaxation index structure for the twigT

radius of the internal node, i.e., the maximal distance be-
tween the representative object and any data object covered
by the internal node. These covering radii are then used in
determining the path to a data object on the leaf level that is
(next) closest to a query object during similarity searches.

Many policies are available in M-tree for promoting a
data object on the leaf level to be an internal node’s rep-
resentative. In XTAH, given an internal nodeI, we select
a relaxed twig represented by a leaf node within the sub-
tree rooted atI to be the representative ofI if the relaxed
twig has the minimal covering radius. For an XTAH inter-
nal nodeI, we useOI to denote its representative object
andcr(OI) to represent the covering radius of the repre-
sentative object. Letd be a distance function that satisfies
the non-negativity, symmetry and triangle properties. Then
the distance between a queryQ and any relaxed twigL
covered by an internal nodeI has the following upper and
lower bounds:

d(Q, OI)−cr(OI) ≤ d(Q, L) ≤ d(Q, OI)+cr(OI) (1)

These distance bounds are useful in determining the
searching paths. For example, given a queryQ and two in-
ternal nodesIi andIj , suppose that the upper bound of the
distance betweenQ and any twig covered byIi is less than
the lower bound of the distance betweenQ and any twig
covered byIj . In this case, the relaxed twig that is closest
to the query cannot be within the group represented by the
internal nodeIj . Thus, internal nodeIj can be pruned from
the searching path. Due to the space limit, we do not in-
clude the detailed algorithm of utilizing covering radii and
distance bounds in searching the (next) best relaxed query,
which are similar to those presented in [13].

5.3 XTAH-Guided Query Relaxation Process

With the introductions of XTAH and its internal node rep-
resentatives, we now discuss how to use an XTAH for a
twig T to guide the relaxations of a queryQ whereQ.T
has the same structure asT .

Given a queryQ = {T ,R, C,S}, an XTAH-guided
query relaxation process consists of three steps:

• First, it updates the XTAH based on relaxation con-
trols in the queryQ. More specifically, it prunes

XTAH nodes from searching based on relaxation con-
trols such as non-relaxable twig nodes (or edges), un-
acceptable twig node relabels, or disallowed relax-
ation types. For example, the relaxation controls in
the sample query (Fig. 4) state that onlynode dele-
tion andedge generalizationmay be used for deriving
approximate answers. Thus, any XTAH node that is
either within the groupI2, representingnode relabel,
or connected toI2 by virtual links, will be disquali-
fied from searching. Similarly, the internal nodesI14

andI14, which represent groups of relaxed twigs us-
ing relaxation operationsRel($4) andRel(e$1,$2) re-
spectively, will be pruned from searching based on the
relaxation controls. This step can be efficiently pro-
cessed using XTAH internal node labels.

• After updating the XTAH, the process first repeatedly
searches for the (next) best relaxed query based on re-
laxation constructs in the query until either the stop
condition is met or all the relaxation constructs have
been used. For example, the query in Fig. 4 con-
tains two relaxation constructs: generalizing the edge
between nodesbody and section(i.e., Rel(e$4,$5)),
deleting the nodeyear (i.e.,Del($3)). Thus, the pro-
cess will select the (next) best relaxed query from the
XTAH internal nodes that represent the two relaxation
constructs respectively. This step can also be effi-
ciently processed by using XTAH internal node labels
as well as representatives.

• If further relaxation is needed, the process will then
repeatedly searches for the next best relaxed query us-
ing relaxation constructs in addition to those specified
in the query (i.e.,Q.R). The process terminates when
either the stop condition holds or the query reaches its
relaxation limit. For example, for the query in Fig. 4,
the process may search for relaxed queries using re-
laxation operations such as deleting nodesectionor
generalizing the edge between nodesbody and sec-
tion. This step can be efficiently processed by utilizing
the distance information associated with XTAH inter-
nal node representatives.

article

title body

section“model
checking”

“state space
explosion”

year

2000

$1

$2 $3 $4

$5

R= {Rel($5), Rel(e$1, $3)}

C = !Del($4) ∧!Rel(e$1,$2) ∧
Prefer($5, subsection, paragraph)

S= AtLeast(25)

Figure 7: A query with its twig similar to that in Fig. 1

5.4 Relaxing Queries with Similar Structures

In this subsection, we discuss how to use an XTAH for a
twig T to guide the relaxations of queries with structures
“similar”to that ofT .

