Featherweight eJava

Alessandro Warth and Todd Millstein
Computer Science Department
University of California, Los Angeles
{awarth,todd}@cs.ucla.edu

Technical Report CSD-TR-060013
March 2006

1 Introduction

This paper details Featherweight eJava (Fel), an extension of Featherweight
Java (FJ) that formally models the essential aspects of eJava. eJava is an
extension of Java containing expanders, a new language construct that supports
object adaptation. Expanders and the eJava language, as well as an introduction
to the FeJ formalism, are reported on in a companion OOPSLA 2006 paper [1].

2 Conventions

The metavariables S, T, and U range over all type names, including classes,
interfaces, and expanders; C and D range over class names; I and J range over
interface names; X and Y range over expander names; f and g range over field
names; m ranges over method names; x ranges over parameter names; s and t
range over terms; u and v range over values; TD ranges over type declarations,
including class, interface, and expander declarations; K ranges over constructor
declarations; M ranges over method declarations; MH ranges over method headers.

We share the sanity conditions of FJ and generalize them to our context
in the natural way. We also require all types expanded by a given expander X
(either as the “top” type or in an overriding expander) to be distinct.

3 Syntax

TD ::= class C extends D implements I {T f; K M}
interface I extends I {MH}

expander X of T implements I {T f=v; M} O

0 ::= of C {M}

K ::= C(T £) {super(f); this.f=f;}

M ::= T m(T X) {return t;}
MH ::= T (T X);
T::=C | I]|TX
t 1= X

| t.f

| t.m(F)

| new C(t)

| (T) t

| £t with X

| peel t1
v ::= new C(V)

| v with X

4 Subtyping

S«T

T«T (S-REF)
S«T T<U
—_— (S-TRANS)
S«U
S«T (SE)
_ -EXPAND
s*aT*
TT(C) = class C extends D implements I {..
(C) p {...} (S-Cis1)
C«D
TT(C) = class C extends D implements I {...
(©) p {...} (S-C1s2)
C«I;
TT(I) = interface I extends J {...
(1) [-
I<J;
TT(X) = expander X of T implements I {...} O
(X) = exp p {3 (S-Exp)

T* a1,

5 Dynamic Semantics

5.1 Field lookup

| fields(c) =T % |

fields(Object) = o

TT(C) = class C extends D implements I {T f; K M}
fields(D)=U g
fields(C)=U g, T

(F1ELDSC)

| fields(X) =T T = 7|

TT(X) = expander X of T implements I {T £ =v; M} 0

- — (F1ELDSX)
fields(X) =T £f=v
5.2 Method Body Lookup
’mbody(m7 C)= (%,t) ‘
TT(C) = class C extends D implements I {T f; K M}
U mn(U %) {return t;} €M
n(U %) {return K } (MBoby-C1)
mbody(m,C) = (X, 1t)
TT(C) = class C extends D implements I {T f; K M}
m is not defined in M
(MBoDY-C2)
mbody(m, C) = mbody(m, D)
| mbody(m, X,C,D) = (%t)]
TT(X) = expander X of T implements I {T f=v; M} O
D {M} el Un(x) {return t;} €
° '} e {rf urn ;) (MBobpY-X1)
mbody(m, X,C,D) = (X,t)
TT(X) = expander X of T implements I {T f=v; M} O
of D {M} €0 mis not defined in M
TT(D) = class D extends E ---
(MBobY-X2)
mbody(m, X, C,D) = mbody(m, X, C, E)
TT(X) = expander X of T implements I {T f=v; M} O
D is not defined in 0
TT(D) = class D extends E ---
(MBoDY-X3)

mbody(m, X, C,D) = mbody(m, X, C, E)

TT(X) = expander X of T implements I {T f=v; M} O
Um(U %) {return t;} € M
mbody(m, X, C,0bject) = (X,t)

(MBobDY-X4)

5.3 Term Evaluation

fields(C)=T £

(new C(¥)) .f; — v;

(E-PROINEW)

fields(X) =T £=v
(v with X).f; — v;

(E-PROJWITH1)

fieldsX)=T g=v fé§g
(v with X) .f— v.f

(E-PROJWITH2)

mbOdy(m7 C) = (§7 tO)

(new C(¥)).m(W) — [X +— W, this — new C(W)]tg

(E-INVKNEW)

v = new C(¥) mbody(m,X,C,C) = (%, to) (
(v with X) .m(@)— [X — W, this — v with Xt

E-INvKWITH1)

v=v’ with X’ mbody(m, X, 0bject, Object) = (X, to)
(v with X).m(@) — [X +— U, this — v with X]tg

(E-INVKWITH2)

TT(X) = expander X of T implements I {T f=v; M} O
m is not defined in M

- — — (E-INVKWITH3)
(v with X).m@@) — v.m(@)

ekv:S S<U
MW —v

(E-CASTVAL)

(E-FIELD)

E-INVK-
to.m(E) — t,.m(E) (E-INvK-RECV)

t; — t

- = —— (E-INVK-ARG)
vo.m(¥,t;, T) — vo.m(¥,t}, T)

) Vg

t; — t]

(E-NEW-ARG)

new C(V,t;, t) — new C(¥,t}, T)

