
UNIVERSITY OF CALIFORNIA

Los Angeles

Fault-Tolerant Cluster Management

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Computer Science

by

Ming Li

2006

© Copyright by

Ming Li

2006

To my parents.

iii

Table of Contents

Acknowledgments .. vii

Vita and Publications .. ix

Abstract .. xi

Chapter One - Introduction .. 1

1.1. Cluster Management Middleware ... 2

1.2. Clusters for Critical Applications in Hostile Environments 4

1.3. Thesis Contributions ... 8

1.4. Thesis Organization .. 13

Chapter Two - Related Work .. 16

2.1. Building Fault-Tolerant Distributed Systems ... 17

2.1.1. Consensus and Paxos ... 20

2.1.2. Group Communication ... 23

2.1.3. Replication Techniques .. 25

2.2. Byzantine Fault Tolerance .. 27

2.3. System-Level Fault Diagnosis .. 31

2.4. Cluster Systems .. 34

Chapter Three - An Overview of the Ghidrah Cluster

Management System ... 41

3.1. Design Goals and Assumptions .. 42

3.2. Centralized Management .. 43

3.3. System Architecture .. 44

3.4. The Trusted Hardcore ... 47

3.5. Communication Infrastructure .. 49

iv

Chapter Four - Efficient Byzantine Fault Tolerance for Replicated

Services ... 51

4.1. Achieving BFT-SMR ... 53

4.2. BFT Replication with Fewer than 3f+1 Active Replicas 63

4.2.1. Client-Side Protocol ... 67

4.2.2. Normal-Case Operation ... 68

4.2.3. View-Changes When Faulty Replicas Block Progress 72

4.2.4. Garbage Collection .. 82

4.2.5. Correctness Proof ... 83

4.2.6. Requirement for Three Phases with 2f+1 Active Replicas 88

4.2.7. Extension of the Algorithm to Multiple Faults 90

4.2.8. Extension of the Algorithm to Open Replica Groups 91

4.3. Evaluation ... 92

Chapter Five - Self-Diagnosis and Reconfiguration 96

5.1. A State Machine Fault Model for Diagnosis .. 98

5.2. An Online Self-Diagnosis Algorithm ... 102

5.2.1. The General Algorithm .. 108

5.2.2. The Three-Replica Diagnosis Protocol .. 114

5.3. Reconfiguration .. 120

Chapter Six - Agents ... 125

6.1. Recovery from Agent Crashes .. 126

6.2. A Fault-tolerant Bootstrapping Protocol ... 131

Chapter Seven - Implementation and Experimental Evaluation 140

7.1. Implementation of the Ghidrah CMM .. 142

7.1.1. Practical Tradeoffs Tow ards a Simplified Replication

Algorithm .. 143

v

7.1.2. Internal Structure of Key Components ... 147

7.1.2.1. Manager .. 147

7.1.2.2. Agent .. 149

7.1.3. Event Handling ... 150

7.1.4. Group Timer Events ... 152

7.1.5. Agent Heartbeats .. 156

7.1.6. The Spacecraft Control Computer ... 159

7.1.7. Implementation of the Communication Infrastructure 161

7.2. Experimental Results .. 165

7.2.1. Experimental Setup .. 165

7.2.2. Performance Measurements ... 166

7.2.2.1. Manager Overhead in Normal Case 166

7.2.2.2. Manager Recovery Time .. 169

7.2.3. Fault Injection Experiments ... 172

7.2.3.1. Process-Based Fault Injections 172

7.2.3.2. Validation of the Reliability Features of the CI 183

Chapter Eight - Summary and Conclusions .. 186

Bibliography ... 189

vi

List of Figures

1.1 Cluster architecture .. 3

2.1 Building blocks for fault-tolerant distributed systems 19

3.1 Ghidrah system architecture .. 45

4.1 Sequencer-based atomic multicast .. 54

4.2 Malicious primary sending inconsistent ordering information 56

4.3 Two-phase multicast protocol .. 57

4.4 Three-phase protocol with 3f+1 replicas (Castro&Liskov) 62

4.5 Normal case protocol for total order multicast .. 71

4.6 Normal-case protocol for each replica .. 73

4.7 View-change protocol .. 80

4.8 4-replica v.s. 3-replica as authentication overhead vary 94

4.9 4-replica v.s. 3-replica as execution time vary .. 95

5.1 Pseudo-code of the self-diagnosis protocol (part A) 114

5.2 Pseudo-code of the self-diagnosis protocol (part B) 115

5.3 Pseudo-code of the self-diagnosis protocol (part C) 117

5.4 The reconfiguration procedure .. 122

6.1 The Ghidrah bootstrapping protocol, part A ... 135

6.2 The Ghidrah bootstrapping protocol, part B ... 136

7.1 Internal structure of Ghidrah manager .. 148

7.2 Internal structure of agent .. 149

7.3 Event handling in event manager .. 151

7.4 Detect late and early group timer events ... 154

vii

7.5 Communication infrastructure of Ghidrah .. 162

7.6 Heartbeat processing overhead on nodes running manager replicas 167

7.7 The overhead for handling timer events on manager replicas 169

7.8 Recovery coverage of the replicated managers ... 181

7.9 Effects of faults injected into the communication infrastructure 184

viii

List of Tables

6.1 Comparing the complexity of agent and agent keeper 129

7.1 Code size of the Ghidrah implementation ... 142

7.2 API of the management message layer (MML) .. 164

7.3 System configurations of the two experimental clusters 165

7.4 Primary manager replica recovery time ... 170

7.5 Single process fault injection results ... 173

7.6 Detection latency of faults injected into a manager .. 177

ix

ACKNOWLEDGMENTS

First, I would like to express my sincere gratitude to my advisor, Professor

Yuval Tamir, for his invaluable guidance and continuous support throughout my

years at UCLA. His persistent pursuit of perfection and his deep insights into

various subjects have always been an inspiration to me. He has taught me so much

on how to conduct qualitative research and how to improve my writing and

presentation skills.

My great appreciation goes to my other committee members as well: Prof.

Rennels, Prof. Ercegovac, and Prof. Grossman. I thank them for kindly agreeing to

be on my doctoral committee and for their helpful advice and suggestions.

It has been a pleasure to be one of the UCLA CSL group. I would like to

thank my colleagues, Israel Hsu, Navid Aghdaie, Wenchao Tao, Dan Goldberg,

Machael Le, Edward Young, Donald Lam and Kahmyong Moon, for their

friendship and for the enlightening discussions we had on various research topics. I

have greatly benefited from these discussions and from our group meetings.

I would like to acknowledge the financial support I have received throughout

my years at UCLA. This included a research assistantship as part of collaboration

between NASA’s Jet Propulsion Laboratory and UCLA’s Concurrent Systems

Laboratory under NASA’s Remote Exploration and Experimentation Program as

well as NASA’s New Millenium Program. It also included support through a

teaching assistantship from the UCLA Computer Science Department.

x

My deepest gratitude goes to my parents for their love, for their support and

for their sacrifice over so many years. They hav e been the origin of my strength

and will always be.

Finally, I want to thank my wife, Hongyan, for all the love she has given me,

for her understanding, and for putting up with me and standing by me during the

wonderful years we shared together.

xi

VITA

December 21, 1972 Born, China

1994 B.S., Computer Science
Department of Computer Science and Technology
University of Science and Technology of China
Hefei, China

1997 M.Eng., Computer Engineering
Institute of Computing Technology
Chinese Academy of Sciences
Beijing, China

2000 M.S., Computer Science
Computer Science Department
University of California
Los Angeles, California

1998-2005 Teaching Assistant/Graduate Student Researcher
Computer Science Department
University of California
Los Angeles, California

PUBLICATIONS

M. Li and Y. Tamir (September 2004). ‘‘Practical Byzantine Fault Tolerance Using

Fewer than 3f+1 Active Replicas’’, the 17th International Conference on Parallel

and Distributed Computing Systems, pp. 241-247.

M. Li, W. Tao, D. Goldberg, I. Hsu, and Y. Tamir (September 2002). ‘‘Design and

Validation of Portable Communication Infrastructure for Fault-Tolerant Cluster

Middleware’’, IEEE International Conference on Cluster Computing (Cluster

xii

2002), pp. 266-274.

D. Goldberg, M. Li, W. Tao, and Y. Tamir (October 2001). ‘‘The Design and

Implementation of a Fault-Tolerant Cluster Manager’’, Computer Science

Department Technical Report CSD-010040, University of California, Los

Angeles, CA. Presented at IEEE International Conference on Cluster Computing

(Cluster 2001), October 2001.

M. Li, D. Goldberg, W. Tao, and Y. Tamir (August 2001). ‘‘Fault-Tolerant Cluster

Management for Reliable High-Performance Computing’’, International

Conference on Parallel and Distributed Computing and Systems, pp. 480-485.

W. Hu, W. Shi, Z. Tang, and M. Li (February 1998). ‘‘A Lock-based Cache

Coherence for Scope Consistency’’, Journal of Computer Science and Technology

(China), vol.13, no.2, pp. 97-109.

M. Li and Z. Tang (January 1997). ‘‘Partial Cache Locality: A New Approach of

Cache Optimization’’, Chinese Journal of Computers, vol.20, no.1, pp. 1-8. (in

Chinese).

xiii

ABSTRACT OF THE DISSERTATION

Fault-Tolerant Cluster Management

by

Ming Li

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2005

Professor Yuval Tamir, Chair

Cost-effective high-performance can be achieved using clusters of

Commercial Off-The-Shelf (COTS) computers interconnected by high-speed

networks. When clusters are used for critical applications and/or in hostile

environment, the required system reliability can only be achieved using fault

tolerance techniques that allow the system to continue to operate correctly despite

component failure. Cluster management middleware (CMM) is a software layer

above the operating system controlling individual nodes and below the applications.

The CMM schedules tasks on a cluster, controls access to shared resources,

provides for task submission and monitoring, and coordinates the cluster’s fault

tolerance mechanisms. Reliable operation of the cluster requires reliable,

continuous operation of the management middleware.

This dissertation is focused on the key challenges in building highly reliable

CMM. The system is based on centralized decision making. However, unlike most

xiv

other cluster middleware, the manager is protected by Byzantine fault-tolerant state

machine replication and the ability to restore the management service to full

functionality and full fault tolerance following arbitrary single faults. To this end,

we use a low-cost fault-tolerant replication mechanism coupled with on-line self-

diagnosis and reconfiguration. The robust replicated manager is coupled with less

aggressive fault tolerance mechanisms for dealing with less critical system

components and with a fault-tolerant system bootstrapping mechanism. A fault-

tolerant cluster designed to operate autonomously, must include a highly-reliable

trusted hardcore to control critical functions such as the initiation of a node reset.

We describe the functionality required from this trusted hardcore and its

interactions with the replicated cluster manager.

The result of this work is a carefully balanced integrated set of efficient

practical techniques for aggressive fault tolerance. These techniques allow a highly

reliable system to be built using mostly standard COTS hardware and software

components. This is demonstrated in an operational system, called Ghidrah, that

has been built at UCLA. This dissertation includes preliminary performance

evaluation of Ghidrah and validation of the fault tolerance mechanisms by fault

injection experiments.

xv

Chapter One

Introduction

Clusters of PCs and workstations interconnected by high-speed networks have

been increasingly used as a cost-effective solution for highly available services and

high-performance computing (HPC). Clusters currently achieve the performance of

supercomputers and enhanced reliability/availability with low-cost hardware and

software.

In a typical cluster, every node is built using commercial off-the-shelf (COTS)

hardware and runs a local copy of a COTS operating system. A software layer,

referred to as Cluster Management Middleware (CMM), runs between the

applications and the operating system, managing system resources for both high

performance and high reliability.

The subject of this dissertation is the design and implementation of fault-

tolerant cluster management middleware that allows clusters based on unreliable

COTS-based hardware and software components to operate reliably even in very

hostile environments. The key requirements from such middleware are high

reliability, high availability, and the ability to operate continuously without operator

intervention.

In this chapter, we provide a high-level overview of this thesis. First, we

briefly describe the role and functionality of a cluster management system in

1

Section 1.1. We then discuss the motivations for building fault-tolerant cluster

management middleware in Section 1.2, and present the main research

contributions of this thesis in Section 1.3. In the last section, Section 1.4, we

describe the organization of the rest of this thesis.

1.1. Cluster Management Middleware

A computer cluster is a group of stand-alone computers that are connected by

a high-speed network and work together as a unit. As clusters are a type of

distributed computing systems, so-called distributed operating systems such as

Amoeba [Mull90] and MOSIX [Bara98], which are designed for distributed

systems, can be used for cluster management. Such single-layer systems provide

resource and processes management across cluster nodes directly from the kernel,

and coordinate the operation of cluster nodes at the operating system level.

Although building the cluster management features into the operating system

is potentially more efficient, it negatively impacts system portability, ability to

support new hardware devices, and support for heterogeneity. Compared with

custom-built ‘‘multiprocessor systems,’’ the success of cluster computing has been a

direct result of the cost-effectiveness of using low-cost, widely-accepted COTS

hardware and software. With the current rapid advances in COTS hardware and

software, the poor portability of custom-built single-layer operating systems is

highly undesirable and the case for the layered approach of ‘‘cluster computing’’ is

compelling.

2

With the layered ‘‘cluster computing’’ approach, the system as a whole is

managed by a cluster management middleware software layer that is interposed

between applications and the OS kernel. This middleware layer creates a runtime

computing environment at the user level, using standard system primitives available

in most commercial operating systems for uniprocessor or small multiprocessor

computers. Most existing cluster management systems are implemented as

middleware on top of COTS operating systems [Ghor98, Litz88, Zhou92, Russ99,

Frac02a, Cray98, Codine, SunCA3].

OS

COTS node

OS

COTS node COTS node

OS OS

COTS node COTS node

OS

Cluster Management Middleware

Parallel Execution Environment

Parallel Applications

Network

Figure 1.1: Cluster architecture

Figure 1.1 shows the typical architecture of a cluster with a cluster

management middleware. In such a system, each node runs a local copy of an off-

the-shelf operating system that is not designed for distributed systems, such as the

standard Linux operating system. The cluster management middleware (CMM)

runs between the applications and the operating system. It acts as an interface

3

between the cluster and users so users can submit their applications to the cluster.

It allocates resources in the cluster to user applications and schedules application

processes in a globally efficient way, so that user applications can achieve optimal

performance. It also maximizes system reliability and availability, coordinates fault

tolerance actions in the cluster, and provides fault tolerance supports to user

applications.

The CMM is critical to the operation of the cluster: if this middleware fails,

the entire cluster is useless.

1.2. Clusters for Critical Applications in Hostile Environments

The main focus of this thesis is on building highly dependable cluster

management middleware for clusters operating in hostile environments and running

mission-critical applications. In such hostile environments, individual cluster nodes

and the communication between nodes suffer from a relatively high probability of

errors due to hardware faults cause by environmental factors such as high radiation,

electrical noise, or high temperatures. Examples of the need to operate in such

environments include operation in space [Katz03], military application on the

ground and in the air, and operation in factories near heavy machinery. Since, as

discussed earlier, the nodes depend on COTS operating system kernels, errors

caused by software faults must be taken into account as well [Gray86]. Examples

of critical applications are applications whose results might be used to control

physical devices or applications that process data that cannot be reproduced. One

4

specific example may be processing of data collected from different parts of a

factory that might lead to a conclusion that some part of the factory must be shut

down for safety reasons. Another specific example is data reduction of streaming

sensor data in a spacecraft as it makes a one-time pass over a distant planet.

Since the underlying hardware and software component of clusters may be

unreliable, support for critical applications implies that the system must continue to

operate correctly despite component failures, i.e., the system must be fault-tolerant.

Since the CMM manages all the cluster’s resources, if the CMM fails the entire

system fails. Thus, a necessary condition for the system to be fault-tolerant is that

the CMM must be fault-tolerant.

In clusters for critical applications, another important issue is the requirement

for unattended operation. In such clusters, there may not be a person present all the

time who can monitor and maintain the cluster operation. The CMM system

should be able to continuously self-manage the cluster without human intervention.

For these reasons, the research presented in this thesis studies the key

challenges in building fault-tolerant CMM for clusters that operate in hostile

environments, run critical applications, and require unattended operation. This

thesis presents the design and implementation of the fault tolerance techniques we

developed for building such highly reliable CMM systems.

Like many other cluster management systems [Cray98, Codine, Ghor98,

Litz88, Zhou92, Russ99, Frac02a, Zhou93], the design of our fault-tolerant CMM

systems is based on centralized management structure: a global, centralized

5

manager is in charge of making global decisions on cluster management operation

such as resource allocation and task scheduling. Compared to distributed

management [Gosc90, Rama98, Bara98], where management functions are

distributed across all the nodes in the cluster, centralized management has the

advantage of being able to achieve globally optimized decisions for management.

In addition, a centralized management system is easier to design, implement and

debug than a distributed management system. Additional discussion of centralized

management versus distributed management is presented in Section 3.2 of

Chapter 3.

The main problem with a centralized cluster manager is that the failure of the

manager leads to the failure of the entire management system. Surprisingly, some

cluster management systems [Ghor98, Litz88, Russ99, Frac02a] fail to deal with

this problem: they just neglect this single point of failure and leave it in the system

without any measure for fault tolerance. Some systems use a primary-backup

approach: a cold spare or shadow copy of the manager detects the failure of the

primary manager and takes over when the primary manager fails [Cray98, Codine,

Gent01]. The backup manager is usually configured beforehand and the primary

manager must send update information to the backup to keep their state consistent,

or it has to log all its activities into reliable storage so the backup can restore the

state when taking over. Some systems use different approaches, like in [Zhou93],

when the manager fails, a new manager will be elected by all the working nodes

and it restores the state by collecting information from all nodes.

6

In the management systems using primary-backup approaches, the manager

failure mode is assumed to be fail-stop [Schn84], i.e., the managers never generate

incorrect results. However, non-fail-stop failures do occur in real systems [Dris03].

Hence, if the fault tolerance mechanisms are based on the fail-stop assumption,

reliability may be poor. Furthermore, recovery from the failure of the primary

manager requires the cold backup to restore state from the storage system, apply

necessary updates if its state is not up-to-date [Cray98, Codine, Gent01]. Or the

system has to re-elect a new manager and the new manager collects information

from all cluster nodes [Zhou93]. Recovery like these takes a long time and there is

no manager available until the recovery procedure completes. This results in

unacceptably long management disruptions.

Recognizing the weaknesses of existing cluster management system, we

present in this thesis aggressive fault tolerance techniques to achieve highly reliable

cluster management based upon active replication [Chér9̀2] (or state machine

replication[Schn90]). By replicating the management functionality across multiple

nodes, we removed the single point of failure from the system: a single failed node

cannot corrupt the entire system. Specifically, multiple active replicas perform all

management operations and their outputs are compared and voted before any

actions are taken. Hence, our CMM system can mask and tolerate failures of

manager replicas without introducing long disruptions, even in the presence of non-

fail-stop faults.

As a practical implementation and validation of our solution for fault-tolerant

7

CMM, we have implemented an operational CMM system called Ghidrah.

Ghidrah is a general purpose CMM that is useful in many situations where high

reliability for critical cluster applications is required. However, the development of

Ghidrah was specifically motivated and driven by the needs at NASA for on-board

high-performance computing in space [Some99, Katz03]. Space is an example of a

hostile environment since, compared to the environment on Earth, radiation levels

are higher, resulting in higher probability of of hardware faults. Long term robotic

space exploration missions are obvious examples where continuous unattended

operation is required. For such missions, on-board processing is expected to

include parallel compute-intensive application for navigation, tracking, and data

reduction. These application may be critical either for the survival of the spacecraft

or for, what is the ultimate goal of these space missions, the collection and delivery

to Earth of science data.

Ghidrah is part of the UCLA Fault-Tolerant Cluster Testbed (FTCT) project.

It consists of a collection of software components that together provide continuous

management functionalities. Through active replication, distributed fault diagnosis,

dynamic reconfiguration and recovery, the cluster management middleware

provides long-lived, robust, yet efficient management service to keep the cluster

operational continuously in space, despite component failures.

1.3. Thesis Contributions

This dissertation focuses on the key issues related to the design and

8

implementation of fault tolerant CMM systems. In this context, it provides

adaptations or improvements of several state-of-the-art fault tolerance mechanisms.

It shows how these fault tolerance mechanisms can be efficiently integrated to build

a practical CMM system. The main contributions of this dissertation can be

summarized as follows:

• An efficient Byzantine fault-tolerant state machine replication (BFT-

SMR) algorithm that reduces replication cost and improves performance,

in comparison with previous algorithms.

• On-line self-diagnosis and reconfiguration protocol for the replicated

manager that allow the manager replicas to diagnose themselves,

identify the faulty replicas, and recover from faults.

• A system bootstrapping protocol that enable the CMM to self-configure

the cluster system without human intervention.

• Engineering tradeoffs leadings to a balanced set of efficient techniques

for fault-tolerant CMM. Aggressive mechanisms, involving significant

complexity, are used where critical to the survival of the entire system.

Less aggressive simpler mechanisms are used elsewhere.

• Identification of the minimal functionality required from a trusted

‘‘hardcore’’ for unattended cluster management operation and the

required interaction between the hardcore and the replicated manager.

The CMM system we developed integrates fault tolerance techniques such as

state machine replication, asynchronous consensus, atomic multicast, and

9

distributed fault diagnosis. The cluster manager is actively replicated across

multiple nodes, and each replica performs the same management operations. The

commands produced by these manager replicas are compared and voted on so that a

majority of correct replicas can mask the failures of faulty replicas. Manager

replicas are implemented as deterministic state machines [Schn90].

A BFT-SMR algorithm is used to maintain the consistency among the

manager replicas. Existing BFT-SMR algorithms [Cast99a, Kihl98, Reit94] all

require at least 3 f + 1 replicas to tolerate up to f faulty replicas. All replicas in

those algorithms actively participate in the normal operation of the replicated

service. Our BFT-SMR algorithm requires only 2 f + 1 active replicas for normal

operation, as long as standby spare replicas are available, so that the number of

active replicas plus the number of spares is at least 3 f + 1. By reducing the number

of active replicas, our replication algorithm is more efficient than previous BFT-

SMR algorithms, as it offers reduced replication cost and improved performance.

The replication algorithm is integrated with a distributed fault diagnosis

protocol. We dev eloped a diagnosis protocol. based on replicas comparing their

internal states, that allows the manager replicas to diagnose themselves without

external help. Using the diagnosis result, the manager replicas can then reconfigure

themselves in a reliable manner to replace the faulty replica with a standby spare

replica, thus restoring the replicated manager to full functionality and full fault

resilience. Using these techniques, our management middleware provides robust

and survivable cluster management.

10

Considering the differences on the roles and responsibilities of different

components in the CMM, we applied different fault tolerance strategies to them. In

our CMM, the central manager is critical to the operation of the entire system.

Hence, aggressive fault tolerance techniques, such as Byzantine fault tolerant state

machine replication, are used for the manager. For other components that are less

critical, we applied fault-tolerance techniques that are less aggressive and involve

less overhead and complexity. For example, for agents that run locally on

individual cluster nodes, we implemented a simple mechanism that allows the agent

to recover from crash (fail-stop) failures and maintain control over application

processes that have been running on the node.

As mentioned earlier, the objective of dev eloping these fault tolerance

techniques for CMM is to ensure that critical applications submitted to the cluster

are executed successfully. In order to do this, we must keep the management

system operational continuously and reliably. We decouple the fault tolerance

mechanisms for the management middleware from the mechanisms for

applications. The CMM provides necessary supports to application-level fault

tolerance, but this is separated from the fault tolerance of the CMM itself. This

separation reduces complexity and allows different applications to use different

fault tolerance techniques depending on their structure and reliability.requirements.

We also developed mechanisms to meet the requirements for unattended

operation of the CMM. Using the self-diagnosis and reconfiguration mechanisms,

the CMM can be operational continuously as long as a manager group that is fully

11

functioning has been constructed. In addition, we developed a system

bootstrapping protocol so that the management middleware can configure itself

correctly when the cluster is powered up. The bootstrapping protocol adapts to the

uncertainty when the cluster just starts, and self-configures the system. The

protocol is based on a Byzantine variation derived from Lamport’s Paxos

algorithm [Lamp98], and it allows the middleware to reliably select the nodes to run

the manager replicas when the system starts.

In any system that is designed to achieve unattended operation, a trusted

‘‘hardcore’’ is needed. The necessity of the hardcore can not be avoided because,

in a practical system, special operations (e.g. power-reset of a node) are required to

recover from node failures cause by hardware faults or operating system faults. In

addition, in the worst case, the system may catastrophic failures, such as the

simultaneous failures of multiple nodes due to a burst of radiation. Recovering

from such catastrophic failures may require extreme measures, such as power-

resetting the entire cluster. The ability to perform these functions (e.g., node reset)

must not be provided to a single unreliable COTS cluster node. Hence, there is no

way for middleware running on the cluster nodes to perform these functions

without a trusted entity to actually perform the action — ‘‘push the reset button.’’

Such a trusted hardcore must also survive the catastrophic failure scenario

described above so that it can attempt to restore cluster operation. We define the

minimal functionality required from this hardcore and the interactions between the

replicated managers and this hardcore.

12

1.4. Thesis Organization

The rest of this thesis is organized as follows:

In Chapter 2, we review previous research work on a variety of topics in the

area of fault-tolerant distributed computing that are related to our work on fault-

tolerant cluster management. These areas includes asynchronous consensus, group

communication, replication techniques, Byzantine fault tolerant state machine

replication, and distributed fault diagnosis. We also briefly review the design and

implementation of previously-developed cluster management systems and fault-

tolerant distributed systems.

Chapter 3 presents an overview of our fault-tolerant cluster management

middleware system. In this chapter, we discuss our choice for a centralized

management structure, present the system structure of the CMM system, and the

main components that form the CMM: the central manager, the agent on each node,

the trusted hardcore, and an infrastructure for reliable authenticated

communication. We describe the functionality of each component in the

middleware, and how these components interact.

In Chapter 4 we present the state machine replication mechanism that is used

to replicate the central manager for fault tolerance. In order to maintain interactive

consistency [Powe88, Rush] among the manager replicas, the replication

mechanism requires an atomic multicast protocol to ensure that manager replicas

process input messages in the same total order. We discuss the challenges of

making the atomic multicast Byzantine fault-tolerant. Starting from existing

13

replication algorithms, we present a new algorithm that requires fewer active

replicas for Byzantine fault-tolerant state machine replication (BFT-SMR). This

BFT-SMR algorithm provides the foundation for our implementation of the

replicated cluster manager.

In our CMM system, the replication algorithm presented in Chapter 4 is

enhanced by a manager self-diagnosis protocol. Chapter 5 presents the self-

diagnosis protocol in detail. The underlying assumptions and key properties of the

protocol are discussed. This chapter also describes the reconfiguration protocol

that uses the results from the diagnosis to replace a faulty replica with a new replica

and integrate the new replica with the existing replicas to restore the resiliency of

the manager group.

In Chapter 6, we describe another important component of the CMM — the

agents. We describe the fault tolerance techniques developed for the agents. We

present the mechanism used to recover from agent crash failures, as well as the

agent bootstrapping protocol that is used to configure the CMM system when the

cluster is powered up.

The fault tolerance techniques presented in previous chapters are utilized in

the implementation of the Ghidrah CMM system. Chapter 7 describes important

implementation details of Ghidrah, including the internal structure of each CMM

component, implementation of the communication infrastructure, the actual

hardcore in Ghidrah — the spacecraft control computer, the event handling

mechanism, and the group timer event mechanism for dealing with time-triggered

14

ev ents on the replicated manager.

Ghidrah is currently operational on COTS hardware and software. In

Chapter 7, we also present preliminary experimental results that include

performance evaluation of Ghidrah as well as validation of the fault tolerance

mechanisms using fault injection.

Finally, in Chapter 8, we summarize the work presented in this thesis and

point out directions for future work.

15

Chapter Two

Related Work

The research presented in this thesis focused on building a fault-tolerant

distributed system for cluster management. Our approach is to replicate the cluster

management functionalities and integrate with it the state-of-the-art techniques for

aggressive fault tolerance such as Byzantine fault-tolerant state machine replication,

system-level fault diagnosis and reconfiguration.

This chapter examines previous work that is relevant to this thesis. It is

divided into categories that correspond to the topics that are covered in this thesis.

We begin, in Section 2.1, with a discussion of the main problems the must be

solved when implementing fault-tolerant distributed systems. These problems

includes distributed consensus, group communication, and replication. We

examine previous solutions to these problems and the use of these solutions as

building blocks for fault-tolerant distributed systems.

As previously discussed, the requirement of a highly reliable CMM implies

that the CMM must be able to tolerate arbitrary (Byzantine [Lamp82a]) faults.

Byzantine fault tolerance has been a very active research field for over two decades.

Ke y representative results in this field are discussed in Section 2.2.

Once the failure of one of the manager replicas is suspected, the Ghidrah

CMM uses distributed fault diagnosis to identify the faulty replica. In Section 2.3,

16

we briefly summarize the work has been done in the field of system-level fault

diagnosis over the past forty years. We review different diagnosis models that have

been developed, especially the distributed comparison-based models.

Many practical systems have been developed for cluster management and for

distributed fault-tolerant computing. In order to compare our fault-tolerant CMM

solution to these systems, in Section 2.4, we review the design of cluster

management systems and fault-tolerant distributed systems that are representative

in these fields

2.1. Building Fault-Tolerant Distributed Systems

A system is fault-tolerant if it can continue to operate correctly despite

component failure. One approach to achieving fault tolerance is based on

replicating critical components so that fault-free replicas can continue to perform

critical functions even after some replicas fail. In a distributed system, this

approach is often implemented by running multiple copies (replicas) of critical

computations (processes) on different nodes (computers) of the system [Guer97].

The idea is that, even if some nodes fail, there are still computation replicas running

on operational nodes to continue with the computations. Although the idea of

replication is simple, robust, practical implementation of replication is often a

difficult challenge.

With the replication approach, a critical component that is a single entity in

the unreplicated version of the system is now a collection of replicas. All these

17

replicas perform the same operation and interact with other components (replicated

or unreplicated) in the same way. It is then convenient to view these replicas as a

group and address them as a single logical entity when other components

communicate with them [Guer97]. This can be achieved using group

communication [Birm93]. Group communication is used to implement efficient

and reliable information dissemination among replicas so they can cooperate with

consistency. A group communication system provides membership and reliable

multicast services [Choc01]. The task of the membership service is to maintain

agreement among processes on a set of processes that are currently

operational [Mose94]. The reliable multicast service delivers messages reliably to

all operational members in a group [Hadz93]. These services can be used as

primitives to maintain consistent operation among replicas. Therefore, group

communication is widely used as an important building block for fault-tolerant

distributed systems [Guer97].