We first define the canonical form of a twig, which is
useful for describing twigs with similar structures. We as-
sume that domain knowledge is available that predefines an
unique label for each set of similar node labels.

Definition 6 The Canonical Form of A TwigGiven a twig
T , the canonical form of the twig, denoted asT c, can be ob-
tained fromT by: 1) replacing any ancestor-to-descendant
edge (‘//’) inT to a parent-to-child edge (’/’); 2) changing
the label of each node inT to its predefined unique label;
and 3) removing the text of each node if any.

Given a twigT , we useE(T) to denote the set of twigs
that have the same canonical forms asT . By Definition 6,
the canonical form of a twigT has the most restricted struc-
ture constraints as compared to the twigs inE(T). Thus,
given a twig inE(T), any of its relaxed twigs is also a re-
laxed twig ofT c. Therefore, an XTAH forT c can be used
to guide the relaxation of any queryQwhereQ.T ∈E(T).

Fig. 7 presents a sample query, which searches for ar-
ticles published in2000with a title on “model checking”
and a body section on “space state explosion.” If there are
insufficient number of exactly matched answers available,
thesectionnode may be relabeled and it is preferred to be
relabeled to eithersubsectionor paragraph. The canonical
form of this twig is the same as the twig used in the sample
XTAH (Fig. 6).3 Therefore, the sample XTAH can be used
to guide the relaxations of the query. Since the edge be-
tween nodesbody(i.e., $4) andsection(i.e., $5) is ancestor-
to-descendant, the relaxation operationRel(e$4,$5) is inap-
plicable to the query. Therefore, we first prune the internal
nodeI6, whose label isRel(e$4,$5), as well as the internal
nodes that are connected toI6 via virtual links, i.e.,I25 and
I36, from searching. All the twigs within these three in-
ternal nodes use the relaxation operationRel(e$4,$5), thus
they cannot be used for relaxing the query. After pruning
the three internal nodes, we follow the process presented in
Section 5.3 to derive approximate answers for the query.

Similarly, given a twigT , an XTAH built for its canon-
ical form T c can also be used to guide the relaxations of
twigs whose canonical forms are subtrees ofT c. The pro-
cess is similar to the one presented in the example above.

3For simplicity, in this example, we assume that the unique label of
each label is itself.

6 XML Ranking
Query relaxation often generates a list of approximate an-
swers, which need to be ranked before being returned to
users. A query contains both structure and content condi-
tions. Thus, we shall rank an approximate answer based
on its relevancies to both the structure and content condi-
tions in the query. Many XML ranking models have been
proposed(e.g., [14], [18]). Most, however, only measure
the content similarity between an answer and a query and
thus, they are inadequate for ranking approximate answers
that use structure relaxations. Therefore, we need a simi-
larity metric for evaluating the relevancy of an answer to
the structure conditions in a query, i.e.,structure relevancy.
In this following, we first present how to measure struc-
ture relevancy and then discuss how to combine structure
relevancy with content similarity.

6.1 Semantics-Oriented Structure Distance

We define the structure relevancy of an answerA to a query
Q to be the structure similarity between the twigQ.T and
the least relaxed twigT ′, where the answer exactly matches
the structure ofT ′. Due to the tree-structure of the twigs,
the structure similarity between two twigs can be measured
in a way similar to tree editing distance metrics(e.g., [26]).
Thus, we measure the structure distance between an answer
A and a queryQ, denoted asstruct dist(A,Q), as the
editing distance between the twigQ.T and the least relaxed
twig T ′, denoted asd(Q.T , T ′), which is the total costs of
the relaxation operations that relaxQ.T to T ′:

struct dist(A,Q) = d(Q.T , T ′) =
n∑

i=1

cost(ri) (2)

where the sequence of relaxation operationsr1; ...; rn

transformsQ.T into T ′; andcost(ri) (0≤ cost(ri)≤ 1) is
the cost of a relaxation operationri.

Existing edit distance algorithms do not consider the op-
eration cost. Assigning equal cost to each operation is sim-
ple, but does not distinguish the semantics of different oper-
ations. Thus, we propose a semantics-oriented cost model
for measuring the cost of each relaxation operation.