BE-CasT
V), — (U)t, ()
to — t6
E-WiTH
to with X — t{ with X ()
to — t
E-PEEL
peel t, — peel t; ()
peel (vwithX) — v (E-PEELWITH)
6 Static Semantics
6.1 Field Type Lookup
| ftype(£,T) = U]
fields(C)=T £
FTypPEl
ftype(£;,C) =T, ()
fields(X) =T £=v
FTYPE2
ftype(£;,U0%) = T; ()
fields(X) =T g=v f,¢g (FTypE3)
ftype(£:,U%) = ftype(£:,0)
6.2 Method Type Lookup
’ mitype(m, T) = T— T‘
TT(C) = class C extends D implements I {T f; K M}
U n(U %) t t;}eM
n(U 3) {re urn } (MTypE-CI)
mtype(m, C) = U—U
TT(C) = class C extends D implements I {T f; K M}
m is not defined in M
(MTyPE-C2)
mtype(m, C) = mtype(m,D)
TT(I) = interface I extends I {MH}
U n(U X); € MH
(MTYPE-I1)

mtype(m, I) = U—U

TT(I) = interface I extends I {MH}
m is not defined in MH
(MTyYPE-12)

mtype(m,I) = mitype(m, I;)

TT(X) = expander X of T implements I {T f=v; M} O
U n(U X) {return t;} €M
{ ; (MTyPE-X1)

mtype(m, S¥) = U—U

TT(X) = expander X of T implements I {T f=v; M} O
m is not defined in M
(MTyYPE-X2)

mtype(m, S*) = mtype(m,S)

6.3 Term Typing

x:Tel
_ (T-VAR)
I'kFx:T

CHt:T type(£,T) =U
Jtype(£. T) (T-FIELD)
'Ftf:U

I'Htg:Ty
mitype(m, Tg) = T—T
r-%:s S«T
— (T-INVK)
'+ to .m(t): T

fields(C) =8 £
'Ft:T T«sS
— (T-NEwW)
I'+new C() : C

'+ to: S S«T
(T-UCasT)
LE(T)ty: T
I'kty:S T<S T#8S
0 # (T-DCasT)
I'E(T)t,: T
Thto:S T4S SHT
stupid warning (T-SCAST)
LE(T)ty: T

TT(X) = expander X of T implements I {...} O
'Ft:U U«T
(T-Wi1TH)

T'Ftwith X:U%

'kt TX

_— (T-PEEL)
I'peel t:T
6.4 Valid Method Overriding
’override(m, U, T—Ty) ‘
mitype(m,U) = U—Up implies T = U and Ty = Uy (OvER1)

override(m, U, T— To)

’ override(m, X, T—Tp) ‘

TT(X) = expander X of T implements I {T f=v; M} O
U m(U X) {return t;} € M

= OVER2
override(m, X, U— U) ()
6.5 Method Typing
i:T,thiS:CFto:Uo Up < Ty
TT(C) =class C extends D implements I {...}
override(m,D, T—Ty)
— - (METHODOK)
To m(T X){return tg;} OK in C
X:T,this: T¥*Ftg: U Ug<T
—— 0- =0 00 (ExpMETHODOK)
To m(T X){return tp;} OK in X,T
M OverrideOK in X, C ‘
override(m, X, T— To)
To m(T X){return to;} OK in X, C
2 0 {return to; } (OVERRIDEOK)

To m(T X){return t¢; } OverrideOK in X,C

6.6 Interface Conformance

reallyImplements(T, I) ‘

TT(I) =interface I extends J {MH}
S m(S %) ;€ MH implies mtype(m, T) = U—U and override(m, I, U—U)
reallyImplements(T,J)

reallyImplements(T, I)
(REALLYIMP)

6.7 Expander Overriding Typing

TT(X) = expander X of T implements I {...} O
CaT M OverrideOK in X, C

of C {M}OK in X

6.8 Class, Interface, and Expander Typing

K=C(U g, T £) {super(g); this.f=f}
fieldsD)=Ug MOKinC
reallyImplements(C,I)

class C extends D implements I {T f; K M} OK

o-v:S S«T
MOK in X, T 00K in X
reallyI'mplements(T*T)

expander X of T implements I {T f=v; M} 0 OK

reallyImplements(1,J)
interface I extends J {MH} OK

7 Type Soundness

(OOK)

(COK)

(XOK)

(I0K)

Analogous with FJ, we assume that TD 0K holds for each type declaration TD

in the range of T'T.

7.1 Type Preservation
Lemma 7.1 If S<T¥, then S has the form U%.

Proof By induction on the depth of the derivation of S<T*. Case analysis of

the last rule in the derivation.

e Case S-REF: Then S = T* and the result follows.

e Case S-TRANS: Then S<Ty and To<T*. By induction Ty has the form U},

and by induction again S has the form U%.

e Case S-EXPAND: Then S has the form U%.

e Case S-Crsl: Then we are given that T* has the form C, which is a

contradiction.

Case S-CLS2: Then we are given that T* has the form I, which is a
contradiction.

Case S-INT: Then we are given that T* has the form I, which is a contra-
diction.

Case S-ExP: Then we are given that T* has the form I, which is a con-
tradiction.

Lemma 7.2 If T<C, then T is a class.
Proof By induction on the depth of the derivation of T<C. Case analysis of the
last rule in the derivation.

Case S-REF: Then T = C and the result follows.

Case S-TRANS: Then T<Ty and T(<C. By induction Ty is a class E, and by
induction again T is a class.

Case S-EXPAND: Then C has the form S*, which is a contradiction.

Case S-CLs1: Then we are given that T is a class.

Case S-CLs2: Then we are given that T is a class.

Case S-INT: Then C is an interface, contradicting our initial assumption.

Case S-Exp: Then C is an interface, contradicting our initial assumption.

Lemma 7.3 If Object<T, then T = Object.
Proof By induction on the depth of the derivation of Object<«T. Case analysis
of the last rule in the derivation.

Case S-REF: Then T = Object.

Case S-TRANS: Then Object«Ty and To<T. By induction Ty = Object,
and by induction again T = Object.

Case S-EXPAND: Then Object has the form S*, which is a contradiction.

Case S-CLs1: Then Object € dom(TT), which contradicts an assumption
about FelJ programs.

Case S-CLs2: Then Object € dom(TT), which contradicts an assumption
about FeJ programs.