In order to maintain group membership and provide reliable multicast, a group

communication system often requires that all members in a group reach common

decisions on important issues, such as the set of processes that are operational and

the content and order of multicast messages they received, so group consistency can

be maintained. The process of this group decision-making is called

consensus [Barb93]. The consensus process forms an agreement among the fault-

free replicas so they can maintain the synchronization and integrity of the replica

group. We will talk more about consensus in Subsection 2.1.1. Due to the

importance of agreement among distributed components, the ability to solve

18

consensus is at the heart of a fault-tolerant distributed system [Ture92, Lamp96].

There are a number of applications of consensus in addition to group

communication, such as leader election and clock synchronization.

Applications

Replication Mechanism

Group Communication

Consensus

Message Transport

Figure 2.1: Building blocks for fault-tolerant distributed systems

So far we have discussed the important problems that need to be solved when

building a fault-tolerant distributed system and the relationship between these

problems: consensus, group communication, and replication. The solutions to these

problems can be used as layered building blocks for fault-tolerant distributed

systems, as depicted in Figure 2.1.

The bottom of this layered structure is a message transport mechanism that is

use for point-to-point communication between individual components in the

system. The consensus protocol is built above this communication layer as a base

for cooperation and synchronization among distributed components. Group

communication primitives are implemented using the consensus protocol to provide

reliable delivery of messages to groups, and maintain the group membership.

19

Using the group communication primitives, replication can be implemented with

consistency maintained among fault-free replicas. On top of the replication

mechanism, a system can implement its particular application with reliability and

availability. In the fault-tolerant CMM system, the application implemented on the

top of this layered structure is the cluster management functionality.

In the rest of this section, we briefly examine previous research work on

consensus, group communication, and replication.

2.1.1. Consensus and Paxos

As a general form of agreement in distributed systems, consensus has been

extensively studied in the past two decades and resulted in a large body of work.

The consensus problem is defined over a set of processes. Each process initially

proposes a value and the correct processes in the set have to decide on a common

value such that the following properties are satisfied:

• Agreement : No two correct processes decide on different values.

• Validity : If a correct process decides on value v, then v was proposed by

some process.

• Termination : All correct processes eventually decide on a value.

The problem can by easily solved when there is no fault, while consensus in

the presence of faults is difficult, even impossible. The FLP impossibility result

presented by Fischer, Lynch and Paterson [Fisc85] asserts that there is no

deterministic algorithm that solves consensus problem in an asynchronous system

20

with even only one crashed process.

Several approaches have been studied to circumvent the FLP result with

additional assumptions about the system model. These studies have led to various

algorithms that solve consensus in partially synchronous systems [Dwor88,

Dole87], in timed asynchronous systems [Cris99, Fetz95], and in systems with

unreliable failure detectors [Chan96a, Chan96b]. Among these algorithms,

Lamport’s Paxos algorithm is a well-known one. The Paxos algorithm was first

introduced in [Lamp98], presented as a part-time parliamentary system on an

ancient Greek island. The algorithm was then revisited in [Pris00] with a formal

analysis, and further generalized and clarified in [Lamp01a, Lamp01b, Lamp05].

Paxos is an asynchronous consensus algorithm that relies on partially

synchrony [Dwor88] : the bounds on message delay and relative speeds of different

processes exist but they are unknown or they hold only after some unknown time.

Paxos ensures termination when the system is partially synchronous and a majority

of processes operate properly and communicate properly.

Paxos is a two-step consensus protocol described in terms of actions taken by

three classes of agents: proposers, acceptors, and learners [Lamp01a]. The protocol

proceeds in asynchronous rounds and each round is led by a proposer that guides

acceptors to achieve consensus. The rounds are numbered and the numbers

determines a total order on the rounds. Multiple rounds can be carried out

concurrently, and each round is a distinct attempt to get a majority to accept a

proposed value. It is possible that multiple rounds succeed on getting its proposal

21

accepted. Paxos guarantees that all accepted proposals have the same value.

This guarantee is achieved by the way that a proposer chooses a value to

propose. As the first step, each proposer queries at least a majority of acceptors to

learn the proposals of past rounds. An acceptor responds to the query with the

proposal of the highest-numbered round it has accepted, and will not accept any

proposal of rounds numbered less than the current round. The proposer then

chooses the highest-numbered proposal it collected from the acceptors as its

proposal and tries to get it accepted by a majority of acceptors in the second step.

As any two majority sets have at least one acceptor in common, this ensures that all

successful rounds decide on the same value. Once a value has been decided on, the

learners learn about it from the acceptors.

Paxos guarantees the agreement and validity preperties even when there are

multiple proposers running their rounds at the same time. It ensures termination

when there is only one proposer and it can communicate successfully with a

majority of acceptors.

Paxos provides an efficient and practical way to implement state machine

replication [Lamp01a], thus it is very attractive for building fault-tolerant

distributed systems. Many fault-tolerant replication algorithms — especially those

achieve Byzantine fault-tolerance, which we will discuss in Subsection 2.2 — are

basically variations or extensions of Paxos.

22

2.1.2. Group Communication

Process groups are a natural approach to implement replication for fault-

tolerant distributed computing [Birm93]. Using this approach, replicas of a critical

component are grouped together. The replicas operate collectively using group

communication services.

Group communication provides efficient one-to-many or many-to-many

communication for process groups. Among the services a group communication

system may provide, total order multicast/broadcast (also called atomic multicast

or atomic broadcast) attracts the most attention. Total order multicast is a group

communication primitive that enforces reliability and a total order on the delivery

of messages to a group, i.e., all messages are delivered in the same order by all

correct members. There has been considerable research on total order

multicast/broadcast and a large number of algorithms or protocols have been

proposed. Here we take a brief look at several examples. For a comprehensive

survey, one can refer to [D ́efa00, Défa04].

The Isis toolkit [Birm87, Birm91] is the first system for group communication.

It provides services that allows processes to join process groups, broadcast

messages to groups, and receive messages sent to groups. Tw o broadcast primitives

are provided: CBCAST guarantees causally ordered message delivery, and

ABCAST preserves a total order on messages. With ABCAST, a broadcast

message is sent to all its destinations. Upon receiving a message, a process assigns

the message a priority larger than the priority of any message it received before,

23

and acknowledges the sender with the assigned priority. The sender collects

acknowledgments from all destinations, and then computes the maximum value of

all the priorities and sends it back to all the destinations. The destinations deliver

the received messages based on the decided priorities.

The group communication protocol in the Amoeba distributed operating

system [Kaas91, Kaas89] implements sequencer-based atomic broadcast. A

process broadcasts a message by sending it to a process designated as the

sequencer. The sequencer assigns a sequence number to each message and

broadcasts it to the group. Other processes in the group deliver messages in the

order of their sequence numbers. A process that detects a gap in the message

sequence sends a retransmission request to the sequencer. The sequencer saves all

broadcast messages until it discovers that all processes in the group have received

those messages. A group membership protocol based on a heartbeat mechanism is

used to tolerate process failures. If the sequencer fails, the membership protocol

elects a new sequencer based on the invitation algorithm described in [Garc82].

The group membership protocol may exclude fault-free processes from the group,

or lead to partitioning.

In the Totem system [Amir93, Amir95], a group is organized into a logic

token-passing ring. A token that contains information about reliable delivery and

message order is circling around the ring. A process must possess the token before

it broadcasts. When it gets the token, it increments the sequence number carried by

the token and broadcasts its message with the sequence number. Retransmission

24

requests for missing messages are attached to the token. Totem also relies on a

group membership service to handle token loss and process crash failures. Process

failures are detected by an unreliable failure detector [Chan96a] implemented using

timeouts. The membership protocol achieves consensus on the membership among

fault-free processes and constructs a new ring. It may exclude a slow but fault-free

process from the group.

2.1.3. Replication Techniques

There are two fundamental classes of replication techniques: primary-backup

replication and active replication [Cher98, Guer97].

Primary-backup replication [Budh93] is also called passive replication. One

replica is designated as the primary and performs the operation. Other replicas are

backups and they only interact with the primary. The primary sends state update to

the backups to keep the replicas consistent. If the primary fails, a fail-over occurs

and one backup becomes the new primary and takes over the computation. Because

it is relatively easy to implement, the primary-backup approach has been widely

used in fault-tolerant systems when only benign faults such as crash-failure are

considered. For example, the Harp file system [Lisk91] uses the primary-backup

approach.

Active replication uses multiple identical replicas that execute simultaneously

on different nodes [Ch ́ er ̀92]. All the replicas are active and perform the same

operation. Outputs of all replicas are voted on to produce a correct output.

25

Replicas are tightly synchronized to maintain consistency. Faulty replicas can be

masked as long as a majority of replicas are correct. Hence, active replication can

be used to tolerate non-fail-stop faults, and to avoid lengthy disruption of

computation.

Active replication is usually implemented by structuring replicas as

deterministic state machines, so active replication is also known as the state

machine approach [Lamp82b, Schn90]. The state machine consists of a state that is

the collection of all state variables used to implement the application. When an

input message is delivered, the state machine performs some deterministic

computation, transforms its state by modifying the state variables and produces

some output messages. Processing of an input message is atomic with respect to

processing of other input messages.

A replication algorithm must guarantee both safety and liveness. Liveness

requires that the replicas complete the operation eventually. Safety requires that the

replicas satisfy linearizability [Herl90] : the replicas behave like their one-copy

equivalence that performs the operation atomically and correctly. With state

machine replication, this requires interactive consistency [Powe88, Rush] among

the replicas: correct replicas must agree on the content of input messages and the

total order of processing the messages. Provided all correct replicas start from the

same initial state and process the same input messages in the same order, they will

produce the same output messages and have the same final state. Total order on

input messages can be ensured by using an atomic multicast protocol (see Section

26

2.1.2) to deliver the messages to the replicas.

State machine replication (SMR) has been proved to be a useful approach for

building fault-tolerant systems, especially for building highly reliable systems that

can tolerate Byzantine faults.

2.2. Byzantine Fault Tolerance

Since the introducing of the Byzantine General problem [Peas80, Lamp82a],

Byzantine fault tolerance has been widely studied both in theoretical and practical

settings. Byzantine fault tolerance techniques make no assumptions about the

behavior of faulty processes, therefore, can tolerate all types of faults. Research

has been done in the theoretical directions such as developing consensus algorithms

that are Byzantine-resilient [Brac85, Kihl03, Doud97], as well as on developing

practical Byzantine fault-tolerant systems. In this section, we review previous work

on Byzantine fault tolerant state machine replication (BFT-SMR).

All previous BFT-SMR algorithms for asynchronous systems require partial

synchrony (see section 2.1.1) to provide both safety and liveness (see Section

2.1.3). These algorithms also assume the authenticated Byzantine fault model. In

this fault model, messages communicated between processes are authenticated with

digital signatures. These messages are called signed messages [Lamp82a]. A

process can verify the content and the original sender of a signed message, even if

the message has been relayed by other processes. Therefore, a faulty process

cannot forge or spoof another process’s messages. Other than this restriction, faulty

27

processes can behave arbitrarily.

Message authentication is usually implemented with public-key cryptosystems

such as RSA [Rive78] or DSA [NIST94]. Each process can digitally sign its

messages with a private key which is known only to itself. Each process can also

obtain the public keys of other processes to verify the signed messages it receives.

PBFT

Castro and Liskov present a practical Byzantine fault tolerance (PBFT)

algorithm for reliable services in [Cast99a]. The PBFT algorithm requires three

phases for normal operations. One of the replicas (the primary) leads the other

replicas (backups) to reach consensus on the order of processing client requests.

All replicas are active replicas as they all execute service operations and sends

replies to clients. The role of the primary is similar to the role of proposer in

Paxos, and the backups play the role of acceptors. Clients send requests to the

primary and wait for sufficient number of identical replies from the server replicas.

A view-change protocol is triggered by timeouts, allowing the system to make

progress when the primary fails. A view-change promotes a backup replica to be

the new primary, but does not exclude the faulty replica from the replica group.

The PBFT algorithm ensures safety provided fewer than 1/3 of the replicas are

faulty. It relies on partial synchrony to provide liveness. Messages used in PBFT

are authenticated with digital signatures but public-key cryptography is not always

necessary. A modification of the algorithm that uses message authentication code

(MACs) during normal operations is presented in [Cast99b], which reduces the

28

performance overhead caused by public-key cryptography.

Compared to other work on Byzantine fault tolerance, PBFT provides a more

practical and efficient solution, because it requires the minimal number of

communication steps and reduces message authentication overhead.

Rampart

Rampart [Reit94, Reit95] provides a practical toolkit for building Byzantine

fault tolerant replicated service. Rampart includes an atomic multicast protocol that

is built upon an echo multicast protocol. In the echo protocol, a process sends the

digest of its multicast message to all destination processes. Processes that receive

the digest ‘‘echo’’ it by sending back an echo message. When the sender process

receives sufficient number of echoes, it sends a commit message with the full

content of the multicast message to all processes, along with a copy of all the echo

messages it has received. A process delivers the messages when it receives this

commit message and verifies the echo messages. The atomic multicast protocol

relies on a sequencer that decides the order of messages. The sequencer use the

echo protocol to reliable broadcast the ordering information to the replica group.

Rampart uses a secure group membership protocol [Reit96] to exclude faulty

replicas from the group. The membership protocol relies on an independent

mechanism that allows a replica to suspect that another replica is faulty. Based on

Byzantine-resilient consensus, the protocol enables correct replicas to agree on a

list of replicas that are fault-free.

29

SecureRing

SecureRing [Kihl98] is a token-based total order broadcast protocol that can

tolerate Byzantine faults. In SecureRing protocol, the replicas in the group are

organized into a logical ring, and message multicast is controlled by a token. A

replica can multicasts its messages only when it becomes the token holder. The

token holds the ordering and authentication information for multicast messages,

and is protected using public-key cryptography. SecureRing allows a single digital

signature to cover multiple messages to reduce the overhead for message

authentication.

SecureRing protocol also relies on a group membership protocol, which uses

an unreliable Byzantine faults detector [Kihl97]. This fault detector detect faults by

timeouts and by checking the authentication of messages. Once faults are detected,

the membership protocol reconfigures the replica group and form a new ring

consisting of only fault-free replicas.

All previous work on BFT-SMR requires at least 3 f + 1 replicas to tolerate up

to f faulty replicas. In order to reduce the replication cost, Yin et al [Yin03]

present an approach in which the consensus process that orders client requests and

the execution of the requests are separated. With this separation, the number of

replicas that execute the service operation can be reduced to 2 f + 1. However,

3 f + 1 agreement replicas that actively participate in the consensus process are still

required. Our work in BFT-SMR shows that the replication costs can be further

reduced by using only 2 f + 1 active replicas for both agreement and execution (see

30

Chapter 4).

2.3. System-Level Fault Diagnosis

Fault diagnosis is the process of identifying faulty units in a system. The first

research work that tackled the system-level fault diagnosis problem was the PMC

model proposed by Preparata, Metze and Chien [Prep67]. In this model, a system

consists of a set of processing elements(PEs), and PEs can conduct test on other

PEs. The PMC model use a diagnostic graph G(V , E), where PEs form the set V ,

and each directed edge in E represents that one PE tests another PE. The testing

PE sends a test to the tested PE, which executes the test and replies with the result.

If the result is a passing result, the corresponding edge in G is labeled with a 0;

otherwise, it is labeled with a 1. The collection of all test outcomes is called the

syndrome. After the completion of all tests in G, a reliable external diagnoser

analyze the syndrome to identify the faulty PEs. The PMC model assumes

permanent faults and perfect test coverage, i.e., a faulty PE always fails the test

from a fault-free PE.

The same testing strategy was also used in the BGM model, proposed by Barsi

et al [Bars76]. This model assume that a faulty PE is always tested as faulty no

matter the testing PE is faulty or not.

Malek [Male80] introduced the comparison approach for fault diagnosis. In

his model the diagnostic graph is undirected, each edge represents the comparison

between a pair of PEs. The edge is labeled 0 if the two PEs agree and labeled 1 if

31

they disagree. The assumption is that a faulty PE never agree with a fault-free PE,

and two faulty PEs also disagree. As in the PMC model, the comparison syndrome

is diagnosed by a centralized diagnoser. A similar approach was proposed

independently by Chwa and Hakimi [Chwa81], who assumed that two faulty PEs

could possibly produce the same result and their comparison outcome could be

either 0 or 1.

Maeng and Malek [Maen81] extended the comparison models by having a

third units to perform the comparison. The model was further extended into a

generalized comparison model in [Seng92] which allows the comparator to be one

of the two units being compared. In these models, although the comparisons are

distributed, the comparison outcomes are still sent to a centralized supervisor for

diagnosis.

Instead of relying on a trusted supervisor to diagnose the system, distributed

diagnosis [Bian90, Hilt95, Hoss84, Kuhl81, Seng92] allows the components to

diagnose themselves in a distributed way. With distributed diagnosis, each fault-

free unit is able to independently diagnose the faulty units. This usually requires an

agreement among the fault-free units.

A broadcast comparison model for distributed diagnosis is proposed in

[Blou99]. In this model, the two units in a comparison pair broadcast their outputs

to all units in the system. Comparisons are performed on every fault-free unit and

ev ery unit executes the diagnosis algorithm. This model assumes perfect

comparison coverage: the comparison performed by a correct unit between a faulty

32

unit and any other unit (faulty or correct) always produces a mismatch. It also

assumes that messages are broadcast in a reliable and timely manner.

Ideally, a diagnosis should be both complete and accurate. A diagnosis is said

to be complete if all faulty units are identified. A diagnosis is accurate if no fault-

free units are identified as faulty. Here we define completeness and accuracy in a

similar way as they are defined for failure detectors [Chan96a]. In some work on

fault diagnosis, accuracy is also referred as correctness [Shin87, Arak03].

Yang and Masson [Yang88] considered the distributed diagnosis in a soft-fail

model, which covers intermittent faults and unreliable communication links. Faulty

units may not always exhibit faulty behavior to others. Their algorithm allows all

correct units independently diagnose the system with accuracy but the diagnosis

may not be complete.

The algorithm proposed in [Shin87] uses authenticated Byzantine agreement

to collect the syndrome information over sev eral rounds of tests performed after a

period of execution. This off-line algorithm provides completeness only under

assumptions that a faulty processor exhibits faulty behaviors to all other processors.

On-line diagnosis algorithms, such as those proposed in [Walt94] and

[Busk93], allows diagnosis to be conducted on-line as each processor collects

diagnostic information without pausing the normal execution. On-line diagnosis

avoids the disruption of computation caused by diagnosis.

33

2.4. Cluster Systems

In this section we take a quick look at a number of representative systems

developed for cluster computing.

Generally speaking, a system that can be used to manage a cluster in practice

should provide the following important features:

• Transparency: the cluster appears as a unified, powerful resource to users, i.e,

the cluster management system offers a single system image (SSI) [Hwan99].

with transparent remote execution.

• Resource Allocation: resource management is the basic functionality required

for cluster management. The management system monitors the status of all

the resources in the cluster, allocates them to user jobs, and reclaims resources

when they are not used.

• Load Balancing: the system workload is distributed across the cluster for

improved performance and throughput. Balanced distribution of load leads to

better job response time and resource utilization [Livn82]. Dynamic load

balancing is preferred because it allows adaptive redistribution of the workload

among computers to avoid load imbalance caused by workload

changes [Litz88, Zhu95].

• Gang Scheduling: for parallel applications, significant performance benefits

can be obtained if the job scheduling on different nodes is coordinated so that

all the processes of a particular task are running at the same time. Effective

gang scheduling leads to more efficient communication between parallel

34

processes and less context switch overhead [Feit90, Oust82].

• Fault Tolerance: the cluster needs to be continuously available even in the

presence of failures. The management system should provide efficient

supports for fault tolerance in applications, such as restarting, checkpointing,

and process migration. The management system must be fault-tolerant itself.

In clusters for critical applications in hostile environments, as discussed in

Section 1.2, non-fail-stop faults need to be considered.

• Scalability: the cluster should be scalable. No performance bottleneck exists

when the cluster is extended to a large scale.

In the rest of this section, we review a number of existing systems and

examine how well they provide the features listed above. More detailed reviews of

a number of research and commercial cluster management systems can be found

in [Bake96] and [Kapl94].

GLUnix

Glunix (Global Layer Unix) [Ghor98] is a cluster management middleware

developed for the Berkeley NOW project [Ande95]. GLUnix offers a single system

image on a cluster of workstations, provides transparent remote execution service

for parallel and sequential jobs. Cluster management is implemented using a

centralized master process. This master process assigns tasks to node using a

simple load balancing policy based on workload information periodically reported

to the master by daemons running on all nodes. It also provides gang scheduling

for parallel jobs.

35

The centralized master in GLUnix is not protected with any fault-tolerance

measure. It is potentially a single point of failure in the system, and the system can

not recover automatically if the master fail.

With the exception of the fault tolerance features, the basic management

functionality of our CMM system is quite similar to the functionality of GLUnix.

Condor

Condor [Litz88] is a cluster management system designed to provide so-called

high throughput computing (HTC) for computing-intensive applications. It is a

distributed batch-queue system that provides remote execution and allows

utilization of otherwise wasted CPU cycles by identifying idle machines and

migrating application processes to them. The process migration is supported by the

checkpointing mechanism provided in Condor. A Central Manager (CM) performs

the resource management by acting as a matchmaker between node-specific

resources advertisements and jobs’ requirements, using the ClassAd

mechanism [Rama98].

Relying on the centralized CM leaves Condor with a single point of failure,

although failures of the CM do not affect jobs that are already in execution. The

CM has to be rebooted after it crashes and when it restarts, it collects information

about all cluster nodes, and information about all running and queued jobs.

Chameleon

Chameleon [Kalb99] provides an adaptive middleware infrastructure to satisfy

36

different levels of fault tolerance requirements of user applications. It can be used

to manage a cluster for fault-tolerant applications. The Chameleon architecture is

based on ARMORs, which are reconfigurable modules that control all operations in

the Chameleon environment. Each type of ARMORs provides a specific fault

tolerance capability.

Chameleon employs a hierarchical structure to monitor the ARMORs in the

system. On the top of the hierarchy is a centralized Fault-Tolerance Manager

(FTM) that is the key manager of the system. A backup FTM is used to tolerate

crash failures of the FTM.

Although Chameleon is designed to manage redundant resource in a cluster,

and to tolerate errors in both user applications and the middleware components, its

adaptive architecture is too complicated and may not be efficient for cluster

management.

LSF

Load Sharing Facility (LSF) [Zhou92, Zhou93] is a commercial product for

load sharing and batch execution on heterogeneous clusters. The management is

implemented using load information managers (LIMs) that distribute node load

information and make task placement decisions based on the resource requirements

of tasks. The task placement is performed either in a distributed way (with the

potential of host overloading) or in a centralized way. LSF does not support

dynamic load balancing due to the lack of supports for process migration.

In LSF, one LIM is designated as the master LIM, which is responsible for

37

assembling and distributing system load information, and for the centralized task

placement. When the master LIM crashes, another LIM is elected as the new

master by all the LIMs, using a protocol derived from the Bully algorithm [Garc82].

The new master restores its management state by collecting load information from

all the LIMs.

Hector

Hector [Russ98, Russ99] is a cluster runtime environment for MPI

applications. It provides automatic resource allocation and transparent task

migration for parallel jobs. Hector uses a central master allocator to coordinate

resource allocation in the cluster, and slave allocator on every node to launch tasks

and monitor local load on the node. The master allocator is not fault-tolerant.

When it fails, the entire cluster goes down as all slave allocators terminate

themselves.

STORM

STORM [Frac02a, Frac02b] is a resource management tool designed for

clusters built with a high-performance interconnection network. It integrates the

management functionality with the hardware supports provided by the high-speed

network to achieve fast, scalable resource allocation and gang scheduling for

parallel jobs. STORM consists of a Machine Manager (MM) running on a special

management node and a Node Manager running on every node. The MM is in

charge of centralized resource management and is not protected with any fault

38

tolerance mechanism.

Linux-HA

The High-Availability Linux Project [Robe04] provides a high-availability

clustering solution on Linux systems. The core of Linux-HA is a package called

‘‘Heartbeat’’ [Robe00]. It provides functions such as starting and stopping

resources, monitoring the nodes in the cluster, and transferring ownership of a

shared IP address between nodes. This allows a standby backup to monitor a

primary server and take over when the primary server fails.

HA-OSCAR

OSCAR [Mugl03] was dev eloped for Beowulf clusters. The system has a

master node that receives user requests and distributes the requests to specified

client nodes, detects the failures of client nodes and recover from the failures. Its

high-availability extension, HA_OSCAR, uses the primary-backup approach to

tolerate fail-stop failures of the master node. Fail-over from the primary to the

standby backup relies on shared storage. Heartbeats on a special control network

are used to detect failures.

MOSIX

MOSIX [Bara98] is an enhancement of BSD Linux that supports preemptive

process migration for load-balancing across a cluster. The MOSIX enhancement is

implemented in the OS kernel and the modifications are transparent to the

application level. The load-balancing enhancement dynamically distributes the

39

workload among all cluster nodes by migrating processes from overloaded node to

less loaded nodes. Resource and job management in MOSIX is conducted in a

decentralized fashion: each node makes its own management decisions

independently, and the process migration is performed independently between a

pair of nodes. With this decentralized management, the system does not have a

single point of failures.

RAIN

The RAIN (Reliable Array of Independent Nodes) system [Boho01] provides

reliable distributed computing with fault-tolerant interconnect topologies and a

reliable communication protocol. It also relies on a token-based group membership

protocol as a building block for fault-tolerant applications. Only fail-stop failures

are considered. A token that carries group membership information circles around

the nodes. The token is also used for failure detection: if a node does not respond

to its predecessor’s request to pass over the token, its predecessor then decides that

this node has failed. A clustering solution for firewalls, Rainwall, has been

implemented based on RAIN. Rainwall supports dynamic load balancing by

having lightly-load nodes requests load from heavily-loaded nodes.

40

Chapter Three

An Overview of the Ghidrah
Cluster Management System

Cluster management middleware (CMM) schedules tasks on a cluster, controls

access to shared resources, provides for task submission and monitoring, and

coordinates the cluster’s fault tolerance mechanisms. Thus, reliable continuous

operation of the management middleware is a prerequisite to the reliable operation

of the cluster. Hence, especially for supporting critical applications in hostile

environments, the CMM should tolerate a wide class of faults with minimal

interruptions to management operations.

Motivated by these requirements, we have designed and implemented a CMM

system called Ghidrah. The Ghidrah CMM integrates a carefully-balanced set of

mechanisms that allow it to continue to operate reliably despite malicious faults.

This chapter provides an overview of the Ghidrah CMM system.

We first describe the design goals and system assumptions of our system in

Section 3.1, then present the arguments for the centralized management structure

we chose for our management system in Section 3.2. In Section 3.3, we describe

the system architecture of Ghidrah and the functionality of key components. In

Section 3.4, we discuss the necessity of having a trusted hardcore in the system for

unattended operation. Section 3.5 describes the communication infrastructure of

Ghidrah.

41

3.1. Design Goals and Assumptions

The main objective of the research presented in this thesis is to build a

practical fault-tolerant CMM system that can provide reliable and continuous

management functionality on clusters built with COTS hardware and software. The

clusters are used to run critical parallel applications for high-performance

computing in hostile environments.

The Ghidrah CMM system is designed to provide important management

functions such as resource allocation, task control, and gang-scheduling for parallel

applications. These functions must be provided with high reliability and low

overhead. Furthermore, the system must support unattended operation (see Section

1.2), so it can continuously manage the cluster without human intervention.

The cluster is an asynchronous distributed system with partial synchrony (see

Section 2.1.1). Processes running on cluster nodes communicate via point-to-point

messages. The communication platform is unreliable: messages may be lost,

delayed, duplicated, or delivered out of order by the communication platform.

Nodes in the cluster may fail such that their behavior is, essentially, arbitrary.

As a result, each process running on the node may send incorrect messages, may

fail to send messages it is supposed to send, may incorrectly change its internal

state, or may simply crash or behave as if it crashed. When a node fails, all the

processes running on the node may fail simultaneously. Howev er, it is assumed

that only one node at a time fails so that recovery action can be completed before

another node fails. It is further assumed that through the use of coding and

42

cryptographic techniques it is possible for a receiver of a message to authenticate

the identity of the sender and to verify that the message has not be corrupted during

transmission.

3.2. Centralized Management

The Ghidrah CMM is based on a global, centralized manager is in charge of

gathering and maintaining cluster information, and making resource allocation and

job scheduling decisions. An alternative to centralized management is distributed

or decentralized management: there is no global decision-maker, all nodes in the

cluster act as equal peers with equal management responsibility [Gosc90]. The

management functionality (resource allocation, job scheduling, and etc) is

distributed across all cluster nodes, thus avoiding having a single point of failure

and a centralized performance bottleneck. However, distributed management is

more complex and thus more difficult to implement and debug. For example,

negotiations among local managers is required to resolve contention for

resources [Graf93, Rama98].

In comparison to systems based on distributed management, a system based

on centralized management can manage the resources more efficiently. In

particular, a centralized manager can make globally optimized decisions since it

can maintain a global up-to-date view of all the resources and jobs in the cluster.

For this reason, many cluster systems use a centralized management

structure [Cray98, Codine, Ghor98, Litz88, Zhou92, Russ99, Zhou93].

43

A key potential problem with centralized management is that the failure of the

manager may lead to the failure of the entire system. Therefore, in Ghidrah, the

centralized manager is made reliable by replication across multiple nodes using the

state machine replication approach [Cast99a].

Another possible problem with centralized management is limited scalability.

However, the success of previous CMMs [Ghor98] demonstrated that the scalability

of a system with centralized management is sufficient for a LAN-based system with

hundreds of nodes. For larger-scale systems, the limited scalability of centralized

systems may lead to unacceptable performance. Therefore, in those systems,

distributed or hierarchical management architecture are often used [Chap99,

Czaj98]. Since Ghidrah was not designed for clusters beyond 100 nodes, the use of

hierarchical management for Ghidrah has not been investigated.

3.3. System Architecture

Figure 3.1 depicts the system architecture of the Ghidrah CMM. The

middleware system consists of four components: a group of manager replicas, an

agent process on each physical node, parallel applications, and the trusted hardcore.

In this section, we describe the functionality of the managers and the agents, briefly

talk about the applications. The trusted hardcore is discussed in the next section.

