1

CoXML: A Cooperative XML Query Answering System

Shaorong Liu and Wesley W. Chu

University of California, Los Angeles, Computer Science Department
Los Angeles, California, 90095 USA
{sliu, wwc}@cs.ucla.edu

Abstract

XML has become the standard format for infor-
mation representation and data exchange. The
heterogeneity nature of XML data creates the
need for approximate query answering. In this pa-
per, we present a cooperative XML (CoXML) sys-
tem that provides user-specific approximate query
answering. The key features of the system in-
clude: 1) a query relaxation language that al-
lows users to specify approximate search condi-
tions and to control the approximate search pro-
cess; 2) a relaxation index structure for systematic
and scalable query relaxation; and 3) both content
and structure similarity metrics for evaluating the
relevancies of approximate answers. We evaluate
our system with the INEX 05 test collections. The
results reveal that our language allows users to
effectively specify their relaxation specifications
and thus enables the system to provide answers
with more relevancy. The results also demonstrate
the effectiveness of the similarity metrics. Fur-
ther, compared to other systems in INEX 05, our
relaxation features enable our system to retrieve
approximate answers with more relevancy.

Introduction

Queries with both structure and content conditions are
more expressive and thus yield more accurate searches than
content-only queries. XML structures, however, are often
complex and heterogeneous due to the flexible nature of the
XML data model. For example, there are about 170 distinct
tags and more than 1000 distinct paths in the INEX XML
dataset. Thus, itis difficult and unrealistic for users to com-
pletely grasp the structural properties of the data and spec-
ify the exact structure constraints in queries. To remedy
this condition, we propose a cooperative XML (CoXML)
qguery answering system that relaxes query conditions to
less restricted forms to derive approximate answers.

Approximate query answering has been well-studied in
the relational model(e.g., [12]), which typically enlarges
the scopes of value conditions in queries. In the XML
model, queries contain both content and tree-like structure
conditions. Thus, in addition to relaxing content condi-
tions, we also need to approximately match structure con-
ditions in queries to derive approximate answers.

In addition, approximate query answering is usually
user-specific. Different users may have different specifi-
cations about which conditions to relax and how to relax
such conditions for the same query. The first step towards
user-specific approximate query answering is to provide a
guery language that allows users to include their personal-
ized relaxation specifications. Most existing XML query
languages (e.g., XPath, XQuery), however, only allow the

The increasing use of XML in scientific data reposito- SPecifications of exact conditions. Thus, we need a query
ries, digital libraries and Web applications has increased@nguage for user-specific approximate searching.
the need for flexible and effective methods to search these Further, with the explosive increase in the amount of
repositories. For example, the Initiative for the EvaluationXML data available, it is essential to have a systematic and
of XML retrieval (INEX)[4] was established in 2002 and Scalable method for approximate query answering. Most
has prompted researchers worldwide to evaluate the effe@Xisting work on XML relaxation(e.g., [6]) derive relaxed
tiveness of XML retrieval methods. gueries online based on the relaxation types (as introduced
There are two major paradigms for searching XML data:in Section 2.3) applicable to a query, which may not be
content-only queries and structure-and-content queriegcalable. In addition, existing work do not provide relax-
ation controls during approximate searching, which may
Permission to copy without fee all or part of this material is granted pro- yield undesired approximate answers.
vided that the copies are not made or distributed for direct commercial Finally, after query relaxation, a list of approximate an-
advantage, the VLDB copyright notice and the title of the publication andswerS will be generated. These approximate answers shall

its date appear, and notice is given that copying is by permission of th . .

Very Large Data Base Endowment. To copy otherwise, or to republishebe ranked based on thef" releV_anC'eS to bOt'h Fhe struqture
requires a fee and/or special permission from the Endowment. and content conditions in queries. Most existing ranking
Proceedings of the 32nd VLDB Conference, models (e.g., [21], [18], [14]) only measure the content
Seoul, Korea, 2006

similarities between queries and answers, and thus are in-

adequate for ranking approximate answers that use struc- atide $1

ture relaxations. Recently, [7] provided seminal studies on $2 title year $3 body $4
XML structure scoring properties and proposed a family of) | . _
structure scoring functions similar to tf&idf used in IR. data mining” 2000 SECT'O” %
The functions, based on the frequencies of query structures “frequent itemset”
in data, guarantee that the closer an answer is to a query, the

higher the structure score of the answer will be. XML data Figure 1: A sample XML twig

provides rich semantics in addition to structure frequencies.
Thus, itis essential to fully utilize data semantics in design-work. We conclude the paper in Section 9.
ing scoring functions to improve accuracy.

In this paper, we address the challenges as follows: 2 Foundation of XML Relaxation

First, we propose an XML approximate searching lan-3 1 XML Data Model
guage that enriches the standard tree-structured queries
(i.e.,twigs with relaxation constructs and controls. Relax- We model an XML document as an ordered, labeled tree
ation constructs specify which conditions to approximate’here each element is represented as a node and each
during search; and relaxation controls guide the approxielement—to-sub—element relatlpnsmp is represented as an
mate search process. These new features in our langua§€9€ between the corresponding nodes. We represent each
allow users to specify their approximate search more effechodeu as a triple id, label, <text>), whereid uniquely

tively, which in turn enables the system to provide answerddentifies the noddabel is the name of the corresponding
with more relevancy. element or attribute, artextis the corresponding element’s

Jextcontent or attribute’s valu@extis optional because not

Second, we introduce a relaxation index structure calle
every element has a text content.

XML Type Abstraction Hierarchy (XTAH) to provide sys-

tematic and scalable query relaxation. Given a specifi

twig, XTAH clusters its structurally relaxed twigs into CZ'Z XML Query Model

multi-level groups based on relaxation operations (as inA fundamental construct in most existing XML query lan-

troduced in Section 2.4) and distances. Each group in aguages is the tree-pattern queryteig, which selects ele-

XTAH contains a set of twigs that correspond to a specificments and/or attributes with specified tree structures. Thus,

relaxation specification. Thus, XTAH can efficiently re- we use the twig as our basic query model. Similar to the

lax a query based on the query’s relaxation specificationsree representation of XML data, we model a twig as a

by consulting the corresponding group. Further, due to itsooted tree. For example, Fig. 1 illustrates a sample twig,

multi-level organization, XTAH can relax a query at differ- which searches for articles with a title oddta mining, a

ent granularities by traversing up and down the hierarchy. year in2000and a body section aboufréquent itemset
Third, we evaluate XML structure similarity as inversely The twig consists of five nodes, where each node is asso-

proportional to the total cost of the relaxation operationsciated with an uniquéd next to the node. The IDs of the

in a way similar to tree editing distances. We propose dwig nodes can be skipped when the labels of all the nodes

semantics-oriented model for measuring a relaxation opare distinct. The text under a twig node, shown in italic, is

eration cost. The cost model differentiates twigs that uséhe content (or value) constraint on the node, which is to be

different relaxation operations, even though the twigs mayprocessed in a non-Boolean style.

have the same occurrence frequency in data. We also pro- Now we shall introduce the notations for the twigs.

pose a function that combines structure distance and corfsiven a twig7', we useT'root, T.V andT.E to repre-

tent similarity to measure the overall relevancy. sent its root, nodes and edges respectively. Given a twig

We have implemented the CoXML system, which takes"0dev (v € T'.V), we usev.label to denote the name of the
a relaxation-enabled query, derives approximate answef2de’s corresponding element or attribute. An edge from
guided by relaxation indexes, and ranks the answers basédeu to v, denoted as.,, ., represents either a parent-
on their structure and content relevancies. We evaluaté-child (i.e., °/") or an ancestor-to-descendant (i.e., "//")
the quality of approximate query answering provided by'elationship between andv. The term “twig” and “query
CoXML using the INEX test collection, the benchmark tree” will be used interchangeably throughout this paper.
collection for evaluating the effectiveness of XML search. .