Case S-INT: Then Object € dom(TT), which contradicts an assumption
about FelJ programs.

Case S-Exp: Then Object has the form S*, which is a contradiction.

Lemma 7.4 If S*«T¥, then S«T.
Proof By induction on the depth of the derivation of S*«T*. Case analysis of
the last rule in the derivation.

Case S-REF: Then S* = T%, so S = T and the result follows by S-REF.

Case S-TRANS: Then S*«Ty and To<T*. By Lemma 7.1 Ty has the form
TX. Therefore, by induction we have T;<T, and by induction again we have
S<T;. Then the result follows by S-TRANS.

Case S-EXPAND: Then S«T.

Case S-CLS1: Then we are given that T* has the form C, which is a
contradiction.

Case S-CLs2: Then we are given that T* has the form I, which is a
contradiction.

Case S-INT: Then we are given that T* has the form I, which is a contra-
diction.

Case S-ExP: Then we are given that T* has the form I, which is a con-
tradiction.

Lemma 7.5 If D<C and fields(C) = T £, then fields(C) C fields(D).
Proof By induction on the depth of the derivation of D<C. Case analysis of the
last rule in the derivation.

Case S-REF: Then D = C and the result follows.

Case S-TRANS: Then D«T and T<C. By Lemma 7.2 we have that T is some
class E. Then by induction we have fields(C) C fields(E), and by induction
again we have fields(E) C fields(D). Then by transitivity of C the result
follows.

Case S-EXPAND: Then D has the form S*, which is a contradiction.

Case S-CLsl: Then TT(D) = class D extends C implements I {S g;
By FIELDSC we have fields(D) =T £, S g, so the result follows.

Case S-CLS2: Then C is an interface, contradicting our initial assumption.
Case S-INT: Then C is an interface, contradicting our initial assumption.

Case S-Exp: Then C is an interface, contradicting our initial assumption.

Lemma 7.6 If SqT and ftype(£,T) = U, then ftype(£,8) = U.
Proof By induction on the depth of the derivation of S<T. Case analysis of the
last rule in the derivation.

Case S-REF: Then S = T and the result follows.

Case S-TRANs: Then S<Ty and To<T. By induction we have ftype(£f,To) =
U, so by induction again also ftype(£,3) = U.

10

e Case S-EXPAND: Then S has the form S¥ and T has the form T and So<Tj.
Case analysis of the last rule in the derivation of ftype(£,T) = U:

— Case FTyPELl: Then T has the form C, which contradicts our earlier
assumption.

— Case FTYPE2: Then fields(X) =T f = Vand £ = £f; and U = T;.
Then the result follows by FTYPE2.

— Case FTYPE3: Then fields(X) =T g = v and £ ¢ g and ftype(£,To)
= U. By induction we have ftype(£,So) = U, and the result follows by
FTYPE3.

Case S-CLs1: Then S is a class D and T is a class C. Since ftype(£,T) = U,
by FTYPE1 we have fields(C) =T f and £ = f; and U= T;. By Lemma 7.5
we have fields(C) C fields(D), so the result follows by FTYPEL.

Case S-CLs2: Then T is an interface, contradicting the fact that féype(£,T)

=T.

e Case S-INT: Then T is an interface, contradicting the fact that ftype(£,T)
=TU.

e Case S-ExP: Then T is an interface, contradicting the fact that ftype(£,T)
=T

Lemma 7.7 If reallyImplements(S, I) and miype(m,I) = T—T, then

mtype(m,S) = T—T.

Proof By induction on the depth of the derivation of reallyImplements(S, I).
Since reallyImplements(S, I), by REALLYIMP we have TT(I) = interface I
extends J {MH}. We have two cases:

e Case Sp m(S x); € MH: Then by REALLYIMP we have mtype(m,S) = U—U
and override(m, I, U—U). Then by OVER1 we have that U=T and U = T,
so the result follows.

e Case m is not defined in MH: Since mitype(m,I) = T—T, by MTYPE-I2
we have miype(m,J;) = T—T. Also, by REALLYIMP we have
reallyImplements(S, J;). Therefore the result follows by induction.

Lemma 7.8 If 8'<S and mtype(m,S) = T—T, then mtype(m,S’) = T—T.
Proof By induction on the depth of the derivation of §'<S. Case analysis of
the last rule in the derivation.

e Case S-REF: Then S’ = S and the result follows.

e Case S-TRANS: Then §'<Sy and Syp<S. By induction we have mtype(m,So)
= T—T, and by induction again we have mtype(m,S’) = T—T.

e Case S-ExPAND: Then S’ has the form S§ and S has the form S% and
Sp<S;. Case analysis of the last rule in the derivation of mitype(m,S) =
T—T:

11

— Case MTYPE-X1: Then TT(X) = expander X --- {--- M} Oand T
n(T %) {return t;} € M. Then the result follows by MTYPE-X1.

— Case MTYPE-X2: Then TT'(X) = expander X --- {--+ M} O and m
is not defined in M and mtype(m,S;) = T—T. Since Sp<S;, by induction
also mtype(m,Sg) = T—T. Then the result follows by MTYPE-X2.

e Case S-CLsl: Then 8’ is a class C and S is a class D and TT'(C) = class
C extends D implements I {--- M}. We have two subcases:

— Case U m(U %) {return t;} € M: By COK we have M 0K in C, so
by METHODOK we have override(m, D, U—U). Then by OVER]1 we
have that U = T and U = T. Then the result follows by MTyPE-C1.