Managers

As previously discussed, the Ghidrah CMM is based on centralized

management. The reliability of the centralized manager directly determines the

44

Manager Group

Hardcore
Trusted

backup

primary

backup

agentagentagentagent

T1

T2

T3 T1 T1

T3

Physical Cluster Nodes

T1

T2

T3

Figure 3.1: Ghidrah system architecture

reliability of the entire cluster. Hence, the centralized manager is replicated on

multiple nodes using Byzantine fault-tolerant state machine replication [Cast99a]

(BFT-SMR) (see Section 2.2). Our BFT-SMR algorithm is presented in detail in

Chapter 4. We often refer to the replicated manager as the manager group.

The manager group is the centralized decision-maker and the most important

part of the CMM. It is responsible for all the decisions regarding to the

management of the cluster, including how to allocate resources to applications, how

to schedule application tasks, and how to coordinate fault tolerance actions on all

cluster nodes. In order to do that, the manager group maintains up-to-date global

information about all the nodes and all the tasks that are running on the cluster.

The manager group is also responsible for monitoring all cluster nodes so that it

45

can detect node failures and recover from them properly.

The manager group is a dynamic group: its configuration (i.e., the nodes that

the manager replicas are running on) changes, with reconfigurations caused by

faults. Figure 3.1 shows a manager group that consists of three manager replicas.

One of the replicas is designated as the primary replica. The other two replicas are

backup replicas. All three replicas independently perform the management

operations and send management commands to the agents. With this setup, a single

faulty replica can be tolerated at a time.

Agents

An agent daemon runs on every node in the cluster. The agent acts as a proxy

for the management service. It controls all the user processes that are running on

the node, collects and reports to the manager group status information about the

local node and user processes currently running on the node. The agent is

responsible for launching processes for user tasks on the node, as well as killing

and restarting processes if it is necessary. It is also the local executor of the

scheduling decisions made by the managers — it stops and resumes user processes

according to the scheduling decisions.

An agent acts on commands of the manager group. All the manager replicas

send their commands to the agent. When receiving these commands, the agent

compares and votes on them. It only accepts and acts according to a command

when it has received consistent copies of the command from a majority of manager

replicas.

46

Compared to the central manager, agents are less critical to the reliability of

the entire cluster management system. For this reason, the fault tolerance

techniques used on agents are less aggressive. Details about the fault tolerance

mechanisms for agents are presented in Chapter 6.

Applications

User applications running on the cluster are unmodified MPI parallel

applications. Applications are linked with an API library that provides an interface

between application processes and the local agents. We ported MPICH [Grop96] to

our communication infrastructure (Section 3.5) and modified the MPI initialization

code to set up the mechanisms that allow Ghidrah to control MPI applications.

The fault tolerance mechanisms for applications are separated from the fault

tolerance mechanisms for the CMM. This allows different applications to utilize

different fault tolerance techniques according to their requirements.

3.4. The Trusted Hardcore

Due to hardware or software faults, the hardware or the operating system on

the node may fail and cause the node to be ‘‘dead’’. The only way to recover from

such failures is to power reset the node. As discuss in Section 1.3, there must exist

a component in the cluster that is able to perform this action. This component must

be reliable and trusted; otherwise, it may become faulty and power reset a working

node in the cluster, or even reset all the nodes in the cluster and cause the cluster to

be unavailable.

47

A trusted component is also necessary for recovering from catastrophic

failures, i.e., rare failures that cannot be recovered from by the managers and agents

themselves. For example, the fault tolerance mechanisms used to protect the

replicated managers are based on the assumption that at most f manager replicas

could be faulty at a time, as described in Chapter 4 and Chapter 5. If in very rare

cases, the system suffers from a burst of faults that compromises more than f

manager replicas at the same time, the fault tolerance mechanisms will fail to keep

the management system operational. In this situation, the entire cluster has to be

power reset.

Based upon the arguments above, a trusted hardcore is required to keep the

cluster available, even in the presence of catastrophic failures. For example, with

an on-board compute cluster in a spacecraft, the trusted hardcore may be a

radiation-hard highly-reliable processor, the spacecraft control computer (SCC),

that is used mostly to control sensors and actuators on the spacecraft. This

hardcore is used as a measure of last resort for recovery. This hardcore should be

as simple as possible, because the more complex it is, the less reliable it will be.

For this reason, it is important to minimize the functionality required from the

trusted hardcore. Section 7.1.6 discusses in detail the functional requirements from

the trusted hardcore as well as the interactions between the trusted hardcore and the

manager replicas.

48

3.5. Communication Infrastructure

Communication among the CMM components are performed on top of a

communication infrastructure (CI). The CI is designed to be portable across

different network platforms. It provides efficient message-passing for two classes

of communication on the cluster: communication between application processes

and communication between key CMM components (managers, agents, and the

trusted hardcore).

Both application-level communication and CMM communication requires

reliability. The CI provides reliable end-to-end communication regardless of the

reliability characteristics of the underlying platform [Minn01]. The communication

is connection-based and provides FIFO order delivery of messages sent on a

connection between two endpoints. The CI protects message integrity and

guarantees that a message is delivered to its destination as long as both source and

destination processes are fault-free.

The CI provides different reliability according to the different requirements of

the application-level communication and the CMM communication. The

application communication requires uniform reliability on all messages transmitted

between application processes. On the other hand, the communication between

managers, agents and the hardcore has varied reliability requirements for different

message types. Some messages, such as heartbeat messages, do not require reliable

transmission. Some messages require replies from the receiver at the level above

the CI. For example, when managers command an agent to start an application

49

process, they expect a confirmation from the agent reporting that the process has

been started. For this type of communication, end-to-end arguments indicate that

reliability at the CI level are not needed. In order to provide efficient supports to

various types of CMM communication, the CI is designed to offer adaptive

reliability. Detailed implementation of the CI is discussed in Section 7.1.7.

As mentioned in Section 3.1, message transmitted between key CMM

components (manager, agent, and the hardcore) are authenticated using

cryptographic techniques. Message authentication is implemented in the CI. The

CI provides the ability to generate and verify authentication codes, allowing the

message receiver to authenticate the identity of the sender. If the identity of the

sender cannot be authenticated, the receiver discards the message.

50

Chapter Four

Efficient Byzantine Fault Tolerance
for Replicated Services

As discussed in Section 2.2, reliable services can be implemented using

Byzantine fault-tolerant state machine replication (BFT-SMR) [Cast99a]. With this

approach, the server replicas are implemented as deterministic state machines that

are replicated across multiple nodes [Schn90, Lamp82b] (see Section 2.1.3).

All existing BFT-SMR algorithms require at least 3 f + 1 server replicas to

tolerate up to f faulty replicas. All replicas in those algorithms actively participate

in the agreement on a total order of client requests. Some efforts have been taken

to reduce the replication cost for BFT-SMR. For example, in [Yin03] the replicas

that agree on request order are separate from the replicas that actually process

(execute) the requests. The solution requires only 2 f + 1 execution replicas, but it

still requires at least 3 f + 1 agreement replicas.

In this chapter, we present a BFT-SMT solution that reduces the replication

costs. Our solution requires only 2 f + 1 active replicas for both agreement and

execution. In addition to the active replicas, this solution requires standby spares,

such that the number of active replicas plus the number of spares is at least 3 f + 1.

Standby spares are involved in the algorithms only for reconfigurations when the

active replicas fail to make progress (due to faulty replicas or simply due to

unexpectedly long delays). Each such reconfiguration leads to a different subset of

51

nodes running the active replicas. Eventually, the system reaches a configuration

where the 2 f + 1 active replicas are fault-free and thus are able to make progress.

Our BFT-SMR algorithm provides the same Byzantine resiliency and service

characteristics as previous algorithms under the same synchrony assumptions. The

use of fewer active replicas results in reduced power assumption for processing and

communication. It also has the potential to provide better performance during

normal, fault-free execution since each active replica communicates with fewer

replicas.

In this chapter, we discuss this new BFT-SMR algorithm as a general solution

to implementing fault-tolerant services. In the CMM system, this algorithm is used

to replicate the central manager to achieve high reliability. In the context of the

CMM, the servers are the managers, while the agents and the trusted hardcore are

the clients.

The rest of this chapter describes this new BFT-SMR algorithm. In Section

4.1, we analyze the problems and issues that we must resolve when making the

replication algorithm Byzantine fault-tolerant. Section 4.2 presents our algorithm

and the corresponding correctness proof for the case of f = 1, where there are three

active replicas and a single replica failure can be tolerated. In Section 4.2.7 and

4.2.8, we also discuss extension of the algorithm to any f so it tolerates multiple

simultaneous faults, and extension of the algorithm to an open replica group,

respectively. In Section 4.3, we present experimental results based on simulations

of our algorithm and the algorithm presented in [Cast99a], which requires 3 f + 1

52

active replicas. The results show that our algorithm improves the performance of

fault-free execution.

4.1. Achieving BFT-SMR

A state machine replication (SMR) algorithm must guarantee both safety and

liveness (see Section 2.1.3). Safety requires that all correct replicas process clients’

messages atomically in the same order. The response that any correct client accepts

from the replicated state machine cannot be inconsistent with the state of any

correct server replica. The safety property can be ensured if the algorithm can

guarantee agreements among all correct replicas on the total order of processing

clients’ messages.

Liveness requires that all messages sent by clients are eventually processed by

all correct replicas, and a client eventually receives and accepts correct replies to its

requests

In order to assure that the reply it receives is correct, a client only accepts a

reply after it has received consistent replies from a majority of the server replicas.

Since the number of faulty replicas is at most f , the system must have at least

2 f + 1 replicas so correct replicas are the majority.

As we mentioned in Section 2.1.3, atomic multicast protocols can be used to

ensure that clients’ messages are delivered to all replicas in the same total order. In

order to ensure the same total order, a simple and efficient solution for atomic

multicast is to have one replica act as the sequencer and be responsible for ordering

53

messages. All messages from clients are sent to this sequencer. Upon receiving a

message, the sequencer assigns it a sequence number and relays the message with

its sequence number to all other replicas. The messages from the clients (agents)

are authenticated as described in Section 2.2, so a faulty sequencer cannot modify a

client’s message or forge a client’s message. It can only discard the message or

mess around with the sequence number it assigns to the message, as we will discuss

later.

When a replica receives a message with an assigned sequence number from

the sequencer, it delivers and processes the message in the order specified by the

sequence number.

B2

B1

P

C
m

<m,1>

<m,1>

Figure 4.1: Sequencer-based atomic multicast. P is the faulty primary,
B1 and B2 are two backups, and C is a client. 〈m, 1〉 is the message
that consists of the client message and the sequencer number assigned
by the sequencer.

Figure 4.1 depicts an example of this sequencer-based atomic multicast.

Although in Figure 4.1 and other figures shown in this section, we only illustrate

the case for f = 1, the arguments presented in this section are correct for any f .

This sequencer-based mechanism has been used in several atomic

multicast/broadcast protocols, such as the group communication protocol in the

54

Amoeba distributed operating system [Kaas91, Kaas89]. In Amoeba, this

mechanism is called the PB method [Kaas96]. There exists another version of the

sequencer-based approach, which is called the BB method in Amoeba [Kaas96]. In

this variant, the sender multicasts its message to the sequencer and all other

replicas. When the sequencer receives the message, it sends to all other replicas a

special message containing only the sequence number it assigns to the message.

Each replica then delivers messages in sequence after it has received both the

message and its sequence number.

The BB version of the sequencer-based algorithm reduces the workload of the

sequencer because the sequencer does not have to relay clients’ full messages.

However, it requires nearly twice as many messages as the first version and

increases the number of interrupts to replicas for receiving messages. For this

reason, the multicast protocol in our state machine replication algorithm is based on

the first (PB) version [Kaas96]. In our protocol, the primary replica plays the role

of the sequencer. Clients send their messages to the primary replica; it then assigns

sequence numbers to messages and forwards the messages to all backup replicas.

With these simple sequencer-based protocols described above, although faulty

backup replicas can not sabotage the correctness of the protocol, the primary

replica (or the sequencer) could be a single point of failure. In Ameoba, a group

membership protocol [Kaas91] is used to deal with fail-stop failures of the

sequencer. Each process periodically ‘‘pings’’ another process by sending a

message to the process asking it to respond. If after a certain number of trials the

55

process does not respond, the process is declared as ‘‘failed’’. If the sequencer is

declared as ‘‘failed’’ this group membership protocol elects a new sequencer with

the invitation protocol described in [Garc82]. The protocol starts by each process

establishing a group that only includes itself and considering itself as the

coordinator. Each coordinator then invites other processes to join its group. If a

process that is not a coordinator receives the invitation, it responds with the highest

sequence number it has seen. If one coordinator invites another coordinator, the

one with the higher sequence number becomes the coordinator of the joint group (if

their sequence numbers are equal, the one with the lower id is chosen). When all

alive processes have been invited, the coordinator of the final group is the new

sequencer. This new sequencer then broadcasts a ‘‘new group’’ message to all

other process and retransmits missing messages to other processes.

B2

B1

P

C2

C1

m2

m1

<m1,1>

<m2,1>

<m2,2>

<m1,2>

Figure 4.2: Malicious primary sending inconsistent ordering information.
P is the faulty primary, B1 and B2 are two backups, and C1 and C2
are two clients. m1 and m2 are two messages from different clients,
and messages such as 〈m1, 2〉 are 〈message, sequence number〉 pair
sent by the sequencer.

The mechanism described above may fail if the sequencer is subject to non-

fail-stop failures. For example, as illustrated in Figure 4.2, the malicious primary

56

(sequencer) relays messages it received from the clients with inconsistent sequence

numbers to the two backup replicas. Each backup replica delivers and processes

those messages in the order indicated by the sequence numbers that are different

than the order accepted by the other backup. Thus the two correct backups would

have inconsistent states and generate different outputs.

It is clear that this simple protocol with one-phase message forwarding cannot

guarantee safety in presence of Byzantine faults. A fault-tolerant protocol must

prevent a malicious primary from causing correct backup replicas to become

inconsistent. This can be achieved by having all backup replicas exchange and

compare the messages they received from the primary. In this way, if the primary is

faulty and sends inconsistent ordering information, the backup replicas can detect

the inconsistency and prevent their states from diverging. This additional

exchanging phase leads to a two-phase protocol that is shown in Figure 4.3.

Bn-1

B1

P

C

.

.

.

.

.

.

phase 1 phase 2

Figure 4.3: Tw o-phase multicast protocol. Backup replicas broadcast the
ordering messages received from the primary to ensure consistency P
is the primary, B1 ... Bn−1 are backups, and C is a client.

In this two-phase protocol, the purpose of the second phase is to ensure that a

57

correct replica does not accept (process) a message unless there is a total of at least

f + 1 correct replicas that have received the message with the same sequence

number. Thus, after receiving a message with a sequence number from the primary,

each backup broadcasts this 〈message, sequence number〉 pair to all the replicas. A

replica accepts (processes) a message with a sequence number only after it has

received consistent 〈message, sequence number〉 pairs from at least 2 f backups,

possibly including itself. Since a maximum of f of the backups may be faulty, this

ensures that consistent 〈message, sequence number〉 pairs are received from at least

f correct backups. Thus, taking into account that backups initially receive the

message from the primary, this protocol does ensure that each correct replica will

proceed only if there are at least f other replicas that will proceed with the same

〈message, sequence number〉 pair.

Unfortunately, the two-phase protocol just described does not ensure liveness.

Specifically, the f faulty replicas may all stop responding and be silent forever.

Thus, if correct replicas wait for messages from 2 f replicas, they may wait forever.

In order to ensure liveness with the two phase protocol, the number of replicas

must be increased beyond 2 f + 1. If the total number of replicas is n, the number

of backups is n − 1. Due to the liveness problem explained in the previous

paragraph, a replica must be able to proceed after receiving consistent messages

from n − 1 − f backups (possibly including itself). Hence, due to the safety

requirement previously discussed, (n − 1 − f) ≥ 2 f ; that is, n ≥ 3 f + 1.

Due to the argument above, all previous Byzantine fault tolerant SMR

58

algorithms for asynchronous systems require at least 3 f + 1 replicas to tolerate f

faulty replicas [Cast99a, Kihl98, Reit94]. The requirement for at least 3 f + 1

replicas holds even in a system where messages are authenticated [Brac85,

Dwor88].

With at least 3 f + 1 replicas, faulty backup replicas in the two-phase protocol

cannot cause correct replicas to accept incorrect message order or prevent correct

replicas from making progress, because a correct replica can always receive

exchanged messages from at least 2 f backup replicas (may including the replica

itself) at the end of the second phase, no matter what these faulty replicas do.

With the two-phase protocol and 3 f + 1 replicas, a faulty primary can prevent

correct backup replicas from making progress. For example, for each message a

faulty primary may attach different sequence numbers when it forwards the

message to different backup replicas. This will prevent the backup replicas from

reaching agreement at the end of second phase and thus block the backups from

making progress. Even if the primary can only fail-stop, it can block the protocol if

it simply stops forwarding received messages to the backup replicas.

Since with the protocol as described so far even a fail-stop primary can block

progress, it is clear that the protocol is missing a critical component — a way to

recover from the failure of the primary replica. Such recovery is possible based on

a timeout mechanism. A client sets a timer with a timeout period when it sends a

message to the primary. If it does not receive a reply before the timer expires, it

sends the message to all backup replicas. When a backup replica receives the

59

message, it also starts a timer with a timeout period. When the timeout period

expires, the backup replica invokes the reconfiguration procedure by broadcasting a

message to replace the failed primary with a backup replica. When it receives

messages from 2 f other backup replicas that agree the primary change, it commits

to the configuration with the new primary. This new primary resumes the ordering

protocol and leads other replicas to proceed.

This reconfiguration procedure is also called ‘‘view-change’’ [Cast99a]. The

use of timeout means that such a protocol relies on partial synchrony [Dwor88] : the

bounds on message delay and relative speeds of different nodes exist but they are

not known and they hold only after some unknown time. All BFT-SMR algorithms

assume a system model with partial synchrony as they rely on timeouts.

The atomic multicast problem becomes more complex once view-changes are

introduced. Specifically, the two-phase protocol cannot guarantee safety across

view change when some messages sent between replicas can get delayed or lost.

Consider the following scenario: the primary is faulty and it sends identical

ordering message to 2 f backup replicas but different ordering messages to the

other f replicas. Since there are 2 f replicas that have the same ordering message

and broadcast the message in the second phase, some correct backup replicas will

be able to receive enough consistent messages so they accept the order and process

the message. For example, assume that the number of backup replicas that accept

this order is f . Other correct replicas did not receive enough ordering messages

because some messages sent to them were delayed or lost; as a result, these replicas

60

do not accept the same order and are blocked. Eventually, timeouts expires on

these replicas and the view-change is triggered: the old primary is replaced by a

new primary that is a replica that has not accepted a message order and received a

different ordering message from the old primary as we mentioned before. After the

view-change, this new primary invokes the two-phase protocol with the ordering

message it has, which is inconsistent with the ordering message that has been

accepted by those f replicas. Because there are still 2 f + 1 replicas (including the

old primary) that have not accepted a message order yet, a correct replica can

receive enough consistent messages for the new order so it accepts the new order.

However, this new order is different than the order that has been accepted by f

correct replicas: inconsistency exists among correct replicas and safety is violated.

The inconsistency among correct replicas as described in the above scenario is

caused by the fact that when a correct replica accepts the message order at the end

of the second phase, it does not know for certain that the same message order has

been or will be accepted by other correct replicas. In order to avoid this problem,

replicas have to exchange such information in an additional phase so that they can

be assured that other correct replica will accept the same message order before they

commit to this order. Such a three-phase protocol (and its variants) has been used

in previous BFT-SMR algorithms that requires at least 3 f + 1 replicas. As an

example, Figure 4.4 shows the three-phase protocol used in Castro and Liskov’s

BFT algorithm [Cast99a] (see Section 2.2).

In Castro and Liskov’s algorithm, the three phases are named pre-prepare,

61

C

P

B1

B2

B3

pre-prepare prepare commit

Figure 4.4: Three-phase protocol with 3f+1 replicas
(Castro&Liskov[Cast99a]). B3 is a faulty backup replica.

prepare and commit. Backup replicas broadcast the ordering information they

received from the primary as prepare messages. A replica waits until it has

received 2 f consistent prepare messages (may include its own prepare message)

before it proceeds into the commit phase. In the commit phase, each replica

broadcasts a commit message. A replica finally commits to a message order and

process the message only when it has collected 2 f + 1 commit messages.

By having these conditions for a replica to proceed and accept a message

order, this protocol ensures safety. It can also tolerate failures of the backup

replicas. As illustrated in Figure 4.4, the faulty backup replica, B3, cannot prevent

the correct replicas from making progress: the correct replicas can still collect

enough messages to proceed even if the B3 does not send out any message. The

algorithm relies on timeouts and a view-change protocol to provide liveness when

the primary fails. The view-change protocol, together with the commit phase,

ensures consistent message order across view changes.

62

4.2. BFT Replication with Fewer than 3f+1 Active Replicas

As discussed earlier, a BFT-SMR algorithm requires at least 3 f + 1 replicas to

provide both safety and liveness. This requirement is based on the assertion that

correct replicas cannot wait for responses from silent faulty replicas forever;

otherwise, liveness cannot be ensured. In order to deal with the faulty primary,

previous 3 f + 1 algorithms have to use the timeout mechanism and rely on partial

synchrony (Section 4.1). With previous algorithms the 3 f + 1 replicas participate

actively in the handling of every message, at least in the ordering of the message.

However, in this section we show that this is not necessary. Specifically, we present

a new BFT-SMR algorithm that requires only 2 f + 1 of the replicas to be active

during fault-free operation. The total number of replicas is still 3 f + 1 but, as long

as a view change is not triggered, f replicas are idle — they do not receive any

messages, send any messages, or perform any processing. Under the same

synchrony and fault assumptions, safety and liveness can still be achieved with this

algorithm [Li04].

The new BFT-SMR protocol involves three phases and proceeds from one

phase to the next under the same conditions as with Castro and Liskov’s

protocol [Cast99a]. The key difference is that, during normal (fault-free) operation,

only 2 f + 1 replicas instead of 3 f + 1 replicas participate. Thus, in the first phase,

each backup replica receives a pre-prepare message from the primary. In the

second phase, each replica waits until it has received consistent prepare messages

from 2 f backup replicas (may include itself). In the third phase, each replica waits

63

until it has received consistent commit message from all other 2 f replicas. Note

that the conditions for a replica to proceed are precisely the same as the conditions

in Castro and Liskov’s algorithm for 3 f + 1 replicas. By enforcing these

conditions, the algorithm can still ensure safety (see the discussion in Section 4.1)

with only 2 f + 1 replicas as faulty replicas could not mislead correct replicas to

behave incorrectly. The replicas may either generate the correct result or they may

fail to make progress due to the faulty replicas. Liveness (see Section 4.1) cannot

be guaranteed if any replica, the primary or a backup, is faulty.

In order to resolve the liveness problem with 2 f + 1 active replicas, standby

spare replicas must be available and the timeout mechanism needs to be used. The

spare replicas are used only for reconfigurations that are triggered by timeouts.

During a reconfiguration, spare replicas are activated to replace the faulty replicas

so that correct replicas can proceed.

As discussed in the previous section, previous algorithms use the same

timeout mechanism to trigger reconfigurations (view-changes) in order to ensure

liveness when the primary fails. Therefore, the synchrony assumption (partial

synchrony) in our algorithm is the same as in previous algorithms.

Our new algorithm reduces the replication cost for BFT-SMR. The benefit of

using fewer active replicas during fault-free execution comes from the reduction in

computation and communication overhead. Although it still requires the same

number of replicas to be available, the standby spare replicas stay inactive most

time and are only involved in reconfigurations, thus the resources that would

64

otherwise be consumed by them can be saved for running user applications. In

addition, as only active replicas communicate during fault-free execution, with

fewer replicas being active, each replica sends and receives fewer messages. This

reduces the communication overhead and number of interrupts of the replicas, thus

improves the normal-case performance.

On the other hand, compared to Castro and Liskov’s algorithm, in which the

reconfigurations are only triggered by primary failures, our algorithm is more

sensitive to faults because a faulty backup replica can also cause reconfigurations.

However, since faults are rare and normal-case performance is more important in

practical systems, our algorithm is more efficient than previous BFT-SMR

algorithms.

The remainder of this section describes our algorithm for the single-fault case,

that is, f = 1, so there are only three active replicas and one spare replica are

available. Each node with a replica is assigned a unique ID in {0,1,2,3}. As

discussed in Section 4.2.7, the algorithm can be easily extended to any f .

As in [Cast99a], we rely on authenticated communication. Thus, messages

are authenticated with digital signatures. We denote a message m signed by replica

i as 〈m〉i .

We consider a closed replica group in our algorithm: the set of replicas does

not change, it always consists of the same four replicas. A reconfiguration changes

the roles of the replicas — the designation of each replica on a particular node as

primary, backup, or spare. It neither removes a replica from the group, nor brings a

65

new replica into the group. Issues related to extending the algorithm to an open or

dynamic replica group are discussed in Section 4.2.8.

The algorithm consists of a normal-case protocol and a ‘‘view-change’’

protocol that is used to reconfigure the replicas in the presence of faults. The

replicas move though a sequence of configurations called views. A view is

identified by a unique view number: an integer v. The primary of a view is replica

i, such that i = v mod 4. The replica identified by (v + 3) mod 4 is the spare, and

the remaining two replicas are backups. A view change always causes a change

from view v to view v + 1. Thus, the same configuration is reused after four

consecutive views are installed, but with a new view number. The replica that is

primary in the current view will be the spare of the next view. The algorithm starts

with view 0, and new views are installed by the view-change protocol.

During normal operation, the standby spare replica does not send or receive

any messages and does not perform any operation. In fact, the spare replica does

not have to be a real process running on a node. It can be virtual and the process is

spawned only when the replica is promoted to be active, as long as there is a

daemon process on the node that can start the real process.

The algorithm works roughly as follows:

(1) A client sends a group message to the primary replica;

(2) The primary assigns a sequence number to the message and multicasts it

to the backups using the total ordering protocol;

(3) All active replicas process the message and send a response or an

66

acknowledgment to the client;

(4) The clients accept and execute the server replicas’ messages only when

they receive identical copies of message from at least two different

replicas.

The total ordering protocol guarantees that all correct server replicas agree on

a total order for processing client’s messages even in the presence of faults.

4.2.1. Client-Side Protocol

The behavior of clients in our algorithm is similar to the behavior of clients in

the BFT-SMR algorithm presented in [Cast99a]. View-changes of the server

replica are visible to all the clients, as the server replicas notify the clients

whenever a new view is installed. A client sends its message to the replica it

believes to be the current primary.

The client message is in the form of 〈 GROUP-MESSAGE, cs, —, c 〉c, where

c is the client’s identifier, cs is the channel sequence number (CSN) that is used to

ensure FIFO order on messages from this client to the replica group, and ‘‘—’’

represents the content of the message.

A client buffers the replies it receives from active server replicas until it has

received identical replies from two different server replicas. Each of these

messages from the server replicas has a global send sequence number (GSSN) so

the client can match messages from different server replicas.

The client sets a timeout when it sends a group message to the primary. If it

67

does not receive valid replies from at least two server replicas before the timeout

expires, it sends the same group message to all replicas. This step indirectly

triggers the reconfiguration protocol (see Section 4.2.3) and is critical for ensuring

liveness [Cast99a].

4.2.2. Normal-Case Operation

The protocol for normal-case operation in our algorithm is very similar to the

three-phase protocol in [Cast99a]. The only difference is that in our algorithm,

only three, instead of four replicas, participate in the protocol.

When a server replica receives a group message from a client, it checks the

CSN of the message. If it has already processed a message with the same CSN, it

simply re-send the reply. As with other reliable communications protocols, replicas

have to keep the reply message they sent to each client until they receive an

acknowledgment from the client indicating that the client has received the the reply

message. In the case that the group message has not been processed yet, if the

replica is a backup, and it has not received from the primary a pre-prepare message

(described below) for this group message yet, it relays the group message to the

primary.

When the primary replica (denoted p) receives a group message m for the first

time, it starts the three-phase protocol to lead the backups to agree on the total

order of processing the message. In the first phase, the pre-prepare phase, the

primary assigns a receive sequence number (RSN) s to the group message m and

68

multicasts a pre-prepare message with m to all the backups. The pre-prepare

message has the form 〈 PRE-PREPARE, v, s, dm 〉p, where v indicates the current

view, and dm is group message m’s digest, generated by a collision-resistant hash

function [Rive92].

After the multicast, the primary inserts the group message m and the pre-

prepare message into it message log. Each active replica maintains a message log

for recording the messages it receives and it sends to others, in case they are needed

for retransmission or as proofs that are required by the protocol. We will describe

how to truncate the log in Section 4.2.4.

A backup replica b accepts the 〈 PRE-PREPARE, v, s, dm 〉p message and the

group message m if the following conditions are all true: it is in view v; the pre-

prepare message and the group message m are all properly signed, by the primary

of view v and by the client c, respectively; it has not yet accepted a pre-prepare

message for view v with the same sequence number s but a different digest; and

predicate prepared(m′, v′, s, b) (discussed below) is not true for a group message

m′ that is different than m for any previous view v′ ≤ v.

If backup replica b accepts the pre-prepare message, it enters the prepare

phase by multicasting a prepare message 〈 PREPARE, v, s, dm, b 〉b to all other

replicas (including the primary), then adds the group message m, the pre-prepare

message, and its prepare message to its message log. Otherwise, it simply discards

the message.

When a server replica (including the primary) receives a prepare message, it

69

accepts and inserts the message into its log provided that the message is properly

signed, the view number in the message is the same as the replica’s current view.

As in [Cast99a], the predicate prepared(m, v, s, i) is true if and only if replica

i has inserted into its log the group message m, the pre-prepare message for m in

view v with sequence number s and matching digest, and the prepare messages

from the two backups that match the pre-prepare message (including its own

prepare message if i is a backup). The pre-prepare message and prepare messages

forms the prepared certificate of 〈m, s〉. This certificate proves that all active

replicas have agreed to assign sequence number s to m in view v. It will be used in

the view-change procedure as a proof of the agreement to the spare replica (see the

subsection 4.2.3).

When prepared(m, v, s, i) becomes true, replica i multicasts a

〈 COMMIT, v, s, dm, i 〉i to all other replicas and inserts the message into its log.

If a replica receives a commit message that is properly signed by the sender, and the

view number v in the message is equal to its current view, it accepts the message

and adds to its log.

