
Featherweight eJava

Alessandro Warth and Todd Millstein
Computer Science Department

University of California, Los Angeles
{awarth,todd}@cs.ucla.edu

Technical Report CSD-TR-060013
March 2006

1 Introduction

This paper details Featherweight eJava (FeJ), an extension of Featherweight
Java (FJ) that formally models the essential aspects of eJava. eJava is an
extension of Java containing expanders, a new language construct that supports
object adaptation. Expanders and the eJava language, as well as an introduction
to the FeJ formalism, are reported on in a companion OOPSLA 2006 paper [1].

2 Conventions

The metavariables S, T, and U range over all type names, including classes,
interfaces, and expanders; C and D range over class names; I and J range over
interface names; X and Y range over expander names; f and g range over field
names; m ranges over method names; x ranges over parameter names; s and t
range over terms; u and v range over values; TD ranges over type declarations,
including class, interface, and expander declarations; K ranges over constructor
declarations; M ranges over method declarations; MH ranges over method headers.

We share the sanity conditions of FJ and generalize them to our context
in the natural way. We also require all types expanded by a given expander X
(either as the “top” type or in an overriding expander) to be distinct.

3 Syntax

TD ::= class C extends D implements I {T f; K M}
| interface I extends I {MH}
| expander X of T implements I {T f=v; M} O

O ::= of C {M}

1

K ::= C(T f) {super(f); this.f=f;}

M ::= T m(T x) {return t;}

MH ::= T m(T x);

T ::= C | I | TX

t ::= x
| t.f
| t.m(f)
| new C(t)
| (T) t
| t with X
| peel t1

v ::= new C(v)
| v with X

4 Subtyping

S / T

T / T (S-Ref)

S / T T / U

S / U
(S-Trans)

S / T

SX / TX
(S-Expand)

TT (C) = class C extends D implements I {...}
C / D

(S-Cls1)

TT (C) = class C extends D implements I {...}
C / Ii

(S-Cls2)

TT (I) = interface I extends J {...}
I / Ji

(S-Int)

TT (X) = expander X of T implements I {...} O

TX / Ii

(S-Exp)

2

5 Dynamic Semantics

5.1 Field lookup

fields(C) = T f

fields(Object) = •

TT (C) = class C extends D implements I {T f; K M}
fields(D) = U g

fields(C) = U g, T f
(FieldsC)

fields(X) = T f = v

TT (X) = expander X of T implements I {T f = v; M} O

fields(X) = T f=v
(FieldsX)

5.2 Method Body Lookup

mbody(m, C) = (x, t)

TT (C) = class C extends D implements I {T f; K M}
U m(U x) {return t;} ∈ M

mbody(m, C) = (x, t)
(MBody-C1)

TT (C) = class C extends D implements I {T f; K M}
m is not defined in M

mbody(m, C) = mbody(m, D)
(MBody-C2)

mbody(m, X, C, D) = (x, t)

TT (X) = expander X of T implements I {T f=v; M} O
of D {M′} ∈ O U m(U x) {return t;} ∈ M′

mbody(m, X, C, D) = (x, t)
(MBody-X1)

TT (X) = expander X of T implements I {T f=v; M} O
of D {M′} ∈ O m is not defined in M′

TT (D) = class D extends E · · ·
mbody(m, X, C, D) = mbody(m, X, C, E)

(MBody-X2)

TT (X) = expander X of T implements I {T f=v; M} O
D is not defined in O

TT (D) = class D extends E · · ·
mbody(m, X, C, D) = mbody(m, X, C, E)

(MBody-X3)

3

TT (X) = expander X of T implements I {T f=v; M} O
U m(U x) {return t;} ∈ M

mbody(m, X, C, Object) = (x, t)
(MBody-X4)

5.3 Term Evaluation

t −→ t′

fields(C) = T f

(new C(v)).fi −→ vi

(E-ProjNew)

fields(X) = T f=v

(v with X).fi −→ vi

(E-ProjWith1)

fields(X) = T g=v f /∈ g

(v with X).f−→ v.f
(E-ProjWith2)

mbody(m, C) = (x, t0)
(new C(v)).m(u)−→ [x 7→ u, this 7→ new C(v)]t0

(E-InvkNew)

v = new C(v) mbody(m, X, C, C) = (x, t0)
(v with X).m(u)−→ [x 7→ u, this 7→ v with X]t0

(E-InvkWith1)

v = v’ with X’ mbody(m, X, Object, Object) = (x, t0)
(v with X).m(u)−→ [x 7→ u, this 7→ v with X]t0

(E-InvkWith2)

TT (X) = expander X of T implements I {T f=v; M} O
m is not defined in M

(v with X).m(u)−→ v.m(u)
(E-InvkWith3)

• ` v : S S / U

(U)(v) −→ v
(E-CastVal)

t0 −→ t′0
t0.f −→ t′0.f

(E-Field)

t0 −→ t′0
t0.m(t) −→ t′0.m(t)

(E-Invk-Recv)

ti −→ t′i
v0.m(v, ti, t) −→ v0.m(v, t′i, t)

(E-Invk-Arg)

ti −→ t′i
new C(v, ti, t) −→ new C(v, t′i, t)

(E-New-Arg)

4

t0 −→ t′0
(U)t0 −→ (U)t′0

(E-Cast)

t0 −→ t′0
t0 with X −→ t′0 with X

(E-With)

t0 −→ t′0
peel t0 −→ peel t′0

(E-Peel)

peel (v with X) −→ v (E-PeelWith)

6 Static Semantics

6.1 Field Type Lookup

ftype(f, T) = U

fields(C) = T f

ftype(fi, C) = Ti

(FType1)

fields(X) = T f=v

ftype(fi, UX) = Ti

(FType2)

fields(X) = T g=v fi /∈ g

ftype(fi, UX) = ftype(fi, U)
(FType3)

6.2 Method Type Lookup

mtype(m, T) = T→ T

TT (C) = class C extends D implements I {T f; K M}
U m(U x) {return t;} ∈ M

mtype(m, C) = U→U
(MType-C1)