2.3 XML Query Relaxation Types

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce the foundation for XML relaxation. In the XML model, there are two types of query relax-
In Section 3, we present an overview of our CoXML sys- ations: value relaxation and structure relaxation. A value
tem architecture and we introduce the relaxation languageelaxation expands a value scope to allow the matching of
in Section 4. In Section 5, we propose a relaxation indexadditional answers. A structure relaxation relaxes the con-
structure and describe how to use it to guide relaxation. Irstraint on a node or an edge in a twig to derive approxi-
Section 6, we present the semantics-oriented structure disaate answers. Value relaxation, which has been success-
tance and the overall ranking function. Section 7 presentully used in relational models, is orthogonal to structure
empirical evaluation studies and Section 8 provides relatedelaxation. In this paper, we focus on structure relaxation.

article article
titte year bo‘dy titlle ye‘ar bo‘c‘iy article
“data 20‘00 paragraph “data 2000 Section tit’le yTar sec‘tion
mining” mining” |

“data 2000 “frequent
mining” itemset”

(c)Node delete

“frequent
itemset”

(a)Node re-label

“frequent
itemset”

(b)Edge relax

Figure 2: Examples of structure relaxations for Fig.1

Given a twigT and a relaxation operation sequenge
we uses(T) to represent the twig obtained by applying
each relaxation operation into 7'.

Definition 3 Relaxed TwigGiven two twigs; andTs, we
call 7> a relaxed twig off if there exists a relaxation op-
eration sequences.t. s is valid w.rt. 7y and s(71) = Ts.

Definition 4 Redundant Relaxation OperatiorGiven a

Many structure relaxation types have been proposedVig 7' and a relaxation operation sequengea relaxation
([16], [22], [6]). We use the following three structure re- Operationr is redundant ins if s(T') = s'(T'), wheres’ = s
laxation types, similar to the ones proposed in [6], which- 7 i-€., @ sequence obtained by deletinfjom s.
capture most of the relaxation types used in previous work.

For example, given the twig in Fig. 1 and a relaxation

» Node RelabelWith this relaxation type, a node can gperation sequence= Rel(es; s4); Del($4), the relaxation
be relabeled to similar or equivalent labels accord'”goperationRel(e$1,$4) is redundant is. This is because ap-

to domain knowledge. We udeel(u, 1) to represent a
relaxation operation that renames a nad® label!.

For example, the twig in Fig. 1 can be relaxed to thatin

Fig. 2(a) by relabeling the nodsctionto paragraph

plying a single relaxation operatiael($4) has the same
effect as applying the sequencéo the twig.

Definition 5 Non-redundant Relaxation Operation Se-

e Edge Generalization With an edge relaxation, a duenceGiven a twigT’, a relaxation operation sequence
parent-to-child edge (/) in a twig can be general- 5 IS non-redundant if each relaxation operatienn s is

ized to an ancestor-to-descendant edge (/). We us&0n-redundant.

Rel(e,,) to represent a generalization of the edge be-
tween nodes andwv. For example, the twig in Fig. 1

By definition 5, we have the following properties about

can be relaxed to that in Fig. 2(b) by relaxing the edge’0n-redundant relaxation operation sequences.

between nodekodyandsection

Lemmal Given a twig7, a relaxation operation se-

o Node DeletionWith this relaxation type, a node may quences=r1;...;r, is non-redundant if and only i sat-
be deleted while preserving the “superset” property.sfies the following properties:

We useDel(v) to denote the relaxation of deleting
a nodev. Whenwv is a leaf node, it can simply be
removed. Whenv is an internal node, the children

of nodewv will be connected to the parent ofwith
ancestor-descendant edges (/).

For instance, the

1. Vres, if r;i=Relle,,), thenVj(i <j<n)r; #
Del(u) andr; # Del(v);

2. Vry, rj € s, if r;=Rel(w) andr;=Rel(v), thenu # v;

twig in Fig. 1 can be relaxed to that in Fig. 2(c) by 3 v r; € s, if r;=Rel(u) andr;=Del(v), thenu # v;

deleting the internal nodsody. Since the root node in

a twig is a special node representing the search con- The first property states that if a non-redundant relax-
text, we assume that any twig root cannot be deleted.ation operation sequenaecontains a relaxation operation

2.4 Properties of XML Relaxation

on an edge, ,, thens cannot contain a deletion of ei-
ther nodes (i.ea or v) on the edge. The second property
states that a non-redundant relaxation operation sequence

Let us now introduce definitions and lemmas related tacannot contain two node re-label relaxation operations on

guery relaxation.

Definition 1 Valid Relaxation OperationGiven a twigT’,
a relaxation operatiorr is valid for T' if;

e r=Rel(u,!l) isvalid ifu € T.V andu.label # I;
o r=Del(u) isvalid ifu € T.V andu # T.root;
e r=Rel(e,,)isvalidife,, € T.E ande,, = '/’

We user(T') to represent the twig transformed frdh
by applying the relaxation operation

Definition 2 Valid Relaxation Operation Sequendgiven
atwig T, a sequence of relaxation operations r1;...;r,
isavalid forT if V r; € s, r; is a valid relaxation operation
for T;, whereT; = r;(T;_1) andTy = T.

the same node. Finally, the third property states that a non-
redundant relaxation operation sequence cannot contain a
node re-label followed by a deletion of the same node.

Since we are only interested in non-redundant relaxation
operation sequences, we assume that every relaxation oper-
ation sequence is non-redundant. One interesting property
about non-redundant relaxation operation sequences is that
they are un-ordered. That is, changing the orders among
the relaxation operations in a sequence does not affect the
relaxed twig produced by the sequence. We formalize this
property as follows:

Lemma 2 Given a twig7" and a relaxation operation se-
guences, wheres is valid for T, let s’ be any permutation
of the relaxation operations ig, thens'(T") = s(T).

[l

i\ﬁlﬂi
\ 2 relaxation-enabled
T XML query
ranked
results
Ranking elaxation Relaxation
Module Engine Indexes

CoXML

Relaxation
Index Builder

XML XML
Database Enging (| Pocuments

Figure 3: The CoXML system architecture

For example, given the twig in Fig. 1, lef be an oper-
ation re-labeling nod85 to paragraphandr, be an oper-
ation relaxing the edge between noddsand$5. The se-

quencer;;ro has the same relaxation effect as the sequencginher user, however, may consider that onkeationnode

ro;r1 ON the twig.

By Lemma 2, given a twidl’, we have the following
upper bounds for the number of relaxed twigsof

Lemma 3 Given a twigT" with m distinct relaxation op-
erations applicable t@”, there are at mos2™ different re-

laxed twigs off".

There are at mogf}’) +... +(7") = 2™ combinations of re-

Database Engingéo search for approximate answers.
The Ranking Moduleganks the returned approximate
answers based on their relevancies to both structure
and content conditions in the query. This process will
be repeated until either there are enough approximate
answers returned or the query is no longer relaxable.

The CoXML system can run on top of any existing
XML database engine (e.g., BerkeleyDB[1], Tamino[5],
DB2XML[2]) that retrieves exactly matched answers.