The committed certificate of 〈m, s〉 is defined as the set that consists of three

commit messages from different replicas (including itself) with the same RSN s,

the same digest dm, and the same view v. It proves that all active replicas in view v

are ready to commit to m with sequence number s. We say that 〈m, s〉 is committed

by replica i (primary or backup) in view v if and only if prepared(m, v, s, i) is true,

and it has the committed certificate of 〈m, s〉, and for every client message that has

70

a lower RSN than s, it either has processed the message, or its state shows the

message has been processed (the replica may get the state from another correct

replica, as described later). A replica process message m when 〈m, s〉 is committed

by it. This ensures that all correct replicas process group messages in the same

total order thus produce the same result.

After processing the group message m, server replica i sends a reply

〈 GROUP-REPLY, v, cs, gs, —, i 〉i or an acknowledgment 〈 GROUP-

ACK, v, cs, i 〉i to the client a, where ‘‘—’’ is the result of the execution, gs is the

global send sequence number (GSSN) assigned to the group reply message, and cs

is the original channel sequence number (CSN) of m.

replycommitpreparepre-preparesend

B2

B1

P

A

Figure 4.5: Normal case protocol for total order multicast. P is the
primary, B1 and B2 are backups, and C is a client.

Figure 4.5 shows the message exchanges in the normal-case protocol. The

protocol described above is presented formally in Figure 4.6 as the behavior of each

server replica i in a view v. The protocol is presented in an asynchronous event-

driven style. The statement of ‘‘ Upon E do A’’ indicates that when an event E

occurs, the replica performs the action described by A. The execution of A are

71

atomic, so that no other statements are executed before the execution of A

completes. There are also statements like ‘‘ If C then A’’, which states that

whenever condition C becomes true, the replica executes A. We assume that all

conditions are constantly under evaluation, so that a condition is re-evaluated

whenever a variable it concerns has changed.

This algorithm provides safety: a correct server replica processes a group

message m in the order indicated by its sequence number s only when it has

received consistent commit messages for m and s from all replicas —

prepared(m, v, s, i) is true for all replicas. At that moment, it knows that all

correct replicas will not accept any different 〈m, s〉 pair in the same view. As a

result, all correct replicas execute the group messages in the same total order.

As described so far, the algorithm does not ensure liveness. If a faulty replica

sends to others incorrect m and s or simply does not send out messages, the correct

replicas may not proceed. However, as mentioned earlier, our complete algorithm

does ensure liveness since lack of progress eventually results in a timeout that

triggers the view-change protocol which is described next.

4.2.3. View-Changes When Faulty Replicas Block Progress

The normal-case protocol for ordering group messages does not prevent a

faulty replica (primary or backup) from blocking the protocol. This is a difference

between our algorithm and Castro and Liskov’s BFT-SMR algorithm [Cast99a]. In

their algorithm, the normal case operation is blocked only when the primary replica

72

Variables
R ≡ {v mod 4, (v + 1) mod 4, (v + 2) mod 4} /* the active replica set */
primary ≡ v mod 4
B ≡ {(v + 1) mod 4, (v + 2) mod 4} /* the backup set */
spare ≡ (v + 3) mod 4
rsn /* the current RSN */
slast /* the RSN of the last group message processed */
cslast(a) /* the CSN of the last group message received from agent a */
L /* the message log */

Predicates
prepared(m, v, s, i) ≡ m ∈ L ∧ 〈 PRE-PREPARE, v, s, dm 〉primary ∈ L ∧

∀r ∈ B : (〈PREPARE, v, s, dm, r〉r ∈ L)
committed(m, v, s, i) ≡ prepared(m, v, s, i) ∧ ∀r ∈ R : (〈COMMIT, v, s, dm, r〉r ∈ L) ∧

∀s′, s′ < s : (∃v′, m′ : (v′ ≤ v) ∧ committed(m′, v′, s′, i))

Upon RECEIVE msg = 〈GROUP-MESSAGE, cs, —, c〉c do
if cs < cslast(c) then discard msg
else if cs = cslast(c) + 1 then

L ← L ∪ {msg}
start timer with timout T
if i = primary then

rsn ← rsn + 1
let mm = 〈PRE-PREPARE, v, rsn, dm 〉i

multicast mm to B
L ← L ∪ {mm}

else buffer msg

Upon RECEIVE msg = 〈PRE-PREPARE, v, s, dm 〉primary do
if ∀v′ : (v′ ≤ v) ∧ (∃/ m′ : ((dm ≠ dm′) ∧ prepared(m′, v′, s, i))) then

let mm = 〈PREPARE, v, s, dm, i 〉i

multicast mm to R
L ← L ∪ {msg, mm}

Upon RECEIVE msg = 〈PREPARE, v, s, dm, j 〉 j or msg = 〈COMMIT, v, s, dm, j 〉 j do
L ← L ∪ {msg}

If prepared(m, v, s, i) then
let mm = 〈COMMIT, v, s, dm, i 〉i

multicast mm to R
L ← L ∪ {mm}

If committed(m, v, s, i) and (s = slast + 1) then
process m = 〈GROUP-MESSAGE, cs, —, a〉c

slast ← s
send 〈GROUP-REPLY, v, cs, reply, i〉i to c

Upon timer expires do
start view-change(v + 1)

Figure 4.6: Normal-case protocol for each replica i in view v.

73

is faulty; a faulty backup cannot prevent other replicas from making progress,

because all the 3 f + 1 replicas are active in their algorithm. In our algorithm, not

only the faulty primary, but also a faulty backup can stop the system from making

progress. Hence, with our algorithm, a faulty backup that blocks progress may also

trigger a view change.

The purpose of the view-change procedure is to remove the faulty replica from

the active replica set and replace it with a new active replica (the spare). In order to

do that, the two fault-free active replica must initiate the view-change procedure

and agree on the removal of the faulty replica. If a client message has been

processed by at least one fault-free active replica, the algorithm must guarantee that

after the view-change, other fault-free active replicas process the message in the

same order. This requires that prepared certificates and committed certificates (as

described in the previous subsection) are passed to the new view. In addition, the

view-change procedure must ensure that the new active replica obtains correct

server state. This can be achieved by having two active replicas send consistent

states to the new active replica.

The view-change protocol in our algorithm moves the system into view v + 1

from the current view v, thus changing the current primary to standby spare,

promoting a backup to be the primary, and bringing in the spare as a new active

replica.

In order to initiate the view-change, correct replicas must find out that they are

blocked. As in [Cast99a], a timeout mechanism is used. As mentioned earlier, a

74

client re-sends its group message to all replicas if it does not receive valid responses

within a timeout period. Hence, if the primary is faulty and it does not forward the

client message to the backups, the client will eventually retransmit the message

directly to the backup replicas. Therefore, every replicas eventually receives the

client message and it waits for processing the message until the three-phase

protocol completes on the message, as described in the previous subsection. In

order to prevent replicas from waiting indefinitely, each replica (include the

primary) starts a timer with a timeout period when it receives a client message. If

the timer expires and it has not processed the message, the replica starts the view-

change protocol as described below.

There is no need for a replica to start a timer for every client message it

receives. Instead, the replica only needs one timer. It starts the timer upon

receiving a client message only if the timer has not already been started due to

previous client messages. When the timer expires, a replica restarts the timer if it

still has client messages waiting for processing. It stops the timer when it has

processed all the client messages it has received.

Because it is impossible to identify which server replica (if any) is faulty, the

view-change protocol always ‘‘suspects’’ the primary and removes it from the

active replica set. The suspicion could be wrong, so the faulty replica may remain

in the active replica set and continue blocking the ordering protocol. However, if

that happens, another view-change is triggered, as described above. Since the role

of the primary rotates among the four replicas, after at most three consecutive view-

75

changes, the faulty replica is removed from the active replica set. The correct

replicas can then make progress.

The view-change protocol must ensure correct processing of group messages

across views. When a standby spare replica becomes active as a result of a view

change, it must obtain a state consistent with the state of the other replicas, as well

as information about group messages that have been prepared at correct replicas.

This is achieved by having two active replicas agree on the view-change and on a

consistent state. It is possible that at the moment a group message have not been

processed by all replicas, as some replicas have received all the commit messages

(see the previous subsection) but others have not. In order for the replicas to reach

agreement on their state, they must first reach agreement on a common position of

processing group messages, i.e. the RSN of the last group message processed.

Hence, the replicas exchange their last RSNs and states until two replicas reach an

agreement on a common RSN and a consistent state. All the active replicas are

supposed to participate in this procedure. Since at most one of the participants in

this procedure is faulty, at least two participants are non-faulty. Hence, if

agreement is reached by at least two replicas, the agreed-upon state must be

consistent with a non-faulty server replica. If agreement is not reached between

two replicas, then one of them must be faulty, and the correct one will reach

agreement with another replica that is also correct. Therefore, such an agreement

will be reached and the view-change will always proceed.

After reaching the agreement, at least two active replicas send the agreed-upon

76

state to the spare replica along with messages that prove its correctness, and any

existing prepared certificates. Once the spare replica verifies and restores the state,

the system can move into the new configuration.

When a timeout triggers the view-change on replica i in view v, it switches its

operation state (mode) to ‘‘view-change.’ ’ It continues to process normal messages

as in normal operation mode. In addition, it multicasts a view-change message to

all other active replicas. The message has the form 〈VIEW-CHANGE, v + 1, si , i〉i ,

where si is the receive sequence number (RSN) of the last message that has

committed at i.

As described earlier, all active replicas start their own timers on processing a

client message. If a faulty replica blocks progress, timeouts independently trigger

view-change from view v to view v + 1 on all correct replicas. Hence all correct

replicas will eventually begin the view-change procedure. In order to prevent a

faulty replica from incorrectly causing view-change on a correct replica, when a

replica j receives a 〈VIEW-CHANGE, v + 1, si , i〉i message, if it has not started the

view-change to view v + 1, it ignores the message. Otherwise, if the RSN of the

last message it has committed to is higher than or equal to si , it sends back to i a

〈〈VIEW-CHANGE-ACK, v + 1, s j , D j , Φ, j, 〉 j , Ψ〉 message, where s j is the RSN

of the last message that has committed at j, and D j is the digest or checksum of its

management state after it executes that message. The set Φ contains a set Φm for

each group message m that prepared at j with a RSN higher than s j , i.e., each

group message that has prepared but not committed yet at j. Each Φm is a set

77

containing a valid pre-prepare message for group message m and two matching,

valid prepare messages signed by different replicas with the same view, RSN and

digest, i.e., the prepared certificate of m. The piggybacked Ψ is a set of Ψm for

each group message m that has a RSN s, si < s ≤ s j . Ψ could be a null set if

si = s j . Each Ψm is the committed certificate of m.

When replica i receives from others a valid

〈〈VIEW-CHANGE-ACK, v + 1, s j , D j , Φ, j〉 j , Ψ〉 from any replica j, if it has not

executed a group message with a higher RSN than s j , it add the commit messages

in each Ψm of Ψ to it log and executes all the group messages up to s j provided

that the committed certificate is valid. It then computes the digest of its state and

compares it to D j . If the digest are the same, replica i sends a new-view message to

the standby spare. The new-view message has the form

〈〈NEW-VIEW, v + 1, si , Di , Φ, i〉i , S, V 〉, where si is the RSN of the last group

message it has committed (should be equal to s j), Di is i’s state digest it just

computed. S is the complete state of i corresponding to the digest Di . The set Φ

contains prepared certificate Φm for each group message m that prepared at i but

not yet committed at i. The attached V is the view-change-ack message received

from j, without the piggybacked Ψ. This view-change-ack message is used as a

justification to the new-view message.

The standby spare in view v accepts a new-view message for view v + 1 from

any other replica provided: both the new-view message and the piggybacked view-

change-ack message are properly signed and contain the same sequence number

78

and state digest; the state S matches the digest. It then restores its state from S and

go through the Φ sets in both the new-view message and the piggybacked view-

change-ack message. If there is at least one valid certificate Φm in the two Φ sets

for any group message m, it adds the messages in Φm into its log. This ensures the

predicate prepared to be also true at the spare for group message m, its sequence

number s and view v. Once it has finished, it relays the new-view message and the

view-change-ack message (without the piggybacked S) to all other replicas and

installs view v + 1.

When a replica in view v receives the relayed new-view message for v + 1

from the spare replica, it first checks the validity of the message and the

piggybacked view-change-ack message. If they are valid, the replica accepts them

and installs view v + 1. The view-change protocol is presented formally in Figure

4.7.

Completion of the view-change protocol relies on the correct behavior of the

spare replica. The spare replica may actually be faulty and may block the view-

change. However, the single fault assumption means that if the spare is faulty none

of the current active replicas are faulty. If none of the active replicas are faulty, the

view-change was ‘‘incorrectly’’ triggered by premature timeouts. Since the active

replicas are not really faulty, they do eventually complete the normal case operation

and pending group messages are committed and executed. When they hav e no

group message left for processing, the active replicas abort the view-change and

switch back to normal mode. Therefore, either the normal-case operation, or the

79

Variables
R ≡ {v mod 4, (v + 1) mod 4, (v + 2) mod 4} /* the active replica set */
primary ≡ v mod 4
B ≡ {(v + 1) mod 4, (v + 2) mod 4} /* the backup set */
spare ≡ (v + 3) mod 4
slast /* the RSN of the last group message processed */
L /* the message log */
S /* the management state */
D(S) /* digest of the management state */
mode = NORMAL /* operation mode */

Predicates
prepared(m, v, s, i) ≡ m ∈ L ∧ 〈 PRE-PREPARE, v, s, dm 〉primary ∈ L ∧

∀r ∈ B : (〈PREPARE, v, s, dm, r〉r ∈ L)
committed(m, v, s, i) ≡ prepared(m, v, s, i) ∧ ∀r ∈ R : (〈COMMIT, v, s, dm, r〉r ∈ L) ∧

∀s′, s′ < s : (∃v′, m′ : (v′ ≤ v) ∧ committed(m′, v′, s′, i))

Upon CALL view-change(v + 1) do
mode ← VIEWCHANGE
multicast 〈VIEW-CHANGE, v + 1, slast , i〉i to R

Upon RECEIVE 〈VIEW-CHANGE, v + 1, s j , j〉 j do
if (mode = VIEWCHANGE) ∧ (slast ≥ s j) then

let Φ = {prepared-certificate(m, s) | ∀m : prepared(m, v, s, i) ∧ (s ≥ slast)}
and Ψ = {committed-certificate(m, s) | ∀m : committed(m, v, s, i) ∧ (s j < s ≤ slast)}

send 〈〈VIEW-CHANGE-ACK, v + 1, si , D(S), Φ, i, 〉i , Ψ〉 to j
else buffer msg

Upon RECEIVE 〈〈VIEW-CHANGE-ACK, v + 1, s j , D j, Φ, j, 〉 j , Ψ〉 do
if slast < s j then

∀m, s : (s ≤ s j) ∧ (committed-certificate(m, s) ∈ Ψ) ⇒ process m, update slast

if D(S) = D j then
let Φ = {prepared-certificate(m, s) | ∀m : prepared(m, v, s, i) ∧ (s ≥ slast)}
and V = 〈VIEW-CHANGE-ACK, v + 1, s j , D j, Φ, j, 〉 j

send 〈〈NEW-VIEW, v + 1, slast , D(S), Φ, i〉i , S, V 〉 to spare

Upon RECEIVE 〈〈NEW-VIEW, v + 1, s j , D j , Φ j , j〉 j , S j , 〈VIEW-CHANGE-ACK,
v + 1, sk , Dk , Φk , k, 〉k〉 do

if (i = spare) ∧ (s j = sk) ∧ (D j = Dk = D(S j)) then
S ← S j

∀m, s : ((prepared-certificate(m, s) ∈ Φ j) ∨ (prepared-certificate(m, s) ∈ Φ j) ⇒
L ← L ∪ { prepared-certificate(m, s)}

multicast 〈〈NEW-VIEW, v + 1, s j , D j , Φ j , j〉 j , 〈VIEW-CHANGE-ACK,
v + 1, sk , Dk , Φk , k, 〉k〉 to R

v ← v + 1, mode ← NORMAL

Upon RECEIVE 〈〈NEW-VIEW, v + 1, s j , D j , Φ j , j〉 j , 〈VIEW-CHANGE-ACK,
v + 1, sk , Dk , Φk , k, 〉k〉 from spare do

v ← v + 1, mode ← NORMAL

Figure 4.7: View-change protocol for each replica i in view v.

80

view-change procedure, will eventually proceed, preventing the algorithm from

blocking indefinitely.

After successfully changing to view v + 1, the primary replica p of the new

view first creates its own 〈PRE-PREPARE, v + 1, s, dm〉p message for every group

message that has prepared in previous views but not yet committed at p, using the

same RSN and message digest, in consecutive order. If there is a gap in the pre-

prepare message set, p creates a special pre-prepare message 〈PRE-

PREPARE, v + 1, s, dnull〉p, where dnull is the digest of special null group message.

A null group message is processed like other group message but invokes no real

operation. After this step, the primary switches its state back to ‘‘normal’’ and

starts the ordering protocol for new group messages as in Section 4.2.2.

The primary replica of the previous view v becomes the spare in view v + 1. It

discards its state and cleans up its message log, then enters standby mode. Other

replicas simply go back to normal state after the view change and proceed as

described in Section 4.2.2.

After changing to view v + 1, a backup replica may see a gap in the sequence

numbers, from the last message it has committed to in the previous view to the first

pre-prepare message it receives in the new view. In that case, it asks the primary to

send the pre-prepare messages again for the missed sequence numbers, using the

view number v + 1.

81

4.2.4. Garbage Collection

As described before, a replica must keep messages (client messages, pre-

prepare, prepare and commit messages) in its message log, in case they are needed

for retransmission or as certificates during view-change. The replica can remove

messages from its log when it knows that the client messages associated with these

messages have been processed by all active replicas. To diffuse this kind of

information, each replica has the RSN of the last client message it has processed

piggybacked on the heartbeat messages it sends to other replicas periodically.

When a replica sees such a RSN s sent by all other active replicas and it has

processed the client message corresponding to s, it deletes all messages associated

with a RSN less than or equal to s from its log.

With this garbage collection mechanism, a faulty replica can block the log

truncation on other replicas by not reporting the actual RSN it has processed.

When a replica’s message log is full, the replica pauses the ordering protocol for

any new client messages. After a while, the view-change protocol will be invoked

and eventually the faulty replica will be demoted to be the spare.

The garbage collection mechanism can be improved with stable checkpoints

as described in [Cast99a]. A replica takes checkpoints of its state when a client

message with a sequence number divisible by some constant has been processed. A

checkpoint is considered stable if it has a proof for its correctness. When replica i

creates a checkpoint, it multicasts to other active replicas a checkpoint message

〈CHECKPOINT, s, Di , i〉i , where s is the RSN of the last client message that i has

82

processed before taking the checkpoint, and Di is the digest of the state. When a

replica has collected at least two checkpoint messages for sequence number s with

the same digest D signed by different replicas (including its own checkpoint

message), it saves the checkpoint as a stable checkpoint and the messages as the

proof of correctness for the checkpoint. Because correct replicas have the same

state after the processing of a client message and only one replica could be faulty, a

checkpoint with at least two consistence checkpoint messages as proof must be

correct.

When a replica gets a stable checkpoint, it removes from its log all client

messages, pre-prepare, prepare and commit messages with a RSN less than or equal

to the RSN reflected in the checkpoint. It also discards all earlier checkpoints. If

during a view-change, it is required by the algorithm to send the commit messages

with a RSN lower than RSN of its stable checkpoint, it sends the stable checkpoint

with its proof instead (in piggybacked set Ψ). It still has to send in Ψ the messages

with a RSN higher than that reflected in the checkpoint.

4.2.5. Correctness Proof

In this section we sketch the proofs of safety and liveness for the three-phase

BFT-SMR algorithm. As stated before, these proofs rely on the single fault

assumption and partial synchrony assumption.

83

4.2.5.1. Safety

The algorithm provides safety if all non-faulty active replicas agree on the

same total order of client messages they commit. The proof of safety is by

induction on views; the following lemmas are the keys to the induction step:

Lemma 4.1. In any view v, if prepared(m, v, s, i) is true for a correct active

replica i, then prepared(m′, v, s, j) cannot be true for any correct active

replica j and any client message m′ such that dm ≠ dm′.

Proof. Prepared(i, v, m, s) and prepared(j, v, m′, s) being true implies that all

replicas has sent conflicting pre-prepare or prepare messages, i.e., pre-

prepare/prepare messages with the same RSN s but different message digests (dm

or dm′) in view v. This is impossible because correct primary replica only sends

one pre-prepare message with a RSN in view v, and a correct backup replica only

accepts one pre-prepare message and send prepare message with a RSN in view v.

Since only one replica can be faulty, there cannot be prepared certificates for both

〈m, s〉 and 〈m′, s〉 in view v. Therefore, prepared(m, v, s, i) and

prepared(m′, v, s, j) cannot be both true if dm ≠ dm′.

The pre-prepare and prepare phases in the normal case protocol guarantee that

all correct active replicas prepared messages with the same digest and same RSN

within a view. The assumption on the message digest function ensures the

probability that m ≠ m′ but dm = dm′ is negligible. Therefore, it is not possible that

correct active replicas prepare to different client messages with the same RSN in a

view.

84

Lemma 4.2. A client message m commits at some correct replica with RSN s in

view v only when prepared(m, v, s, i) is true for every correct active replica i

in view v.

Proof. The proof is straightforward: A correct replica can commit to 〈m, s〉 only

when it has received commit message for 〈m, s〉 from every active replica in view v,

and a correct replica i only sends it commit message for 〈m, s〉 when

prepared(m, v, s, i) is true.

The commit phase in the normal case protocol ensures that a client message

commits at all correct replica in the same view with the same RSN. The view-

change protocol ensures that correct active replicas also agree on the RSNs of client

messages even if they committed in different views at different replicas:

Lemma 4.3. If prepared(m, v, s, i) is true for all correct active replica in view v,

then prepared(m, v + 1, s, i) is also true for all correct active replica in view

v + 1.

Proof. The view v + 1 will not be installed unless two active replicas in view v

agree on the view-change and the spare replica receives both messages (new-view

and view-change-ack) from these two replicas. At least one of the two replicas

must be correct; the set Φ in its new-view or view-change-ack then must contains

prepared certificates for all client messages that has prepared at this replica. The

spare replica accepting these prepared certificates ensures that prepared(m, v, s, k)

is also true for the spare replica k. Therefore, the fact that m prepared at every

correct active replica in view v is propagated to view v + 1.

85

By induction on views, we have:

Theorem 4.1. The algorithm satisfies Safety.

The algorithm ensures that correct replicas commit and process client

messages in the same order even if they commit across different views.

The propagation of preparation from a previous view to new views does not

prevent the replicas from making progress. The primary of a new view (might be

the one that a client message prepared at) will redo the ordering protocol using the

same sequence number and the same client message digest if it is not faulty. If it

was faulty and did not follow the prepared order, its pre-prepare would not be

accepted by other replica and they would change to the next view and the prepared

client message order will commit eventually.

4.2.5.2. Liveness

Because the normal-case protocol does not provide liveness when there is a

faulty replica, the view-change must be conducted to move the replicas into a new

view if they are not making progress. Eventually, the replicas are in a view where

all active replicas are correct. The timeout mechanism we use ensures this, as long

as the clock of each replica does not drift unboundedly with respect to the real time.

However, we must prevent the situation that the replicas keep doing view

change, move from one view to another before they execute client messages, even

when they are in a view where all active replicas are correct. It is impossible to

prevent it in a pure asynchronous system, where messages can be infinitely delayed

86

or processes can be infinitely slow. Thus our algorithm must rely on partial

synchrony to provide liveness.

Theorem 4.2. The algorithm satisfies Liveness, under the assumption of partial

synchrony.

Proof. (sketch.) We consider two models of partial synchrony. One is a model

introduced in [Dwor88] (denoted M2 in [Chan96a]), in which there are known

bounds on processing and message transmission times, but they hold only after

some unknown time, called Global Stabilization Time (GST). With this model, if

we set the timeout properly based on the known bounds, the algorithm can ensure

the execution of client messages if the bounds hold long enough after GST.

In a weaker model, described and denote M3 by Chandra and Toueg in

[Chan96a], the bounds exist but are unknown, and hold only after some unknown

GST. With this model, we need to adjust the timeout period to avoid premature

timeouts. Initially, the replicas set their timeout period for pending client messages

to a time T . If after a cycle of configurations (i.e. after four consecutive view-

changes), they do not make any progress on processing client messages, they

increase the timeout interval by T . Eventually, the timeout periods will be long

enough to bear with the unknown bounds on processing and message transmission

times.

The faulty replica is unable to block the service by forcing frequent view-

changes. It cannot directly force a view-change because a view change must be

agreed by at least two replicas; so it can cause a view change only by blocking the

87

the ordering protocol when it is an active replica. However, it cannot be always in

the active replica set for more than four consecutive views.

4.2.6. Requirement for Three Phases with 2f+1 Active Replicas

As in Castro and Liskov’s algorithm [Cast99a], our algorithm also requires

three phases for normal processing. As discussed in Section 4.1, with 3 f + 1 active

replicas, the third phase — the commit phase — is necessary since it ensures that a

group message commits at a correct replica only if the message has been

‘‘prepared’’ by at least two correct replicas. This guarantees safety across view-

changes by ensuring that a message prepared in a view is always propagated to

subsequent views with the same order.

Based on arguments similar to those presented above, three phases are also

needed with our algorithm that uses 2 f + 1 active replicas. Specifically, if the third

phase is eliminated, the result is that prepared(m, v, s, i) is equal to

committed(m, v, s, i). Hence, a group message may be committed at a correct

replica but its ordering information may not be propagated to subsequent views.

Thus, the system may ultimately commit to a different ordering in the new view.

This situation can occur only if the replica that committed to the ordering is the

only correct replica that has completed the second phase and this replica is also the

replica that is removed from the active replica set, i.e., it is the primary of the

current view.

In the scenario described above, the primary replica in the current view

88

becomes a standby spare and loses its state in the next view. This, the different

commitments described above do not cause inconsistency among the active replicas

in the new view. Thus, the agreement on total order of group messages among

active replicas is ensured even with the two-phase algorithm (Figure 4.3).

However, without changes to the behavior of clients, this two-phase algorithm may

cause inconsistency between the server replicas and a client. Consider the

following case: a message m sent by client c completes the second phase on replica

0 (the primary) and replica 1, so both replicas process m and send their replies to c.

Replica 1 is actually faulty but it sends the correct reply to c, which matches the

reply from replica 0. Thus, c accepts the reply. The faulty replica 1 does not send

its prepare message to replica 2 though, so replica 2 cannot complete the second

phase and process m in the current view v. A timeout then triggers view-change on

replica 2 and the faulty replica 1 agrees on the view-change, so the replicas move

into view v + 1 in which replica 1 becomes the primary. The standby replica 3 does

not learn about the commitment of m on replica 0 during the view change.

Therefore, the faulty replica 1 may successfully lead message m to commit at

replica 2 and 3 with a different sequence number by sending a different pre-prepare

message for m. This causes the correct replicas to proceed with a state that are

inconsistent with the reply observed by client c. This violates the safety

requirement on linearizability (see Section 2.1.3).

Due to the arguments above, our replication algorithm that uses 2 f + 1 active

replicas still requires three phases.

89

4.2.7. Extension of the Algorithm to Multiple Faults

So far, we hav e presented the details of our algorithm for the case of f = 1,

i.e., when there is at most a single faulty replica. The algorithm is easily extended

to tolerate multiple simultaneous faults. However, with f > 1, the view-changes

can become expensive.

During a view-change, the algorithm requires that at least f + 1 active replicas

agree on the view-change and on the state that is transferred to the new active

replica. Faulty active replicas may block progress and cooperate with fault-free

active replicas to incorrectly replace a fault-free primary. In the worst case, the

system has to iterate through all the possible configurations via view-changes,

before it reaches a ‘‘clean’’ configuration in which all active replicas are fault-free.

The average time to reach it grows rapidly when f increases.

With a total of 3 f + 1 replicas, the configuration of each view consists of

2 f + 1 active replicas and f standby spares. The number of possible configurations

is the binomial coefficient 

3 f + 1

f


. Among all these configurations, only one can

be guaranteed to consists of only fault-free replicas as active replicas. With a

configuration that has only 2 f + 1 active replicas, even one faulty replica can block

the ordering protocol until a view change. Therefore there is only one

configuration that can ensure that the replicas make progress.

An alternative to the algorithm above is to increase the number of active

replicas in each configuration to 3 f . This leads to only 3 f + 1 possible

configurations. Among them there is one configuration with a faulty replica being

90

the standby spare. This configuration can assure progress because it includes at

least 2 f + 1 non-faulty active replicas. Therefore, the system needs at most 3 f

view changes to get to this configuration. Thus, there is a tradeoff between the

number of active replicas and the amount of time a group message may have to

wait while the manager replicas go through a sequence of view changes.

4.2.8. Extension of the Algorithm to Open Replica Groups

So far, our BFT-SMR algorithm has been presented in the context of a closed

replica group, in which the overall set of replicas does not change. Since a faulty

replica stays in the replica group when it is removed from the active replica set, it

may re-join the active replica set after additional view-changes. However, the

algorithm can be easily used in the context of an open replica group, where the

group membership changes over time. In particular, each view-change may

instantiate an active replica on a new node that has never been used by an active

replica before. Thus, a faulty replica is never ‘‘cycled back’’ into the set of active

replicas. With our algorithm, such open group operation is simple since bringing a

spare replica into the active replica set during a view change already involves

initializing the new replica with up-to-date state from fault-free active replicas. It

should be noted that a similar version of open group operation can also be derived

from Castro and Liskov’s algorithm with ‘‘proactive recovery’’ [Cast00].

Since the number of physical nodes in the system is limited, the open group

operation discussed above will eventually run out of new nodes on which to execute

91

replicas. However, in many situations, bringing a new replica into the active set

may simply involve starting a new process as opposed to using a new physical

nodes. Since most faults are transient, the new replica process is unlikely to be

faulty even if it is instantiated on a node that previously executed a failed replica.

4.3. Evaluation

With fewer active replicas during normal operation there is a reduction in

computation and communication overhead. Although the required number of

replicas is 3 f + 1, as in existing schemes [Cast99a], the standby replicas stay

dormant most of the time. Thus, the machines they reside on can be used for other

applications. Alternatively, the hardware components (processors, memory, disks,

etc.) can be turned off to reduce power consumption through dynamic power

management (DPM) [Beni00]. Since the spare replicas are activated only on

reconfigurations, which do not occur often, there would be little overhead activating

and deactivating the spare replicas.