TT (C) = class C extends D implements I {T f; K M}
m is not defined in M

mtype(m, C) = mtype(m, D)
(MType-C2)

TT (I) = interface I extends I {MH}
U m(U x); ∈ MH

mtype(m, I) = U→U
(MType-I1)

5

TT (I) = interface I extends I {MH}
m is not defined in MH

mtype(m, I) = mtype(m, Ii)
(MType-I2)

TT (X) = expander X of T implements I {T f=v; M} O
U m(U x) {return t;} ∈ M

mtype(m, SX) = U→U
(MType-X1)

TT (X) = expander X of T implements I {T f=v; M} O
m is not defined in M

mtype(m, SX) = mtype(m, S)
(MType-X2)

6.3 Term Typing

Γ ` t : T

x : T ∈ Γ
Γ ` x : T

(T-Var)

Γ ` t : T ftype(f, T) = U

Γ ` t.f : U
(T-Field)

Γ ` t0 : T0

mtype(m, T0) = T→T
Γ ` t: S S / T

Γ ` t0.m(t): T
(T-Invk)

fields(C) = S f
Γ ` t : T T / S

Γ ` new C(t) : C
(T-New)

Γ ` t0 : S S / T

Γ ` (T)t0 : T
(T-UCast)

Γ ` t0 : S T / S T 6= S

Γ ` (T)t0 : T
(T-DCast)

Γ ` t0 : S T //S S //T
stupid warning

Γ ` (T)t0 : T
(T-SCast)

TT (X) = expander X of T implements I {...} O
Γ ` t : U U / T

Γ ` t with X : UX
(T-With)

6

Γ ` t : TX

Γ ` peel t : T
(T-Peel)

6.4 Valid Method Overriding

override(m, U, T→T0)

mtype(m, U) = U→U0 implies T = U and T0 = U0

override(m, U, T→ T0)
(Over1)

override(m, X, T→T0)

TT (X) = expander X of T implements I {T f=v; M} O
U m(U x) {return t;} ∈ M

override(m, X, U→ U)
(Over2)

6.5 Method Typing

M OK in C

x : T, this : C ` t0 : U0 U0 / T0

TT (C) =class C extends D implements I {...}
override(m, D, T→T0)

T0 m(T x){return t0; } OK in C
(MethodOK)

M OK in X, T

x : T, this : TX ` t0 : U0 U0 / T0

T0 m(T x){return t0; } OK in X, T
(ExpMethodOK)

M OverrideOK in X, C

override(m, X, T→ T0)
T0 m(T x){return t0; } OK in X, C

T0 m(T x){return t0; } OverrideOK in X, C
(OverrideOK)

6.6 Interface Conformance

reallyImplements(T, I)

TT (I) =interface I extends J {MH}
S m(S x);∈ MH implies mtype(m, T) = U→U and override(m, I, U→U)

reallyImplements(T,J)
reallyImplements(T, I)

(ReallyImp)

7

6.7 Expander Overriding Typing

O OK in X

TT (X) = expander X of T implements I {...} O
C / T M OverrideOK in X, C

of C {M}OK in X
(OOK)

6.8 Class, Interface, and Expander Typing

TD OK

K =C(U g, T f) {super(g); this.f=f}
fields(D) = U g M OK in C

reallyImplements(C,I)
class C extends D implements I {T f; K M} OK

(COK)

• ` v : S S/T
M OK in X, T O OK in X
reallyImplements(TX,I)

expander X of T implements I {T f=v; M} O OK
(XOK)

reallyImplements(I,J)
interface I extends J {MH} OK

(IOK)

7 Type Soundness

Analogous with FJ, we assume that TD OK holds for each type declaration TD
in the range of TT .

7.1 Type Preservation

Lemma 7.1 If S/TX, then S has the form UX.
Proof By induction on the depth of the derivation of S/TX. Case analysis of
the last rule in the derivation.

• Case S-Ref: Then S = TX and the result follows.

• Case S-Trans: Then S/T0 and T0/TX. By induction T0 has the form UX0,
and by induction again S has the form UX.

• Case S-Expand: Then S has the form UX.

• Case S-Cls1: Then we are given that TX has the form C, which is a
contradiction.

8

• Case S-Cls2: Then we are given that TX has the form I, which is a
contradiction.

• Case S-Int: Then we are given that TX has the form I, which is a contra-
diction.

• Case S-Exp: Then we are given that TX has the form I, which is a con-
tradiction.

Lemma 7.2 If T/C, then T is a class.
Proof By induction on the depth of the derivation of T/C. Case analysis of the
last rule in the derivation.

• Case S-Ref: Then T = C and the result follows.

• Case S-Trans: Then T/T0 and T0/C. By induction T0 is a class E, and by
induction again T is a class.

• Case S-Expand: Then C has the form SX, which is a contradiction.

• Case S-Cls1: Then we are given that T is a class.

• Case S-Cls2: Then we are given that T is a class.

• Case S-Int: Then C is an interface, contradicting our initial assumption.

• Case S-Exp: Then C is an interface, contradicting our initial assumption.

Lemma 7.3 If Object/T, then T = Object.
Proof By induction on the depth of the derivation of Object/T. Case analysis
of the last rule in the derivation.

• Case S-Ref: Then T = Object.

• Case S-Trans: Then Object/T0 and T0/T. By induction T0 = Object,
and by induction again T = Object.

• Case S-Expand: Then Object has the form SX, which is a contradiction.

• Case S-Cls1: Then Object ∈ dom(TT), which contradicts an assumption
about FeJ programs.

• Case S-Cls2: Then Object ∈ dom(TT), which contradicts an assumption
about FeJ programs.

• Case S-Int: Then Object ∈ dom(TT), which contradicts an assumption
about FeJ programs.

• Case S-Exp: Then Object has the form SX, which is a contradiction.

Lemma 7.4 If SX/TX, then S/T.
Proof By induction on the depth of the derivation of SX/TX. Case analysis of
the last rule in the derivation.