Before we introduce how we model the semantics of
each relaxation operation, we shall first introduce how we
model the semantics of XML data nodes. Given an XML
document collectionD, we represent the semantics of each
data nodevi as aN vector{wi1, wi2, ..., wiN}, whereN
is the total number of distinct terms inD andwik is the
weight of thekth term in the text ofvi. The weight of
a term may be computed using Vector Space Model[21].
With this representation, the more similar the two vectors,
the more semantically closer the two nodes. For example,
the text of asectionnode has more overlap with that of a
paragraphnode than with the text of afigurenode. Thus,
a sectionnode is semantically closer to aparagraphnode
than asectionnode to afigurenode.

We now introduce the cost model for each relaxation
operation with regard to a twigT as follows:

• Node RelabelRel(u, l)

A node relabel operation changes the label of a nodeu in
a twig fromu.label to a new labell. Intuitively, the more
similar the new label is to the original label in semantics,
the less the cost of the operation will be. The similarity be-
tween two labels,u.label andl, denoted assim(u.label, l),
can be measured as the cosine similarity between their cor-
responding vector representations in XML data. Thus, the
cost of a relabel operation is:

cost(Rel(u, l)) = 1− sim(u.label, l) (3)

For example, in the INEX 05 data, the similarity between
the vector representingsectionnodes and the vector repre-
sentingparagraphnodes is 0.99, while the similarity be-
tween the vector forsectionnodes and the vector forfigure
nodes is 0.38. Thus, it is more expensive to relabel to the
nodesectionin Fig. 1 toparagraphthan tofigure.

• Node DeletionDel(u)

The more similar a nodeu that has a parent nodev (i.e.,
v/u or v/u in the twig) to its parent nodev in semantics,
the less the cost of deleting the nodeu. For example, if we
delete thesectionnode from the twig in Fig. 1, we relax the
querysearching for body sections on “frequent itemset”to
searching for bodies on “frequent itemset.”The closer a
sectionnode in an article’bodypart to abodynode in an
article, the less the cost of deleting thesectionnode. Let
Vv/u andVv be the two vectors representing the union of
the vectors of the nodes in XML data satisfyingv/u andv
respectively. The similarity betweenv/u andv, denoted
assim(v/u, v), can be measured as the cosine similarity
between the two vectorsVv/u andVv. Thus, we model the
cost of a node deletion as:

cost(Del(u)) = 1− sim(v/u, u) (4)

For example, in the INEX 05 data, the similarity between
the vector forsectionnodes insidebodynodes and the vec-
tor for bodynodes is 0.99, while the similarity between the
vector forkeywordnodes insidearticle nodes and the vec-
tor for article nodes is 0.2714. Thus, deleting thekeyword
node in Fig. 1 costs more than deleting thesectionnode.

• Edge GeneralizationRel(ev,u)

The closer a nodeu that has a parent nodev (i.e., v/u) to
a nodeu that has an ancestor nodev (i.e.,v//u) in seman-
tics, the less the cost of the edge relaxationRel(ev,u). Let
Vv/u andVv//u be two vectors representing the union of
the vectors of the nodes in XML data satisfyingv/u and
v//u respectively. The similarity betweenv/u andv//u,
denoted assim(v/u, v//u), can be measured as the cosine
similarity between vectorsVv/u andVv//u. Thus, the cost
for an edge generalization can be measured as:

cost(Rel(ev,u)) = 1− sim(v/u, v//u) (5)

For example, relaxingarticle/title in Fig. 1 toarticle//title
makes the title of an article’s author an approximate match

for article/title. Since the similarity between an article’s
title and an author’s title is low, the cost of generalizing
article/title to article//title may be high.

6.2 XML Ranking Function

Given a queryQ, the relevancy of an answerA to the query
Q, denoted assim(A,Q), is a function of two factors: the
structure distance between the answer and the query, i.e.,
struct dist(A,Q), and the content similarity between the
answer and the query, denoted ascont sim(A,Q). Intu-
itively, the larger the structure distance, the less the rele-
vancy; the larger the content similarity, the more the rele-
vancy. Thus, we combine the two factors in a way similar
to the one used in XRank[15] for combining element rank
with distance as follows:

sim(A,Q) = αstruct dist(A,Q) ∗ cont sim(A,Q) (6)

whereα is constant between 0 and 1. When the structure
distance is zero, i.e., exact structure match, the relevancy
of the answerA to the queryQ is determined by the their
content similarity. When the answer does not exactly match
the query structure, the relevancy of the answer decreases
as the structure distance increases. We use our extended
vector space model for measuring content similarity, which
has been proven effective in past research[18].