Another overhead reduction with our scheme is that with fewer active replicas,

each replica sends and receives fewer messages during normal operation. This

leads to reduced power consumption for communication and may result in better

performance for the normal case. To evaluate this advantage, we used a simplified

implementation (emulation) to compare the normal-case performance of our

algorithm to the algorithm described in [Cast99a]. In both cases a single faulty

replica can be tolerated and the total number of replicas is four. The evaluation was

92

performed on a network of 350MHz Pentium-II PCs, running Solaris 8,

interconnected by a 100Mb switched Ethernet, using TCP/IP for communication.

The service operation is a computation that executes in a set amount of time.

For the two algorithms we measured the average response time for requests

and the throughput of the service under fault-free operation. The response time is

the time interval from when a client sends its request to the primary replica to the

time when it receives replies from two different replicas. The response time was

measured with the system processing only one request at a time. The throughput is

the number of requests per second the replicas are able to process. To show the

overhead of the replication algorithms, the results are normalized to the results we

measured for the same unreplicated service.

The message authentication in our experiments is based on 512-bit RSA

moduli and MD5 digests using the OpenSSL 0.9.7b package. On our PCs, it takes

6.2 milliseconds to generate an RSA signature of an MD5 digest and 0.5

milliseconds to verify a signature. The generation of MD5 digest of a 1KB

message takes 30 microseconds.

Figure 4.8 shows the results for a service that takes 1 millisecond to execute

each request. The results show that with the full cost of authentication (‘‘1x’’),

there is not much difference in response time overhead between the two replication

algorithms. The reason for this is the high overhead of generating RSA signatures.

Although each replica in our algorithm sends and receives fewer messages per

request, it performs the same number of multicasts as in the 4-replica algorithm.

93

Request Size (Bytes)

R
el

at
iv

e
R

es
po

ns
e

T
im

e

16 64 256 1K 4K 16K 64K 256K 1M
0

5

10

15

20

25

30

× × × × × × × ×
×

• • • • • • • •
•

× × × × × × ×
×

×

• • • • • • •
•

•

× × × × × × ×

×

×

• • • • • • •

•

•

× 4r-1x
3r-1x•

× 4r-10x
3r-10x•

× 4r-100x
3r-100x•

Request Size (Bytes)

R
el

at
iv

e
T

hr
ou

gh
pu

t

16 64 256 1K 4K 16K 64K 256K 1M
0

0.1

0.2

0.3

0.4

0.5

× × × × × × ×
×

×

• • • • • • • • •

× × × × ×
×

×
×

×

• • • • • • •
•

•

× × × ×
×

×
×

×
×

• • • • •
•

•
•

•

× 4r-1x
3r-1x•

× 4r-10x
3r-10x•

× 4r-100x
3r-100x•

Figure 4.8: Response time and throughput relative to the unreplicated
case, as request size and message authentication overhead vary. ‘‘4r’’
is the algorithm that uses four active replicas [Cast99a] while ‘‘3r’’ is
our algorithm with three active replicas. Execution time for each
request is 1 millisecond. Authentication overhead with speedup of 1x,
10x, or 100x relative to measured overhead.

RSA signatures are only generated once for each multicast and for the reply to the

client. Hence, the two algorithms have the same overhead for signing messages.

Although the 3-replica algorithm reduces the overhead for sending, receiving and

verifying messages, the benefit is insignificant compared to the overhead of

signing. In terms of throughput, with the full cost of authentication, our algorithm

results in slightly higher performance due to the reduction in the number of

messages exchanged.

If fast hardware implementations of the RSA algorithm [Blum01] is used, or

faster but less secure cryptography can satisfy the requirement of the service, the

overhead for message authentication is reduced. Under these conditions the

overhead of signing messages is no longer the dominant factor and there is more of

94

a benefit to using fewer active replicas. Figure 4.8 shows the response time and

throughput results with authentication that is ten and a hundred times faster. Under

these conditions, the overhead of signing messages is no longer the dominant factor

and there is more of a benefit to using fewer active replicas.

Request Size (Bytes)

R
el

at
iv

e
R

es
po

ns
e

T
im

e

16 64 256 1K 4K 16K 64K 256K 1M
0

2

4

6

8

10

× × × × × × ×

×

×

• • • • • • •

•

•

× × × × × ×
×

×

×

• • • • • •
•

•

•

× × × × × × ×

×

×

• • • • • • •

•

•

× 4r-p0
3r-p0•

× 4r-p1
3r-p1•

× 4r-p10
3r-p10•

Request Size (Bytes)

R
el

at
iv

e
T

hr
ou

gh
pu

t

16 64 256 1K 4K 16K 64K 256K 1M
0

0.1

0.2

0.3

0.4

0.5

× × × × × × × × ×
• • • • • • • • •
× × × × × × ×

×
×

• • • • • • • • •

× × × × × × ×

×
×

• • • • • • •

•
•

× 4r-p0
3r-p0•

× 4r-p1
3r-p1•

× 4r-p10
3r-p10•

Figure 4.9: Response time and throughput relative to the unreplicated
case, as request size and execution time for requests vary. ‘‘4r’’ is the
algorithm that uses four active replicas while ‘‘3r’’ is our algorithm
with three active replicas. The message authentication overhead is the
actual measured overhead on our system. The execution time in the
figure is in milliseconds, e.g., "-p1" means the execution time for each
request is 1 millisecond.

Figure 4.9 shows a performance comparison between the two algorithms with

various request execution times. The ‘‘-p0’’ results are presented to simulate the

cases that the request execution time is insignificant. It would also represent the

scenario that the execution is performed on other nodes, separated from the

agreement. As the request execution time increases, the performance advantage of

the 3-replica algorithm is reduced.

95

Chapter Five

Self-Diagnosis and Reconfiguration

With the replication algorithm presented in Chapter 4 as well as the original

Castro and Liskov’s algorithm [Cast99a], the goal is to have the replicas proceed

with correct operation despite the failure of up to f replicas. If nothing else is done

to recover the faulty replicas, eventually the number of faulty replicas exceeds f

and these algorithms will fail. These algorithms guarantee correct behavior only if

no more than f replicas are faulty during the lifetime of the system. This is

unacceptable for long-lived practical systems, hence, a recovery mechanism is

needed to replace the faulty replicas with fault-free replicas.

It is possible to do the recovery without knowing which replica is actually

faulty. For example, the proactive recovery mechanism [Cast00, Zhou02]

periodically rejuvenated replicas even though there is no reason to suspect them as

faulty. With this mechanism, faulty replicas are eventually ‘‘repaired,’’ thus

restoring the system to its original resiliency. Howev er, proactive recovery incurs

unnecessary cost since fault-free replicas are also rejuvenated. In addition, this

mechanism can not recover from permanent hardware faults, and it requires a

trusted component on each replica to ensure the initiation of the rejuvenation (for

example, the watchdog timer used in [Cast00]).

Another example of repair or replacement of faulty replicas is the use of an

open replica group version of the replication algorithm, as discussed in Section

96

4.2.8. With an open replica group, the algorithm always replaces the primary

replica with a new, fault-free replica, without knowing whether the primary is the

faulty one or not. Since every replica becomes the primary after all replicas that

joined the group before it have been replaced, faulty replicas will be replaced

ev entually.

With any recovery mechanism, the system has a window of vulnerability,

which is the period from the time that f replicas are faulty to the time that some

faulty replica is replaced by a fault-free replica. During this time period, the system

is ‘‘vulnerable’’ because the failure of another replica may cause the entire system

to fail. If this window of vulnerability is short relative to the time interval between

the failure of any two replicas, the system can theoretically survive forever despite

the fact that replicas continue to fail.

The window of vulnerability can be minimized if faulty replicas can be

identified and targeted for repair instead of wasting time ‘‘repairing’’ (e.g.,

replacing) replicas that are not faulty. This motivates the use of fault

diagnosis [Prep67, Barb93] mechanisms to identify faulty replicas. This chapter is

focused on the development of such a mechanism and its use for reconfiguration

with the replication algorithm presented in Chapter 4.

In Section 5.1, we describe a state machine fault model for diagnosis. Based

on this fault model, we present a self-diagnosis protocol in Section 5.2. Under the

assumptions of the fault model, diagnosis may not be both complete (all faulty

replicas are identified) and accurate (no correct replicas is declared faulty). Unlike

97

most other fault diagnosis solutions, we choose to favor completeness over

accuracy due to the relatively low cost of inaccurate diagnosis with replicated state

machines — replacement or repair of a fault-free replica.

Once the diagnosis procedure diagnoses a replica as faulty, the reconfiguration

procedure will remove it from the replica group and replace it with a fault-free

replica. The reconfiguration protocol is described in Section 5.3.

5.1. A State Machine Fault Model for Diagnosis

System-level fault diagnosis is based on the ability of processing elements

(PEs) testing other PEs to uncover faults [Prep67]. In order to ensure that faulty

PEs can be diagnosed, tests need to have a perfect coverage; otherwise, faulty PEs

could go undiagnosed for a long period of time. An arbitrarily faulty PE may

behave correctly during the diagnosis but generate incorrect outputs during normal

operation. If this happens, the diagnosis test cannot uncover this faulty PE. Hence,

no diagnosis procedure can have perfect coverage with respect to all possible

faults [Shin87]. Therefore, the diagnosis procedure must assume a more restricted

fault model in which the behavior of faulty PEs is limited. In this section, we

define and justify such a restricted fault model for systems with state machine

replication.

A state machine can be tested either by full state machine testing or by state

validation. With full state machine testing, a state machine is tested with a given

initial state and a given input stream. The state machine initializes to the state and

98

runs with the inputs. Its outputs and, possibility, its final state are examined to

determine whether it is faulty. This testing disrupts the normal operation of the

state machine. On the other hand, state validation does not require disrupting

normal operation of the state machine. The state machine runs normally and at

various points its internal state is examined. State validation requires some

mechanism to determine whether the internal state is correct. This is, essentially,

an acceptance test on the internal state. With state machine replication, this can be

done by comparing the internal state of the replica under test to the state of other

correct replicas.

Full state machine testing requires exercising every state transition with every

possible input. For a complex state machine, such as Ghidrah’s cluster manager,

such testing is not feasible. The purpose of the diagnosis procedure is to identify a

replica that is likely to operate incorrectly in the future. It is possible for a

permanent hardware fault to cause the state machine output to be incorrect even

though the internal state is correct. Hence, ideally, such permanent hardware faults

should be identified during diagnosis. However, permanent hardware faults are

much less likely to occur than transient hardware faults [Cast82]. Other transient

faults, such as software synchronization faults, are also more likely to occur than

permanent hardware faults [Gray86]. When a transient fault affects a state

machine, it only increases the probability of future incorrect outputs if it causes the

internal state to be corrupted. Identifying corrupt state is thus the key goal of the

diagnosis procedure. Hence, testing based on validating the internal states of the

replicas is the appropriate foundation for the diagnosis scheme.

99

The purpose of the diagnosis procedure is to identify a replica that is likely to

produce incorrect outputs. As discussed above, this can be done by identifying a

replica with incorrect internal state. During the diagnosis procedure, each replica

must send its internal state to other replicas, receive state from other replicas, and

perform acceptance (validation) test on the state received from other replicas. A

replica can perform the validation test by comparing the received state with its own

state.

A fault in a replica may prevent it from completing all the steps of the

diagnosis procedure correctly even though its internal state is correct. To facilitate

the discussion of the diagnosis procedure, we partition the functionality of the

replica into two modules: the state machine module (SM) and the diagnosis module

(DM). The SM performs the replica functions during normal operation and

computes the internal state. During diagnosis, the DM in each replica performs all

communication with other replicas. The DM can access the state of the local SM

and send it to other replicas. It is also responsible for checking the correctness of

state received from other replicas.

The SM is faulty if it generates an incorrect internal state:

• SM fault: the SM of the replica has an incorrect state that is inconsistent

with the specification of the replicated state machine, given the known

initial state and the input messages delivered to it.

The DM may exhibit two types of faults:

• DM omission fault: the DM omits sending a diagnosis message to one or

100

more correct replicas as the protocol requires.

• DM commission fault: the DM sends invalid diagnosis messages to one

or more other replicas.

A replica is considered to be fault-free only if neither its SM nor its DM are

faulty. The SM and DM may be subjected to crash failures. A crashed SM implies

that the replica’s internal state will not continue to change correctly over time.

Hence, the internal state will quickly become incorrect. A DM that has crashed is

the same as one that suffers from omission failure — it will fail to transmit the

replicas state to others. Our fault model covers many failures that are not crashes.

The assumptions of the model can be summarized as follows:

A1 A faulty SM eventually produces an incorrect internal state.

A2 If the internal state of the SM is incorrect, the DM, even if it is faulty,

cannot send to others the correct state.

A3 Messages send by a correct DM are properly authenticated. A correct

DM can correctly identify the sender of a message it receives and verify

the authenticity of the message, even if the message has been relayed by

others.

A4 The number of faulty replicas is no more than f at a time.

Assumption A1 implies that a complete acceptance test on the internal state,

such as comparison with known correct state, will eventually yield perfect

coverage. Assumptions A2-A3 limit the behavior of a faulty DM when it has

commission faults. With these limitations, the commission faults can be correctly

101

detected by all correct replicas.

If a faulty replica exhibits only DM omission failures, it may be impossible to

determine which replica is faulty. For example, if for a faulty replica r, its DM

does not send its messages to f replicas, but sends correct messages to all other

replicas, a correct replica that receives the messages is not able to decide whether

replica r is faulty, or the f replicas that report r as faulty are actually faulty. In

fact, with a pure asynchronous system model (no known bound on message

latency), it is impossible for a correct replica to detect omission failures of r

accurately. Specifically, there is no way to differentiate between the case that r is

faulty (fails to send a message) and the case where r is correct and sends out the

messages but the messages are delayed.

5.2. An Online Self-Diagnosis Algorithm

Based on the state machine fault model discussed in the previous section, we

have dev eloped a self-diagnosis algorithm that is applicable to replicated state

machines in general, and to CMM manager replicas in particular. The goal of a

diagnosis algorithm is to identify faulty replicas. A replica is considered faulty if

its SM or its DM or both are faulty.

Ideally, the algorithm should eventually detect every failed replica

(completeness, as defined in Section 2.3) and should never identify a fault-free

replica as faulty (accuracy, as defined in Section 2.3). However, as explained in the

previous section, in an asynchronous system it is not possible to guarantee both

102

completeness and accuracy. It is often assumed that inaccurate diagnosis, i.e., a

correct replica is declared faulty, is unacceptable since it leads to unnecessarily

eliminating valuable system resources. Hence, many previous diagnosis algorithms

favor accuracy in the circumstance that completeness and accuracy cannot both be

satisfied [Busk93, Shin87, Walt94].

With the state machine replication algorithm presented in Chapter 4, the

consequences of inaccurate diagnosis are less severe than the consequences of

incomplete diagnosis, i.e. where some faulty replicas are never identified. If some

faulty replicas are never identified, they remain active and, eventually, the total

number of faulty active replicas may exceed the limit (exceed f), resulting in

incorrect service. When a replica is identified as faulty, it is replaced by a spare

and it becomes a spare. While this involves some system overhead, normal

operation can continue without interruptions. For the spare replica that is activated,

the state is initialized to the state of correct replicas, thus repairing the results of

any transient faults that may have previously affected it. Hence, the new replica is

unlikely to be faulty. The replica that may have incorrectly been marked as faulty,

becomes a spare. Eventually, it may be activated again after being ‘‘rejuvenated’’

by resetting its state. Hence, the consequences of inaccurate diagnosis are, at

worst, equivalent to oblivious rejuvenation, as done by Castro and Liskov’s

proactive recovery [Cast00]. Thus, the diagnosis algorithm presented in this section

favors completeness over accuracy in almost all cases.

The simplest way to favor completeness over accuracy is to diagnose nodes as

103

faulty in a round-robin fashion. Thus with n replicas, every replica is diagnosed as

faulty after n invocations of the procedure. This is essentially what is done by the

algorithm presented in Chapter 4 as well as by proactive recovery [Cast00]. The

potential benefit of a diagnosis algorithm that is ‘‘more accurate’’ than random

choice is that it can reduce the window of vulnerability discussed in the previous

section. Specifically, when something goes wrong (e.g., progress is blocked,

triggering a timeout), the diagnosis algorithm is more likely than random choice to

immediately identify the faulty replica, leading to the replacement of the faulty

replica.

Since the diagnosis algorithm for replicas should favor completeness and the

simple round-robin scheme achieves completeness, a reasonable requirement from

a diagnosis algorithm is that it should not do worse than the round-robin scheme in

terms of completeness (identifying faulty replicas as faulty). This desired diagnosis

property (DDP), can be specified as follows:

DDP1 The maximum number of invocations of the diagnosis algorithm

required to identify a faulty replicas as faulty should not be larger

than the worst case number of invocations of the round-robin

algorithm required to identify a faulty component as faulty.

There are two ways in which the diagnosis algorithm might be expected to do better

than simple round-robin:

DDP2 The diagnosis algorithm will identify faulty replicas as faulty

faster — after fewer invocations of the algorithm.

104

DDP3 The diagnosis algorithm will identify correct replicas as faulty

less often (be ‘‘more accurate’’).

There is a conflict between DDP1 and DDP3 (completeness versus accuracy).

As discussed in the previous section, a faulty replica may behave correctly during

diagnosis. Hence, a diagnosis algorithm that reaches a diagnosis based on the

behavior of the replicas, may complete without identifying any replica as faulty

despite the fact that the system does contain faulty replicas. In order to strictly

favor completeness, the algorithm should ensure that DDP1 is satisfied. Hence, a

final step should be added to the the diagnosis algorithm so that it will pick a

‘‘victim’’ in round robin fashion if no replica has been identified as faulty up to that

point. As an engineering tradeoff, this final step may not be included if the

diagnosis algorithm without this final step very rarely violates DDP1 and this

choice greatly improves accuracy (DDP3). This latter alternative may be chosen if,

in practice, it is common for diagnosis to be triggered even if none of the replicas

are faulty (e.g., due to a temporary interruption in communication).

Before describing the details of our algorithm, we discuss its basic properties.

First, we present the conditions under which an invocation of the algorithm will

identify all the faulty replicas in the system. The first condition deals with the

network:

• During diagnosis, all messages to fault-free replicas that are injected into

the network, arrive at their destination within a timeout period.

In addition to the condition above, at least one of the following conditions must

105

hold for every faulty replica:

• the SM of the replica is faulty and at the time of the invocation of

diagnosis, it already has an incorrect internal state.

• the DM of the replica exhibits omission faults to all fault-free replicas.

• the DM of the replica exhibits commission faults to at least one fault-free

replica.

Under these conditions the diagnosis is also accurate: correct replicas will not be

identified as faulty.

If the conditions listed above do not hold during the diagnosis, our algorithm

may not be able to correctly identify the faulty replicas. One example, as discussed

earlier, is if a DM of a faulty replica has an omission failure (failure to send a

diagnosis message) with respect to some correct replicas but not with respect to

other correct replicas. An equivalent situation occurs if there is a DM commission

failure with respect to some correct replicas but these corrupted diagnosis messages

are delayed by the network beyond the timeout period. Under these conditions, the

diagnosis algorithm determines that there are some faulty replicas but is not able to

determine exactly which replicas are faulty. Specifically, the diagnosis algorithm is

able to determine a set of replicas that includes the faulty replicas but may also

include some fault-free replicas. Under these conditions, as discussed in detail later

on in this section, the algorithm may have to select a subset of the suspect replicas

and declare only that subset as faulty. In particular, this must be done if the total

number of replicas in the suspect set is greater than the assumed maximum possible

106

number of faulty replicas. This selection is done in such a way that the end result

cannot be worse than the oblivious round-robin scheme discussed earlier.

Specifically, with n nodes in the system, after at most n invocations of the

algorithm, the faulty replica is identified as faulty.

Under rare circumstances, our algorithm does violate DDP1, i.e., it does not

provide the same completeness guarantee as the oblivious round-robin scheme.

Specifically, if during diagnosis there are some faulty replicas but none of the

replicas exhibit faulty behavior, the result of the algorithm is that none of the

replicas are identified as faulty. This can occur only if for every faulty replica the

internal state is correct, the DM sends the internal state correctly to all other

replicas, the DM sends all diagnosis messages on time to all other replicas, and the

network does not delay messages beyond the timeout. If the SM is faulty, by our

fault model assumptions the internal state will eventually be incorrect so that,

ev entually, the faulty replica will be identified by the diagnosis algorithm. If the

SM is fault-free while the DM is faulty but does not exhibit faulty behavior during

diagnosis, that replica may never be diagnosed as faulty. Howev er, as long as the

SM is not faulty, this faulty node continues to operate correctly during normal

operation.

The self-diagnosis procedure is invoked whenever some behavior that may be

wrong is detected with the server replicas. For example, in order to detect crash

failures of replicas, all replicas may exchange heartbeat messages periodically. If

the heartbeat messages from a replica are missing, the other replicas will invoke the

107

diagnosis procedure. The diagnosis is also invoked to deal with the situation that

the protocol for totally ordering messages among replicas is blocked from making

progress due to faulty replicas. Timeouts will expire on correct replicas then (as

described in Chapter 4) and they will invoke the self-diagnosis. The diagnosis

procedure may also be invoked when a client reports that it has received

inconsistent replies from the replicas, or the responses from some replicas are too

late or missing. In addition, the replicas can proactively invoke the diagnosis

procedure to scrub latent errors so that faults are diagnosed before they accumulate.

In the rest of this section, Subsection 5.2.1 is a high-level description of the

diagnosis algorithm for the general case, i.e., for any number of replicas.

Subsection 5.2.2 is a detailed presentation of the self-diagnosis algorithm for three

replicas (f = 1), as it is actually implemented in the Ghidrah CMM system.

5.2.1. The General Algorithm

The self-diagnosis algorithm is executed by the DM in every replica. The

outcome of the diagnosis are two sets: correct-set C and faulty-set F. Set F

consists of all the replicas that are diagnosed faulty, and set C consists of all the

replicas that are considered fault-free. Any replica r belongs to one of the sets, but

can not be in both sets. The size of set F is less than or equal to f . Each replica r

also maintains a suspect list Sr for the diagnosis; the list is set to empty at the

beginning of the diagnosis.

The diagnosis protocol consists of four steps. For each step, a timer is set with

108

a timeout period, to avoid the situation that the diagnosis procedure is blocked by a

faulty replica, or by messages that are delayed by the asynchronous communication

system.

A replica sends diagnosis messages in each step. In some steps, when a

replica receives a diagnosis message from another replica, it forwards the message

to other replicas. This is needed to deal with the situation that the direct message a

replica sends to another replica is delayed or lost. With the forwarding, the

message will reach the destination through redundant paths. However, for the RSN

messages in STEP 1 below, a replica still expects to receive the message directly

from the sender. If this direct message is not received before the timer expires, the

receiver suspects the sender. This is needed so that when a replica exhibits an

omission failure to a correct replica, it can be detected by the correct replica.

The first step in the algorithm is to have all replicas agree on a RSN that is

used in the self-diagnosis procedure as the point for the replicas to compare states.

Henceforth, this RSN is denoted as RSNsd . Each replica i also keeps a variable

denoted RSN i
sd , as the local copy of RSNsd that i will use for comparison.

STEP 1. Each replica broadcasts to all the other replicas the RSN of the last

client message it has processed. When receiving a RSN from another

replica, it records the RSN and forwards the message to the other

replicas. When a replica has received RSNs from all replicas, it

computes RSN i
sd as the maximum of all the RSNs reported by all

replicas (include itself) and moves to the next step.

109

If the timer expires before RSNs are received from all replicas directly,

this replica adds the replicas from which the direct RSN message is

missing into its suspect list Sr , and computes RSN i
sd as the maximum of

all the RSNs it has received. It then moves to the next step.

The purpose of the second step is ensure that all replicas reach the point for

comparison, i.e., they all process up to RSNsd .

STEP 2. If a replica’s RSN is equal to RSN i
sd , then for any other replica j, if

RSN j < RSN i
sd , it sends all the messages in its log (see Section 4.2.2)

with sequence numbers from RSN j + 1 to RSN i
sd to replica j as

‘‘catchup’’ messages.

If a replica’s RSN is lower than RSN i
sd , it waits for the catchup

messages sent by the other replicas. When it receives a catchup

message, it forwards the message to the other replicas. If it has not

processed the catchup message yet, it processes the message in the same

way it processes normal messages, as described in Section 4.2.2.

If a replica reaches the point where it has processed all messages up to

RSN i
sd (possibly utilizing to the catchup messages received), it moves to

the next step.

If the timer expires and a replica has not yet received all the messages

up to RSN i
sd , then the replica reduces its RSN i

sd to the value that

corresponds to the latest message that it has received. Furthermore,

ev ery other replica that in STEP 1 reported a higher RSN than the

110

current updated RSN i
sd is added by the replica to is suspect list Sr .

The ‘‘catchup’’ messages are needed for dealing with the situation that some

correct replicas missed these messages. If catchup messages are not sent to these

replicas, they may not be able to reach the comparison point and generate a correct

state for comparison. The catchup messages are also used to verify the validity of

the highest RSN : if a faulty replica reports a RSN that is higher than the RSN it

actually has, it will not be able to send all the catchup messages to others and

correct replicas will suspect it as faulty.

The diagnosis procedure does not disrupt the availability of the service. New

incoming messages are processed continuously during the diagnosis. As a replica

continues processing new messages, its state may keep changing after it reports its

RSN . It is possible that a replica reaches a state that is beyond the state

corresponding to RSNsd used in the ongoing self-diagnosis session. Here the

critical period is from the time that a replica broadcasts its RSN to others (at the

beginning of Step 1) to the time that RSNsd is decided. During this period, the state

after processing any new client message can potentially be the state needed for

comparison. Hence, after processing each of the new message, the replica has to

save a copy (or checksum) of its internal state. When RSNsd is finally decided, the

appropriate state (or checksum of the state) can be retrieved for comparison in

Step 3.

STEP 3. Each replica broadcasts to all the other replicas its state (or state

checksum) at RSN i
sd for comparison. When receiving a state message

111

from another replica, a replica forwards the message to the other

replicas and compares its own state with the received state. If the state

from replica j is different than this replica’s own state, it adds j into its

suspect list Sr . When the comparison has been done with respect to all

other replicas, the replica moves to the next step.

In the last step, replicas exchange their suspect lists and each replica makes

the diagnosis decision independently by examining the collection of the suspect

lists.

STEP 4. Each replica collects suspect lists by broadcasting its own suspect list

and receiving the other replicas’ suspect lists. It then applies the

following reduction rules repeatedly until there is no rule that can be

applied anymore, or the number of replicas in set F is equal to f . C and

F are empty before the reduction.

R1. For a replica j that is neither in C nor in F, if j does not belong to

the suspect list of any replica that is not in F, and j’s suspect list

does not consist of any replica that is not in F, then j is put in set

C.

R2. For a replica j that is neither in C nor in F, let n j be the number of

replicas that are not in F and whose suspect list includes j, if n j is

larger than f minus the size of F, then j is put in set F.

After the reduction, if all replicas have been put in either F or C, the

diagnosis completes with F and C as results.

112

We now consider the case that there are some replicas that are not in set

F or C. If the size of set F is equal to f , the diagnosis protocol restarts.

This situation can occur if the comparison step has generated too many

suspicions. For example, this might be caused by a sudden increase in

communication errors that leads to delays of diagnosis messages. If the

cardinality of F is less than f , we apply some selection algorithm to

pick f − |F| replicas and put them in F; the remaining replicas are put

in C. The diagnosis then completes with F and C as results.

In the case described above where the cardinality of F is less than f but some

replicas cannot be classified into to either F or C, we are facing the situation that

the algorithm cannot identify the faulty replicas with accuracy, i.e., the conditions

we listed earlier for complete and accurate diagnosis do not hold. As mentioned

earlier, the algorithm has to select a subset of the unclassified replicas and declare

this subset as faulty. This selection is conducted based on the seniority of the

replicas. All the replicas are ordered based on the time they joined the active

replica group. When selecting from the unclassified set, the f − |F| replicas that

are ‘‘older’’ than the others are picked. Using this age-based selection, although

fault-free replicas may be selected and put into the faulty-set F, a faulty replica will

be identified as faulty, after at most n invocations of the algorithm (n is the total

number of active replicas).

Once the diagnosis algorithm produces the faulty-set F, the reconfiguration

procedure is invoked to replace the replicas in F with new replicas.

113

5.2.2. The Three-Replica Diagnosis Protocol

In this section we present the detailed self-diagnosis protocol we implemented

in the Ghidrah CMM system. The protocol is based on a configuration of three

active replicas. The pseudo-code of the self-diagnosis protocol is shown in Figures

5.1, 5.2 and 5.3.

Variables:
1 X /* ID of this replica */
2 Y , Z /* IDs of the other replicas */
3 S /* the management state */
4 CHK (S) /* checksum of the state S */
5 RSN x /* RSN of the last group message processed */
6 RSN y, RSNz /* the last RSNs reported by other replica */
7 SDRSN /* this replica’s RSN for diagnosis */
8 SDRSN_F /* final SDRSN prediction*/
9 SDRSN_P /* predicate for whether SDRSN_F has been determined */

10 CHK_F /* state checksum taken at SDRSN_F for comparison */
11 CHK_LIST /* list of temporary state checksums */
12 F /* the replica that X suspects to be faulty */

Invocation:
13 SDRSN_F := nil;
14 SDRSN_P := False;
15 CHK_F := nil
16 CHK_LIST := ∅;
17 F := nil;

18 Start SELF-DIAGNOSIS do
19 start DiagTimer with timeout value on the self-diagnosis procedure;
20 add 〈CHK (S), RSN x〉 into CHK_LIST;
21 SDRSN := RSN x

22 broadcast 〈CHECK-RSN, SDRSN , X〉x to Y and Z ;
23 start RSNTimer with timeout value on receiving RSN from all replicas;

Figure 5.1: Pseudo-code of the self-diagnosis protocol (part A):
Variables and invocation.