9

• Case S-Ref: Then SX = TX, so S = T and the result follows by S-Ref.

• Case S-Trans: Then SX/T0 and T0/TX. By Lemma 7.1 T0 has the form
TX1. Therefore, by induction we have T1/T, and by induction again we have
S/T1. Then the result follows by S-Trans.

• Case S-Expand: Then S/T.

• Case S-Cls1: Then we are given that TX has the form C, which is a
contradiction.

• Case S-Cls2: Then we are given that TX has the form I, which is a
contradiction.

• Case S-Int: Then we are given that TX has the form I, which is a contra-
diction.

• Case S-Exp: Then we are given that TX has the form I, which is a con-
tradiction.

Lemma 7.5 If D/C and fields(C) = T f, then fields(C) ⊆ fields(D).
Proof By induction on the depth of the derivation of D/C. Case analysis of the
last rule in the derivation.

• Case S-Ref: Then D = C and the result follows.

• Case S-Trans: Then D/T and T/C. By Lemma 7.2 we have that T is some
class E. Then by induction we have fields(C) ⊆ fields(E), and by induction
again we have fields(E) ⊆ fields(D). Then by transitivity of ⊆ the result
follows.

• Case S-Expand: Then D has the form SX, which is a contradiction.

• Case S-Cls1: Then TT (D) = class D extends C implements I {S g; ...}.
By FieldsC we have fields(D) = T f, S g, so the result follows.

• Case S-Cls2: Then C is an interface, contradicting our initial assumption.

• Case S-Int: Then C is an interface, contradicting our initial assumption.

• Case S-Exp: Then C is an interface, contradicting our initial assumption.

Lemma 7.6 If S/T and ftype(f,T) = U, then ftype(f,S) = U.
Proof By induction on the depth of the derivation of S/T. Case analysis of the
last rule in the derivation.

• Case S-Ref: Then S = T and the result follows.

• Case S-Trans: Then S/T0 and T0/T. By induction we have ftype(f,T0) =
U, so by induction again also ftype(f,S) = U.

10

• Case S-Expand: Then S has the form SX0 and T has the form TX0 and S0/T0.
Case analysis of the last rule in the derivation of ftype(f,T) = U:

– Case FType1: Then T has the form C, which contradicts our earlier
assumption.

– Case FType2: Then fields(X) = T f = v and f = fi and U = Ti.
Then the result follows by FType2.

– Case FType3: Then fields(X) = T g = v and f 6∈ g and ftype(f,T0)
= U. By induction we have ftype(f,S0) = U, and the result follows by
FType3.

• Case S-Cls1: Then S is a class D and T is a class C. Since ftype(f,T) = U,
by FType1 we have fields(C) = T f and f = fi and U = Ti. By Lemma 7.5
we have fields(C) ⊆ fields(D), so the result follows by FType1.

• Case S-Cls2: Then T is an interface, contradicting the fact that ftype(f,T)
= U.

• Case S-Int: Then T is an interface, contradicting the fact that ftype(f,T)
= U.

• Case S-Exp: Then T is an interface, contradicting the fact that ftype(f,T)
= U.

Lemma 7.7 If reallyImplements(S, I) and mtype(m,I) = T→T, then
mtype(m,S) = T→T.
Proof By induction on the depth of the derivation of reallyImplements(S, I).
Since reallyImplements(S, I), by ReallyImp we have TT (I) = interface I
extends J {MH}. We have two cases:

• Case S0 m(S x); ∈ MH: Then by ReallyImp we have mtype(m,S) = U→U
and override(m, I, U→U). Then by Over1 we have that U = T and U = T,
so the result follows.

• Case m is not defined in MH: Since mtype(m,I) = T→T, by MType-I2
we have mtype(m,Ji) = T→T. Also, by ReallyImp we have
reallyImplements(S, Ji). Therefore the result follows by induction.

Lemma 7.8 If S′/S and mtype(m,S) = T→T, then mtype(m,S′) = T→T.
Proof By induction on the depth of the derivation of S′/S. Case analysis of
the last rule in the derivation.

• Case S-Ref: Then S′ = S and the result follows.

• Case S-Trans: Then S′/S0 and S0/S. By induction we have mtype(m,S0)
= T→T, and by induction again we have mtype(m,S′) = T→T.

• Case S-Expand: Then S′ has the form SX0 and S has the form SX1 and
S0/S1. Case analysis of the last rule in the derivation of mtype(m,S) =
T→T:

11

– Case MType-X1: Then TT (X) = expander X · · · {· · · M} O and T
m(T x) {return t;} ∈ M. Then the result follows by MType-X1.

– Case MType-X2: Then TT (X) = expander X · · · {· · · M} O and m
is not defined in M and mtype(m,S1) = T→T. Since S0/S1, by induction
also mtype(m,S0) = T→T. Then the result follows by MType-X2.

• Case S-Cls1: Then S′ is a class C and S is a class D and TT (C) = class
C extends D implements I {· · · M}. We have two subcases:

– Case U m(U x) {return t;} ∈ M: By COK we have M OK in C, so
by MethodOK we have override(m, D, U→U). Then by Over1 we
have that U = T and U = T. Then the result follows by MType-C1.

– Case m is not defined in M: Then the result follows by MType-C2.

• Case S-Cls2: Then S′ is a class C and S is an interface Ii and
TT (C) = class C extends D implements I {· · · M}. By COK we have
reallyImplements(C,Ii), so the result follows by Lemma 7.7.

• Case S-Int: Then S′ is an interface I and S is an interface Ji and TT (I) =
interface I extends J {MH}. By IOK we have reallyImplements(I,Ji),
so the result follows by Lemma 7.7.

• Case S-Exp: Then S′ has the form UX and S is an interface Ii

and TT (X) = expander X of U implements I · · ·. By XOK we have
reallyImplements(UX,Ii), so the result follows by Lemma 7.7.