7 Experimental Evaluations

7.1 Datasets & Query Set

We use INEX 05 test collection for evaluating the quality
of approximate query answering provided by our system.
The document collections, around 500MByte in size, con-
sists of over 12,000 scientific articles from IEEE Computer
Society Journals. Each article contains an average of 1532
elements and each element has an average depth of 6.9.

We use the content-and-structure (CAS) queries in
INEX 05 for our experimental studies. A CAS query is ex-
pressed in XPath with extensions ofaboutfunctions, which
are used to specify content conditions. The structure con-
ditions in a query are further classified into two types: sup-
port and target. A support specifies where to search and
a target suggests what to return. INEX 05 contains four
sub-tasks for each CAS query based on whether to approx-
imately or strictly match its target and support structure
conditions in a query. Post-analysis of the relevance assess-
ments in INEX 05 [24] concluded that there are in fact only
two different interpretations of the structure conditions in a
query: whether to strictly or approximately match the target
structure condition. Thus, in our studies, we strictly match
the support conditions and approximately match the target
conditions, i.e., the so called VSCAS subtask in INEX 05.

The INEX 05 test collection contains a set of 17 official
CAS queries and another set of 30 unofficial single-branch
CAS queries. Since only 7 queries in the VSCAS subtask
from the first set has relevance assessments, we use queries
from both sets for our experimental studies.

<inex_topic topic_id="267" query_type="CAS" ct_no="113" >
<castitle>//article//fm//atl[about(., "digital libraries")]</castitle>
<description>Articles containing "digital libraries" in their title.</description>
<narrative>I'm interested in articles discussing Digital Libraries as their main subject.
Therefore I require that the title of any relevant article mentions "digital library" explicitly.
Documents that mention digital libraries only under the bibliography are not relevant, as well
as documents that do not have the phrase "digital library" in their title.</narrative>
</inex_topic>

Figure 8:Topic 267 in INEX 05

7.2 Relevance Assessment

We use the relevance assessment in INEX 05 as the “gold
standard” for evaluating the accuracy of approximate an-
swers. The relevance assessment is obtained by asking each
query author to judge an element’s relevancy based on two
aspects: 1) how much the element discusses the query; and
2) how much the element focuses on the query. This two-
dimension relevancy value is then further combined into a
single value between 0 and 1 using either a strict function,
which discards partially relevant results, or a generalized
function, which rewards partially relevant results. We use
the generalized function in our experimental studies.

7.3 Test Runs

We run three sets of experiments. The first set compares
the effectiveness of the semantics-oriented distance func-
tion with the uniform-cost distance function (i.e., assigning
uniform cost 1 to each relaxation operation). The second
set tests the effectiveness of relaxation language and the re-
laxation approach by comparing the results with relaxation
controls with the results without using relaxation controls.
The third set compares the effectiveness of our system with
other systems participated in INEX 05.

We use single-branch queries in the first experiment set.
We exclude queries with wildcards as target conditions, in
which any element is an exact match, queries with non-
relaxable structure conditions; and queries with no rele-
vance assessment. 22 queries are used in the first experi-
ment set. We use the function in Equation(6) to rank ex-
perimental results with both uniform-cost and semantics-
oriented structure distances. We test our ranking function
with the constantα varied from 0.1 to 0.9.

For the second set of experiments, we use queries in
which users have explicit specifications regarding structure
approximations. Only one query provides such specifica-
tion, i.e., topic 267 as shown in Fig. 8. The topic consists
of three parts: castitle, description and narrative. The in-
formation contained in thenarrativepart is the detailed de-
scription of a user’s information needs and is used for judg-
ing result relevancy. The topic author considers an article’s
title, i.e.,atl, non-relaxable and regards titles about ”digital
libraries” under the bibliography part, i.e.,bb, irrelevant.
Based on this narrative, we formulate the query using our
relaxation language in Fig. 9. We ran this query with and
without relaxation controls to evaluate the effectiveness of
the relaxation controls in our language.