This protocol follows the general algorithm described earlier, but with more

114

24 Upon RECEIVE msg: = 〈CHECK-RSN, rsni , i〉i do
25 forward msg to the other replica;
26 if [received CHECK-RSN messages from both Y and Z] then
27 SDRSN_P := True; SDRSN_F := max(SDRSN , RSN y, RSNz);
28 stop RSNTimer;
29 if [SDRSN > (RSN y /RSNz)] then
30 forward group messages between RSN y /RSNz and SDRSN to Y /Z ;
31 if [RSN x ≥ SDRSN_F] then
32 CHK_F := state checksum in CHK_LIST taken at SDRSN_F;
33 broadcast 〈CHECKSUM, CHK_F, RSN x , nil〉x to Y and Z ;
34 if [msg is forwarded from another backup] then
35 if [received 〈CHECK-RSN, RSN p, p〉p directly from primary] then
36 SDRSN_P := True; SDRSN_F := max(rsni , RSN p);
37 if [SDRSN_F ≤ RSN x] then
38 CHK_F := state checksum in CHK_LIST taken at SDRSN_F;
39 broadcase 〈CHECKSUM, CHK_F , SDRSN_F, nil〉x to Y and Z ;
40 else buffer msg;

41 Upon RECEIVE msg: = 〈CHECKSUM, chki , rsni , fi〉i do
42 let j be the replica other than X and i:
43 if [SDRSN_F ≠ nil] and [CHK_F ≠ nil] then
44 if [rsni = SDRSN_F] then
45 if [rsni > RSN x] and
46 [not received group messages between RSN x and rsni] then
47 F := i; send 〈SUSPECT , i〉x to j;
48 else if [CHK_F ≠ chki] then
49 F := i; send 〈SUSPECT , i〉x to j;
50 else if [fi ≠ nil] then
51 if [F = fi] then
52 send 〈SUSPECT_ACK, F〉x to i; stop DiagTimer; Done.
53 else if [X = fi] then
54 F := i;
55 else
56 if [j is older than i] then
57 F := j; send 〈SUSPECT_ACK, F〉x to i;
58 stop DiagTimer; Done.
59 else /* i is older than j */
60 forward msg to j;
61 F := i; send 〈SUSPECT , i〉x to j;
62 if [received CHECKSUM from both Y and Z] and [F = nil] then
63 stop DiagTimer; Done.
64 else buffer msg;

Figure 5.2: Pseudo-code of the self-diagnosis protocol (part B): Handling
diagnosis messages.

115

implementation details covered, and a simplified ‘‘Step 4’’, given the fact that there

are only three replicas and the assumption that only one of them could be faulty.

The pseudo-code describes the behavior of one replica (replica X) in an event-

driven style.

In Figure 5.1, lines 1-12 list all the variables that are used during the diagnosis

procedure. When a replica enters the self-diagnosis procedure, it first resets some

of the variables to their default values (lines 13-17). It then starts two timers with

proper timeout periods. Instead of using a timer for each diagnosis step as

described earlier in the general algorithm, we use one global timer (DiagTimer) for

the entire diagnosis procedure, and one timer (RSNTimer) for the first step —

agreeing on the RSN for state comparison. The timeout period of RSNTimer is

shorter than the timeout period of DiagTimer.

If the entire diagnosis procedure does not complete before DiagTimer goes

off, the replica restarts the diagnosis protocol. It keeps a counter that is used to

distinguish different incarnations of the diagnosis procedure. Every time the

diagnosis is invoked or restarted, the counter is incremented. Not shown in Figures

5.1, 5.2 and 5.3, every diagnosis-related message described in the pseudo-code

includes the counter value of the current diagnosis session, so that a replica can tell

whether a message it receives from another replica is for the diagnosis session it

currently runs. If an incoming diagnosis message has a lower diagnosis counter

number than the node’s counter number, the message is discarded. If an incoming

diagnosis message has a higher diagnosis counter number than the node’s counter

116

65 Upon RSNTimer expires do
66 if [not received any CHECK-RSN message] then
67 restart SELF-DIAGNOSIS;
68 else if [received CHECK-RSN message from i] then
69 F := j;
70 SDRSN_P := True;
71 SDRSN_F := max(SDRSN , RSNi);
72 if [SDRSN > RSNi] then
73 forward group messages between RSNi and SDRSN to i;
74 if [RSN x ≥ SDRSN_F] then
75 CHK_F := state checksum in CHK_LIST taken at SDRSN_F;
76 let j be the replica other than X and i:
77 send 〈CHECKSUM, CHK_F , SDRSN_F, j〉x to i;

78 Upon DiagTimer expires do
79 if [SDRSN_P = True] and [SDRSN_F > RSN x] then
80 let i be the replica that RSNi = SDRSN_F]:
81 send 〈SUSPECT , i〉x to j;
82 else
83 restart SELF-DIAGNOSIS;

84 Upon RECEIVE regular group message msg: = 〈m, rsn〉i from i do
85 let j be the replica other than X and i:
86 if [i is the primary] then
87 forward msg to j;
88 if [rsn = RSN x + 1] and [received msg from other two replicas] then
89 process m; RSN x := rsn;
90 if [SDRSN_P = True] then
91 if [RSN = SDRSN_F] then
92 broadcase 〈CHECKSUM, CHK_F , SDRSN_F, F〉x to Y and Z ;
93 process CHECKSUM messages buffered during this diagnosis;
94 else
95 add 〈CHK (S), RSN x〉 into CHK_LIST;

96 Upon RECEIVE msg: = 〈SUSPECT , fi〉i do
97 if [F = fi] then
98 send 〈SUSPECT_ACK, F〉x to i;

99 Upon RECEIVE msg: = 〈SUSPECT_ACK, fi〉i

100 if [F = fi] then
101 stop DiagTimer; Done.

Figure 5.3: Pseudo-code of the self-diagnosis protocol (part C): Handling
timeouts and other messages.

117

number, the message is buffered. When the replica has diagnostic messages with

counter numbers higher than its current number from at least f + 1 replicas, it

aborts its current diagnonsis run and begins processing the higher numbered

diagnosis messages.

At the beginning of a diagnosis session, a replica starts DiagTimer, and takes

the checksum of its internal state S and save it. It then sends to the other replicas a

CHECK-RSN message to report the RSN of the last client message it has

processed, and starts the RSNTimer (lines 19-23).

A replicas continues processing new regular client messages while the

diagnosis is in progress (line 83-88). However, until the RSN that will be used for

state comparison has been determined (SDRSN_P becomes true), the replica takes

the checksum of its state after processing every client messages and saves the

checksum with corresponding RSN (line 94), as this state could potentially be the

state for comparison.

When a replica receives the CHECK-RSN message (line 24), it relays the

message to the other replica that is not the sender of this message (line 25). When

it has received CHECK-RSN messages from all the other replicas, it determines the

RSN for state comparison (SDRSD_F) by picking the highest RSN reported by all

replicas, including its own (line 27). If this replica is ahead of other replicas on

processing client messages, it sends the ‘‘catchup’’messages to the other replicas so

they can reach the comparison point (line 29-30). The replica then retrieves the

state checksum that was saved on the now-known comparison point and sends a

118

CHECKSUM message to the others for comparison (line 31-33).

A replica expects to receive CHECK-RSN messages from all the other

replicas and proceed before RSNTimer expires. If by time that RSNTimer expires,

it has not received a CHECK-RSN message, it then restarts the diagnosis procedure

(line 66-67). If it has received the CHECK-RSN message only form one other

replica it then suspects the replica whose CHECK-RSN message is missing to be

the faulty one. It determines the comparison points according to its own SDRSN

and the one it has received, and sends its state checksum to the replica that has sent

it the CHECK-RSN message, along with the suspicion that the other replica may be

faulty (line 68-76).

To deal with a faulty replica that reports a RSN that is too high that none of

the correct replicas can reach it during the diagnosis, each replica needs to justify

the RSNs it has received. As the pseudo-code shows, a replica that has reported the

highest RSN must send proper catchup messages once the comparison point has be

determined, so all the other replicas are able to catch up with it. If a faulty replica i

sends out an invalid RSN without the catchup messages following, other replicas

will not reach the comparison point and will wait until DiagTimer expires. They

will then suspect that i is faulty (line 78-80). The replica is also supposed to send

to others the catchup messages before it sends out its own state checksum for

comparison. Therefore, if a replicas doe not receive the catchup messages before

its receives the CHECKSUM message from this replica, it suspects this replica as

faulty as well (line 45-47).

119

When a replica receives a CHECKSUM message from another replica, and it

has known the comparison point, it compares the state checksum reported in the

message with its own state checksum. If the checksums mismatch, it suspects the

replica to be faulty and reports the suspicion to the third replica (line 48-49).

When a replica receives from another replica a message suspecting the third

one is faulty, if it also suspects that replica is faulty, it replies positively (line 51-52,

96-97). If it does not suspect that replica, then it faces the situation that it can not

make accurate diagnosis. As we discussed earlier, in this case the replica chooses

between the other two replicas the ‘‘older’’ one to be suspected as faulty (line

56-61).

The diagnosis procedure completes and DiagTimer is stopped when a replica

is declared as faulty after the replicas exchanged their suspicions and

acknowledgments, or when the replicas have compared their states and did not get

any mismatch. In the first case, the replicas will invoke the reconfiguration

protocol, which is described in the next section, to replace the faulty replica with a

new replica. In the second case, the replicas conclude that all the replicas are fault-

free and continue normal operation.

5.3. Reconfiguration

Once the self-diagnosis procedure has identified the faulty replicas, the fault-

free replicas invoke the reconfiguration procedure to replace the faulty replicas with

new replicas. A new replica joins the manager group only when it has received

120

reconfiguration requests from at least f + 1 active replicas, so reconfiguration

cannot be wrongfully initiated by f faulty replicas. In this section, we describe the

reconfiguration protocol implemented in Ghidrah.

The reconfiguration procedure is illustrated in Figure 5.4 as a flow chart. The

procedure starts when the self-diagnosis procedure has produced the diagnosis

result that one of the replica is faulty. The reconfiguration will remove this faulty

replica from the group and start a new replica with correct state transferred.

At the beginning of the reconfiguration procedure, a replica first checks

whether the faulty one is the primary replica (block 1 in Figure 5.4). If the faulty

replica is the primary, then a new primary must be elected first. We choose the

replica that is ahead of the other one on processing client messages as the new

primary. The two replicas can find this out by exchanging their current RSNs. The

replica that reports a higher RSN becomes the new primary (block 2-6). If they

report the same RSN , then the replica that has a lower node ID becomes the new

primary. Each replica notifies all clients about the new primary so that the clients

can send their messages properly to the group (block 7). The steps described above

are skipped if the faulty replica is a backup.

Next, the replica needs to decide on which node to start the new replica (block

8). The node is selected from the current set of candidates that includes all the

nodes that can ran a replica and do not have a replica running already. The

selection policy is deterministic and based on the node IDs, so the two replicas will

independently make the same selection.

121

Primary failure?
Send RSN to

the other

Choose a node to

start new replica

Yes

No

Receive RSN?

No
W ait for timeout

OR

delivery of RSN

W ho has the

highest RSN?

Yes

I am new

primary

The other is

 new primary

OTHERME

Primary

change

Reuse

same node?

Ask agent to kill

the failed replica

Killed?

No

NoYes

Yes

Take a snapshot

 of state

Ask agent on selected

to start new replica

Notify other agents

about reconfiguration

New replica

starts?

Send state to

new replica

Yes

W ait for �State

Restored� from

new replica

Received?

No

Send �Catch-Up�

messages to

new replica

Yes

Send �Reconfiguration

Done� to all agents

Done

No

W ait for killing

Is done

Start a new

replica on

selected node

New replica

starts

W ait for

timeout

Restore state

Send �State Restored�

W ait for state

W ait for state

Process �Catch-

Up� messages

Start

Reconfiguration

1

7

65

4

3

2

8

9

10

11

12

13

14 15

16

17

18

19

20

21

22

23

Figure 5.4: The reconfiguration procedure

122

In order to start a new replica on a node, there needs to be some process

running on the node that can start a replica process. In the Ghidrah CMM system,

the agent running on the same node is responsible for this. Each replica sends a

request to the agent on the node that the faulty replica runs on, asking it to

terminate the faulty replica. It also sends a request to the agent on the selected

node to start a new replica. It is possible that the node selected for the new replica

is actually the same node on which the old replica runs, under the rare condition

that there is no other candidate available. If this is the case, the request of starting

new replica must wait until the agent reports that the old replica has been

terminated successfully (block 9-11). If the selected node is a different one, then

starting new replica and terminating the faulty replica can be conducted

concurrently.

To start a new replica, a fault-free replica first takes a snapshot of its state and

calculate the checksum of the state (block 13). It then sends a ‘‘start-new-replica’’

request with the checksum to the agent on the selected node (block 14), and sends

notifications to all other agent so they will know about the reconfiguration and the

new replica (block 15). The agents then only expect messages from these two

replica, but not from the new replica.

Upon receiving both ‘‘start-new-replica’’ requests, the agent of the selected

node compares the checksums in the requests. If they match, the agent starts a new

replica process and passes the checksum to it. When the new replica starts, it sends

a message to the two existing replicas to tell them that it has started and is ready for

123

state transfer.

The new primary replica transfers the state it saved earlier to the new replica

when it receives the message from the new replica (block 16-17). The new replica

then verifies the state with the checksum it received from the agent, restores the

state, and sends a ‘‘state-restored’’ message to the two existing replicas (block 22).

When a replica receives this ‘‘state-restored’’ message, it sends to the new

replica all new group messages it has received since the reconfiguration procedure

started as ‘‘catchup’’ messages (block 18-19). The new replica processes all these

messages without sending actual responses to clients (block 23). After sending all

the ‘‘catchup’’ messages to the new replica, a replicas broadcasts a message to all

clients to notify them that the reconfiguration has completed (block 20). The

system then switches back to normal and the clients now expect receiving messages

from all three replicas.

This reconfiguration protocol ensure that the new replica gets the correct state

so the replica group recovers to its full functionalities and fault resilience. During

the reconfiguration, if the new replica fails to start or fails to restore its state, it will

be considered as faulty too and the reconfiguration procedure restarts.

124

Chapter Six

Agents

As described in Chapter 3, in our CMM system, an agent daemon runs on

ev ery node in the cluster. The agent is a proxy that allows the manager group to

control the node and application processes running on the node, and allows the

application processes to interact with the management middleware. As mentioned

in the previous chapter, an agent is also responsible for terminating a faulty

manager replica and starting a new manager replica on the node when the manager

replicas need to be reconfigured.

An agent sends its messages to the manager group using the total order

multicast protocol described in Section 4.2. An agent acts as a client in the

protocol. It receives individual messages from each of the manager replicas,

compares and votes on these messages. It accepts and executes a manager

command only if it has receive identical copies of the command from at least two

manager replicas.

The survival of a particular agent or of a particular cluster node running an

agent is not critical to the continued correct operation of the entire system. Hence,

it is not worthwhile to use with the agent aggressive fault tolerance techniques,

such as those used with the manager group. On the other hand, requiring a full

node reset every time an agent process crashes, may, in hostile environments

significantly decrease the availability of cluster resources. Hence, taking these

125

practical engineering tradeoffs into account, the Ghidrah system implements a low-

cost mechanism for recovery from agent crash failures. This mechanism is

described in Section 6.1.

An agent process automatically starts on each cluster node when the node is

powered up. If the management system is already up, i.e., the manager group is

operational, the new node must be incorporated in the running cluster so that it can

be allocated by the manager group, as needed. Hence, the agent on the new node

must find out what is the current manager group and contact it for further

instructions. If there is no operational manager group, as is the case when the

entire cluster is powered up, the agents are responsible for configuring the CMM

system by executing a bootstrapping protocol. This bootstrapping procedure allows

the CMM system to configure itself with a working manager group. Section 6.2

presents this bootstrapping protocol.

6.1. Recovery from Agent Crashes

An agent runs on a simplex COTS cluster node that does not have redundancy

at the hardware level or at the operating system kernel level (COTS hardware and a

COTS operating system are used). The hardware and operating system on a COTS

node are unreliable and they may fail. If the hardware (processor, memory, I/O

devices, etc) or the operating system fail, node behavior may be arbitrary. In

particular, even if the execution of processes (user-level code) on the node is

guaranteed to be fault-free, once the user code requests operating services, the

126

ultimate result may be arbitrarily incorrect. Hence, it is not possible to

fundamentally increase the robustness of the node through changes to the agent’s

user-level code — a single fault can corrupt the node. In addition, the survival of

any one particular node of the cluster is not critical to the continued correct

operation of the cluster. Based on these considerations, there is no justification for

using with the agent aggressive fault tolerance techniques, such as those presented

in the previous two chapters.

A node in the cluster may become unusable due to many reasons, such as a

kernel crash or the inability of the cluster manager to control the the node since the

agent process crashes. If the cause of such failures is a transient hardware or

software fault, the node may be restored through a power reset of the hardware that

is followed by a reboot of the OS kernel and a restart of the agent process.

However, power-resetting a node is expensive in terms of lost computation time

since all running processes on the node, including all the application processes, are

killed by the power reset. Hence, it is worthwhile to reduce the probability of

requiring a node reset if this can be achieved using low overhead mechanisms that

do not significantly increase the complexity of the management software.

Fault injection experiments indicate that, in practice, most faults that cause

errors result in a process crash [Made02, Whis02]. Hence, as an engineering

tradeoff, it is worthwhile to add a simple mechanism that allows recovery from

agent crashes without a node reset. In this crash failure scenario, the agent process

simply crashes, but the hardware and the operating system still operate correctly,

127

and application processes are intact. In this case, we should provide a low-cost

recovery mechanism so that the management middleware can recover the crashed

agent and maintain the control over the node and the application processes running

on the node.

Recovery from agent crash failures requires a mechanism to detect that the

agent has crashed and start a new agent process. It also needs a method that allows

the new agent process to restore information about all the application processes that

have been running on the node, and re-gain control over these processes, so that the

applications can continue without interruptions and remain under the management

of the CMM system.

One way to support recovery from agent crashes would be to maintain two

agent replicas running on each node. The recovery scheme used in Ghidrah

achieves the benefits of maintaining such a spare with less overhead and higher

reliability. The scheme is based on a simple agent keeper process running on each

node whose sole function is to monitor the agent process using heartbeat

mechanism and initiate a new agent process when a crash failure is detected.

Table 6.1 compares the complexity of the agent process and the agent keeper

process. It shows that the agent keeper process is simpler and smaller than the

agent process. Hence, the agent keeper is less likely to crash than a running agent

and less likely to be corrupted than a spare agent replica.

In order to minimize the complexity of the agent keeper, the agent and agent

keeper communicate using a shared memory segment. During normal operation the

128

Agent Agent Keeper

Code Size 25,000 lines 529 lines

Binary Size
(dynamic linking)

359KB 29KB

Binary Size
(static linking)

1,166KB 422KB

Runtime Size 2,740KB 950KB

Table 6.1: Comparing the complexity of agent and agent keeper.

agent increments a counter in this shared memory segment that the agent keeper

reads. This counter serves as a heartbeat channel from the agent to the keeper. If

for two consecutive reads of the counter the keeper determines that the agent failed

to increment the counter, the keeper concludes that the agent has either crashed or

hung. The keeper then kills the old agent process, if the process still exists, and

starts a new agent process.

As described so far, the agent recovery mechanism fails to deal with a critical

issue: who keeps the keeper alive? The solution is to have the agent monitor the

keeper and restart the keeper when the keeper crashes. The keeper and the agent

monitor each other and form a cycle of recovery. Hence, the agent and the keeper

keep each other alive unless they both fail at the same time. If that happens, the

node is considered ‘‘dead’’ and the manager group detects the failure with missing

node heartbeats (see Section 7.1.5).

When a new agent process starts, it must obtain part of the state of the old

agent, so that it can continue managing the local node and application processes

that are running on the node. This state includes information about all processes

129

that have been running on the local node, such as their process IDs, and their task

affiliation. The new agent can obtain this information from the manager group,

since the task database maintained by the manager group includes information

regarding all the application processes running on each node. Thus, when it starts,

the new agent sends a request for the state to the manager group. The new agent

uses the reply from the manager group to re-create the required state.

An agent has the ability to control an application process that is running on the

node. It can terminate an application process, and stop or resume an application

process based on scheduling commands from the managers. An agent also needs to

communicate with an application process so that it can send management

information to the application process. For example, it must send to an application

process that belongs to a parallel task information about the node assignment of the

task, i.e. on which node each process of this task is running. The application

process needs this information so that it can communicate with other processes of

the same task. The agent also receives from application processes management

requests so that applications can request special operations of the CMM. For

example, an application process may request the CMM to terminate or restart the

whole task it belongs to.

As part of recovery from an agent crash failure, the new agent must re-

establish communication with the application processes it controls. In Ghidrah, this

communication is implemented using ‘‘named FIFOs’’. When the agent starts an

application process, it creates a pair of FIFOs with names generated from the

130

process ID of the process. The agent and application process then communicate

through these FIFOs. After recovery from an agent crash, the new agent gets the

names of the FIFOs from the process IDs it obtained from the managers, and re-

opens the FIFOs. In this way, the agent re-establishes the agent-application

communication and obtains full control over the application processes.

6.2. A Fault-tolerant Bootstrapping Protocol

The operation of a cluster managed by Ghidrah is dependent on a functional

manager group. A critical feature of the CMM system is the ability to operate

continuously without human intervention. Hence, there must be an autonomous

mechanism for setting up the manager group when the system is powered up. This

is important since beyond the initial power up of the system, as discussed in Section

3.4, under certain conditions (e.g., too many simultaneous node failures) the entire

system may be reset by the trusted hardcore.

When the cluster just starts, it could be quite unstable: some nodes might fail

to start, or start but fail soon thereafter, or start with limited connectivity to other

nodes. In such a scenario, a system that relies on a static configuration of the

manager group (i.e. a pre-determined set of nodes to run the manager replicas)

cannot guarantee reliable initiation of the manager group. The system needs to

configure the manager group based upon the actual conditions when the system is

powered up. In order to do this, we developed a system bootstrapping protocol for

Ghidrah. This protocol adapts to the condition of the cluster and self-configures the

131

system to reliably start the manager group.

The system bootstrapping procedure is basically an election: instead electing

one leader, it elects a set of leaders — a set of nodes to run the manager replicas.

All the correct members in the cluster must agree on this set of leaders. Because

such an election requires reaching consensus among the cluster nodes, our

bootstrapping protocol is based on Lamport’s Paxos algorithm [Lamp98, Pris00].

The classic Paxos algorithm presented in [Lamp98] considers only stopping

failures. The bootstrapping protocol we developed can be considered as a variation

of Byzantine Paxos algorithms [Lamp01b, Cast99a], with the assumption that no

more than f agents/nodes are Byzantine faulty during the bootstrapping.

The goal of the bootstrapping procedure is for all the working nodes to agree

in a configuration, i.e., which nodes will run manager replicas. Each node in the

cluster is labeled by a unique positive integer. With the three-replica manager

group in Ghidrah, a configuration is a 3-tuple (i, j, k) such that i < j < k and i, j, k

are the identifiers of the nodes that run the manager replicas.

The basic idea of the bootstrapping protocol is to have agents play the role of

proposers (see Section 2.1.1) and ask other agents to accept and commit to their

proposals. A proposer selects a manager configuration (2 f + 1 nodes to run the

manager replicas) based on its own view of the system and sends the configuration

as a proposal to all other agents. If an agent (here it plays the role of an acceptor)

receives from at least f + 1 proposers a proposal for a common configuration that is

better than any configuration it has known about, it sends to others a message to

132

indicate that it supports this proposal and promises that it will not support any

proposal that is not better than this one. A configuration C1 is ‘‘better than’’

another configuration C2 if C1 is lexicographically less than C2. For example,

configuration (1,2,3) is better than (2,3,4), and (1,2,4) is better than (1,3,4). If an

acceptor receives a proposal that is not better than the one it currently supports, it

responds to the sender with the proposal that it supports.

When an agent receives supports for a configuration from a quorum of agents

(‘‘support-quorum’’), it sends to others a proposal for the configuration, and this

time it asks other agents to accept this proposal. If an agent receives such a

proposal and it has not supported a better proposal, it sends out a message to

announce its acceptance of this proposal. After accepting a proposal, an agent will

not accept any other proposal.

If an agent receives acceptances for a configuration from a quorum of agents

(‘‘accept-quorum’’), it then commits to this configuration. The protocol ensures

that all correct agents will commit to the same configuration by requiring that the

support-quorum of a proposal and the accept-quorum of a proposal must have at

least one correct node in common. Because this node has already accepted a

proposal, any proposal for a different configuration would not be able to get a

support-quorum with sufficient number of nodes. Given the total number of nodes

is N , and the maximum number of nodes that could be Byzantine faulty is f , the

size of these quorums is set to (N + f + 1) / 2.

When a configuration has been committed, the agents on the nodes that are

133

included in the configuration start the manager replicas to form the manager group.

Each committed agent then tries to communicate with the manager group and

requests to join the cluster. If it does not receive group responses from the manager

replicas, it then assumes that the configuration is bad and restarts the bootstrapping

protocol; otherwise, it exits the bootstrapping and starts normal operation.

If an agent starts the bootstrapping protocol after a configuration has been

committed, it will learn about the committed configuration from other agents.

When it receives consistent messages from at least f + 1 other agents, it commits to

this configuration as well.

Figures 6.1 and 6.2 show the pseudo-code of the bootstrapping protocol. The

protocol consists of four phases. At the beginning of each phase, a timer is started

with a timeout period. The agent waits in each phase until some condition becomes

true; it then proceeds into the next phase. If the condition is not true when the timer

expires, the agent restarts the bootstrapping procedure. This kind of behavior is

described using the syntax {do A1; until C : A2; timeout: A3}, which indicates

that the agent keeps doing action A1 until condition C becomes true; then it

performs A2. If the timeout period expires, it performs A3.

An execution of this four-phase protocol is called a round. An agent keeps

executing the protocol until a round has finished all four phases successfully. If a

round cannot succeed, the agent restarts the protocol by initiating a new round. The

agent keeps a sequence number for the current round it is executing. This sequence

number is incremented every time a new round is initiated. It is attached to every

134

Variables:
CFG /* the current manager configuration this agent has */
SEQ /* the sequence number of current configuration */
LOG /* the log of bootstrapping messages*/

Bootstrapping Messages:
〈ALIVE, seq〉 : the sender is alive;
〈SUPPORT, cfg, seq〉 : the sender supports cfg;
〈ACCEPT, cfg, seq〉 : the sender has accepted cfg;
〈COMMIT, cfg, seq〉 : the sender has committed to cfg;
〈JOIN, cfg, seq〉 : an agent sends to manager group asking to join the cluster;
〈ADMIT, cfg〉 : manager group sends to an agent to admit the node;

Upon receiving any bootstrapping message from agent i do
if already in normal operation then

reply to i with 〈COMMIT, CFG, SEQ〉;
else

let seq be the sequence number of the received message:
if seq ≥ the sequence number of the message from i saved in LOG then

add the received message into LOG to replace the old message;

Figure 6.1: The Ghidrah bootstrapping protocol, part A.

bootstrapping message the agent sends out during the current round, so that

messages sent in different rounds can be distinguished. The generation of this

sequence number must take into account the situation that an agent is restarted or a

node is rebooted. In our implementation of the bootstrapping protocol, the

sequence number is actually composed of three fields: a boot ID, a restart sequence

number, and a configuration sequence number. The configuration sequence number

is incremented every time the agent changes its configuration without restarting the

entire protocol. The restart sequence number is incremented every time the agent

restarts the bootstrapping protocol. The boot ID is a unique number generated

when the node is rebooted. It could be generated from the value of the hardware

clock on the node.

135

On Start:
do self-test; check communication with SCC;
goto Phase 1;

Phase 1:
broadcast 〈ALIVE, SEQ〉 to all;
do

when receiving any message: reply with 〈ALIVE, SEQ〉
until messages from at least (N + f + 1) / 2 nodes in LOG

and at least (2 f + 1) of them can run manager replicas :
goto Phase 2;

timeout: restart;
Phase 2:

CFG := (2 f + 1) nodes with lowest ids so that messages from them are in LOG
and they can run manager replicas;

broadcast 〈SUPPORT, CFG, SEQ〉 to all;
do

when seeing a configuration better than CFG:
update CFG and increment SEQ;
goto Phase 2;

when receiving any message: reply with 〈SUPPORT, CFG, SEQ〉;
until SUPPPORT/ACCEPT/COMMIT messages for CFG from at least

(N + f + 1) / 2 in LOG :
goto Phase 3;

timeout: restart;
Phase 3:

broadcast 〈ACCEPT, CFG, SEQ〉 to all;
do

when receiving any message: reply with 〈ACCEPT, CFG, SEQ〉;
until ACCEPT/COMMIT messages for any cfg from at least (N + f + 1) / 2 in LOG :

change CFG to cfg and increment SEQ;
goto Phase 4;

timeout: restart;
Phase 4:

start manager replica if this node is in CFG;
send 〈JOIN, CFG, SEQ〉 to the manager group;
do

when receiving any message: reply with 〈COMMIT, CFG, SEQ〉;
until received 〈ADMIT, cfg〉 from the manager group :

terminate bootstrapping and enter normal operation;
timeout: restart;

Whenever at least (f + 1) COMMIT messages with same cfg in LOG do
if not in Phase 4 then

change CFG to cfg and increment SEQ;
goto Phase 4;

Figure 6.2: The Ghidrah bootstrapping protocol, part B.

136

An agent saves bootstrapping messages (or the information carried by these

messages) it has received from other agents in a log. It also saves copies of

messages it has broadcasted in the log. It only accepts messages that are newer

than the messages it has already received from the same sender. The agent decides

whether a received message is newer by comparing its sequence number with the

logged sequence number of the last message received from the same sender. When

it accepts a new message from another agent, the receiving agent updates its log,

replacing the previous most recent message received from that sender. In each

phase, the agent checks its log to see if some condition has become true so that it

can proceed.

As shown in Figures 6.1 and 6.2, the agent starts the bootstrapping protocol by

performing a self-testing first in an attempt to determine whether the node is

healthy and has the full functionality. It also tries to communicate with the trusted

hardcore (sec Section 3.4) since only nodes that can communicate with the trusted

hardcore can run manager replicas. The agent then enters the first phase. In this

phase, it broadcasts a message to announce that it is alive and let others know about

its status (e.g, whether it can run a manager replica). It then gathers information

about other nodes. When it determines that there may be a valid manager

configuration, it enters Phase 2 and proposes the configuration. In Phase 2, it waits

until a configuration has gotten its ‘‘support-quorum’’. In Phase 3, it announces its

acceptance of the configuration and waits until a configuration has gotten the

‘‘accept-quorum’’. The agent commits to the configuration in Phase 4, starts the

manager replica if necessary, and attempts to communicate with the manager

137

group. The bootstrapping procedure completes when it receives responses from the

manager group.