4 XML Query Relaxation Language

Query relaxation is often user-specific. Different users may
have different preferences for the conditions to be approx-
imated in the same twig. For example, for the twig in
Fig. 1, one user may prefer relabeling the leaf nseletion

to deleting the internal nodeody, because the user consid-
ers an article with a component similar teectionnode on
“frequent itemset” in the body part as being relevant. An-

may contain deep discussions on “frequent itemset,” such
as "algorithms for mining frequent itemset.” The second
user may then reject the relaxation operation of relabeling
the nodesection Therefore, it is essential for an XML
approximate query answering system to provide a query
language that allows users to include their personalized re-
laxation specifications (e.g., which conditions to relax and
how to relax these conditions).

laxation operations. By Lemma 2, each combination gen- A number of XML approximate search languages have
erates at most one relaxed twig. Thus, there are at #fost 0€€n proposed. Most extend standard query languages with

relaxed twigs off".

3 CoXML Architecture

constructs for specifying approximate content conditions
(e.g., XIRQL[14] and NEXI[25]). XXL[23] is a flexible

XML search language that includes constructs for users to
specify approximate structure and content conditions. It,

In Fig.3, we present the architecture of our cooperativehowever, does not allow users to control the relaxation pro-
XML (CoXML) query answering system. The system con- cess. It may be often the case that users may want to specify
tains two major parts: off-line components for building re- their preferences over multiple relaxable query conditions.
laxation indexes and online components for processing anth addition, most existing XML query languages do not al-
relaxing queries, and ranking results.

¢ Building relaxation indexes

TheRelaxation Index Builderonstructs relaxation in-

dexes, WML Type Abstraction Herarchy (XTAH), for
a set of document collections.

e Processing, relaxing queries and ranking results
When a user posts a query, tRelaxation Engindirst
sends the query to &0ML Database Enginto search
for answers that exactly match the structure conditions ® R is a set of relaxation constructs specifying which

and approximately satisfy the content conditions in

the query. If enough answers are found, Renking

Moduleranks the results based on their relevancies to
the content conditions[18] and returns the ranked re-
sults to the user. If there are no answers or insuffi-
cient results, then thRelaxation Engingbased on the

low users to specify non-relaxable query conditions. For
instance, the second user in the example above may want
to specify that the nodgectioncannot be relaxed.

Therefore, we propose an XML relaxation language that
allows users to specify approximate search conditions and
to control the relaxation process. We represent a relaxation-
enabled query as atup@ =(7, R, C, S), where:

e 7 is atwig as described as Section 2.2;

conditions in7 may be approximated when needed,;

C is a boolean combination of relaxation controls stat-
ing how the query shall be relaxed;

S is a stop condition indicating when to terminate the
relaxation process.

user-specified relaxation constructs and controls, con-
sults the relaxation indexes for the best relaxed query. The execution semantics for a relaxation-enabled query
The relaxed query is then resubmitted to tKikIL

Q is as follows: first, we search for answers that exactly

match the query; and then we test the stop condifido
check whether there is any need to relax the query. If the
stop condition holds, the answers are returned to the use
Otherwise, we repeatedly relax the twig based on the
relaxation construct® and controls” until either the stop

r.

article $1 R = {Rel(ey), Del($3)}

C=!Del($4) O!Rel(ey) O!Rel(ey 50 O
‘ ‘ UseRType(NodeDelete, EdgeRelax)
“data 2000 Section $5 s= Atleast(20)
mining” ‘
“frequent itemset”

titte $2 year $3 body $4

conditionS is met or the twigZ is no longer relaxable.
Given a relaxation-enabled que@; we useQ.7, O.R,

Q.C and Q.S to represent its twig, relaxation constructs,
controls and stop condition respectively. Note that a twig is
required to specify a relaxation-enabled query, while relax-
ation constructs, controls and stop condition are optional.
When only a twig is presented in a query, we repeatedly
relax the twig to the (next) best relaxation candidate (i.e., a
relaxed twig that is (next) closest to the original twig based

Figure 4: An example of a relaxation-enabled XML query

e d(Q.7,T") < 7, whereT” stands for a relaxed twig
andr a distance threshold, specifies that the relaxation
should be terminated when the distance between the
original twig and a relaxed twig exceeds the threshold.

Fig. 4 presents an example of a relaxation-enabled

on a distance function) until the twig is no longer relaxable.query. The minimum number of answers to be returned

A relaxation construct for a quei§ can be in any of the
following forms:

for the query is 20. If there are insufficient exactly matched
answers available, then the edge betwieedyandsection

may be generalized and the nogsarmay be deleted when

e Rel(u), whereu € Q.7.V, specifies that the node
may be relabeled when needed;

e Del(u), whereu € Q.7.V, specifies that the node
may be deleted if necessary;

o Rel(ey,), Wheree, , € Q.7 .E, specifies that the
edgee,, , may be generalized when needed.

The relaxation controls for a quely is a conjunction
of any of the following forms:

needed. The relaxation controls specify that the Hwmtly
cannot be deleted during relaxation. For instanceee
tion about ‘frequent itemsétin an article’s appendix part

is irrelevant. Also, the edge betwearticle andtitle, i.e.,
article/title, and the edge betweanticle andbody; i.e.,ar-
ticle/body cannot be generalized. For instance, an article
with a reference to another article with a title afata min-
ing” is irrelevant. Finally, onlyedge relaxatiorand node
deletionrelaxation types may be used.

A relaxation-enabled XQuery, termed as RLXQuery,

has been developed. RLXQuery extends the standard XML

o !Ir, wherer € {Rel(u), Del(u), Rel(eyy) | u, v €

Q.7.V,e,, € Q.7 .E}, specifies that the nodecan- t

query language (XQuery) with relaxation constructs, con-

rols and stop conditions presented above. Interested users

not be relabeled or deleted, or the edge between nodeaay refer to [17] for details.

u andv cannot be generalized;

5 XML Relaxation Index

Prefer(u,ly,...,1l,), whereu € Q.7.V, states that
the nodeu is preferred to be relabeled to labéls..., |
l,, when needed;

n this section, we present a relaxation index structure that

provides systematic and scalable guidance to the relax-

ations of XML queries.

Reject(u,ly, ..., 1,), whereu € Q. 7.V, specifies a
list of unacceptable labels for the node

Given a queryQ, there are an exponential number of

relaxed queries fo© (Lemma 3). For example, a twig

with 5 nodes may have 10 relaxation operations applica-

RelaxOrder(r, ..., ry), Wherer; € Q. R (1 <i<n),
specifies the relaxation orders among the relaxatio
constructs inR: r; should be applied before and so
on so fortH;

UseRType(rty,...,rty), wherert; € {NodeRelabel,
NodeDelete, EdgeRelafl < i <k < 3), specifies the
set of relaxation types allowed to be used. By default
all three relaxation types may be used.

A stop conditionS is either:

ble to the twig, which in the worst case may havé (i.e.,

r1024) relaxed twigs. Therefore, deriving relaxed queries
online may not be very efficient when there are many re-
laxation operations applicable to a query. Further, during
guery relaxation, we usually need to compute similarities
(or distances) between twigs, which often requires infor-
mation from XML data. For example, in [7], each relaxed
'twig is associated with an “inverse document frequency,”
which requires the computations of the number of "docu-
ments” that exactly match the relaxed twig. Online com-

puting twig similarities or distances may not be scalable.
e AtLeast(n), wheren is a positive integer, specifies Thus, we need a systematic approach for scalable query re-

the minimum number of answers to be returned; or |

axation.
Many queries to the same XML dataset usually share

INote that the RelaxOrder clause is different from Lemma 2. Lemma 2the same or similar tree structures but with different con-

states changing the orders among relaxation operations in a sequence dg
not change the relaxed twig produced by the sequence; while RelaxOrdé_ : S -]
tion contains 17 distinct content-and-structure queries, in

clause control the orders of relaxed twigs generated.