For the third set of experiments, we use the official
multiple-branch queries, which have more relaxation vari-

article

fm

atl

“digital libraries”

$1

$2

$3

C = !Rel($3) ∧ !Del($3) ∧ Reject($2, bb)

Figure 9:Representing topic 267 using our query relaxation language

α 0.1 0.3 0.5 0.7 0.9
UCost 0.2584 0.2616 0.2828 0.2894 0.2916
SCost 0.3319 0.3190 0.3196 0.3068 0.2957
+% 28.44 21.94 13.04 6 4.08

Table 1:Comparisons of the evaluations for the results using semantics-

oriented vs. uniform-cost distance functions for nxCG@10

ations. We exclude queries with no relevance assessments
available in the VSCAS subtask. Only four multiple-
branch queries have these properties (topic 256, 264, 275
and 284). We test our system using these four queries and
compare our results with the best results from the official
submissions in INEX 05 for the VSCAS subtask.

Topic 256: //article[about(.//p, “data embedding”)]//p[about(.,
watermarking)]
Topic 264: article[about(., “machine learning”) and about(.//sec,
“mutual information criterion”)]
Topic 275: article[about(., abs, “data mining”)]//sec[about(.,
“frequent itemsets”)]
Topic 284: //article[about(.//bdy, thread implementation) and
about(.//bdy, operating system)]

7.4 Evaluation Results

We use the official INEX 05 evaluation metrics to evaluate
our experimental results: normalized extended cumulative
gain (nxCG). nxCG is a user-oriented evaluation metric,
similar to the precision/recall metric used in traditional IR.
For a given rank i, the value of nxCG@i reflects the relative
gain the user accumulated up to that rank, compared to the
gain the user could have obtained if the system would have
produced the optimum best ranking. For any rank, the nor-
malized value of 1 represents the ideal performance. We
use the INEX evaluation software, EvalJ[3], for computing
the nxCG values for our experimental results.

Table 1 and Table 2 present the evaluation results for the
first set of experiments using nxCG@10 and nxCG@25 re-
spectively. The second and third rows in each table show
the evaluation results using a uniform-cost and a semantics-
oriented distance function respectively. The last row il-
lustrates the performance improvements of the semantics-
oriented distance function compared with the uniform-cost
distance function. The results in these two tables ver-

α 0.1 0.3 0.5 0.7 0.9
UCost 0.2490 0.2490 0.2577 0.2616 0.2508
SCost 0.2880 0.2822 0.2749 0.2692 0.2608
+% 15.68 13.32 6.7 2.9 4.0

Table 2:Comparisons of the evaluations for the results using semantics-

oriented vs. uniform-cost distance functions for nxCG@25

With-relaxation-control No-relaxation-control
nxCG@10 1.0 0.1013
nxCG@25 0.8986 0.2365

Table 3: Comparisons of the evaluation for the results with relaxation
controls vs. without relaxation controls (α = 0.1)

topic nxCG@10 nxCG@25 nxCG@50
Top-1 SCost Top-1 SCost Top-1 SCost

256 0.4293 0.4248 0.4733 0.5555 0.4693 0.4956
264 0.0 0.0069 0.0 0.0033 0.0739 0.0027
275 0.7715 0.638 0.589 0.5922 0.6369 0.5985
284 0.0 0.1259 0.0 0.1233 0.0 0.1233

average 0.3002 0.2989 0.2656 0.3186 0.2950 0.3050

Table 4:Comparisons of the evaluations for our results (α = 0.1) vs. the

official INEX 05 top-1 results in the VSCAS subtask

ify that the semantics-oriented distance function outper-
forms the uniform-cost distance function. For example,
the semantics-oriented distance function outperforms the
uniform-cost function by 28.44% using nxCG@10 and
15.68% using nxCG@25 whenα equals to 0.1.

We note that the performances of the semantics-oriented
distance function increases whenα is close to 0, while
the performance of the uniform-cost distance function in-
creases whenα is close to 1. This is due to the differ-
ences in the value distributions of two distance functions.
With the uniform-cost function, the distance between an
approximate answer and a query is at least 1 because we
need at least one operation to relax a query. With the
semantics-oriented function, the distance between an ap-
proximate answer and a query are within the range of 0 and
1 if only one operation is used. (Most approximate answers
for the queries in the first experiment set use only one re-
laxation operation.) The decay functionαstruct dist(A,Q)

(Fig. 10) differentiates values within 0 and 1 better when
α is small. For example, given two approximate answers
A1 andA2, suppose thatstruct dist(A1,Q)=0.05 and
struct dist(A2,Q) = 0.85. If α = 0.9, then there is very
small difference betweenα0.05 (i.e., 0.99) andα0.85 (i.e.,
0.91); while ifα = 0.1, there are some difference between
α0.05 (i.e., 0.89) andα0.05 (i.e., 0.14).