Once the bootstrapping procedure completes, the agent enters normal

operation. If it receives a bootstrapping message from another agent afterwards, it

responds with a message indicating that there is already a committed configuration

and specifying what it is. If an agent that is still in the execution of the

bootstrapping protocol receives at least f + 1 consistent messages of this type, it

commits to the configuration specified in those messages. This allows an agent that

starts late to learn about the committed configuration and complete the

bootstrapping quickly.

During the bootstrapping, it is possible that a faulty agent proceeds through

the bootstrapping procedure and is elected to run a manager replica on the node.

This faulty agent may then fail to start the manager replica or start a manager

replica that is faulty as well. The bootstrapping protocol does not need any special

mechanisms to handle this situation. The reason for this is that the manager

replication mechanism already has the ability to deal with a crashed or otherwise

faulty replica. Hence, for example, with three replicas, if one of the replicas fails to

start, the other two replicas will detect missing heartbeats from that replica, initiate

self diagnosis (Chapter 5), declare the replica as faulty, and cause a new replica to

be started on a different node.

Another possible situation is that an agent lies about its connection to the

trusted hardcore to others so that it is elected to run a manager replica even though

138

it cannot communicate with the hardcore. It is also possible that the agent does not

lie, but by the time it starts the manager replica, the connection to the hardcore is

lost. In both cases, when the manager replica starts, it tries to communicate with

the hardcore and determines that it does not have the connection. The manager

replica then terminates itself so that the fault exhibits as a crash failure of the

manager replica. The system will recover from the failure with the self-diagnosis

and reconfiguration procedure as well.

139

Chapter Seven

Implementation and Experimental Evaluation

In previous chapters, we have presented several techniques for fault-tolerant

cluster management. These techniques allow a highly reliable CMM system to be

built using mostly standard COTS hardware and software components. To

demonstrate this, we have implemented Ghidrah as an operational CMM system

with these techniques integrated into the implementation.

Section 7.1 describes key aspect of the implementation of the Ghidrah CMM.

In the implementation of the manager group, Ghidrah uses a simplified version of

the replication algorithm presented in Chapter 4. The details of these

simplifications and their implications are presented in Subsection 7.1.1. Subsection

7.1.2 describes the internal structure of the manager and agent as implemented in

Ghidrah. At the core of the implementation of the manager replicas and agents is

the way message and timer events are handled. The implementation framework for

ev ent handling in these programs is presented in Subsection 7.1.3. Subsection 7.1.4

describes how the consistency among manager replicas are maintained in the

presence of group level time-triggered events. In subsection 7.1.5, we describe the

technique used to achieve eff icient heartbeat for node failure detection.

With the possible use of Ghidrah for on-board high-performance computing in

space, it is expected that the trusted core will be the radiation-hard spacecraft

control computer (SCC). In order to validate the operation of the entire system, we

140

have implemented an emulation of the SCC on a COTS computer. The functions

performed by this emulated SCC are discussed in Subsection 7.1.6. The

communication infrastructure (CI) of Ghidrah provides reliable authenticated

communication and thus plays a critical role in the operation of the system.

Subsection 7.1.7 described the implementation of the communication

infrastructure.

In order to evaluate the performance of the Ghidrah CMM system and validate

its fault tolerance mechanisms, we have conducted a series of experiments to

measure the performance of the Ghidrah system and to test the system under faults

in fault injection campaigns. The preliminary results from this experimental

evaluation are presented in Section 7.2

The results of performance measurements presented in Subsection 7.2.2 show

that the overhead caused by the Ghidrah CMM is quite low. For example, with a

cluster of 20 nodes where each agent generate a heartbeat message every 100ms,

during normal operation, the overhead of running a manager replica on a node is

less than 2% of the node’s CPU processing power.

The results of fault injection experiments presented in Subsection 7.2.3

indicate that although most errors caused by faults are process crash errors, non-

crash errors are also occur with sufficient frequency so that they cannot be ignored.

These fault injection campaigns show that, with the fault tolerance techniques

presented in this thesis, the Ghidrah CMM tolerates and recovers from all failures

caused by faults injected into a single manager replica.

141

7.1. Implementation of the Ghidrah CMM

The Ghidrah CMM system is currently operational on clusters built with

COTS hardware and software. It is implemented in C/C++ on the Linux operating

system with the communication infrastructure (CI) implemented using UDP socket

calls. An early version has been tested on the Solaris operating system with

communication implemented on a Myrinet network [Bode95] using the GM

API [Li01].

Component Lines of Code

Manager 12,900

Agent 10,600

Management Message Layer 6,200

Communication Layer (on UDP) 8,600

MPICH to CL 2,800

Emulated SCC 3,400

Table 7.1: Code size of the Ghidrah implementation. The
communication layer(CL) and the management message layer(MML)
are reported separately from the manager and agent programs. The
actual manager program and agent program both consist of a copy of
the CL and MML modules.

As a measure of the complexity of the Ghidrah implementation, Table 7.1 lists

the code size of different Ghidrah components. As parts of the communication

infrastructure of Ghidrah, the communication layer (CL) and the management

message layer (MML) are common modules of the manager program and the agent

program. Therefore, the code sizes of CL and MML are reported separately from

those of the manager and agent programs. The numbers reported for the manager

142

and the agent do not include the code for CL and MML.

7.1.1. Practical Tradeoffs Towards a Simplified Replication Algorithm

In Chapter 4, we presented a replication algorithm that requires 2 f + 1 active

replicas and a three-phase protocol during normal-case operation. This algorithm

guarantees safety and liveness (see Section 4.1) as long as the total number of

faulty replicas does no exceed f during the lifetime of the system.

We then presented in Chapter 5 a self-diagnosis algorithm that allows the

system to identify the faulty replicas, and a reconfiguration algorithm that replaces

the faulty replicas with new, faulty-free replicas. If the conditions under which the

diagnosis algorithm is both complete and accurate hold, the system will keep

replacing faulty replicas and thus may be able to tolerate an arbitrary number of

faults during its lifetime.

The three-phase replication algorithm is expensive: during fault-free

execution, to tolerate a single faulty replica, it requires 12 messages exchanged

among the three active replicas for each client message. Furthermore, the three

phase protocol will also increase the response time to client requests. In this

section, we discuss the possibility of using replication algorithms that are based on

the algorithm presented in Chapter 4 but require fewer phases. These algorithms

sacrifice resiliency under extremely unlikely scenarios in order to improve

efficiency. The current implementation of the Ghidrah CMM uses a one phase

algorithm.

143

As discussed in Section 4.2.6, a simplified version of our replication

algorithm, that requires only two phases during normal-case operation (Figure 4.3),

can ensure that all fault-free active replicas process input messages in the same

total order and their internal states are consistent. However, this two-phase

algorithm may cause inconsistency between replicas and clients(agents), thus

violating safety.

The inconsistency described in Section 4.2.6 is caused by the fact that a client

accepts a reply from the server replicas after receiving consistent messages from

only two replicas. As a result of a reconfiguration (view-change), the set of active

replicas may include only one of the replicas that sent the reply accepted by the

client. Since this particular replica may be faulty, it may lead the other fault-free

replicas to process the client message in a different order. Therefore, the states of

the fault-free replicas become inconsistent with the reply previously accepted by a

client.

One way to overcome this problem is to have the client wait until it receives

three replies from different replicas in the same view and vote on them. In this

way, when the client accepts a reply, it is ensured that all active replicas have

decided on the order of the client message so that there will not be inconsistency

across reconfigurations. If the client does not receive replies from all three active

replicas before the timeout period expires, it broadcasts the message to all active

replicas, as described in Section 4.2.1, triggering a view change. The disadvantage

of this solution is the requirement that the client must wait for replies from all

144

active replicas. Due to this requirement, if one replica is faulty and does not send

the reply, the client may have to wait for a reply for a long time. Specifically, the

client may have to wait until the view change completes and the new replica is

initiated. This increases the interruption of normal operation due to a manger

replica failure.

With the two phase algorithm, an alternative to requiring the client to receive

replies from all the replicas is to rely on the diagnosis algorithm (Section 5.2). In

particular, whenever the replication algorithm requires a view change, the diagnosis

algorithm is invoked in order to pick which active replica to replace. If the

diagnosis algorithm is alway accurate and complete, it will identify the faulty

replica. If the replica that is replaced is alway the faulty replica, the inconsistency

problem with the two phase protocol cannot occur.

The Ghidrah implementation takes one additional step towards simplifying the

replication mechanism and uses a single phase replication protocol, as shown in

Figure 4.1. It is possible to use this simple algorithm by relying on the existence of

the trusted hardcore, which must be part of the system for other reasons anyway

(Section 3.4). As discussed in Section 4.1, the one-phase algorithm faces a serious

problem when the primary is malicious (Figure 4.2). The malicious primary may

forward messages with different sequence numbers to the backup replicas, thus

causing the states of the fault-free backups to diverge. In this way, the malicious

primary can cause one of the backups to be identified as faulty by the self-diagnosis

procedure and thus to be removed from the replica group during reconfiguration.

145

The faulty primary can keep doing this so that all the replicas spend all their time in

self-diagnosis and reconfiguration, failing to perform their normal function. A

faulty primary can also cause the state of the backups to diverge and then cause the

self-diagnosis algorithm to conclude that the states of the active replicas are all

different so that normal system operation cannot continue.

In all the scenarios described in the previous paragraph the replica group

cannot recover by itself. However, every time a replica enters self diagnosis, it

informs the trusted hardcore. The trusted hardcore assumes that self diagnosis has,

in fact, been initiated if it receives these notifications from at least two replicas. If

the frequency of entering self diagnosis within a time window exceeds a given

threshold, the trusted hardcore power-resets the entire system. The threshold

frequency and the size of the time window are parameters that need to be tuned to

ensure proper system operation. There are two conflicting goals for this tuning:

1) endure that a system power reset is very unlikely to be triggered when the system

is operating normally, and 2) minimize unnecessary delays in triggering a power

reset when such a reset is necessary.

Another way in which the trusted hardcore is used is that if during self-

diagnosis a replica receives different states from the different replicas and those

states are also different from the receiver’s state, the replica stops sending

heartbeats to the trusted hardcore. If the trusted hardcore fails to receive heartbeats

from two of the replicas, it power-resets the entire system. Based on this

mechanism and the mechanism described in the previous paragraph, a malicious

146

primary cannot cause the system to perform the wrong function, but it can cause a

power reset of the entire system.

Power-resetting the entire cluster is a costly recovery action that must not be

performed often. The assumption is that the malicious behavior of a primary

replica described above happens very rarely in practical systems. Based on this

assumption, power-resetting the cluster is seldom required. The tradeoff between

using this simple algorithm, as done in Ghidrah, and using the more complex

algorithm described in Chapter 4, is a tradeoff between minimizing the overhead

during fault-free execution and a high cost for recovery when this specific

malicious behavior occurs. In a system that has tight hard real-time constraints, the

correct choice may well be to use the algorithm described in Chapter 4.

7.1.2. Internal Structure of Key Components

This section describes the internal structure of two key components of

Ghidrah — the manager and the agent.

7.1.2.1. Manager

Figure 7.1 depicts the internal structure of the manager. The functionalities of

all modules that make up the manager are as follows:

• Event Manager: this module is the central point for detecting and gathering

ev ents, and dispatching events to proper modules for processing.

• Timer: it manages and schedules time-triggered events.

147

Event

Manager

Timer Gang
Scheduler

Resource
Allocator

TaskDB

NodeDB

Replication Manager

Communication Infrastructure

Figure 7.1: Internal structure of Ghidrah manager

• Replication Manager: this is the key module that implements the replication

algorithm. It is responsible for ensuring consistency among the manager

replicas and maintaining the replica group. It executes the BFT-SMR

algorithm, as well as the self-diagnosis and reconfiguration algorithms.

• NodeDB: this is the database that stores and manages information about each

individual node in the cluster.

• TaskDB: this is the database that keeps track of all the active application tasks

and their processes.

• Resource Allocator: this module is responsible for allocating resources to

application tasks.

• Gang Scheduler: this module performs gang scheduling on parallel

applications.

148

7.1.2.2. Agent

Event

Manager

Timer

Communication Infrastructure

Voter
Group

Multicast

Node

Control

Local
ProcessDB

Process
Management

Figure 7.2: Internal structure of agent

Figure 7.2 shows the internal structure of an agent. Just like the manager, the

agent also includes the Event Manager and the Timer modules, which have the

same functions as in the manager. The functionalities of other agent modules are

summarized below:

• Voter: this module performs comparison and voting on the messages received

from the manager replicas.

• Group Multicast: this module multicasts messages to the manager replicas

that make up the manager group.

• Node Control: this is the local entity that controls the node. It monitors the

resources on the node and collects information about them. It is also

responsible for sending heartbeats to the manager group. and to the keeper

(Section 6.1).

149

• Process Management: this module manages and interacts with all the

application processes that are running on the local node. It launches

application processes, control them, and monitors the status of the processes.

• Local ProcessDB: this is the database that holds information about all

application processes running on the node.

7.1.3. Event Handling

Ghidrah’s key components, the manager replicas and the agents, are event-

driven. Operations are invoked when events are triggered. Events are either

message-based (triggered by an external message) or timer-based (triggered by the

local timer). Event handling is based on the publish-subscribe model. Each

module subscribes to the events that it is interested in from the Event Manager

(Section 7.1.2) and registers a handler to each event type. The CI generates

message arrive events when it receives messages from other components, and the

Timer fires timer events. These ev ents are published to the Event Manager. The

Event Manager maintains an event queue of all published events and dispatches

triggered events by invoking the handlers bound to them. The bindings between

ev ents and handlers are usually static and created when the modules are initialized.

The Event Manager also allows dynamic bindings so a module can change and

replace its handlers to events.

Figure 7.3 shows the Event Manager’s main event loop. The processing of the

ev ents is priority-based. When an event is received, the Event Manager assigns a

150

BEGIN LOOP
IF there are any expired timer events THEN

push the event into event queue;
IF there are any received messages THEN

push the message into event queue;
IF the event queue is not empty THEN

pop out an event with the highest priority;
process the event;

ELSE
block until new event received;

END LOOP

Figure 7.3: Event handling in event manager

priority to it and inserts it into the event queue based on its priority. After

processing an event, the Event Manager polls the CI and the Timer in case there are

new events triggered. When there is no event pending, the Event Manager blocks

until it is woken up by an interrupt caused by new events.

Events are processed without preemption. This can be problematic if the

handling of some low priority events is time consuming and during processing new

ev ents with higher priorities are received. In order to handle this case efficiently,

we developed a lightweight user-level thread library that allows a low priority event

handler to periodically yield the control to the Event Manager to check and process

new events. After processing those event, the Event Manager will return control

back to the paused handler thread to continue its processing.

151

7.1.4. Group Timer Events

The operation of the managers is driven not only by incoming group messages

from agents, but also by events triggered by time. Examples of these time-triggered

ev ents are an invocation of the periodic gang-scheduling operation, or a timeout

triggered when a message sent from the manager group to an agent is not

acknowledged. The timer events must be processed by all manager replicas in the

same total order with respect to other timer events and with respect to message

arrival event. Hence, the timer events must pass through the sequencer (the primary

replica) in the same way that messages do (Chapter 4). Thus, as with message

arrival events (Section 4.2), linearizability with respect to these group timer events

must be satisfied.

In order to achieve consistent total order on group timer events and messages,

a group timer event is only triggered by the primary. The primary creates a special

message for the event and assigns a sequence number (RSN) to the message. It

then multicast this message (called group timer event message) to the backup

replicas using the total order multicast protocol described in Chapter 4.

The problem with the above approach is that if the primary replica fails, the

timer event may never be processed. This problem is solved by scheduling a

‘‘backup timer events’’ on each backup replica with the backup replica’s own timer.

This backup timer event is scheduled with some delay (called ‘‘late-threshold’’)

added to the original time interval of the group timer event. Under normal

circumstances, the group timer event is triggered on the primary replica and then

152

multicasted to the backup replicas before the backup timer events are fired. The

backup replicas then dismiss the backup timer event and process the event.

A backup timer event fires on a backup replica only if the backup replica fails

to receive the corresponding group timer event message from the primary before

the late-threshold. This implies that the primary replica may be faulty. The backup

replica sends a message to the other backup replica to report the error. If the other

backup replica agrees that the group timer event is late, it responds with a positive

acknowledgment. The two backup replicas then decide that the primary is faulty

and initiate the manager reconfiguration procedure to remove it (see Section 5.3).

There is also a possibility that a faulty primary replica sends a group timer

ev ent message to one or both of the backup replicas ahead of the scheduled time.

The backup replicas detect this primary replica failure by setting an ‘‘early

threshold’’ for each group timer event. When a backup replica receives a group

timer event message from the primary, it checks its clock and determines whether

the event is early. If it is early, the backup replica forwards the group timer event

message to the other backup, along with a proposal to declare the primary as faulty.

When the other backup replica receives this message, it checks the event with its

clock. If it agrees that the event is early, it suspects the primary as faulty as well

and sends a positive acknowledgment to the other backup’s proposal. The two

backups then invoke the reconfiguration procedure to remove the primary. If the

second backup decides that the event is not early, it sends a negative

acknowledgment to the other backup and processes the group timer event normally.

153

P

B1

B2

t t′

t1′

t2′

δ

ρT

ρT

Late

Early

Backup timer Event

T

Figure 7.4: Detect late and early group timer events. P is the primary,
B1 and B2 are backup replicas. The backup replicas schedule the
backup timer event with a delay added to the time interval T of the
group timer event. They also set the early-threshold to detect that the
primary fires the group timer event too early.

The detection of late or early group timer events is illustrated in Figure 7.4.

The primary replica schedules the group timer event using the original time

interval T . The backup replicas schedule the backup timer events with the late-

threshold θ L added to T . θ L is calculated based on the maximum relative drift rate

ρ between the clocks of the replicas and the one-way transmission timeout delay δ ,

so that θ L > ρT + δ . The value of δ is chosen in a way such that messages are very

likely to be delivered to destinations within the time interval of δ .

The backups also calculate an early-threshold θ E for each group timer event

such that θ E = ρT . A group timer event message sent by the primary is considered

as ‘‘early’’ by a backup if the backup receives it before T − θ E .

During a view change or a reconfiguration, when a backup replica becomes

the primary, it must reset all its backup timer events back to primary group timer

ev ents with the proper original time interval T . It does this by withdrawing a

154

backup timer event, subtracting the late-threshold θ L from the time interval, and re-

scheduling the event as a primary timer event.

All the currently scheduled group timer events are part of state of a manager

replica, so they must be included in the state comparison during a self-diagnosis

and in the state transferred to the new manager replica during a reconfiguration.

Because the system clocks of all manager replicas are slightly different and the

primary and backups schedule group timer events differently as described above,

the absolute time of a group timer event scheduled on different replicas are

different. Therefore, we cannot include the absolute time of a group timer event in

a replica’s state. Instead, we only include the relative time interval T of such an

ev ent in the state, so that the states of fault-free replicas are consistent for state

comparison and correct state is transferred to a new replica during reconfiguration.

When the new replica receives these group timer events with the state

transferred to it, it schedules the events as backup timer events (the new replica is

always a backup). Because for each group time event, this new replica only knows

the original time interval T but does not know the exact remaining time until the

real time that the group timer event should be triggered, it schedules the event using

its current clock time as the starting point. This causes the problem that this new

replica schedules the backup timer events later than they should be scheduled.

Therefore, if the primary is late on triggering such an event, this new replica may

not detect the event as late. However, if the primary does not trigger the event at

all, this new replica will eventually detect this failure and agree with the other

155

replica that the primary is faulty. Therefore, the group timer events will not be lost.

However, since this new replica schedules these transferred group timer event

late, it is possible that even if the primary triggers these events correctly, the new

replica would consider the group timer event messages from the primary to be

‘‘early’’. In order to deal with this problem, when receiving a group timer event

messages from the primary, this new replica does not check whether the message is

early if the event is a transferred group timer event. This can lead to the problem

that an early group timer event may not be detected correctly. In practice, the

number of transferred group timer events are usually small, so the problem will not

have significant effect. All group timer events scheduled after the new replica

restores its state are handled correctly.

7.1.5. Agent Heartbeats

As described in Section 6.1, on each node, the agent keeper can recover the

agent from crash failures. If both the agent and the agent keeper crash on a node,

the node becomes unavailable. Heartbeats are used to detect crash failures of an

agent/node. The agent sends periodic heartbeats to the manager group. Missing

heartbeats serve as hints that a node has crashed. The manager group verifies the

failure of the node by probing the node with a ‘‘ping’’ message to the agent. If no

response from the agent is received before a timeout period expires, the manager

group declares the node as ‘‘officially dead’’, excludes the node from the cluster,

and takes the actions required for the loss of application processes running on the

156

node (e.g., informing the processes of each task running on different nodes). The

manager group then sends to the trusted hardcore a request to power reset the failed

node.

The implementation of the agent heartbeat mechanism is driven by two

considerations: minimizing false alarms and minimizing the overhead of heartbeats.

To minimize false alarms, the manager group suspects a node only when two

consecutive heartbeats from the node are lost. Furthermore, the manager group

then verifies the suspicion by probing the agent — sending the agent a message that

requires the agent to respond. This probing minimizes that chances of false failure

detection that might be triggered by lost heartbeats were due to temporary

communication errors.

The heartbeat frequency is a tradeoff between fast detection of failures and

overhead during normal operation. High heartbeat rate decreases the detection

latency but increase the overhead introduced by heartbeat messages, especially, the

overhead incurred on the manager replicas for receiving all the agent heartbeat

messages. The overhead consists of the time for processing the heartbeat messages,

as well as the OS context switch overhead, because the manager processes have to

preempt the application processes running on the same nodes. This context switch

overhead can be reduced if multiple heartbeat messages can be ‘‘bundled’’ into a

single message. One way to do this is for all the agent heartbeat messages to be

sent to one of the manager replicas which then bundles these messages into a single

message and forwards the bundle message to other manager replicas.

157

Since heartbeat messages are authenticated, a faulty manager replica cannot

forge agents’ heartbeat messages. However, a faulty manager replica may refuse to

forward the heartbeat messages, thus causing the other manager replicas to suspect

some working nodes. In addition, if all heartbeat messages are forwarded by the

same manager replica, that leads to an uneven distribution of the management

overhead over the nodes running the manager replicas.

Based on the arguments above, the Ghidrah CMM uses the two backup

manager replicas to bundle and forward agent heartbeat messages. The primary

replica is not used for forwarding heartbeats since it already has the extra overhead

for ordering normal group messages. Each agent alternates between the two

backup replicas as destinations for its heartbeat messages. When a backup replica

receives a heartbeat message from an agent, it saves the message in a buffer. A

periodic timer event (not a group timer event) is scheduled on each replica. At the

end of each period, a backup replica collects all heartbeat messages in the buffer,

forwards them to the other two replicas as a ‘‘bundled’’ message, then clears the

buffer. When a replica receives this message, it extracts every heartbeat message in

the bundled message and records that a heartbeat had been received from the

corresponding agent. Each replica (include the primary) checks the heartbeats from

ev ery agent at the end of the same time period as well. If two consecutive

heartbeats are missing from an agent, a replica suspects a node failure and initiates

probing the node.

Because the system clocks of manager replicas are different, the timer event

158

described above is scheduled at different real time on different manager replicas.

Hence, different manager replicas suspect a node at different real time. This

suspicion is local on a replica and not part of the manager state that is compared

during self diagnosis. Thus, this difference among replicas does not cause false

replica failure detection during self diagnosis. However, the initiation of probing a

node must be synchronized on all replicas, because the probing is a group action

and affects the state of the manager group. This synchronization is achieved by

scheduling the probing as a group timer event (see Section 7.1.4) with a zero time

period. When a manager replica suspects a node failure, it sends a message to the

other replicas to announce the suspicion. When receiving this announcement, a

replica forwards it to the other replica. When a replica has received the same

announcement the has originated from at least two replicas (may include itself), it

schedules the group timer event. The primary replica then triggers the event as

described in Section 7.1.4, which initiates the probing to confirm that the node is

dead.

7.1.6. The Spacecraft Control Computer

The Spacecraft Control Computer (SCC) controls the entire spacecraft and is

critical to the space mission. Loss of SCC means loss of the spacecraft. For this

reason, SCC is built with radiation-hard hardware, with limited processing and

communication capability. In Ghidrah, SCC is used as the trusted hardcore (see

Section 3.4).

159

As discussed in section 3.4, the main functionality of the trusted hardcore is to

power reset any of the cluster nodes or the entire cluster, when necessary. In order

to determine when these power reset actions are necessary, the SCC must interact

with the manager replicas. It communicates with the manager replicas in the way a

client communicates with replicated servers as described in Section 4.2.1.

In Ghidrah, the failure of a node is detected by the manager replicas when

heartbeats are missing from the agent on the node (see subsection 7.1.5). To

recover from a node failure, the manager replicas sends a command to SCC to

request a power-reset on the node. When SCC receives same command from at

least two manager replicas, it executes the command and resets the particular node.

The SCC also monitors the manager replicas and detects their abnormal

behavior in case the replicated managers have failed. To ensure that the system has

an operational manager group, all manager replicas send periodic heartbeats to the

SCC. If the SCC does not receive heartbeats from at least two manager replicas for

a certain period of time, it concludes that the replicated managers have failed and

power-resets the entire system.

It is also possible that instead of not sending heartbeats to the SCC, the

manager replicas fail in such a way that they keep invoking the self-diagnosis and

reconfiguration procedure. To handle this problem, every time the manager

replicas invoke self-diagnosis, they report it to the SCC. The SCC records the rate

of manager diagnosis. If the rate exceeds a certain threshold, it power resets the

entire cluster.

160

Base on the discussions above, we summarize the required functionality of the

SCC, i.e., the trusted hardcore in the CMM, as follows:

• Receive and authenticate group messages from the manager group

requesting a power reset of a specific node. Perform the power reset of

the specific node.

• Receive, authenticate, and record group messages from the manager

group with notification of self-diagnosis. Power-reset the entire cluster if

the rate during a specified time window exceeds a threshold.

• Receive and authenticate periodic heartbeat messages from individual

manager replicas. Power rest the cluster if heartbeats from at least two

manager replicas are not received.

In the current implementation of Ghidrah, we have not implemented a fully-

functional SCC with the ability to physically power-reset nodes or the cluster,

because this ability requires special hardware. Instead, we implemented an

emulated SCC that has the functionality of interacting with the manager replicas as

described above. When a power-reset is needed, this emulated SCC emulates the

reset operation by outputting a display message that says ‘‘power reset node i’’ or

‘‘power reset the entire system’’.

7.1.7. Implementation of the Communication Infrastructure

In section 3.5, we described the communication infrastructure (CI) that

provides reliable communication in the CMM. Figure 7.5 depicts the structure of

161

Communication Platform (UDP or GM)

Common Base
CL Reliable CL

MPICH

User Applications

Management Message
Layer

Middleware
Cluster Management

Figure 7.5: Communication infrastructure of Ghidrah

the CI implemented in Ghidrah. The infrastructure is composed of a common base

called CL (Communication Layer), a RCL (Reliable CL) module that provides

reliable message passing to parallel applications, and an MML (Management

Message Layer) module for communication between key CMM components such

as managers and agents [Li02].

CL is a light-weight layer that is portable across multiple network platforms

and provides efficient message communication with minimized overhead imposed

on top of the underlying network platform. High-performance communication

requires avoiding system calls and eliminating local message copies [Stee94].

Hence, modern designs of NIC (network interface card) hardware allow user-level

send and receive primitives, allow the NIC and host to access shared memory, and

expose buffer management to the application [von98]. The design of the Ghidrah

CI was done with these considerations in mind — if the underlying communication

platform provides these high performance features, our CI must be able to take

advantage of them. For example, like many high-speed communication systems,

162

CL also exposes its buffer management to applications.

CL can be easily ported to high-speed user-level network platforms as well as

traditional network platforms. To demonstrate its portability, we hav e implemented

it on top of both UDP/IP and Myrinet/GM [Bode95].

CL provides connectionless communication with no reliability guarantees. It

cannot be directly used for application-level communication because applications

require point-to-point reliability. Hence, we implemented the Reliable CL to

provides reliable message communication to applications. RCL ensures message

reliability using timeouts and retransmissions. MPICH [Grop96] is ported on top of

the RCL to provide a parallel programming environment in the cluster.

The main design objective of RCL is to ensure high performance. For this

reason, we decided not to implement RCL as a layer strictly above CL. Such strict

layering might lead to inefficiencies because the reliable communication routines in

the upper layer have no direct access to the internal date structure of lower layer.

For example, if we implement RCL as a separate layer above CL, which in turn is

built on top of Myrinet/GM, RCL would have to perform periodic probing to the

status of the send of some control packets, such as message acknowledgments, in

order to determine when the buffers can be reclaimed. Our implementation of RCL

is integrated with the implementation of CL, so the reliable communication routines

have full access to the internals of CL. In the example above, this allows RCL to

garbage-collect the status data structures and release the control packet buffers in

the callback routines that are called by GM when the packets are successfully sent

163

out, so there is no need for probing the the send status.

As discussed in Section 3.3, communication between managers and agents

requires adaptive reliability. For this reason, we designed the MML to supports

three types of messages:

• UNR — unreliable message for which no acknowledgment is required;

• ACK — reliable message that requires a positive acknowledgment;

• NACK — reliable message that does not require a positive

acknowledgment (negative acknowledgments are used to flag lost

messages).

Function Operation

msg_connect(dest) establish a connection to dest.

msg_disconnect(dest) terminate the connection to dest.

msg_set_protocol(msg,ptcl) set the protocol for msg to ptcl (UNR, ACK, or
NACK).

msg_sync_send(dest,msg) send msg to dest (blocking);
return assigned sequence number.

msg_async_send(dest,msg,status) send msg to dest (non-blocking);
return assigned sequence number.

msg_check_status(status) check for completion of a non-blocking send.

msg_receive() receive all pending messages.

msg_resend(dest,seq) retransmit the message having sequence number
seq to dest.

msg_group_ack(dest) send an ack for a multicast message.

Table 7.2: API of the management message layer (MML)

Table 7.2 lists the API of MML. MML is tightly-coupled with the

management middleware and is strictly layered on top of CL. MML messages are

164

authenticated with digital signatures (see Section 3.5). In order to reduce the

overhead of message authentication, MML uses the MD5 message-digest

algorithm [Rive92], to compress a message of arbitrary length into a small, fixed-

length message digest. MML signs the digest of a message instead of signing the

entire message.

7.2. Experimental Results

This section reports the results of experimental performance evaluation and

fault tolerance validation of the Ghidrah CMM.

7.2.1. Experimental Setup

Our experimental evaluation of the Ghidrah CMM was carried out on two

clusters. The hardware configurations of the two clusters are summarized in Table

7.3.