— Case m is not defined in M: Then the result follows by MTYPE-C2.

e Case S-CLs2: Then S’ is a class C and S is an interface I, and
TT(C) = class C extends D implements I {--- M}. By COK we have
reallyImplements(C,1;), so the result follows by Lemma 7.7.

e Case S-INT: Then 8’ is an interface I and S is an interface J; and TT(I) =
interface I extends J {MH}. By IOK we have reallyImplements(I,J;),
so the result follows by Lemma 7.7.

e Case S-Exp: Then S’ has the form U* and S is an interface I;
and TT(X) = expander X of U implements I ---. By XOK we have
reallyImplements(U*,1;), so the result follows by Lemma 7.7.

Lemma 7.9 (Substitution) If I',x:TF t : Tand I' - § : S and S«T, then
'k [X — s]t:S for some S«T.

Proof By induction on the depth of the derivation of I',x:T - t : T. Case
analysis of the last rule in the derivation.

e Case T-VAR: Then t has the form x and x:T € I',%:T. If x € X then
we have x:T € T', so by T-VAR we have I' F x : T. Since x ¢ X, we have
[x — 8]x = x, and by S-REF we know T<T, so the result follows. On the
other hand, if x € X then x has the form x; and T = T; and [X — §]x =
s;. We're given that I' F s; : S; and S,;<T;, so the result follows.

e Case T-FI1ELD: Then t has the form s.f and I',%X: T+ s : U and ftype(£,U)
= T. By induction we have I' - [X +— §]s: Uy and Uyp<U. By Lemma 7.6
we have ftype(£,Up) = T, so by T-FIELD also I' + [X +— §]s.f : T, and
by S-REF we have T<T.

e Case T-INVK: Then t has the form to.m(t) and I',%:T F tg : Tg and
mtype(m,To) = U—T and T',X:TF T : Uy and Uyp<U. By induction we have
'k [X — §ltg: T and T(<To. By Lemma 7.8 we have mtype(m,T() =
U—T. Also by induction we have I' - [X — 5]t : Uy and Uj<Up. Then by
S-TRANS we have Uj<U. So by T-INVK we have I' - [X — §lto.m(%) : T,
and by S-REF we have T<«T.

12

e Case T-NEW: Then t has the form new C(t) and T = C and fields(C) =TU £
and I',X:T F t : Uy and Up<U. By induction we have I' - [X +— §]t : @
and Uj<Up. Then by S-TRANS we have Uj<U. So by T-NEw we have
I'F [X — Slnew C(%) : C, and by S-REF we have C<C.

e Case T-UCAST: Then t has the form (T)ty and I',X:T F tg : Tg and
To<T. By induction we have I' - [X +— §]t¢ : T and T(<To. By S-TRANS
also T{<T, so by T-UCAST we have I' b [X — §]1(T)to : T. Finally, by
S-REF we have T«T.

e Case T-DCAST: Then t has the form (T)ty and I',%X:T F tg : Tg and
T<Tp and T # To. By induction we have I' - [X — §1t(: T} and T(<To.
If T{<T, then by T-UCAST we have I' - [X — §](T)t(: T. Otherwise if
T<T, then by T-DCAST we have I' - [X — §]1(T)tg : T. Otherwise we
have T(, AT and T AT, so by T-SCAST we have I' F [T +— 8] (T)to : T and
a stupid warning is generated. Finally, by S-REF we have T<T.

e Case T-SCAST: Then t has the form (T)ty and I',X:T tg : Tp and
To AT and T ATy. By induction we have T' F [X — §ltg : T and T{<To.
If T(<T, then by T-UCAST we have I' F [X — 8] (T)to : T. Otherwise
if T<T(, then by S-TRANS we have T<Ty, which contradicts the fact that
T ATy, so it is not possible that T<T(. Otherwise we have T{, AT and T ATy,
so by T-SCAST we have I' - [X — 8] (T)to : T. Finally, by S-REF we
have T«T.

o Case T-WriTH: Then t has the form s with X and T has the form U*
and TT(X) = expander X of Uy --- and I',x:T I s : U and UdUy. By
induction we have I' [X — 8]s : U; and U;<U. Then by S-TRANS we
have U;<Up, so by T-WITH we have ' - [X +— §]s with X : U}. Since
U;<U, by S-EXPAND also U§<U®.

e Case T-PEEL: Then t has the form peel s and I',%:T + s : TX. By
induction we have I' - [X — 8]s:U and U<T*. By Lemma 7.1, U has the
form US. Then by T-PEEL we have I' - [X +— §]peel s:Uy. Finally, by
Lemma 7.4 we have Uy<T.

Lemma 7.10 (Weakening) If I' -t : T and x ¢ dom(T"), then I',x:S+ t : T.
Proof By induction on the depth of the derivation of I' - t : T. Case analysis
of the last rule in the derivation.

e Case T-VAR: Then t has the form y and y:T € T'. Since x ¢ dom(T),
we have that x # y, so also y:T € I',x:S. Therefore by T-VAR we have
I'x:SkFy:T.

e Case T-FIELD: Then t has the form s.f and I' - s : U and ftype(£,U0) = T.
By induction we have I',x:S+ s : U, so by T-FIELD also I',x:SF s.f: T.

e Case T-INvK: Then t has the form to.m(t) and I' + t5 : Tp and
mtype(m,To) = T—=Tand I' -t : S and S<T. By induction we have I',x:8 -
to:Tgand I',x:SF%: S, so by T-INVK also I',x:S F tg.m(%) : T.

13

e Case T-NEW: Then t has the form new C(t) and T = C and fields(C) =
T fand 't : S and SqT. By induction we have I',x:S F T : S, so by
T-NEw also I',x:S+new C(t) :C.

e Case T-UCAST: Then t has the form (T)tg and I' F tq : Tgp and To<T. By
induction we have I',x:S F tg : Tp, so by T-UCAST also I',x:S F (T)tg :
T.

e Case T-DCAsT: Then t has the form (T)tg and I' F tg : Tg and T<Ty
and T # Ty. By induction we have I',x:S F tg : Tp, so by T-DCAST also
I',x:SF (Mty: T.

e Case T-SCAST: Then t has the form (T)tg and I' - tg : To and Tg AT and
T ATy and a stupid warning is generated. By induction we have I',x:S F
to : Tg, so by T-SCAST also I',x:SF (T)tp : T.

e Case T-WiTH: Then t has the form s with X and T has the form U* and
TT(X) = expander X of Uy ---and ' s: U and U<Uy. By induction we
have I',x:SF s : U, so the result follows by T-WITH.

e Case T-PEEL: Then t has the form peel s and I' - s : TX. By induction
we have I',x:S F s : TX, so the result follows by T-PEEL.