Esnt conditions. For example, the INEX 05 [4] test collec-

atide atide with an unique 1D, where the IDs of internal nodes are pre-

ml|e ye‘ar bo‘dy tit’le yTar bo‘dy fixed with | and the IDs of leaf nodes are prefixed with
"sensor 2004 section ‘sensor 2004 paragraph Each !eaf nodd.; is a relaxed twig of the twig in Fig. 1L
network” | network” Each internal nodé; represents a group of relaxed twigs
“multicast routing” “multicast routing” that are closer to each other and use similar relaxation op-
(@) (b) erations. For example, all the relaxed twigs in the group

represented by the internal nofleuse the relaxation oper-
Figure 5: An example of re-using relaxed twigs for relaxing ation Rel(eg; g2).
queries with the same tree structure Given a relaxation operatian let I, be an internal node
.) with a label{r}. That is, I, represents a group of relaxed
which 5 queries (about 30%) use the same structure. StrquigS whose common relaxation operationiDue to the

turally relaxed twigs for a quer@ may be re-used to guide ee-fike organization of clusters, each relaxed twig belongs
the relaxations of queries with the same structure as that qf, only one cluster (i.e., one internal node), while a relaxed
Q. For example, the structure of the twig in Fig. 5(a) iS tyig may use multiple relaxation operations. Thus, it may
the same as that of the twig in Fig. 1. Thus, the twig inpg the case that not all the relaxed twigs that use the relax-
Fig. 2(a), a relaxed twig of Fig. 1, may be used for relax-ation operation: are within the group of,.. For example,

ing the twig in Fig. 5(a), as shown in Fig. 5(b). Further, ihea relaxed twigls, which uses two operatiorel(es; s»)

the similarity between the twig structure in Fig. 1 and thatg,q Rel(ess s3), is not included in the internal node that
in Fig. 2(a) can be used to measure the structure Close”eﬁépresentséel(eM s5)}, i.e., Is. This is because the re-

of the relaxed twig in Fig. 5(b) to that in Fig. 5(a). This |5xed twig Ls may belong to either group, and groupls
motivates us to build relaxation indexes for frequently used, is closer to the twigs in grouf.

twig structures, which may be obtained using data mining 1, support efficient searching or pruning of relaxed

techniques. We then use the relaxation indexes to guide thg jos that use a relaxation operationwe add a virtual link
relaxations of queries with the same (or similar) structure$,om the internal nodé. to an internal nodé. wherel. is
. s J J
as those frequently used twig structures. not a descendant node bf but the relaxed twigs withit;
,) use the relaxation operation By doing so, relaxed twigs
5.1 XML Type Abstraction Hierarchy - XTAH using the relaxation operationare either within the group

Our goal for constructing relaxation index structures is{r Or within the groups that are connected!toby virtual
two-folded: 1)re-using relaxed twigs to guide the relax-!'nks- For example, the mt_ernal noa]_gals connected to the
ation of queries with the same (or similar) structures agntérnal nodeds; andIss via virtual links. All the relaxed
those frequently used twig structures; and 2)efficientlytWigs using the relaxation operatidtel(es, s5) are within
searching relaxed twigs for queries with any relaxation conihe groups represented by internal nofigs/>s and/se.
structs and/or controls, which are essentially boolean com-
binations of relaxation operations. 5.2 Assigning Internal Representatives in XTAH

To this end, we propose an XML relaxation index struc-

ture, called XML T ype Abstraction Herarchy (XTAH). An The .relaxatu.)n process for a que@:_{T_, R.C S}ises-
XTAH for a frequently-used twig structur&, denoted as sentially an interactive process of finding a relaxed query

XTy, is a hierarchical cluster of the relaxed twigs Bf that is (next) closest to the original query and satisfies the

based on their corresponding relaxation operations and di elaxation controls{:l (|.e_., the best .relaxed query) until ei-
tances. More specifically, an XTAH is a multi-level labeled _Per t?ﬁ stoph_condg)noﬁ ']:5 met orQis nﬁ !onge[]relsxiblr?.
cluster with two types of nodes: internal and leaf nodes] 0 achieve this, a brute force approach is to check all the re-
A leaf node is a relaxed twig df. An internal node rep- axed twigs on the Iegf level, which is obwously inefficient.
To remedy this condition, we propose to assign representa-

resents a cluster of relaxed twigs using similar relaxatior}ives to internal nodes, where a representative summarizes
operations. The label of an internal node is the common re-, ! P

laxation operations (or types) used by the relaxed twigs i he distance characteristics of all the relaxed twigs cover_ed
the cluster. The higher level an internal node in an XTAH y the internal node. Internal node representatives facili-

the more general the label of the internal node, the less rgfﬂe the searching for the best relaxed query by traversing

laxed the twigs in the internal node. Such an organizatior?r.‘ XTAH in a top-down fashion, where the path is deter-

provides two significant advantages: 1)we can efficientl)/mne(j by the distance properties ?f the r.epr.esentatwes.
locate relaxed twigs satisfying a given relaxation construct, We p_roposel to l(ste M'trei_g_lAﬂ OMr a55|gn|ngdreprese?fya-
and/or control by traversing to internal nodes whose labelVeS 0 Internal nodes in an - M-tree provides an eiii-

satisfy the relaxation constructs and/or controls; and 2)W§

ient access method for similarity search in “metric space,”
can relax a query at different granularities by traversing ug-€- Where object similarities are defined by a distance

and down an XTAH. function with non-negativity, symmetry and triangle prop-

erties. Given a tree organization of data objects where all

Fig. 6 shows a sample XTAH for the twig in Fig21For i .
ease of references, we associate each node in the XTAF—PFE:‘ data objects are at the leaf level, M-tree assigns a data
' object covered by an internal nodi¢o be the representative

2Due to space limit, we only show part of the XTAH here. object ofI. Each representative object stores the covering

T article $1

title $2 year$3 bo‘dy$4

section$5

1, {Rel(eg; 5}

1, edge_relax

AT 1 {Rel(eg, o), Is {Rel(eg, 5, Lo article
title yearboldy Rel(g; ¢} Rel(g, ¢}
sectio title year bﬂdy
section
I‘.Z}'fle - |Ls atticle
fitle year body title year bfdy
section se(,!tio _

IG{‘WJ

Iy relax
I, node_relabel %
l10 {Del($2)} .l {Del($4)}
L, article I3 {Del($2), -
VAN Rel(gy, o} L5 article
year body \ . .
| title year section
section]
L, article ’ .
72 G [> Virtual links
year body
Il cluster-to-sub-
sectior) cluster edges