Lemma 7.9 (Substitution) If Γ,x:T ` t : T and Γ ` s : S and S/T, then
Γ ` [x 7→ s]t : S for some S/T.
Proof By induction on the depth of the derivation of Γ,x:T ` t : T. Case
analysis of the last rule in the derivation.

• Case T-Var: Then t has the form x and x:T ∈ Γ,x:T. If x 6∈ x then
we have x:T ∈ Γ, so by T-Var we have Γ ` x : T. Since x 6∈ x, we have
[x 7→ s]x = x, and by S-Ref we know T/T, so the result follows. On the
other hand, if x ∈ x then x has the form xi and T = Ti and [x 7→ s]x =
si. We’re given that Γ ` si : Si and Si/Ti, so the result follows.

• Case T-Field: Then t has the form s.f and Γ,x:T ` s : U and ftype(f,U)
= T. By induction we have Γ ` [x 7→ s]s : U0 and U0/U. By Lemma 7.6
we have ftype(f,U0) = T, so by T-Field also Γ ` [x 7→ s]s.f : T, and
by S-Ref we have T/T.

• Case T-Invk: Then t has the form t0.m(t) and Γ,x:T ` t0 : T0 and
mtype(m,T0) = U→T and Γ,x:T ` t : U0 and U0/U. By induction we have
Γ ` [x 7→ s]t0 : T′0 and T′0/T0. By Lemma 7.8 we have mtype(m,T′0) =
U→T. Also by induction we have Γ ` [x 7→ s]t : U′0 and U′0/U0. Then by
S-Trans we have U′0/U. So by T-Invk we have Γ ` [x 7→ s]t0.m(t) : T,
and by S-Ref we have T/T.

12

• Case T-New: Then t has the form new C(t) and T = C and fields(C) = U f

and Γ,x:T ` t : U0 and U0/U. By induction we have Γ ` [x 7→ s]t : U′0
and U′0/U0. Then by S-Trans we have U′0/U. So by T-New we have
Γ ` [x 7→ s]new C(t) : C, and by S-Ref we have C/C.

• Case T-UCast: Then t has the form (T)t0 and Γ,x:T ` t0 : T0 and
T0/T. By induction we have Γ ` [x 7→ s]t0 : T′0 and T′0/T0. By S-Trans
also T′0/T, so by T-UCast we have Γ ` [x 7→ s](T)t0 : T. Finally, by
S-Ref we have T/T.

• Case T-DCast: Then t has the form (T)t0 and Γ,x:T ` t0 : T0 and
T/T0 and T 6= T0. By induction we have Γ ` [x 7→ s]t0 : T′0 and T′0/T0.
If T′0/T, then by T-UCast we have Γ ` [x 7→ s](T)t0 : T. Otherwise if
T/T′0, then by T-DCast we have Γ ` [x 7→ s](T)t0 : T. Otherwise we
have T′0 6 /T and T6 /T′0, so by T-SCast we have Γ ` [x 7→ s](T)t0 : T and
a stupid warning is generated. Finally, by S-Ref we have T/T.

• Case T-SCast: Then t has the form (T)t0 and Γ,x:T ` t0 : T0 and
T0 6 /T and T6 /T0. By induction we have Γ ` [x 7→ s]t0 : T′0 and T′0/T0.
If T′0/T, then by T-UCast we have Γ ` [x 7→ s](T)t0 : T. Otherwise
if T/T′0, then by S-Trans we have T/T0, which contradicts the fact that
T6 /T0, so it is not possible that T/T′0. Otherwise we have T′0 6 /T and T 6 /T′0,
so by T-SCast we have Γ ` [x 7→ s](T)t0 : T. Finally, by S-Ref we
have T/T.

• Case T-With: Then t has the form s with X and T has the form UX

and TT (X) = expander X of U0 · · · and Γ,x:T ` s : U and U/U0. By
induction we have Γ ` [x 7→ s]s : U1 and U1/U. Then by S-Trans we
have U1/U0, so by T-With we have Γ ` [x 7→ s]s with X : UX1. Since
U1/U, by S-Expand also UX1/U

X.

• Case T-Peel: Then t has the form peel s and Γ,x:T ` s : TX. By
induction we have Γ ` [x 7→ s]s : U and U/TX. By Lemma 7.1, U has the
form UX0. Then by T-Peel we have Γ ` [x 7→ s]peel s : U0. Finally, by
Lemma 7.4 we have U0/T.

Lemma 7.10 (Weakening) If Γ ` t : T and x 6∈ dom(Γ), then Γ,x:S ` t : T.
Proof By induction on the depth of the derivation of Γ ` t : T. Case analysis
of the last rule in the derivation.

• Case T-Var: Then t has the form y and y:T ∈ Γ. Since x 6∈ dom(Γ),
we have that x 6= y, so also y:T ∈ Γ,x:S. Therefore by T-Var we have
Γ,x:S ` y : T.

• Case T-Field: Then t has the form s.f and Γ ` s : U and ftype(f,U) = T.
By induction we have Γ,x:S ` s : U, so by T-Field also Γ,x:S ` s.f : T.

• Case T-Invk: Then t has the form t0.m(t) and Γ ` t0 : T0 and
mtype(m,T0) = T→T and Γ ` t : S and S/T. By induction we have Γ,x:S `
t0 : T0 and Γ,x:S ` t : S, so by T-Invk also Γ,x:S ` t0.m(t) : T.

13

• Case T-New: Then t has the form new C(t) and T = C and fields(C) =
T f and Γ ` t : S and S/T. By induction we have Γ,x:S ` t : S, so by
T-New also Γ,x:S ` new C(t) : C.

• Case T-UCast: Then t has the form (T)t0 and Γ ` t0 : T0 and T0/T. By
induction we have Γ,x:S ` t0 : T0, so by T-UCast also Γ,x:S ` (T)t0 :
T.

• Case T-DCast: Then t has the form (T)t0 and Γ ` t0 : T0 and T/T0

and T 6= T0. By induction we have Γ,x:S ` t0 : T0, so by T-DCast also
Γ,x:S ` (T)t0 : T.