Lemma 7.11 If mbody(m,C) = (X, t) and mtype(m,C) = T—T, then there exists
a class D and a type S such that C<D and S<T and X:T,this:DF t : S.
Proof By induction on the depth of the derivation of mbody(m,C) = (X, t).

Case analysis of the last rule in the derivation.

e Case MBoDY-C1: Then T7(C) = «class C --- {--- M} and
U m(U X) {return t;} € M. Since mtype(m,C) = T—T, by MTvypPE-C1
we have that U= T and U = T. By T-CLASS we have M OK in C, so by
METHODOK we have X:T,this:CF t : S and S<T. Finally, by S-REF we
have C«C.

e Case MBODY-C2: Then TT(C) = class C extends E implements I {--- M

and m is not defined in M and mbody(m,C) = mbody(m,E). Since mtype(m,C)
= T—T, by MTYPE-C2 we have that mtype(m,E) = T—T as well. There-
fore, by induction there exists a class D and a type S such that E<D and
S<T and X:T,this:DF t : S. By S-CLS1 we have C<E, so by S-TRANS we
have C<D and the result follows.

Lemma 7.12 If TT(X) = expander X --- {--- M} 0 and of D {M} € 0 and
U m(U %) {return t;} € M, then U m(U §) {return s;} € M.

Proof By XOK, OOK, and OVERRIDEOK we have override(m, X, U—U).
Then the result follows by OVER2.

Lemma 7.13 If mbody(m,X,C,.D) = (%, t) and miype(m,C*) = T—T and C<D and

TT(X) = expander X of Sy --- and C<Sp, then there exists a type Tp and a
type S such that C*<T§ and S<T and x:T,this:Th -t : S.

14

Proof By induction on the depth of the derivation of mbody(m,X,C,D) = (X, t).
Case analysis of the last rule in the derivation.

e Case MBoDY-X1: Then TT(X) = expander X --- {--- M} 0 and
of D {M} € 0 and U m(U X) {return t;} € M. Then by Lemma 7.12
we have U m(U §) {return s;} € M. Then since mtype(m,C*) = T—T,
by MTYPE-X1 we have that U = T and U = T. By XOK, OOK, and
OVERRIDEOK we have U m(U X) {return t;} 0K in X,D. Then by
ExPMETHODOK we have X:T,this:D* - t : S and S<«T. Finally, since
C<D, by S-EXPAND we have C*<D¥.

e Case MBoODY-X2: Then TT(X) = expander X --- {--- M} O
and of D {M} € 0 and m is not defined in M and TT(D) =
class D extends E --- and mbody(mX,C.E) = (%X, t). By S-Crsl
we have D<E, so by S-TRANS we have C<E. Then the result follows by
induction.

e Case MBODY-X3: Then TT(X) = expander X --- {--- M’} 0and Cisnot
defined in 0 and TT(D) = class D extends E --- and mbody(m,X,C,E) =
(%, t). By S-CLs1 we have D<E, so by S-TRANS we have C<E. Then the
result follows by induction.

e Case MBoDY-X4: Then TT(X) = expander X of Sy {--- M} 0 and
U m(U X) {return t;} € M. Then since mtype(m,C*) = T—T, by
MTyYPE-X1 we have that U=T and U= T. By XOK and EXxPMETHODOK
we have X:T,this: S} F t : S and S<T. Finally, since C<Sp, by S-EXPAND
we have C*«sh.

Theorem 7.1 (Type Preservation) If ' - t : T and t — s, then there exists
some type S such that I' s : S and S«T.

Proof By induction on the depth of the derivation of t — s. Case analysis
of the last rule in the derivation.

e Case E-PROJNEW: Then t has the form (new C(¥)).f; and s has the
form v; and fields(C) =T £. Since '+t : T, by T-FIELD and T-NEW we
have that I' - new C(¥) : Cand ' F v; : S; and S;<T; and ftype(£,C) = T.
Then by FTYPE1 we have T = T;, so the result follows.

e Case E-PROJWITH1: Then t has the form (v with X).f; and s
has the form v; and fields(X) = T £ = ¥, so by FIELDSX we have
expander X of S implements I {T £ = ¥v; M} 0. Then by XOK we
have e - v; : S; and S;<T;, so by Lemma 7.10 also I' + v; : S;. Since
' -+t : T, by T-FIELD and T-WITH we have I' - v with X : U¥ and
ftype(£,U*) =T, so by FTYPE2 we have T = T; and the result follows.

e Case E-PROJWITH2: Then t has the form (v with X).f and s has the
form v.f and fields(X) =T g = Vand £ € g. Since I' - t : T, by T-FIELD
and T-WITH we have I' v with X:U* and T'F v : U and ftype(£,U¥) =
T. Then by FTYPE3 we have ftype(f,U*) = ftype(£f,U). Therefore by
T-FIELD we have I' - v.£ : T, and by S-REF we have T<T.