Figure 6: An example of XML relaxation index structure for the tWig

radius of the internal node, i.e., the maximal distance be-
tween the representative object and any data object covered
by the internal node. These covering radii are then used in
determining the path to a data object on the leaf level that is
(next) closest to a query object during similarity searches.
Many policies are available in M-tree for promoting a
data object on the leaf level to be an internal node’s rep-
resentative. In XTAH, given an internal nodewe select
a relaxed twig represented by a leaf node within the sub-
tree rooted af to be the representative &fif the relaxed
twig has the minimal covering radius. For an XTAH inter-
nal nodel, we useO; to denote its representative object
andcr(Oy) to represent the covering radius of the repre-
sentative object. Lef be a distance function that satisfies
the non-negativity, symmetry and triangle properties. Then
the distance between a que@ and any relaxed twid.
covered by an internal nodehas the following upper and
lower bounds:

d(Q,O])—C’I“(O]) < d(Q,L) < d(Q,O[)—i-CT(O]) (1)

These distance bounds are useful in determining the
searching paths. For example, given a qu@rgnd two in-
ternal noded; and/;, suppose that the upper bound of the
distance betwee@ and any twig covered by; is less than
the lower bound of the distance betwe@nand any twig
covered byl;. In this case, the relaxed twig that is closest
to the query cannot be within the group represented by the
internal node;. Thus, internal nodé; can be pruned from
the searching path. Due to the space limit, we do not in-
clude the detailed algorithm of utilizing covering radii and
distance bounds in searching the (next) best relaxed query,
which are similar to those presented in [13].

5.3 XTAH-Guided Query Relaxation Process

With the introductions of XTAH and its internal node rep-
resentatives, we now discuss how to use an XTAH for a
twig T' to guide the relaxations of a quegy where Q.7
has the same structure&s

Given a queryQ = {7,R,C,S}, an XTAH-guided
guery relaxation process consists of three steps:

e First, it updates the XTAH based on relaxation con-
trols in the queryQ. More specifically, it prunes

XTAH nodes from searching based on relaxation con-
trols such as non-relaxable twig nodes (or edges), un-
acceptable twig node relabels, or disallowed relax-
ation types. For example, the relaxation controls in
the sample query (Fig. 4) state that omgde dele-
tion andedge generalizatiomay be used for deriving
approximate answers. Thus, any XTAH node that is
either within the grougs, representingnode relabel

or connected td, by virtual links, will be disquali-
fied from searching. Similarly, the internal nodgg

and 4, which represent groups of relaxed twigs us-
ing relaxation operationRel($4) and Rel(eg g2) re-
spectively, will be pruned from searching based on the
relaxation controls. This step can be efficiently pro-
cessed using XTAH internal node labels.

After updating the XTAH, the process first repeatedly
searches for the (next) best relaxed query based on re-
laxation constructs in the query until either the stop
condition is met or all the relaxation constructs have
been used. For example, the query in Fig. 4 con-
tains two relaxation constructs: generalizing the edge
between nodedody and section(i.e., Rel(egy 35)),
deleting the nodgear (i.e., Del($3)). Thus, the pro-
cess will select the (next) best relaxed query from the
XTAH internal nodes that represent the two relaxation
constructs respectively. This step can also be effi-
ciently processed by using XTAH internal node labels
as well as representatives.

If further relaxation is needed, the process will then
repeatedly searches for the next best relaxed query us-
ing relaxation constructs in addition to those specified
in the query (i.e.Q.R). The process terminates when
either the stop condition holds or the query reaches its
relaxation limit. For example, for the query in Fig. 4,
the process may search for relaxed queries using re-
laxation operations such as deleting na@etionor
generalizing the edge between nodexly and sec-
tion. This step can be efficiently processed by utilizing
the distance information associated with XTAH inter-
nal node representatives.

article $1 R={Rel($5), Rel(e$1$3)} 6 XML Ranklng

$2yer tile$3 body 4 O 'DE®)DRA(E) 0 Query requation often generates a list of approximate an-
, O|OO) |d | %\t\im . Prefer($5, subsection, paragraph) swers, which need to be ranked before being returned to
checking” | S=AtLeast(25) users. A query contains both structure and content condi-
“Statf space tions. Thus, we shall rank an approximate answer based

explosion

on its relevancies to both the structure and content condi-
tions in the query. Many XML ranking models have been
proposed(e.g., [14], [18]). Most, however, only measure
the content similarity between an answer and a query and
thus, they are inadequate for ranking approximate answers
In this subsection, we discuss how to use an XTAH for athat use structure relaxations. Therefore, we need a simi-
twig T to guide the relaxations of queries with structureslarity metric for evaluating the relevancy of an answer to
“similar"to that of T'. the structure conditions in a query, i.structure relevancy

We first define the canonical form of a twig, which is In this following, we first present how to measure struc-
useful for describing twigs with similar structures. We as-ture relevancy and then discuss how to combine structure
sume that domain knowledge is available that predefines af¢levancy with content similarity.
unique label for each set of similar node labels.

Figure 7: A query with its twig similar to that in Fig. 1

5.4 Relaxing Queries with Similar Structures

6.1 Semantics-Oriented Structure Distance
Definition 6 The Canonical Form of A TwigGiven a twig
T, the canonical form of the twig, denoted &% can be ob-
tained fromT" by: 1) replacing any ancestor-to-descendant
edge (/") inT to a parent-to-child edge ('/’); 2) changing
the label of each node iffi to its predefined unique label;
and 3) removing the text of each node if any.

We define the structure relevancy of an ansyéo a query

Q to be the structure similarity between the twigZ and

the least relaxed twig’, where the answer exactly matches
the structure off”. Due to the tree-structure of the twigs,
the structure similarity between two twigs can be measured
in a way similar to tree editing distance metrics(e.qg., [26]).
Thus, we measure the structure distance between an answer
A and a queryQ, denoted astruct_dist(A, Q), as the
editing distance between the twig)7 and the least relaxed
twig 7", denoted ad(Q.7,T"), which is the total costs of
the relaxation operations that rel@x7 to T”:

Given a twigT', we useE(T') to denote the set of twigs
that have the same canonical formsiasBy Definition 6,
the canonical form of a twif’ has the most restricted struc-
ture constraints as compared to the twigsifil’'). Thus,
given a twig inE(T), any of its relaxed twigs is also a re-
laxed twig of 7. Therefore, an XTAH fofl'“ can be used n
to guide the relaxation of any que@ywhereQ.7 € E(T). struct dist(A, Q) = d(Q.T,T") = Z cost(r;) (2)

Fig. 7 presents a sample query, which searches for ar- i=1
ticles published i2000with a title on “model checking . .

where the sequence of relaxation operations...;r,

and a body section orspace state explosidnif there are 1 v k
insufficient number of exactly matched answers availablelfansformsQ.7 into 7, andcost(r;) (0 < cost(r;) < 1)is
the cost of a relaxation operation

the sectionnode may be relabeled and it is preferred to be > o : .
y b Existing edit distance algorithms do not consider the op-

relabeled to eithesubsectioror paragraph The canonical ; o Y
form of this twig is the same as the twig used in the S‘,Jlmloleeratmn cost. Assigning equal cost to each operation is sim-

XTAH (Fig. 6).3 Therefore, the sample XTAH can be used plg, but does not distinguish the semgntics_ of different oper-
to guide the relaxations of the query. Since the edge pedtions. Thgs, WE propose a semanUc_s-onented_cost model
tween nodebody(i.e., $4) andsection(i.e., $5) is ancestor- 0' measuring the cost of each relaxation operation.
to-descendant, the relaxation operatisi (e, s5) is inap- Before we introduce how we model the semantics of

plicable to the query. Therefore, we first prune the internaleacdh lretzlhaxatlon o?eran;)?(,lvlv[e dsr;all f'rdSt mtg)_duce h°>\’(VMV‘I’_e
nodels, whose label isRel(egy g5), as well as the internal MO0€! the Ssemantics o ata nodes. iven an

nodes that are connectedkovia virtual links, i.e. I,s and document collectiorD, we represent the semantics of each