• Case T-SCast: Then t has the form (T)t0 and Γ ` t0 : T0 and T0 6 /T and
T6 /T0 and a stupid warning is generated. By induction we have Γ,x:S `
t0 : T0, so by T-SCast also Γ,x:S ` (T)t0 : T.

• Case T-With: Then t has the form s with X and T has the form UX and
TT (X) = expander X of U0 · · · and Γ ` s : U and U/U0. By induction we
have Γ,x:S ` s : U, so the result follows by T-With.

• Case T-Peel: Then t has the form peel s and Γ ` s : TX. By induction
we have Γ,x:S ` s : TX, so the result follows by T-Peel.

Lemma 7.11 If mbody(m,C) = (x, t) and mtype(m,C) = T→T, then there exists
a class D and a type S such that C/D and S/T and x:T,this:D ` t : S.
Proof By induction on the depth of the derivation of mbody(m,C) = (x, t).
Case analysis of the last rule in the derivation.

• Case MBody-C1: Then TT (C) = class C · · · {· · · M} and
U m(U x) {return t;} ∈ M. Since mtype(m,C) = T→T, by MType-C1
we have that U = T and U = T. By T-Class we have M OK in C, so by
MethodOK we have x:T,this:C ` t : S and S/T. Finally, by S-Ref we
have C/C.

• Case MBody-C2: Then TT (C) = class C extends E implements I {· · · M}
and m is not defined in M and mbody(m,C) = mbody(m,E). Since mtype(m,C)
= T→T, by MType-C2 we have that mtype(m,E) = T→T as well. There-
fore, by induction there exists a class D and a type S such that E/D and
S/T and x:T,this:D ` t : S. By S-Cls1 we have C/E, so by S-Trans we
have C/D and the result follows.

Lemma 7.12 If TT (X) = expander X · · · {· · · M′} O and of D {M} ∈ O and
U m(U x) {return t;} ∈ M, then U m(U y) {return s;} ∈ M′.
Proof By XOK, OOK, and OverrideOK we have override(m, X, U→U).
Then the result follows by Over2.

Lemma 7.13 If mbody(m,X,C,D) = (x, t) and mtype(m,CX) = T→T and C/D and
TT (X) = expander X of S0 · · · and C/S0, then there exists a type T0 and a
type S such that CX/TX0 and S/T and x:T,this:TX0 ` t : S.

14

Proof By induction on the depth of the derivation of mbody(m,X,C,D) = (x, t).
Case analysis of the last rule in the derivation.

• Case MBody-X1: Then TT (X) = expander X · · · {· · · M′} O and
of D {M} ∈ O and U m(U x) {return t;} ∈ M. Then by Lemma 7.12
we have U m(U y) {return s;} ∈ M′. Then since mtype(m,CX) = T→T,
by MType-X1 we have that U = T and U = T. By XOK, OOK, and
OverrideOK we have U m(U x) {return t;} OK in X,D. Then by
ExpMethodOK we have x:T,this:DX ` t : S and S/T. Finally, since
C/D, by S-Expand we have CX/DX.

• Case MBody-X2: Then TT (X) = expander X · · · {· · · M′} O
and of D {M} ∈ O and m is not defined in M and TT (D) =
class D extends E · · · and mbody(m,X,C,E) = (x, t). By S-Cls1
we have D/E, so by S-Trans we have C/E. Then the result follows by
induction.

• Case MBody-X3: Then TT (X) = expander X · · · {· · · M′} O and C is not
defined in O and TT (D) = class D extends E · · · and mbody(m,X,C,E) =
(x, t). By S-Cls1 we have D/E, so by S-Trans we have C/E. Then the
result follows by induction.

• Case MBody-X4: Then TT (X) = expander X of S0 {· · · M} O and
U m(U x) {return t;} ∈ M. Then since mtype(m,CX) = T→T, by
MType-X1 we have that U = T and U = T. By XOK and ExpMethodOK
we have x:T,this:SX0 ` t : S and S/T. Finally, since C/S0, by S-Expand
we have CX/SX0.

Theorem 7.1 (Type Preservation) If Γ ` t : T and t −→ s, then there exists
some type S such that Γ ` s : S and S/T.
Proof By induction on the depth of the derivation of t −→ s. Case analysis
of the last rule in the derivation.

• Case E-ProjNew: Then t has the form (new C(v)).fi and s has the
form vi and fields(C) = T f. Since Γ ` t : T, by T-Field and T-New we
have that Γ ` new C(v) : C and Γ ` vi : Si and Si/Ti and ftype(f, C) = T.
Then by FType1 we have T = Ti, so the result follows.

• Case E-ProjWith1: Then t has the form (v with X).fi and s
has the form vi and fields(X) = T f = v, so by FieldsX we have
expander X of S implements I {T f = v; M} O. Then by XOK we
have • ` vi : Si and Si/Ti, so by Lemma 7.10 also Γ ` vi : Si. Since
Γ ` t : T, by T-Field and T-With we have Γ ` v with X : UX and
ftype(f, UX) = T, so by FType2 we have T = Ti and the result follows.

• Case E-ProjWith2: Then t has the form (v with X).f and s has the
form v.f and fields(X) = T g = v and f 6∈ g. Since Γ ` t : T, by T-Field
and T-With we have Γ ` v with X : UX and Γ ` v : U and ftype(f, UX) =
T. Then by FType3 we have ftype(f, UX) = ftype(f, U). Therefore by
T-Field we have Γ ` v.f : T, and by S-Ref we have T/T.

15

• Case E-InvkNew: Then t has the form new C(v).m(u) and s has the
form [x 7→ u,this 7→ new C(v)]t0 and mbody(m,C) = (x, t0). Since Γ `
t : T, by T-Invk we have Γ ` new C(v) : S′ and mtype(m,S′) = T→T
and Γ ` u : S and S/T. By T-New we have that S′ = C. Therefore by
Lemma 7.11 there exists a class D and a type U such that C/D and U/T and
x:T,this:D ` t0 : U. Then by Lemma 7.10 also Γ,x:T,this:D ` t0 : U,
and by Lemma 7.9 we have Γ ` [x 7→ u,this 7→ new C(v)]t0 : S and
S/U. Finally, by S-Trans we have S/T.