15

e Case E-INVKNEW: Then t has the form new C(¥) .m(@) and s has the
form [X — U,this — new C(¥)]to and mbody(m,C) = (%, to). Since ' H
t : T, by T-INVK we have I' F new C(¥) : S’ and mtype(m,8’) = T—T
and I' - 1 : S and Sq4T. By T-NEW we have that S’ = C. Therefore by
Lemma 7.11 there exists a class D and a type U such that C<D and U<T and
X:T,this:DF tg : U. Then by Lemma 7.10 also I',X:T,this:D F tg : U,
and by Lemma 7.9 we have I' b [X — u,this — new C(¥)]tg : S and
S<U. Finally, by S-TRANS we have S<T.

e Case E-INVKWITH1: Then t has the form (v with X).m(@) and v has
the form new C(¥) and s has the form [X — T,this — (v with X)]tg
and mbody(m,X,C,C) = (X, tp). Since I' - t : T, by T-INVK we have
I' b v with X : 8 and mtype(m,S’) = T—T and T' - u : S and S«T.
By T-WiTH and T-NEW we have that 8 = C* and ' + v : C and
TT(X) = expander X of Sy --- and C<Sy. Further, by S-REF we have
C<C. Therefore by Lemma 7.13 there exists a type Ty and a type U such
that C*<T} and U<T and x:T,this:T§ F to : U. Then by Lemma 7.10
also I',x:T,this:T§ F to : U, and by Lemma 7.9 we have that I'
[k — U,this — v with X]to : S and S<U. Finally, by S-TRANS we have
S«T.

o Case E-INVKWITH2: Then t has the form (v with X).m(@)
and v has the form v’ with X and s has the form
[X — T,this — (v with X)]to and mbody(m,X,0bject,0bject)
= (%, tg). Case analysis of the last rule in the derivation of
mbody(m,X,0bject,0bject) = (X, to):

— Case MBoDpY-X1: Then TT(X) = expander X of Sy --- 0 and
of Object --- € 0. By a sanity condition on FeJ programs we have
that Sg # Object, and by OOK we have Object<Sy. Then we have
a contradiction by Lemma 7.3.

— Case MBoDY-X2: Then Object € dom(TT), which contradicts an
assumption about FeJ programs.

— Case MBoDY-X3: Then Object € dom(TT), which contradicts an
assumption about FeJ programs.

— Case MBoDY-X4: Then TT(X) = expander X of Sy {--- M} Oand
U m(U x) {return to;} € M. Since I' F t : T, by T-INVK we have
' v with X : 8 and miype(m,8’) = T—»Tand ' F W : S and S«T.
By T-WITH we have 8’ = S¥ and I' - v : S; and S1<Sg. Then since
mtype(m,S¥) = T—T, by MTYPE-X1 we have that U=T and U = T.
By XOK and ExPMETHODOK we have %:T,this: S} F to : Uy and
Up<T. Also, since S1<Sg, by S-EXPAND we have S¥«sk.

Therefore, by Lemma 7.10 we have I',x:T,this:S} - to : Uy and by
Lemma 7.9 we have that I' - [k +— T,this — v with Xt : S and
SaUp. Finally, by S-TRANS we have S<T.

16

Case E-INVKWITH3: Then t has the form (v with X).m(@) and s =
v.m(@) and TT(X) = expander X of Sy {--- M} D andmisnot defined in
M. Since '+t : T, by T-INVK we have I' - v with X : 8’ and mtype(m,S’)
=T—Tand ' F @ : S and SAT. By T-WiTH, S’ has the form S¥ and
'k v :8;. Since mtype(m,8') = T—T, by MTYPE-X2 we have mtype(m,S1)
= T—T. Therefore, by T-INVK we have I' - v.m(@) : T. Finally, by
S-REF we have T<T.

Case E-CASTVAL: Then t has the form (Ty) (v) and s has the form v
and e - v : Sy and Sy<Ty. Then by Lemma 7.10 also I' = v : Sg. Since
I'kt:T, by T-UCAsT, T-DCAST, and T-SCAST we have that T = Ty,
so the result follows.

Case E-F1ELD: Then t has the form t;.f and s has the form to.f and
t1 — to. Since' F t : T, by T-FIELD we have I' F t1 : Ty and ftype(£,T;)
= T. By induction, there exists some type Ts such that I' - to : Ty and
T2<Ty. Then by Lemma 7.6 also ftype(f,T2) = T. Therefore, by T-FIELD
we have I' - to.f : T, and by S-REF we have T<T.

Case E-INVK-RECV: Then t has the form s;.m(t) and s has the form
so.m(t) and sy — so. Since I' F t : T, by T-INVK we have I' - s¢ : &’
and mtype(m,8’) = T—>T and ' F © : S and S<T. By induction we have
I'F sy : 8" and 8”<S’. Then by Lemma 7.8 we have mtype(m,S”) = T—T.
Then by T-INVK we have I' F so.m(t) : T and by S-REF we have T<T.

Case E-INVK-ARG: Then t has the form v.m(¥,s;,89) and s has the
form v.m(¥,s2,5g) and s; — s5. Since I' - t : T, by T-INVK we have
It v: 8 and mtype(m,S’) = T—T and v,s1,50 = tand I' - T : S and
SqT. Assume that s; is the ith element of T. By induction we have that
I' b sy : 8] and S/<S;. Then by S-TRANS also S/<T;, so by T-INVK we
have I' - v.m(¥,s2,80) : T and by S-REF we have T<T.

Case E-NEwW-ARG: Then t has the form new C(¥,s;,5g) and s has the
form new C(¥,s2,5p) and s; — so. Since I' F t : T, by T-NEW we
have fields(C) = T f and ¥,s1,5 =t and ' - T : S and S<T and T =
C. Assume that sq is the ¢th element of €. By induction we have that
I' F sy : S and 8}<S;. Then by S-TRANS also S;<T;, so by T-NEW we
have I' F new C(¥,s2,80) : C and by S-REF we have C<«C.

Case E-CAST: Then t has the form (Tp)s; and s has the form (Tg)so
and s; — so. There are three subcases, depending on the last rule in
the derivation of ' -t : T.