I3, from searching. All the twigs within these three in- data nodey; as aN vector {w;i, wiz, ..., win'}, whereN

ternal nodes use the relaxation operatiti thus is t_he total number of (_:Iistinct terms i and w;y, _is the
P (¢sa.55) weight of thek®" term in the text ofv;. The weight of

they cannot be used for relaxing the query. After pruning .
the three internal nodes, we follow the process presented | term may be computed using Vector Space Model[21].
ith this representation, the more similar the two vectors,

Section 5.3 to derive approximate answers for the query. .
the more semantically closer the two nodes. For example,

Similarly, given a twig7’, an XTAH built for its canon- . .
ical form T¢ can also be used to guide the relaxations ofthaer;e)r({;[1 Or:r?sggt;ﬁggovsi?hht?\?a gi:eoggﬂ?epnvggg tr_}_?]tuc;f a
twigs whose canonical forms are subtree§’éf The pro- gsegtiorﬁ)node is semanticallv closer togaraara .hnode’
cess is similar to the one presented in the example above.) ! y paragrap
than asectionnode to digurenode.
3For simplicity, in this example, we assume that the unique label of Ve ‘how _'ntrOduce the cost model for each relaxation
each label is itself. operation with regard to a twi@ as follows:

e Node RelabeRel(u,) for article/title. Since the similarity between an article’s
titte and an author's title is low, the cost of generalizing

A node relabel operation changes the label of a nodte articleftitle to article//title may be high.

a twig fromw.label to a new label. Intuitively, the more
similar the new label is to the original label in semantics, : .
the less the cost of the operation will be. The similarity be-6'2 XML Ranking Function
tween two labelsy.label andl, denoted asim(u.label, 1), Given a queryQ, the relevancy of an answekto the query
can be measured as the cosine similarity between their cop, denoted asim (A, Q), is a function of two factors: the
responding vector representations in XML data. Thus, thetructure distance between the answer and the query, i.e.,
cost of a relabel operation is: struct_dist(A, Q), and the content similarity between the
. answer and the query, denoted@st_sim(A, Q). Intu-
cost(Rel(u,1)) = 1 — sim(u.label,) ®) itively, the larger the structure distance, the less the rele-

For example, in the INEX 05 data, the similarity betweenVancy; the larger the content similarity, the more the rele-
the vector representinggctionnodes and the vector repre- Vancy. Thus, we combine the two factors in a way similar
sentingparagraphnodes is 0.99, while the similarity be- to the_one used in XRank[15] for combining element rank
tween the vector fosectionnodes and the vector fligure ~ With distance as follows:

nodes is 0.38. Thus, it is more expensive to relabel to the . struct_dist(A,Q) ,

nodesectionin Fig. 1 toparagraphthan tofigure sim(A, Q) = a = % cont_sim (A, Q) (6)

¢ Node DeletionDel (u) wherea is constant between 0 and 1. When the structure
distance is zero, i.e., exact structure match, the relevancy
of the answerA to the queryQ is determined by the their
content similarity. When the answer does not exactly match
the query structure, the relevancy of the answer decreases
as the structure distance increases. We use our extended
vector space model for measuring content similarity, which
has been proven effective in past research[18].

The more similar a node that has a parent node(i.e.,
vlu or v/u in the twig) to its parent node in semantics,
the less the cost of deleting the nadeFor example, if we
delete thesectionnode from the twig in Fig. 1, we relax the
qguerysearching for body sections on “frequent itemstt”
searching for bodies on “frequent itemsetThe closer a
sectionnode in an articlebodypart to abodynode in an
article, the less the cost of deleting thectionnode. Let))
V., andV,, be the two vectors representing the union of / Experimental Evaluations

the vectors of the nngs in XML data satisfyinky andv 7.1 Datasets & Query Set

respectively. The similarity betweeryw andv, denoted

assim(v/u,v), can be measured as the cosine similarityWe use INEX 05 test collection for evaluating the quality
between the two vectof, ;, andV;,. Thus, we model the ~Of approximate query answering provided by our system.

cost of a node deletion as: The document collections, around 500MByte in size, con-
‘ sists of over 12,000 scientific articles from IEEE Computer
cost(Del(u)) =1 — sim(v/u,u) (4) Society Journals. Each article contains an average of 1532

elements and each element has an average depth of 6.9.
We use the content-and-structure (CAS) queries in
INEX 05 for our experimental studies. A CAS query is ex-
pressed in XPath with extensionsaifoutfunctions, which
are used to specify content conditions. The structure con-
ditions in a query are further classified into two types: sup-
port and target. A support specifies where to search and
o Edge GeneralizatioRel(e, ,,) a target suggests what to return. INEX 05 contains four
sub-tasks for each CAS query based on whether to approx-
imately or strictly match its target and support structure
conditions in a query. Post-analysis of the relevance assess-
ments in INEX 05 [24] concluded that there are in fact only
. I two different interpretations of the structure conditions in a
the vectors of the nodes in XML data satisfyingu and 4 ,ery: whether to strictly or approximately match the target
v//u respectively. The similarity between'u andv//u, — gycure condition. Thus, in our studies, we strictly match
denoted asim(v/u, v//u), can be measured as the cosineé,q 5,pport conditions and approximately match the target
similarity between vectors,, ,, andV,,/,,. Thus, the cost ¢ongitions, i.e., the so called VSCAS subtask in INEX 05.
for an edge generalization can be measured as: The INEX 05 test collection contains a set of 17 official
cost(Rel(ey.)) = 1 — sim(v/u,v//u) (5) CAS queri_es anq another set of 30 gnofficial single-branch
’ CAS queries. Since only 7 queries in the VSCAS subtask
For example, relaxingrticle/title in Fig. 1 toarticle//title from the first set has relevance assessments, we use queries
makes the title of an article’s author an approximate matchirom both sets for our experimental studies.

For example, in the INEX 05 data, the similarity between
the vector forsectionnodes insidéodynodes and the vec-
tor for bodynodes is 0.99, while the similarity between the
vector forkeywordnodes insidarticle nodes and the vec-
tor for article nodes is 0.2714. Thus, deleting theyword
node in Fig. 1 costs more than deleting #eetionnode.