• Case E-InvkWith1: Then t has the form (v with X).m(u) and v has
the form new C(v) and s has the form [x 7→ u,this 7→ (v with X)]t0

and mbody(m,X,C,C) = (x, t0). Since Γ ` t : T, by T-Invk we have
Γ ` v with X : S′ and mtype(m,S′) = T→T and Γ ` u : S and S/T.
By T-With and T-New we have that S′ = CX and Γ ` v : C and
TT (X) = expander X of S0 · · · and C/S0. Further, by S-Ref we have
C/C. Therefore by Lemma 7.13 there exists a type T0 and a type U such
that CX/TX0 and U/T and x:T,this:TX0 ` t0 : U. Then by Lemma 7.10
also Γ,x:T,this:TX0 ` t0 : U, and by Lemma 7.9 we have that Γ `
[x 7→ u,this 7→ v with X]t0 : S and S/U. Finally, by S-Trans we have
S/T.

• Case E-InvkWith2: Then t has the form (v with X).m(u)
and v has the form v’ with X’ and s has the form
[x 7→ u,this 7→ (v with X)]t0 and mbody(m,X,Object,Object)
= (x, t0). Case analysis of the last rule in the derivation of
mbody(m,X,Object,Object) = (x, t0):

– Case MBody-X1: Then TT (X) = expander X of S0 · · · O and
of Object · · · ∈ O. By a sanity condition on FeJ programs we have
that S0 6= Object, and by OOK we have Object/S0. Then we have
a contradiction by Lemma 7.3.

– Case MBody-X2: Then Object ∈ dom(TT), which contradicts an
assumption about FeJ programs.

– Case MBody-X3: Then Object ∈ dom(TT), which contradicts an
assumption about FeJ programs.

– Case MBody-X4: Then TT (X) = expander X of S0 {· · · M} O and
U m(U x) {return t0;} ∈ M. Since Γ ` t : T, by T-Invk we have
Γ ` v with X : S′ and mtype(m,S′) = T→T and Γ ` u : S and S/T.
By T-With we have S′ = SX1 and Γ ` v : S1 and S1/S0. Then since
mtype(m,SX1) = T→T, by MType-X1 we have that U = T and U = T.
By XOK and ExpMethodOK we have x:T,this:SX0 ` t0 : U0 and
U0/T. Also, since S1/S0, by S-Expand we have SX1/S

X
0.

Therefore, by Lemma 7.10 we have Γ,x:T,this:SX0 ` t0 : U0 and by
Lemma 7.9 we have that Γ ` [x 7→ u,this 7→ v with X]t0 : S and
S/U0. Finally, by S-Trans we have S/T.

16

• Case E-InvkWith3: Then t has the form (v with X).m(u) and s =
v.m(u) and TT (X) = expander X of S0 {· · · M} O and m is not defined in
M. Since Γ ` t : T, by T-Invk we have Γ ` v with X : S′ and mtype(m,S′)
= T→T and Γ ` u : S and S/T. By T-With, S′ has the form SX1 and
Γ ` v : S1. Since mtype(m,S′) = T→T, by MType-X2 we have mtype(m,S1)
= T→T. Therefore, by T-Invk we have Γ ` v.m(u) : T . Finally, by
S-Ref we have T/T.

• Case E-CastVal: Then t has the form (T0)(v) and s has the form v
and • ` v : S0 and S0/T0. Then by Lemma 7.10 also Γ ` v : S0. Since
Γ ` t : T, by T-UCast, T-DCast, and T-SCast we have that T = T0,
so the result follows.

• Case E-Field: Then t has the form t1.f and s has the form t2.f and
t1 −→ t2. Since Γ ` t : T, by T-Field we have Γ ` t1 : T1 and ftype(f,T1)
= T. By induction, there exists some type T2 such that Γ ` t2 : T2 and
T2/T1. Then by Lemma 7.6 also ftype(f,T2) = T. Therefore, by T-Field
we have Γ ` t2.f : T, and by S-Ref we have T/T.

• Case E-Invk-Recv: Then t has the form s1.m(t) and s has the form
s2.m(t) and s1 −→ s2. Since Γ ` t : T, by T-Invk we have Γ ` s1 : S′

and mtype(m,S′) = T→T and Γ ` t : S and S/T. By induction we have
Γ ` s2 : S′′ and S′′/S′. Then by Lemma 7.8 we have mtype(m,S′′) = T→T.
Then by T-Invk we have Γ ` s2.m(t) : T and by S-Ref we have T/T.

• Case E-Invk-Arg: Then t has the form v.m(v,s1,s0) and s has the
form v.m(v,s2,s0) and s1 −→ s2. Since Γ ` t : T, by T-Invk we have
Γ ` v : S′ and mtype(m,S′) = T→T and v,s1,s0 = t and Γ ` t : S and
S/T. Assume that s1 is the ith element of t. By induction we have that
Γ ` s2 : S′i and S′i/Si. Then by S-Trans also S′i/Ti, so by T-Invk we
have Γ ` v.m(v,s2,s0) : T and by S-Ref we have T/T.

• Case E-New-Arg: Then t has the form new C(v,s1,s0) and s has the
form new C(v,s2,s0) and s1 −→ s2. Since Γ ` t : T, by T-New we
have fields(C) = T f and v,s1,s0 = t and Γ ` t : S and S/T and T =
C. Assume that s1 is the ith element of t. By induction we have that
Γ ` s2 : S′i and S′i/Si. Then by S-Trans also S′i/Ti, so by T-New we
have Γ ` new C(v,s2,s0) : C and by S-Ref we have C/C.

• Case E-Cast: Then t has the form (T0)s1 and s has the form (T0)s2

and s1 −→ s2. There are three subcases, depending on the last rule in
the derivation of Γ ` t : T.