Table 3 presents the results for the second set of exper-
iments using nxCG@10 and nxCG@25. The second col-
umn shows the evaluation results with relaxation controls
and the third column presents the evaluation results with-
out relaxation controls. We note that results with relaxation
controls significantly outperform the results without relax-
ation controls. For example, the evaluation result with con-

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

x

0.9x

0.5x

αx

0.1x

Figure 10:The decay functionαx

trols using nxCG@10 is 1, which is the perfect accuracy.
The relaxation controls in the query inform the system to
relax the query in a specific way, which in turn enables the
system to provide results with more relevancy.

Table 4 presents the evaluation results for the third set of
experiments using the semantics-oriented distance function
and withα = 0.1. We present the evaluations of our results
for each topic as well as the evaluations of the best results
from the INEX 05 official submissions using nxCG@10,
nxCG@25 and nxCG@50 respectively. We also include
the corresponding average performance for the four queries
in the last row. We observe that our results are compara-
ble with the top-1 results at nxCG@10. Our results out-
perform the top-1 results by 20% at nxCG@25 and 3% at
nxCG@50. The results reveal that the relaxation features
in our system enables the system to retrieve approximate
answers with more relevancy.

8 Related Work

A number of XML approximate search languages have
been developed(e.g., [14], [25], [23], [11]). Many extend
the standard query languages with constructs for specify-
ing approximate search conditions. For example, [25] in-
troducesabout functions for users to specify approximate
content conditions and [23] includes regular expressions
for specifying approximate structure conditions. Our query
language differs from existing languages in that our lan-
guage allows user to both specify approximate search con-
ditions and to control the approximate search process.

Searching XML data repositories is an active area of re-
search ([11], [9], [16], [7], [20], [8], [6], [10], [19]). Most
existing work on XML approximate query answering focus
on efficient algorithms for deriving top-k answers based on
the relaxation strategies. For example, [7] proposed a DAG
structure to organize relaxed twigs and use a matrix to rep-
resent a query to speed up top-k processing. Our XTAH dif-
fers from the DAG structure in that XTAH clusters relaxed
twigs into groups based on their relaxation operations and
distances, while the DAG structure organizes relaxed twigs
by the “superset” relationships among relaxed twigs. The
DAG structure is efficient for deriving relaxed queries with-
out user-specific relaxation specifications, while our XTAH
is useful for relaxing queries with relaxation specifications.

There exists a large body of work on XML ranking([15],
[18], [14], [11], [7]). Many focus on evaluating content
similarity. JuruXML[11] uses a path similarity measure
based on the lengths of a query path and an element path.
Such measure does not account for path semantics. Re-
cently, [7] proposed a family of structure scoring functions
based on the occurrence frequencies of query structures in
XML data. Our structure function, based on tree editing
distances, differentiates twigs that use different operations
even though the they have the same occurrence frequency
in data, which are considered equally relevant in [7]. We
also propose a function to combine structure distance and
content similarity in determining the overall relevancy.

9 Conclusion
The heterogeneous nature of XML data model creates the
need for approximate query answering. In this paper, we
present a cooperative XML (CoXML) system for user-
specific approximate query answering. We first propose a
relaxation-enabled query language that uses twigs as the
basic query model and extends the model with relaxation
constructs and controls. Such extensions allow users to
include their personalized relaxation specifications and to
control the relaxation process. We then develop a relax-
ation index structure called XML Type Abstraction Hi-
erarchy (XTAH) for systematic and scalable relaxations.
XTAH clusters its relaxed twigs for frequently-used twigs
into groups based on relaxation operations and distances,
where twigs in the same group are closer to each other
and use similar relaxation operations. Such an index struc-
ture greatly facilitates the searching of relaxed twigs for
any given relaxation constructs and/or controls. Futher, we
propose a semantics-oriented function for evaluating XML
structure similarity. Finally, we use the INEX 05 test col-
lection to evaluate our system. The evaluation results re-
veal that allowing users to specify relaxation constructs
and controls in queries is a useful feature, which enables
the system to provide more relevant answers. The results
also demonstrate that using the semantics-oriented distance
function yields results with better relevancy than using the
uniform-cost distance function. Further, compared to other
systems in INEX 05, our relaxation features enable our sys-
tem to retrieve approximate answers with more relevancy.