— Case T-UCAST: Then I' F s1 : Sy and Sp<Tp and T = Ty. By
induction we have I' F sy : S and S(<Sg. Then by S-TRANS also
S(<To, so by T-UCAST we have I' - (Tg)s3 : Tp and by S-REF we
have To<Ty.

17

— Case T-DCasT: Then I' F 81 : Sy and Tg<Sy and Tg # S and and
T = Tp. By induction we have ' F s5 : S}, and S(<Sg. If S{<Ty then
by T-UCAST we have I' - (Tg)sg : Tp. Otherwise, if Tg<S] then
by T-DCAST we have I' = (Tg)sy : To. Otherwise we have S{, AT
and T A4S}, so by T-SCAST we have I' (Tg) sz : T along with the
generation of a stupid warning. Finally, by S-REF we have T(<T.

— Case T-SCAsT: Then I' 51 : S and Sy ATy and Ty ASg and a stupid
warning is generated and T = Ty. By induction we have I' - s5 : S
and S8(<Sg. If S{<Ty then by T-UCAST we have I' F (Tg)sz2 : To.
Otherwise, if Tp<S{, then by S-TRANS also T<Sg, contradicting the
fact that T ASo, so it is not possible that Tg<S). Otherwise we have
St ATy and Tg AS(), so by T-SCAST we have I' - (Tg)so : Tg. Finally,
by S-REF we have Ty<Tj.

e Case E-WITH: Then t has the form tg with X and s has the form
sg with X and t9g — sg. Since I' F t : T, by T-WITH T has the form UX
and TT(X) = expander X of Uy --- and I' F t¢ : U and U<Uy. By induc-
tion we have I' sq : U; and U;<U, so by S-TRANS also U;<Uy. Therefore
by T-WITH we have I F s : U¥. Finally, since U;<U, by S-EXPAND also
Utauk.

e Case E-PEEL: Then t has the form peel t(and s has the form peel sg
and tg — sg. Since I' -t : T, by T-PEEL I' t(: T¥. By induction we
have I' F s¢ : U and U<T*, so by Lemma 7.1, U has the form S*. Therefore
by T-PEEL we have I' - s : S. Finally, by Lemma 7.4 we have S<T.

e Case E-PEELWITH: Then t has the form peel (v with X) and s = v.
Since ' - t : T, by T-PEEL we have I' - v with X : TY. Then by T-WITH
we have X = Y and I' - v : T. Finally, by S-REF we have T<T.

7.2 Progress

Lemma 7.14 (Canonical Forms) If T' v : T¥ then v has the form v’ with X.
Proof Case analysis of the last rule in the derivation of I' F v : TX. By the
syntax of values, there are only two cases:

e Case T-NEW: Then T* is a class C, which is a contradiction.

e Case T-WITH: Then the result follows.

Lemma 7.15 If mitype(m,C) = T—T, then there exist X and t such that
mbody(m,C) = (X, t).

Proof By induction on the depth of the derivation of mtype(m,C) = T—T. Case
analysis of the last rule in the derivation:

e Case MTYPE-CLl: Then TT(C) = <class C --- {--- M} and
T m(T %) {return t;} € M, and the result follows by MBoDY-C1.

18

e Case MTYPE-C2: Then TT(C) = class C extends D implements I {--- M}
and m is not defined in M and mitype(m,D) = (X, t). By induction there
exist ¥ and t such that mbody(m,D) = (%, t), and the result follows by
MBobpy-C2.

Lemma 7.16 If TT(X) = expander X of Sp --- {--- M} 0 and
U mn(U 7) {return s;} € M, then there exist X and t such that mbody(m,X,C,D)
= (%, t).

Proof By strong induction on the number classes E such that D<E. There are
a number of cases:

e Case of D {M'} € 0 and U’ m(U %) {return t;} € M: Then the result
follows by MBopY-X1.

e Case of D {M'} € 0 and m is not defined in M: We have two subcases.
First suppose that 7T (D) = class D extends E ---. By induction there
exist ¥ and t such that mbody(m,X,C.E) = (X, t), and the result follows
by MBoDY-X2. Second, suppose D ¢ dom(TT). Then D = Object.
Since we’re given that TT(X) = expander X of Sy --- {--- M} D and
U n(U §) {return s;} € M, the result follows by MBoDY-X4.

e Case D is not defined in 0: We have two subcases. First suppose that T7'(D)
= class D extends E ---. By induction there exist X and t such that
mbody(m,X,C.E) = (%, t), and the result follows by MBoDY-X3. Second,
suppose D € dom(TT). Then D = Object. Since we're given that 77T (X)
= expander X of Sy --- {-- M} DandU m(U 7) {return s;} €M, the
result follows by MBoDY-X4.

Theorem 7.2 (Progress) If @ - t : T, then either t is a value, t contains a
subexpression of the form (U) (v) where ¢ - v : S and S AU, or there exists some
term s such that t — s.

Proof By induction on the depth of the derivation of e - t : T. Case analysis
of the last rule in the derivation.

e Case T-VAR: Then t has the form x and x: T € e, which is a contradiction.
Therefore, T-VAR cannot be the last rule in the derivation.

e Case T-FIELD: Then t has the form to.f and e - tg : T and feype(£,To)
= T. By induction, there are three subcases.

— Case tg is a value. Case analysis on the form of t.

* Case tg has the form new Cy(¥): Since e F ty : Tgp, by T-NEW
Tp is Co and fields(Co) = S £ and ¥ has the same length as f.
Then since ftype(f,To) = T, by FTYPEL we have that £ = £; and
T = S;. Then by E-PROJNEW we have to.f; — v;.

x Case to has the form v with X: Then TT(X) =

expander X --- {S f = v; M} 0, and by FIELDSX we have

fields(X) = S £ = ¥. There are two subcases. First suppose that

19

f € £, so £ has the form £;. Then by E-PROJWITH] we have
tg.f; — v;. Now suppose that £ € f. Then by E-PROJWITH2
we have tg.f; — v.f.