– Case T-UCast: Then Γ ` s1 : S0 and S0/T0 and T = T0. By
induction we have Γ ` s2 : S′0 and S′0/S0. Then by S-Trans also
S′0/T0, so by T-UCast we have Γ ` (T0)s2 : T0 and by S-Ref we
have T0/T0.

17

– Case T-DCast: Then Γ ` s1 : S0 and T0/S0 and T0 6= S0 and and
T = T0. By induction we have Γ ` s2 : S′0 and S′0/S0. If S′0/T0 then
by T-UCast we have Γ ` (T0)s2 : T0. Otherwise, if T0/S′0 then
by T-DCast we have Γ ` (T0)s2 : T0. Otherwise we have S′0 6 /T0

and T0 6 /S′0, so by T-SCast we have Γ ` (T0)s2 : T0 along with the
generation of a stupid warning. Finally, by S-Ref we have T0/T0.

– Case T-SCast: Then Γ ` s1 : S0 and S0 6 /T0 and T0 6 /S0 and a stupid
warning is generated and T = T0. By induction we have Γ ` s2 : S′0
and S′0/S0. If S′0/T0 then by T-UCast we have Γ ` (T0)s2 : T0.
Otherwise, if T0/S′0 then by S-Trans also T0/S0, contradicting the
fact that T0 6 /S0, so it is not possible that T0/S′0. Otherwise we have
S′0 6 /T0 and T0 6 /S′0, so by T-SCast we have Γ ` (T0)s2 : T0. Finally,
by S-Ref we have T0/T0.

• Case E-With: Then t has the form t0 with X and s has the form
s0 with X and t0 −→ s0. Since Γ ` t : T, by T-With T has the form UX

and TT (X) = expander X of U0 · · · and Γ ` t0 : U and U/U0. By induc-
tion we have Γ ` s0 : U1 and U1/U, so by S-Trans also U1/U0. Therefore
by T-With we have Γ ` s : UX1. Finally, since U1/U, by S-Expand also
UX1/U

X.

• Case E-Peel: Then t has the form peel t0 and s has the form peel s0

and t0 −→ s0. Since Γ ` t : T, by T-Peel Γ ` t0 : TX. By induction we
have Γ ` s0 : U and U/TX, so by Lemma 7.1, U has the form SX. Therefore
by T-Peel we have Γ ` s : S. Finally, by Lemma 7.4 we have S/T.

• Case E-PeelWith: Then t has the form peel (v with X) and s = v.
Since Γ ` t : T, by T-Peel we have Γ ` v with X : TY. Then by T-With
we have X = Y and Γ ` v : T. Finally, by S-Ref we have T/T.

7.2 Progress

Lemma 7.14 (Canonical Forms) If Γ ` v : TX then v has the form v’ with X.
Proof Case analysis of the last rule in the derivation of Γ ` v : TX. By the
syntax of values, there are only two cases:

• Case T-New: Then TX is a class C, which is a contradiction.

• Case T-With: Then the result follows.

Lemma 7.15 If mtype(m,C) = T→T, then there exist x and t such that
mbody(m,C) = (x, t).
Proof By induction on the depth of the derivation of mtype(m,C) = T→T. Case
analysis of the last rule in the derivation:

• Case MType-C1: Then TT (C) = class C · · · {· · · M} and
T m(T x) {return t;} ∈ M, and the result follows by MBody-C1.

18

• Case MType-C2: Then TT (C) = class C extends D implements I {· · · M}
and m is not defined in M and mtype(m,D) = (x, t). By induction there
exist x and t such that mbody(m,D) = (x, t), and the result follows by
MBody-C2.

Lemma 7.16 If TT (X) = expander X of S0 · · · {· · · M} O and
U m(U y) {return s;} ∈ M, then there exist x and t such that mbody(m,X,C,D)
= (x, t).
Proof By strong induction on the number classes E such that D/E. There are
a number of cases:

• Case of D {M′} ∈ O and U’ m(U′ x) {return t;} ∈ M′: Then the result
follows by MBody-X1.

• Case of D {M′} ∈ O and m is not defined in M′: We have two subcases.
First suppose that TT (D) = class D extends E · · ·. By induction there
exist x and t such that mbody(m,X,C,E) = (x, t), and the result follows
by MBody-X2. Second, suppose D 6∈ dom(TT). Then D = Object.
Since we’re given that TT (X) = expander X of S0 · · · {· · · M} O and
U m(U y) {return s;} ∈ M, the result follows by MBody-X4.

• Case D is not defined in O: We have two subcases. First suppose that TT (D)
= class D extends E · · ·. By induction there exist x and t such that
mbody(m,X,C,E) = (x, t), and the result follows by MBody-X3. Second,
suppose D 6∈ dom(TT). Then D = Object. Since we’re given that TT (X)
= expander X of S0 · · · {· · · M} O and U m(U y) {return s;} ∈ M, the
result follows by MBody-X4.

Theorem 7.2 (Progress) If • ` t : T, then either t is a value, t contains a
subexpression of the form (U)(v) where • ` v : S and S6 /U, or there exists some
term s such that t −→ s.
Proof By induction on the depth of the derivation of • ` t : T. Case analysis
of the last rule in the derivation.

• Case T-Var: Then t has the form x and x:T ∈ •, which is a contradiction.
Therefore, T-Var cannot be the last rule in the derivation.

• Case T-Field: Then t has the form t0.f and • ` t0 : T0 and ftype(f,T0)
= T. By induction, there are three subcases.

– Case t0 is a value. Case analysis on the form of t0.

∗ Case t0 has the form new C0(v): Since • ` t0 : T0, by T-New
T0 is C0 and fields(C0) = S f and v has the same length as f.
Then since ftype(f,T0) = T, by FType1 we have that f = fi and
T = Si. Then by E-ProjNew we have t0.fi −→ vi.

∗ Case t0 has the form v with X: Then TT (X) =
expander X · · · {S f = v; M} O, and by FieldsX we have
fields(X) = S f = v. There are two subcases. First suppose that

19

f ∈ f, so f has the form fi. Then by E-ProjWith1 we have
t0.fi −→ vi. Now suppose that f 6∈ f. Then by E-ProjWith2
we have t0.fi −→ v.f.