10 Acknowledgement
The research and development of CoXML has been a team
effort. We would like to acknowledge our CoXML mem-
bers,Tony Lee, Eric Sung, Anna Putnam, Christian Carde-
nas, Joseph Chen and Ruzan Shahinian, for their contribu-
tions in implementation and testing efforts.

References
[1] BerkeleyDB. http://www.sleepycat.com/.

[2] DB2XML. www.ibm.com/software/data/db2/.

[3] EvalJ. http://evalj.sourceforge.net/.

[4] INEX. http://inex.is.informatik.uni-duisburg.de/.

[5] Tamino. http://www.softwareag.com/tamino.

[6] S. Amer-Yahia, S. Cho, and D. Srivastava. XML Tree
Pattern Relaxation. InEDBT, 2002.

[7] S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava,
and D. Toman. Structure and Content Scoring for
XML. In VLDB, 2005.

[8] S. Amer-Yahia, L. V. S. Lakshmanan, and S. Pandit.
FleXPath: Flexible Structure and Full-Text Querying
for XML. In SIGMOD, 2004.

[9] J. K. B. Sigurbjornsson and M. de Rijke. Processing
Content-Oriented Xpath Queries. InCIKM, 2004.

[10] P. Buneman, B. Choi, W. Fan, R. Hutchison, R. Mann,
and S. Viglas. Vectorizing and Querying Large XML
Repositories. InICDE, 2005.

[11] D. Carmel, Y. S. Maarek, M. Mandelbrod, Y. Mass,
and A. Soffer. Searching XML Documents via XML
Fragments. InSIGIR, 2003.

[12] W. Chu, H. Yang, K. Chiang, M. Minock, G. Chow,
and C. Larson. CoBase: A Scalable and Extensible
Cooperative Information System.J. Intell. Inform.
Syst., 6(11), 1996.

[13] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Ef-
ficient Access Method for Similarity Search in Metric
Spaces. InVLDB, 1997.

[14] N. Fuhr and K. Groβjohann. XIRQL: A Query Lan-
guage for Information Retrieval in XML Documents.
In SIGIR, 2001.

[15] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram.
XRANK: Ranked Keyword Search Over XML Doc-
ument. InSIGMOD, 2003.

[16] Y. Kanza and Y. Sagiv. Flexible Queries Over
Semistructured Data. InPODS, 2001.

[17] S. Liu and W. W. Chu. RLXQuery: A Relaxation-
enabled XML Query Language. InUCLA Computer
Science Department Technical Report, 2006.

[18] S. Liu, Q. Zou, and W. Chu. Configurable Indexing
and Ranking for XML Information Retrieval. InSI-
GIR, 2004.

[19] I. Manolescu, D. Florescu, and D. Kossmann.
Answering XML Queries on Heterogeneous Data
Sources. InVLDB, 2001.

[20] A. Marian, S. Amer-Yahia, N. Koudas, and D. Srivas-
tava. Adaptive Processing of Top-k Queries in XML.
In ICDE, 2005.

[21] G. Salton and M. J. McGill.Introduction to Modern
Information Retrieval. McGraw-Hill, 1983.

[22] T. Schlieder. Schema-Driven Evaluations of Approx-
imate Tree Pattern Queries. InEDBT, 2002.

[23] A. Theobald and G. Weikum. Adding Relevance to
XML. In WebDB, 2000.

[24] A. Trotman and M. Lalmas. The Interpretation of
CAS. In INEX 05 Workshop.

[25] A. Trotman and B. Sigurbjornsson. Narrowed Ex-
tended XPath I NEXI. InINEX 04 Workshop, 2004.

[26] K. Zhang and D. Shasha. Simple Fast Algorithms
for the Editing Distance Between Trees and Related
Problems.SIAM J. Comput., 18(6):1245– 1262, 1989.