— Case tg contains a subexpression of the form (U) (v) where e v : S
and S AU. Then so does t.

— Case there exists some term sg such that tg — sg. Then by
E-FIELD we have tg.f — s¢.f.

e Case T-INVK: Then t has the form tg.m(t) and e F ty : Ty and
mtype(m,Tgp) = T—T and e - t : S and S<T. By induction, there are
three subcases.

— Case tg is a value. By induction, there are three subcases.

* Case all terms in t are values. We do a case analysis on the form
of tg:

- Case to has the form new C(¥): Then by T-NEWwW, Tq
= C. Then by Lemma 7.15 there exist X and sg such
that mbody(m,C) = (X, sp). Then by E-INVKNEW we have
to.m(t) — [X — t, this — mnew Co(¥)]so.

- Case tp has the form v with X: Then 7T7(X) has the

form expander X of Sy --- {--- M} 0. First suppose that
m is not defined in M. Then by E-INVKWITH3 we
have tp.m(t) — v.m(t). Otherwise, we have that
U n(U §) {return s;} € M, and we do a case analysis on
the form of v.
Suppose v has the form (new C(¥)). By Lemma 7.16
there exist ¥ and sg such that mbody(mX,C,C) = (X,
S0)- Then by E-INVKWITHL we have to.m(t) —
[X — t, this — tg]so.

Finally, suppose v has the form v’ with X. Since
U m(U y) {return s;} S by MBobpY-X4
we have mbody(mX,0bject,Object) = (¥, s).

Then by E-INVKWITH2 we have tg.m(t) —
[§f — T, this — tgls.

x Case some term in t contains a subexpression of the form (U) (v)
where e - v : S and S AU. Then so does t.

x Case no term in t contains a subexpression of the form
(U) (new C(@)) where CAU. Further, there is some t; € t for
which there exists a term s; such that t; — s;. Further, all t;
such that 1 < j < i are values. Then by E-INVK-ARG we have
to.m(t) — tg.m(tq,.. Htio1,8i,ti01,. . Stan).

— Case t(contains a subexpression of the form (U) (v) where e - v : S
and S AU. Then so does t.

— Case there exists some term sg such that tg — sg. Then by
E-INVK-RECV we have tg.m(t) — s¢.m(t).

20

e Case T-NEw: Then t has the form new Cy(t) and T is Cy and fields(Co)

=T f and e -t : S and SqT. By induction, there are three subcases.

— Case all terms in t are values. Then also t is a value.

— Case some term in t contains a subexpression of the form (U) (v)
where e - v : S and S AU. Then so does t.

— Case no term in t contains a subexpression of the form (U) (v) where
e - v : 3 and SAU. Further, there is some t; € t for which there
exists a term s; such that t; — s;. Further, all t; such that 1 <
j < i are values. Then by E-NEW-ARG we have new Cy(t) —
new Co(ty,...,t;_1 38isTit1,- . SHtn).

e Case T-UCAST: Then t has the form (T)tg and e F t(: Sy and Sp<T. By
induction, there are three subcases.

— Case tg is a value. Then by E-CASTNEW we have (T)ty — tg.

— Case tg contains a subexpression of the form (U) (v) where e - v : S
and S AU. Then so does t.

— Case there exists some term sg such that to — sg. Then by E-CASsT
we have (T)tg — (T)syg.

e Case T-DCAST: Then t has the form (T)to and e F tg : Sg and T<Sy and
T # S¢. By induction, there are three subcases.

— Case tg is a value. If Sy«T then by E-CASTNEW we have (T)ty —
tg. Otherwise Sy AT, so t contains a subexpression of the form (U) (v)
where o - v : S and S AU.

— Case tg contains a subexpression of the form (U) (v) where e - v : S
and S AU. Then so does t.

— Case there exists some term sg such that to — sg. Then by E-CAsT
we have (T)tg — (T)syp.

e Case T-SCAST: Then t has the form (T)ty and e - tq : Sg and Sy AT and
T A4S and a stupid warning is generated. By induction, there are three
subcases.

— Case tg is a value. Then t contains a subexpression of the form
(U) (v) where e - v : S and S AU.

— Case tg contains a subexpression of the form (U) (v) where e - v : S
and S AU. Then so does t.

— Case there exists some term sg such that to — sg. Then by E-CAsT
we have (T)tg — (T)sp.

e Case T-WiITH: Then t has the form to with X and T has the form U* and
TT(X) = expander X of Uy --- and I' - t(: U and U<Uy. By induction
we have three subcases:

21

— Case tg is a value. Then so is t.

— Case tg contains a subexpression of the form (U) (v) where e v : S
and S AU. Then so does t.

— Case there exists some term sg such that tg — s¢. Then by E-WIiTH
we have tg with X — s¢ with X.

e Case T-PEEL: Then t has the form peel tgand I' - tg : T¥. By induction
we have three subcases:

— Case tg is a value. Then by Lemma 7.14, t(¢ has the form v with X.
Then by E-PEELWITH we have peel tg — v.

— Case tg contains a subexpression of the form (U) (v) where ¢ v : S
and S AU. Then so does t.

— Case there exists some term sg such that tg — s¢. Then by E-PEEL
we have tg with X — s¢ with X.

References

[1] Alessandro Warth, Milan Stanojevié¢, and Todd Millstein. Statically scoped
object adaptation with expanders. In Proceedings of the 2006 ACM Con-
ference on Object-Oriented Programming Systems, Languages, and Applica-
tions, Portland, Oregon, October 2006.

22