The closer a node that has a parent node(i.e., v/u) to
a nodeu that has an ancestor nodéi.e., v/ /) in seman-
tics, the less the cost of the edge relaxatixi(e, ,,). Let
Vy/u @andV,,, /,, be two vectors representing the union of

<inex_topic topic_id="267" query_type="CAS" ct_nd43" > i .
<castille>//articlel/fm//at[about(., digital liaries")]</castitie> arthde 1 C=1Rel($3) O!Del($3) O Reject($2, bb)
<description>Articles containing "digital librariem their title.</description> fm $2

<narrative>I'm interested in articles discussinggifai Libraries as their main subjedt. H

Therefore | require that the title of any relevanticle mentions “digital library" explicitly. atl $3

Documents that mention digital libraries only untte bibliography are not relevant, as wgll |

as documents that do not have the phrase "digitalry" in their title.</narrative> “digital libraries”

</inex_topic>

Figure 8:Topic 267 in INEX 05 Figure 9:Representing topic 267 using our query relaxation language

o 0.1 0.3 0.5 0.7 0.9
UCost | 0.2584 | 0.2616 | 0.2828 | 0.2894 | 0.2916
SCost | 0.3319 | 0.3190 | 0.3196 | 0.3068 | 0.2957

+% 28.44 | 2194 | 13.04 6 4.08

7.2 Relevance Assessment

We use the relevance assessment in INEX 05 as the “gold
standard” for evaluating the accuracy of approximate an-
swers. The rele_/ance assessmentis obtained by asking eapgble 1:Comparisons of the evaluations for the results using semantics-
query author to judge an element’s relevancy based on Wriented vs. uniform-cost distance functions for nxCG@10

aspects: 1) how much the element discusses the query; and

2) how much the element focuses on the query. This twoations. We exclude queries with no relevance assessments
dimension relevancy value is then further combined into svailable in the VSCAS subtask. Only four multiple-
single value between 0 and 1 using either a strict functionbranch queries have these properties (topic 256, 264, 275
which discards partially relevant results, or a generalizeddnd 284). We test our system using these four queries and

function, which rewards partially relevant results. We usecompare our results with the best results from the official
the generalized function in our experimental studies. submissions in INEX 05 for the VSCAS subtask.

73 Test Runs Topic 256:_ /larticle[about(.//p, “data embedding”)]//p[about(.,
watermarking)]

We run three sets of experiments. The first set compareTopic 264: article[about(., “machine learning”) and about(.//sec,

the effectiveness of the semantics-oriented distance funcmutual information criterion”)]

tion with the uniform-cost distance function (i.e., assigningTopic 275: article[about(., abs, “data mining”)]//sec[about(.,

uniform cost 1 to each relaxation operation). The secondfrequent itemsets”)]

set tests the effectiveness of relaxation language and the réepic 284: //article[about(.//bdy, thread implementation) and

laxation approach by comparing the results with relaxatiorabout(.//bdy, operating system)]

controls with the results without using relaxation controls.

The third set compares the effectiveness of our system witi.4 Evaluation Results

other SVSterT‘S participated in INEX 05. We use the official INEX 05 evaluation metrics to evaluate

We use single-branch queries in the first experiment S%ur experimental results: normalized extended cumulative

We exclude queries with wildcards as target conditions, in__. : : : :
which any e?ement is an exact match qgueries with non2am (NXCG). nxC_G_ 'S & user-orlgnted eyaluathn metric,
relaxable structure conditions: and u’eries with no rele_s,lmllar to the precision/recall metric used in traditional IR.

’ d For a given rank i, the value of nxCG @i reflects the relative

Héin the user accumulated up to that rank, compared to the

ment set. We use the function in Equation(6) to rank ex'gain the user could have obtained if the system would have

perimental results with both uniform-cost and semanticsJ 4 -4 the optimum best ranking. For any rank, the nor-

oriented structure distances. We test our ranking functio alized value of 1 represents the iaeal performa{nce We

with the constand: varied from O'.l ©00.9. . .use the INEX evaluation software, EvalJ[3], for computing
For the second set of experiments, we use queries ithe nxCG values for our experimental results

which users have explicit specifications regarding structure Table 1 and Table 2 present the evaluation results for the

a_lppr(_)ximatiqns. Only one query _provides such SpeCif.icaﬁrst set of experiments using NxCG@10 and nxCG@25 re-
t'?r;r" 1€, t0|c:|c. 267,[‘?}; SZOWH .'nt.F'g' 8.dThe totplc CE’I_Tf'Sftsspectively. The second and third rows in each table show
ot three parts. castiie, description and narrative. € N{he evaluation results using a uniform-cost and a semantics-
formation contained in thearrativepart is the detailed de- oriented distance function respectively. The last row il-

scription of a user's information needs and is used for judgy, irates the performance improvements of the semantics-

ipg fesu" relevancy. The topic author cqnsiders an ,?‘r.tiqe’%riented distance function compared with the uniform-cost
t_|tle, |_.e.,atl, non-relax_ab_le and regards_utles about dlg'talolistance function. The results in these two tables ver-
libraries” under the bibliography part, i.éb, irrelevant.
Based on this narrative, we formulate the query using our o 0.1 0.3 0.5 0.7 0.9
relaxation language in Fig. 9. We ran this query with and gggz: 8‘2328 8'5323 853‘7‘; g'ggég 8'2282
without relaxation controls to evaluate the effectiveness of % 11568 T 1330 | 67 >3 70
the relaxation controls in our language.
For the third set of experiments, we use the official Table 2:Comparisons of the evaluations for the results using semantics-

multiple-branch queries, which have more relaxation vari-oriented vs. uniform-cost distance functions for nxCG@25

— With'fe'aﬁagf’”'comm' N°'fe'%xigi’;"’°””°' trols using nxCG@10 is 1, which is the perfect accuracy.
nx . : The relaxation controls in the query inform the system to
nxCG@25 0.8986 0.2365 ; L s

relax the query in a specific way, which in turn enables the

Table 3: Comparisons of the evaluation for the results with relaxation SyStém to provide results with more relevancy.

controls vs. without relaxation controle & 0.1) Table 4 presents the evaluation results for the third set of
_ experiments using the semantics-oriented distance function
topic Tonxfe@glé)ost TO”XfG@ézg’ost Tonxch@;S(?ost and witha = 0.1. We present the evaluations of our results
25504203 04248104733 0.5555 104693 0405s| for each topic as well as the evaluations of the best results
264 0.0 0.0069 0.0 0.0033 | 0.0739 | 0.0027 from the INEX 05 official submissions using nxCG@10,
275 | 0.7715| 0.638 | 0.589 | 0.5922 | 0.6369 | 05985 | NXCG@25 and nxCG@50 respectively. We also include
284 00 [01259] 0.0 |01233] 00 | 01233] the corresponding average performance for the four queries
average| 0.3002 | 0.2989 | 0.2656 | 0.3186 | 0.2950| 0.3050 | jp the |ast row. We observe that our results are compara-

ble with the top-1 results at nxCG@10. Our results out-
Table 4:Comparisons of the evaluations for our results<(0.1) vs. the perform the top-1 results by 20% at nxCG@25 and 3% at
official INEX 05 top-1 results in the VSCAS subtask nXCG@50. The results reveal that the relaxation features

. .) .) in our system enables the system to retrieve approximate
ify that the semantics-oriented distance function outperanswers with more relevancy.

forms the uniform-cost distance function. For example,

the semantics-oriented distance function outperforms the

uniform-cost function by 28.44% using nxCG@10 and8 Related Work
15.68% using nxCG@25 whenequals to 0.1.)

We note that the performances of the semantics-orienteft "Umber of XML approximate search languages have
distance function increases whenis close to 0, while Peen developed(e.g., [14], [25], [23], [11]). Many extend
the performance of the uniform-cost distance function in-the standard query languages with constructs for specify-
creases whem is close to 1. This is due to the differ- INJ approximate search conditions. For example, [25] in-
ences in the value distributions of two distance functionsroducesaboutfunctions for users to specify approximate
With the uniform-cost function, the distance between arcontent conditions and [23] includes regular expressions
approximate answer and a query is at least 1 because wWer SPecifying approximate structure conditions. Our query
need at least one operation to relax a query. With thé@nguage differs from existing languages in that our lan-
semantics-oriented function, the distance between an ajguage allows user to both SpeCIf_y approximate search con-
proximate answer and a query are within the range of 0 anditions and to control the approximate search process.