– Case t0 contains a subexpression of the form (U)(v) where • ` v : S
and S6 /U. Then so does t.

– Case there exists some term s0 such that t0 −→ s0. Then by
E-Field we have t0.f −→ s0.f.

• Case T-Invk: Then t has the form t0.m(t) and • ` t0 : T0 and
mtype(m,T0) = T→T and • ` t : S and S/T. By induction, there are
three subcases.

– Case t0 is a value. By induction, there are three subcases.
∗ Case all terms in t are values. We do a case analysis on the form

of t0:
· Case t0 has the form new C(v): Then by T-New, T0

= C. Then by Lemma 7.15 there exist x and s0 such
that mbody(m,C) = (x, s0). Then by E-InvkNew we have
t0.m(t) −→ [x 7→ t, this 7→ new C0(v)]s0.

· Case t0 has the form v with X: Then TT (X) has the
form expander X of S0 · · · {· · · M} O. First suppose that
m is not defined in M. Then by E-InvkWith3 we
have t0.m(t) −→ v.m(t). Otherwise, we have that
U m(U y) {return s;} ∈ M, and we do a case analysis on
the form of v.
Suppose v has the form (new C(v)). By Lemma 7.16
there exist x and s0 such that mbody(m,X,C,C) = (x,
s0). Then by E-InvkWith1 we have t0.m(t) −→
[x 7→ t, this 7→ t0]s0.
Finally, suppose v has the form v’ with X. Since
U m(U y) {return s;} ∈ M, by MBody-X4
we have mbody(m,X,Object,Object) = (y, s).
Then by E-InvkWith2 we have t0.m(t) −→
[y 7→ t, this 7→ t0]s.

∗ Case some term in t contains a subexpression of the form (U)(v)
where • ` v : S and S 6 /U. Then so does t.

∗ Case no term in t contains a subexpression of the form
(U)(new C(u)) where C6 /U. Further, there is some ti ∈ t for
which there exists a term si such that ti −→ si. Further, all tj

such that 1 ≤ j < i are values. Then by E-Invk-Arg we have
t0.m(t) −→ t0.m(t1,. . .,ti−1,si,ti+1,. . .,tn).

– Case t0 contains a subexpression of the form (U)(v) where • ` v : S
and S6 /U. Then so does t.

– Case there exists some term s0 such that t0 −→ s0. Then by
E-Invk-Recv we have t0.m(t) −→ s0.m(t).

20

• Case T-New: Then t has the form new C0(t) and T is C0 and fields(C0)
= T f and • ` t : S and S/T. By induction, there are three subcases.

– Case all terms in t are values. Then also t is a value.

– Case some term in t contains a subexpression of the form (U)(v)
where • ` v : S and S 6 /U. Then so does t.

– Case no term in t contains a subexpression of the form (U)(v) where
• ` v : S and S6 /U. Further, there is some ti ∈ t for which there
exists a term si such that ti −→ si. Further, all tj such that 1 ≤
j < i are values. Then by E-New-Arg we have new C0(t) −→
new C0(t1,. . .,ti−1,si,ti+1,. . .,tn).

• Case T-UCast: Then t has the form (T)t0 and • ` t0 : S0 and S0/T. By
induction, there are three subcases.

– Case t0 is a value. Then by E-CastNew we have (T)t0 −→ t0.

– Case t0 contains a subexpression of the form (U)(v) where • ` v : S
and S6 /U. Then so does t.

– Case there exists some term s0 such that t0 −→ s0. Then by E-Cast
we have (T)t0 −→ (T)s0.

• Case T-DCast: Then t has the form (T)t0 and • ` t0 : S0 and T/S0 and
T 6= S0. By induction, there are three subcases.

– Case t0 is a value. If S0/T then by E-CastNew we have (T)t0 −→
t0. Otherwise S0 6 /T, so t contains a subexpression of the form (U)(v)
where • ` v : S and S 6 /U.

– Case t0 contains a subexpression of the form (U)(v) where • ` v : S
and S6 /U. Then so does t.

– Case there exists some term s0 such that t0 −→ s0. Then by E-Cast
we have (T)t0 −→ (T)s0.

• Case T-SCast: Then t has the form (T)t0 and • ` t0 : S0 and S0 6 /T and
T6 /S0 and a stupid warning is generated. By induction, there are three
subcases.

– Case t0 is a value. Then t contains a subexpression of the form
(U)(v) where • ` v : S and S6 /U.

– Case t0 contains a subexpression of the form (U)(v) where • ` v : S
and S6 /U. Then so does t.

– Case there exists some term s0 such that t0 −→ s0. Then by E-Cast
we have (T)t0 −→ (T)s0.

• Case T-With: Then t has the form t0 with X and T has the form UX and
TT (X) = expander X of U0 · · · and Γ ` t0 : U and U/U0. By induction
we have three subcases:

21

– Case t0 is a value. Then so is t.

– Case t0 contains a subexpression of the form (U)(v) where • ` v : S
and S6 /U. Then so does t.

– Case there exists some term s0 such that t0 −→ s0. Then by E-With
we have t0 with X −→ s0 with X.

• Case T-Peel: Then t has the form peel t0 and Γ ` t0 : TX. By induction
we have three subcases:

– Case t0 is a value. Then by Lemma 7.14, t0 has the form v with X.
Then by E-PeelWith we have peel t0 −→ v.

– Case t0 contains a subexpression of the form (U)(v) where • ` v : S
and S6 /U. Then so does t.

– Case there exists some term s0 such that t0 −→ s0. Then by E-Peel
we have t0 with X −→ s0 with X.

References

[1] Alessandro Warth, Milan Stanojević, and Todd Millstein. Statically scoped
object adaptation with expanders. In Proceedings of the 2006 ACM Con-
ference on Object-Oriented Programming Systems, Languages, and Applica-
tions, Portland, Oregon, October 2006.

22