1 if only one operation is used. (Most approximate answers Searching XML data repositories is an active area of re-
for the queries in the first experiment set use only one research ([11], [9], [16], [7], [20], [8], [6], [10], [19]). Most
laxation operation.) The decay functiot uct-dist(A.Q) existing work on XML approximate query answering focus
(Fig. 10) differentiates values within 0 and 1 better whenon efficient algorithms for deriving top-k answers based on
o is small. For example, given two approximate answerghe relaxation strategies. For example, [7] proposed a DAG
A; and A,, suppose thastruct_dist(A;, Q)=0.05 and structure to organize relaxed twigs and use a matrix to rep-
struct_dist(As, Q) = 0.85. If = 0.9, then there is very resentaquery to speed up top-k processing. Our XTAH dif-
small difference betweea® (i.e., 0.99) anch"-% (i.e., fers from the DAG structure in that XTAH clusters relaxed
0.91); while ifa = 0.1, there are some difference betweentwigs into groups based on their relaxation operations and
%% (i.e., 0.89) anch®*% (i.e., 0.14). distances, while the DAG str_ucture organizes rela>§ed twigs

Table 3 presents the results for the second set of expelY the “superset” relationships among relaxed twigs. The
iments using NxCG@10 and nxCG@25. The second colPAG structure is efficient for deriving relaxed queries with-
umn shows the evaluation results with relaxation controlsPut user-specific relaxation specifications, while our XTAH
and the th”'d C0|umn presents the eva'uation resu'ts W|thl.s Useful for relaXIng quenes Wlth I’elaxa'[lon SpECIflcatlonS.
out relaxation controls. We note that results with relaxation ~ There exists a large body of work on XML ranking([15],
controls significantly outperform the results without relax- [18], [14], [11], [7]). Many focus on evaluating content
ation controls. For example, the evaluation result with con-similarity. JuruXML[11] uses a path similarity measure

based on the lengths of a query path and an element path.
—~ . Such measure does not account for path semantics. Re-
— cently, [7] proposed a family of structure scoring functions
based on the occurrence frequencies of query structures in
XML data. Our structure function, based on tree editing
distances, differentiates twigs that use different operations
~_| even though the they have the same occurrence frequency
vowororw in data, which are considered equally relevant in [7]. We
) also propose a function to combine structure distance and
Figure 10:The decay functiom” content similarity in determining the overall relevancy.

9 Conclusion [9] J. K. B. Sigurbjornsson and M. de Rijke. Processing

The heterogeneous nature of XML data model creates the Content-Oriented Xpath Queries. GIKM, 2004.

need for approximate query answering. In this paper, wg10] P. Buneman, B. Choi, W. Fan, R. Hutchison, R. Mann,
present a cooperative XML (CoXML) system for user- and S. Viglas. Vectorizing and Querying Large XML
specific approximate query answering. We first propose a Repositories. INCDE, 2005.

relaxation-enabled query language that uses twigs as ttﬁ
: : . 111] D. Carmel, Y. S. Maarek, M. Mandelbrod, Y. Mass
I h | with rel ’ T Lo ’
basic query model and extends the model with relaxatio and A. Soffer. Searching XML Documents via XML

constructs and controls. Such extensions allow users to

include their personalized relaxation specifications and to Fragments. IiSIGIR 2003.
control the relaxation process. We then develop a relaxf12] W. Chu, H. Yang, K. Chiang, M. Minock, G. Chow,
ation index structure called XML Type Abstraction Hi- and C. Larson. CoBase: A Scalable and Extensible
erarchy (XTAH) for systematic and scalable relaxations. Cooperative Information SystemJ. Intell. Inform.
XTAH clusters its relaxed twigs for frequently-used twigs Syst, 6(11), 1996.

into groups based on relaxation operations and distances o

where twigs in the same group are closer to each othe3] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Ef-
and use similar relaxation operations. Such an index struc- ficient Access Method for Similarity Search in Metric
ture greatly facilitates the searching of relaxed twigs for Spaces. IVLDB, 1997.

any given relaxation constructs and/or controls. Futher, we14] N. Fuhr and K. Grgjohann. XIRQL: A Query Lan-

propose a semantics-oriented function for eVaanting XML guage for Information Retrieval in XML Documents.
structure similarity. Finally, we use the INEX 05 test col- In SIGIR 2001.

lection to evaluate our system. The evaluation results re-

veal that allowing users to specify relaxation constructd15] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram.
and controls in queries is a useful feature, which enables ~ XRANK: Ranked Keyword Search Over XML Doc-
the system to provide more relevant answers. The results ~ument. INSIGMOD, 2003.

also Qemqnstrate that us_ing the semantics-oriented.distan] Y. Kanza and Y. Sagiv. Flexible Queries Over
functlon ylelds_ results with better relevancy than using the Semistructured Data. IRODS 2001.

uniform-cost distance function. Further, compared to other

systems in INEX 05, our relaxation features enable our sysk17] S. Liu and W. W. Chu. RLXQuery: A Relaxation-

tem to retrieve approximate answers with more relevancy. enabled XML Query Language. WCLA Computer
Science Department Technical Rep@Q06.

10 Acknowledgement [18] S. Liu, Q. Zou, and W. Chu. Configurable Indexing

The research and development of COXML has been ateam @nd Ranking for XML Information Retrieval. 18I

effort. We would like to acknowledge our CoXML mem- GIR, 2004.

bers,Tony Lee, Eric Sung, Anna Putnam, Christian Carderq gy |. Manolescu, D. Florescu, and D. Kossmann.
nas, Joseph Chen and Ruzan Shahinian, for their contribu- * aApswering XML Queries on Heterogeneous Data

tions in implementation and testing efforts. Sources. IVLDB, 2001.
References [20] A.Marian, S. Amer-Yahia, N. Koudas, and D. Srivas-
tava. Adaptive Processing of Top-k Queries in XML.
[1] BerkeleyDB. http://www.sleepycat.com/. In ICDE, 2005.
[2] DB2XML. www.ibm.com/software/data/db2/. [21] G. Salton and M. J. McGillIntroduction to Modern

. Information Retrieval McGraw-Hill, 1983.
[3] Evald. http://evalj.sourceforge.net/.)))
[22] T. Schlieder. Schema-Driven Evaluations of Approx-

[4] INEX. http://inex.is.informatik.uni-duisburg.de/. imate Tree Pattern Queries. EDBT, 2002.

[5] Tamino. http://www.softwareag.com/tamino. [23] A. Theobald and G. Weikum. Adding Relevance to
XML. In WebDB 2000.

[6] S.Amer-Yahia, S. Cho, and D. Srivastava. XML Tree)
Pattern Relaxation. IEDBT, 2002. [24] A. Trotman and M. Lalmas. The Interpretation of

CAS. InINEX 05 Workshop

[25] A. Trotman and B. Sigurbjornsson. Narrowed Ex-
tended XPath | NEXI. INNEX 04 Workshop2004.

8l S A Vahia. L. V. S. Laksh 4'S. Pandit [26] K. Zhang and D. Shasha. Simple Fast Algorithms
[8] S. Amer-Yahia, L. V. S. Lakshmanan, and S. Pandit.” ~ 4 the Editing Distance Between Trees and Related

FleXPath: Flexible Structure and Full-Text Querying ProblemsSIAM J. Comput.18(6):1245— 1262, 1989.
for XML. In SIGMOD, 2004. '

[7] S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava,
and D. Toman. Structure and Content Scoring for
XML. In VLDB, 2005.