Cluster A Cluster B

Number of Nodes 4 4

CPU Pentium-II 350MHz Xeon 2.66GHz

L2 Cache 512KB 512KB

Physical Memory 384MB 1GB

Network 100Mb Ethernet Gitabit Ethernet

Table 7.3: System configurations of the two experimental clusters

The first cluster (Cluster A) consists of four nodes. Each node has a

Pentium-II 350MHz processor with 512KB L2 cache and 384MB of main memory.

165

The nodes are connected by a 100Mb Ethernet LAN. The second cluster (Cluster

B) consists of four nodes with an Intel Xeon 2.66GHz processor and 512KB L2

cache on each node. Each node has 1GB of memory. The network is a Gigabit

Ethernet LAN. All nodes in the two clusters run the Linux Red Hat 9 operating

system with version 2.4 of the Linux kernel. The CMM communication

infrastructure (CI) is implemented on top of UDP/IP.

7.2.2. Performance Measurements

This section presents performance and overhead measurement results for the

Ghidrah CMM.

7.2.2.1. Manager Overhead in Normal Case

The processing and associated power consumption of the manager group and

agents are system overhead that should be minimized. Since the manager replicas

and the agents run on the same nodes that run processes of application tasks, the

key measure of overhead is the fraction of CPU processing power that is not

available to processes of application tasks. The overhead is caused by context

switches (to invoke the manager or agent) and the time the manager or agent spends

on receiving and processing messages and timer events. Since each manager

replica processes many more messages and timer events that any individual agent,

our evaluation focused on the manager replicas. Specifically, we measured the

fraction of ‘‘processing’’ that becomes unavailable to application processes while

166

an active manager replica runs on the same node.

Number of Events Processed per Second

Cluster A

C
PU

U
sa

ge

10 40 100 400 1000 2000

0.01%

0.1%

1%

10%

100%

■

■

■

■

■

■

■

■

■

■

■

■

∆
∆

∆
∆

∆
∆

∆

∆
∆

∆

∆
∆

■ primary (20 nodes)
■ backup (20 nodes)
∆ primary (100 nodes)
∆ backup (100 nodes)

Number of Events Processed per Second

Cluster B

10 40 100 400 1000 2000

0.01%

0.1%

1%

10%

100%

■

■

■

■
■

■

■

■

■

■

■

■

∆
∆

∆
∆

∆
∆

∆
∆

∆

∆
∆

∆

■ primary (20 nodes)
■ backup (20 nodes)
∆ primary (100 nodes)
∆ backup (100 nodes)

Figure 7.6: Heartbeat processing overhead on nodes running manager
replicas. The Y axis (CPU Usage) is the fraction of CPU cycles that is
not available for application processes.

The manager replica overhead largely depends on the frequency of heartbeats

that it must handle. Figure 7.6 shows the percentage of processor time used by a

manager replica for different event processing rates. The event processing rate is

based on the total number of events processed by the manager group and is thus the

product of the agent heartbeat rate and the number of agents. Using our small four-

node clusters, we emulated larger clusters by running multiple emulated agent

processes on each node, thus generating a large number of heartbeats. The first

system consists of 20 agents and thus 1000 heartbeats per second are generated if

each agent sends a heartbeat every 20 milliseconds. The second system consists of

100 agents and thus 1000 heartbeats per second are generated if each agent sends a

167

heartbeat every 100 milliseconds. Each experiment was repeated fiv e times and the

av erage measurement results are reported. The results concerning the backup

managers are the averages of the results measured for the two backup managers.

Figure 7.6 shows that the overhead of the Ghidrah CMM is quite low under

normal workload. For example, for a cluster with 100 nodes, where each agent

generate a heartbeat message every 100ms, during normal operation, the overhead

of running a manager replica on a node is less than 5% on Cluster A, and less than

2% on Cluster B.

Figure 7.6 also shows that ‘‘bundling’’ of heartbeat messages (see Section

7.1.5) reduces the processing overhead significantly — the overhead of the primary

replica is much lower compared to the overhead of the backup replicas. For a fixed

rate of heartbeats from the entire system, a larger number of nodes is handled more

efficiently than a smaller number of nodes. The reason for this is that with the

larger number of nodes, the larger number of agent heartbeats are bundled together

by the backup replicas. Hence the primary replica is invoked less frequently by

receiving the bundled heartbeats, so the overhead on context switch and receiving

messages is reduced.

Another major source of manager overhead is the processing of group timer

ev ents (Section 7.1.4). Figure 7.7 shows the overhead of manager replicas for

handling group timer events. This overhead includes the operating system’s timer

management overhead. In addition, on the primary manager replica, it also

includes the overhead caused by triggering a time event, sending group timer event

168

Number of Events Processed per Second

Cluster A

C
PU

U
sa

ge

1 10 100 1000

0.01%

0.1%

1%

10%

primary
backup

Number of Events Processed per Second

Cluster B

1 10 100 1000

0.01%

0.1%

1%

10%

primary
backup

Figure 7.7: The overhead for handling timer events on manager replicas.
The Y axis (CPU Usage) is the fraction of CPU cycles that is not
available for application processes.

messages to the backup replicas, and invoking the callback registered to the event.

For a backup manager replica, the overhead includes the time for receiving the

group timer event message from the primary, checking if the event is early,

dismissing the backup timer event, and invoking the callback.

7.2.2.2. Manager Recovery Time

When a manager replica fails, the system loses its ability to mask a failure of

another manager replica. Hence, a new replica must be instantiated as quickly as

possible. We measured the recovery time for a manager replica — the time interval

from when a failed manager replica is identified by self-diagnosis to the time that a

new manager starts and the manager group restores its normal operation (see

169

Time (msec)

Cluster A Cluster B
Recovery Step

Elect new primary manager 2.08 0.17

Sync with other manager 0.08 0.01

Take snapshot 0.07 0.01

Notify agents 3.50 0.74

Start new manager 3.20 + 21‡ 0.65 + 5.2‡

Transfer state 1.67 1.06

New manager restore state 2.05 0.21

Mew manager catch up 0.96 0.13

Total 34.61 8.18

Table 7.4: Primary manager replica recovery time (excluding the time to
load the executable from disk). ‡ Time for initializing communication
infrastructure.

Section 5.3). The results are shown in Table 7.4. The time reported excludes the

operating system time to load the manager program from disk. Most of the time is

spent on initializing the communication infrastructure. This includes the time for

reading the node configuration, initializing the sockets and constructing the data

structures in the CI (buffers, receive queues, etc.). Hence, the recovery time can be

reduced significantly if the system keeps on a node an initialized ‘‘cold’’ manager

replica, which is ready to accept the state from other manager replicas and become

active.

During recovery from a manager replica failure, the remaining replicas

continue providing the management functionality. The primary replica continues to

receive messages from agents, assign sequence number and forward them to the

remaining backup replica. Both replicas process the messages and send responses

170

back to agents. These messages will later be sent to the new manager replica as

‘‘catchup’’ messages (see Section 5.3).

However, if the failed replica is the primary, communication from the agents

will fail for a short period since the agents continue to send messages to the

primary until they are informed about the new primary replica. Our preliminary

measurements show that, once the failure of the primary replica is detected, the

time to elect a new primary and advertise the the new primary to agent is

approximately 2.1 milliseconds on Cluster A, and only 0.17 milliseconds on

Cluster B (first row of Table 7.4). Hence, communication from the agents to the

manager group is restored after a very short interruption, requiring, at most, a

retransmission of a few agent messages by the reliability features of MML

(Section 7.1.7).

As shown in Table 7.4, the total recovery time of primary replica failures is

about 34.6 milliseconds plus the time for the operating system to load the manager

program on Cluster A. On Cluster B, the time is 8.18 milliseconds plus manager

program loading time. Most of the recovery time is spent on notifying all the

agents, starting the new manager replica, and transferring state to the new replica.

For recovery from backup replica failures, the step of electing a new primary

is not needed. Therefore, the time reported in the first row of Table 7.4 is excluded.

The approximate recovery time from backup manager failures on Cluster A is 32.5

milliseconds plus the time for the OS to load the program. On Cluster B, it is

around 8 milliseconds plus the program loading time. In this case, there is no

171

interruption to the communication from the agents to the manager group.

7.2.3. Fault Injection Experiments

In order to evaluate the reliability of the Ghidrah CMM, we stressed its fault

detection and recovery mechanisms by injecting faults into the managers and

agents, as well as the communication infrastructure. In this section, we present the

results of these fault injection experiments.

7.2.3.1. Process-Based Fault Injections

The process-based fault injection campaigns we conducted were based on

injecting single-bit-flip faults into a process’s registers and memory space. We

used a simple software-implemented fault injector [Hsue97]. This fault injector is

based on a device driver linked into the operating system kernel. The fault trigger

is time-based [Stot00] : faults are injected at some interval (a random variable) with

a giv en average frequency (fault rate). When a fault is triggered, depending on its

configuration, the injector randomly selects a register used by the process or

randomly selects an address in the stack or heap segments. It injects a fault by

flipping a random bit at that register or memory location. Faults are injected to the

process at the given frequency until an error is observed. Injections are resumed

after the manager/agent recovers from the failure.

Table 7.5 summarizes the results of fault injections when faults are injected

into the registers, the stack and heap segments of an individual manager/agent

172

Error TypesFaults Errors
seg. illegal asser keeper self-diag
fault inst. -tion miss HBs M + I ‡

Injected Observed
Target

Register Injections

manager 3054 891 523 7 59 - 13 + 289

agent 3096 630 512 5 60 53 -

Stack Space Injections

manager 3980 191 143 4 11 - 14 + 19

agent 4037 151 128 3 16 4 -

Heap Space Injections

manager 3769 136 67 0 12 - 7 + 50

agent 3965 98 94 0 4 0 -

Table 7.5: Single process fault injection results. ‡The rightmost column
is for faults that caused the managers to enter self-diagnoses: (M) —
missing manager heartbeats, (I) — agents reporting inconsistent or
missing messages from a manager replica.

process. The experiments were conducted on Cluster A. In these experiments, the

av erage fault injection rate is one injection per second, and the managers and agents

send out heartbeats every 100 milliseconds. The system is loaded with a synthetic

workload (10-20 jobs with different parallel degrees and execution times, submitted

at random points in time). These jobs are gang scheduled with a granularity of

three seconds.

The errors caused by the injected faults are classified into several categories.

For both manager replicas and for agents the categories include: crashes due to

segmentation faults, crashes due to illegal instructions, program aborts due to

assertions in Ghidrah code. For manager replicas, the error categories also include

missing manager heartbeats or incorrect/missing output from one of the manager

173

replicas. For agents, the error categories also include agent failures detected by the

keeper due to missing heartbeats. These agent failures were not agent crashes and

were caused by agent hangs or some other agent failure that prevented it from

incrementing the heartbeat counter (see Section 7.1.5). In Table 7.5, the third

column shows the total number of observed errors caused by the faults injected.

The breakdown of these errors into the different categories is shown in the rest of

the columns to the right.

We collected these results by monitoring the exit status of the manager and

agent processes, as well as monitoring the operation of the agent keeper (for agent

injections) and the self-diagnoses conducted by the manager replicas (for manager

injections).

If injected faults cause the process to crash due to segmentation faults or

illegal instructions, or to abort, a corresponding signal is delivered to the process

and the process terminates with an exit status indicating which signal. We then

categorize the error based on the exit status. In Table 7.5, the fourth and fifth

columns report the errors due to segmentation faults and illegal instructions. The

Ghidrah code includes some assertions to facilitate debugging. Examples of these

assertions are checking for NULL pointers and checking whether the value of

critical variables is within the legal range. The aborts triggered by these assertions

are reported in the sixth column of Table 7.5.

If an agent process does not terminate with the exit status described above, but

the agent keeper on the same node reports that the heartbeats from the agent are

174

missing so it kills the agent process and restarts a new one, we categorize the error

as agent hangs. Errors of this type are reported in the seventh column of Table 7.5.

For a manager process, if it does not terminate with the exit status described

above, but the other manager replicas declare it as faulty after the self-diagnosis

procedure, we categorize the error as a non-crash error. Due to the faults injected,

the faulty manager replica may hang or fail to send valid heartbeats to other

manager replicas, Such an error is detected by the other manager replicas that miss

heartbeats from the faulty replica. An injected fault may also cause a manager

replica’s internal state to be corrupted, so it sends incorrect output messages to an

agent or it fails to send output messages to an agent. Such an error is detected by

an agent that reports inconsistent or missing output from the faulty replica. In both

cases, manager self-diagnosis is invoked to identify the faulty replica. We separate

these non-crash errors with respect to the reason that causes the self-diagnoses.

The counts of these errors are reported in the rightmost column of Table 7.5.

It should be noted that when a manager replica hangs due to faults, the error

can be detected by other manager replicas as well as by an agent. The other

manager replicas detect it because of missing manager heartbeats, and the agent

detects it because it has received a message from the other two replica but misses

the message from the faulty replica. In our implementation, the time period for the

manager replicas to check for missing manager heartbeats is shorter than the

timeout period an agent sets on a missing manager output message. Hence the

manager replicas detect missing heartbeats and invoke the self-diagnosis before the

175

agent reports a missing manager output message. Therefore, this type of errors are

categorized as ‘‘missing manager heartbeats’’ in the rightmost column of Table 7.5.

The results in Table 7.5 show that most register faults injected led to

segmentation faults. This is because that many registers in a Pentium II processor

are used for base-index addressing and for special purposes such as stack pointer.

Injecting faults into these registers is likely to lead to memory accesses to invalid

addresses and thus cause segmentation faults. Similarly, a large portion of faults

injected into the stack space and heap space also caused segmentation faults that

crashed the process. It is also shown that stack space faults and heap space faults

were less likely to cause observed errors compared to register faults. For a manager

replica, errors caused by faults injected into the heap space were more likely to

produce incorrect outputs than errors caused by faults injected into the stack space.

This is reasonable since faults in the heap space are more likely to corrupt the state

of the manager replica.

Our CMM system recovered from all the errors (process failures) reported

above. When faults injected into a manager replica caused the replica to fail, the

diagnosis and reconfiguration procedure successfully started a new manager replica

on another node. When an agent process crashed or hung, the agent keeper

successfully started a new agent process.

We also measured the detection latency of errors caused by faults injected into

a manager replica on Cluster A. In each experiment, we injected a single fault into

the manager replica, then measured the time interval from the moment of the

176

injection to the moment that the injected manager replica is identified as faulty by

other manager replicas. Because it is possible that a fault injected may not cause

any error in the manager replica, we stopped the experiment ten minutes after the

injection, assuming that the fault would never cause an error. The system clocks of

all nodes that ran the manager replicas were synchronized using NTP so that we

could have relatively accurate measurements of time intervals on different nodes.

Detection Latency (msec)

min avg max 80%
Type of Errors

crash errors 320 390 980 350-470

non-crash errors 270 590 4,900 410-620

Table 7.6: Detection latency of faults injected into a manager. The
results are collected from ∼500 register injections and ∼1200 heap
space injections. 126 crash errors and 43 non-crash errors are
observed.

The detection latency measurement results are presented in Table 7.6. The

table shows the minimum latency, the average latency and the maximum latency for

all cases where an errors was detected. Also shown in the table is a range of

detection latencies that contains eighty percent of the detected errors. This range is

obtained by excluding the lowest ten percent and the highest ten percent of the

detection latency results.

We separate the results we measured for crash errors from the results for non-

crash errors. All crash errors were detected by the other two manager replicas with

missing heartbeats. In these experiments, the heartbeat period was set to 100

milliseconds. Other manager replicas suspected the crashed replica after missing

177

two consecutive heartbeats from it. They then invoked the self-diagnosis procedure

to verify the replica failure. During self-diagnosis, no diagnosis message was sent

by the crashed replica, so the other two replicas declared it as faulty after timeout

expired on waiting for RSN message from the crashed replica. In these experiment,

the RSN message timeout period was set to 200 milliseconds. Based on the

discussion above, a correct replica identifies a replica failure only after two

consecutive 100-millisecond heartbeats are missed, triggering self-diagnosis,

followed by an RSN message timeout (200 milliseconds) during self diagnosis.

Therefore, the detection latency for most of the fail-stop failures was in the range of

350-470 milliseconds,

Non-crash replica failures include instances when the faulty manager replica

sends incorrect outputs to an agent, as well as instances when the faulty manager

replica fails to send an output message to an agent. The first case was quickly

detected by the agent when it compared the manager replicas’ outputs. It then

reported this error to the manager replicas and self-diagnosis was invoked. Because

the faulty replica was still alive and sent diagnosis messages to others, the self-

diagnosis procedure identified the faulty replica quickly in these cases.

In the case where the faulty manager failed to send an output to an agent, the

agent waited for the message until the timeout period for late message expired. It

then reported a ‘‘late or missing message’’ error to the manager replicas. The

manager replicas invoked self-diagnosis and identified the faulty replica as the

faulty replica’s state was corrupt due to the fault injected. The timeout period was

178

set to 500 milliseconds in the experiments. Most of the measured detection

latencies were close to the 500-millisecond timeout period, indicating that many

faults injected caused the faulty replica not to send an output message. This type of

non-crash errors also include errors that the faulty replica sent a corrupt message to

an agent, since this message was rejected by the communication infrastructure at

the receiver side and was never delivered to the receiver.

Some of the faults that cause non-crash errors can be dormant for a long time

before they cause observable errors. The longest latency we measured is close to 5

seconds. Such a fault corrupts some variable in the replica’s state, but the variable

is not be used soon after the corruption.

The above experiments only demonstrate what happens when faults are

injected into a single process. In practice, however, all the processes are subject to

faults simultaneously. Our replicated managers are designed with the assumption

that no more than f of the replicas are faulty at the same moment. However, if the

fault rate is too high thus more than f replicas become faulty before the replicated

manager recovers from previous faults, the replicated managers may fail. In this

case, SCC has to step in to power-reset the entire system, as described in Section

7.1.6.

We ran experiments on Cluster A to examine the survivability of the replicated

managers under extremely high fault rate. Faults were injected into all three

manager replicas simultaneously. In the original configuration of the Ghidrah

system the manager group enters self-diagnosis only when some error is detected.

179

For these experiments, the system is modified so that the manager replicas enters

self-diagnosis periodically even if no errors are detected. The reason for this

modification is that, in these experiments, the workload of the manager replicas is

very light so that the replicas are mostly idle. The workload consists of about 10

applications with different parallel degrees and execution times that were submitted

at random points in time. The gang scheduling interval is three seconds.

Therefore, a fault injected to a manager replica may not exhibit as a detectable error

quickly. In this situation, it is possible that multiple replicas becomes faulty before

the faults are detected. In order to reduce this possibility the manager replicas are

forced to enter self-diagnosis procedure periodically with a certain frequency to

scrub latent errors. If the manager replicas invoke self-diagnoses with a frequency

much higher than the frequency that faults occur on them, faults can be diagnosed

and recovered from before they accumulate.

Figure 7.8 show the recovery coverage of the manager replicas from errors

caused by faults injected into all replicas. Here the recovery coverage is defined as

the percentage of errors from which the manager replicas can recover by

themselves with respect to the total number of observed errors. This percentage is

plotted on the Y axis in Figure 7.8.

The X axis in Figure 7.8 shows the ratio of fault injection rate to the rate of

self-diagnoses periodically invoked by the manager replicas. Here the injection rate

is the rate that faults are independently injected on each individual manager replica.

This ratio indicates how frequent faults occur on manager replicas compared to

180

Ratio of Injection Rate to Diagnosis Rate

R
ec

ov
er

y
C

ov
er

ag
e

1/100 1/25 1/5 1 5
40%

60%

80%

100% ■ ■

■

■

■

• •
• •

•

× × × ×
×

■ Heap Injections
• Stack Injections
× Reg Injections

Figure 7.8: Recovery coverage of the replicated managers when faults
are injected into all manager replicas simultaneously.

manager replicas invoking self-diagnoses. In the experiments, the rate of periodic

manager self-diagnoses is one diagnosis per 2 seconds. The fault injection rate

varies with respect to the different ratios plotted on the X axis. For example, for a

ratio of 1/5, the fault injection rate is set to one fault injected per 10 seconds

av erage on each manager replica.

For each ratio reported in Figure 7.8, about 40-50 experiments were

conducted. In each experiment, faults were injected into all three manager replicas

with the given injection rate until an error was detected. In some experiments, the

manager replicas successfully recovered from the error with self-diagnosis and

reconfiguration. In other experiments, the manager replicas failed to recover from

the error and the SCC had to ‘‘power-reset’’ the cluster (see Section 7.1.6). The

recovery coverage is calculated by dividing the number of experiments in which the

181

manager replicas recovered from the error by the total number of experiments.

The figure indicates that when the fault injection rate is much lower (less than

1/25) than the rate of manager self-diagnoses, the replicated managers always

recover from the errors. When the fault injection rate is close to the self-diagnosis

rate, the replicated managers still recover from most of the errors by themselves.

With faults injected into registers and the stack space, the replicated managers

recover from most of errors even when the fault injection rate is higher than the

self-diagnosis rate. The reason for this is that these faults are more likely to cause

crash errors of manager replicas, compared to faults injected in the heap. Hence, a

self-diagnoses is invoked soon due to missing heartbeats. The manager replicas

identify the faulty replica quickly and recover from the fault before another replica

becomes faulty.

With heap space faults, the recovery coverage is significantly lower than with

register and stack space faults. In particular, when the total rate of fault injection is

approximately the same as the rate of self-diagnosis, the coverage is approximately

90%. The reason for this is that these faults are more likely to corrupt replicas’

internal states and the errors may not exhibit as detectable errors immediately.

Hence the errors are detected only when the next periodic manager diagnosis is

invoked. By that time, more replicas may become faulty due to the high fault rate,

thus the replicated managers fail to recover.

These results provide useful information regarding the proper configuration of

Ghidrah for different fault rate. Specifically, it is clear that the rate of scrubbing

182

manager replica state should be at least two orders of magnitude higher that the

expected fault rate. For example, in low Earth orbit, an on-board cluster in a

spacecraft may be impacted by an error every few hours. Thus, the interval

between invocations of self-diagnosis should be on the order of tens of seconds.

Since the time to perform self diagnosis is on the order of a few milliseconds, the

overhead for doing such proactive self-diagnosis will be negligible.

7.2.3.2. Validation of the Reliability Features of the CI

In Section 7.1.7 we discussed the Communication Infrastructure (CI) that is

the foundation of the Ghidrah CMM. Providing end-to-end reliable communication

is a key goal of the CI. In order to evaluate and validate the reliability features of

the CI, we have built a fault injector into the CI [Li02]. Based on a functional fault

model for message communication, this injector can drop, delay, corrupt a message,

change the order of messages, and inject duplicated messages. In the fault injection

experiments, the injector randomly picks messages to inject based on a given fault

rate per byte. The type of fault injected into each selected message is chosen

randomly as well.

The communication in CMM includes both reliable messages and unreliable

messages (mainly heartbeats). If a fault affects a reliable message transmission or

the corresponding acknowledgment, the sender will retransmit the same message.

Faults may also cause a process to receive duplicated messages. Faults injected

into heartbeat messages from agents to the manager group may cause false alarms

183

regarding node failures. In particular, if the manager group misses two consecutive

heartbeats, the node probing procedure will be invoked to check the health of the

node. It is also possible that communication faults cause the managers to initiate

the manager self-diagnosis procedure. This occurs when two consecutive heartbeat

messages from a manager replica are lost or delayed, or messages from the

manager replicas to agents are lost or delayed.

Fault Injection Rate

Fr
ac

tio
n

of
In

je
ct

ed
 F

au
lts

0.005 0.01 0.05
0.0001

0.001

0.01

0.1

1

R D

A
S

R D

A

S

R
D

A

S

Figure 7.9: Effects of faults injected into the communication
infrastructure. (R) Retransmissions; (D) Duplicated messages; (A)
False alarms on node failure; (S) Manager self-diagnosis.

We ran fault injection experiments on Cluster A with the CI fault injector

activated on all manager replicas and all agents. The system was loaded with a

synthetic workload: 10 applications with different parallel degrees and execution

times were submitted at random points in time. These applications were gang

scheduled with a granularity of three seconds. Figure 7.9 shows the consequences

184

of communication faults under different fault injection rates. The injection rates in

this case are per message. In each case, the number of consequences is normalized

to the total number of faults injected. The normalized numbers of message

retransmissions and duplicated messages are constant under different fault rates,

indicating that the number of these events increases proportionally with the number

of faults injected. However, with increasing fault rate there are smaller increases in

the rate of node failure false alarms and the rate of managers entering self-

diagnosis. The reason for this is that the CMM protocols are designed to mask

(tolerate) some faults without resorting to high-level recovery or diagnosis actions.

For example, an alarm regarding the possible failure of a node is raised only if there

are two consecutive heartbeat messages missing or delayed. One lost message is

tolerated with no high-level impact.

We also conducted experiments with communication faults injections on

Cluster A to validate the fault-tolerant bootstrapping protocol described in Section

6.2. In these experiments, we injected faults into messages agents exchange during

the bootstrapping procedure with a high injection rate of 50%, so that half of the

messages were injected. The bootstrapping procedure completes successfully

despite these faults. However, the average time to complete the bootstrapping

increases to 112 milliseconds, compared to 13 milliseconds when the execution is

fault-free.

185

Chapter Eight

Summary and Conclusions

This dissertation describes the design and implementation of fault-tolerant

cluster management middleware (CMM) for clusters built with mostly COTS

hardware and software and used for critical applications in hostile environments.

The research presented in this dissertation identifies key issues and challenges in

building such highly reliable CMM. In this context, the dissertation provides

adaptations or improvements of several state-of-the-art fault tolerance techniques.

These techniques are utilized in the implementation of an operational CMM system

called Ghidrah.

The CMM system is based on centralized decision making, with a central

cluster manager as well as an agent on every cluster node. However, unlike most

other cluster middleware, the central manager in our CMM system is protected by

state machine replication and the ability to restore the management service to full

functionality and full fault tolerance following arbitrary single faults.

In this dissertation, we present an efficient Byzantine fault tolerant replication

algorithm for reliable services. Compared to existing algorithms that all require at

least 3 f + 1 active replicas to tolerate up to f faulty replicas, our algorithm requires

only 2 f + 1 active replicas for normal operation. By reducing the number of active

replicas, our replication algorithm is more efficient than previous BFT-SMR

algorithms, as it reduces replication cost and improves performance. Furthermore,

186

we discussed the practical tradeoffs of using simplified versions of the replication

algorithm in the CMM system.

We also developed a self-diagnosis algorithm based on a state machine fault

model we defined for replicated systems. This self-diagnosis algorithm allows the

system to identify the faulty replicas. Using the diagnosis result, the replicas can

reconfigure themselves to replace the faulty replicas with new, faulty-free replicas.

If the conditions under which the diagnosis algorithm is both complete and accurate

hold, the system will keep replacing faulty replicas and thus may be able to tolerate

an arbitrary number of faults during its lifetime.

In addition to the fault tolerance techniques we applied to the centralized

manager, we used less aggressive fault tolerance techniques on agents, with the

consideration that an agent is not critical to the continued correct operation of the

entire system. We implemented in our CMM a low-cost mechanism for recovery

from agent crash failures. This mechanism allows agents to recover from crash

failures while maintaining control over application processes that have been

running in the cluster.

We dev eloped a fault-tolerant bootstrapping protocol that allows the CMM to

automatically configure itself with a working manager group when the cluster is

powered up.

We also discussed the necessity to have a trusted hardcore in a practical

system in order to achieve unattended operation. We defined the minimal

functionality required from this hardcore and the required interactions between the

187

replicated managers and this hardcore.

This dissertation also presents key implementation details of the Ghidrah

CMM system, including important system engineering problems we have solved,

such as the handling of replicated time-triggered events with respect to replica

consistency, and the efficient heartbeat mechanism used to detect node failures. We

also presented preliminary results from experiments we conducted to evaluate the

performance of the Ghidrah CMM system and to validate its fault tolerance

mechanisms with fault injection campaigns.

The Ghidrah CMM system provides a practical platform for future research on

high-performance, fault-tolerant cluster computing. Currently, the FTCT project is

heading to the following two directions:

• providing sophisticated supports to application-level fault tolerance that

allows parallel applications run on the cluster with high performance and

high reliability.

• dev elopment of a distributed Byzantine fault-tolerant storage system for

the system to meet I/O requirements for computations as well as provide

stable storage for application checkpoints.

188

Bibliography

[Amir93] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and P.

Ciarfella, ‘‘Fast Message Ordering and Membership Using a

Logical Token-Passing Ring,’’ the 13th IEEE International

Conference on Distributed Computing Systems, pp.551-556 (May

1993).

[Amir95] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and P.

Ciarfella, ‘‘The Totem Single-Ring Ordering and Membership

Protocol,’’ ACM Transactions on Computer Systems, vol.13, no.4,

pp.311-342 (November 1995).

[Ande95] T. E. Anderson, D. E. Culler, and D. A. Patterson, ‘‘A Case for

NOW (Networks of Workstations),’’ IEEE Micro, vol.15, no.1,

pp.54-64 (February 1995).

[Arak03] T. Araki, ‘‘(t, k)-Diagnosable System: a Generalization of the PMC

Models,’’ IEEE Transactions on Computers, vol.52, pp.971-975

(July 2003).

[Bake96] M. A. Baker, G. C. Fox, and H. W. Yau, ‘‘A Review of Commercial

and Research Cluster Management Software,’’ Technical Report,

Northeast Parallel Architectures Center, Syracuse University (June

1996).

[Bara98] A. Barak and O. La’adan, ‘‘The MOSIX Multicomputer Operating

189

System for High Performance Cluster Computing,’’ Journal of

Future Generation Computer Systems, vol.13, no.4-5, pp.361-372

(March 1998).

[Barb93] M. Barborak, A. Dahbura, and M. Malek, ‘‘The Consensus Problem

in Fault-Tolerant Computing,’’ ACM Computing Surveys, vol.25,

no.2, pp.171-220 (June 1993).

[Bars76] F. Barsi, F. Grandoni, and P. Maestrini, ‘‘A Theory of Diagnosability

of Digital Systems,’’ IEEE Transactions on Computers, vol.25, no.6,

pp.585-593 (June 1976).

[Beni00] L. Benini, A. Bogliolo, and G. De Micheli, ‘‘A Survey of Design

Techniques for System_level Dynamic Power Management,’’ IEEE

Tr ansactions on Very Large Scale Integration (VLSI) Systems vol.8,

no.3, (June 2000).

[Bian90] R. P. Bianchini, K. Goodwin, and D. Nydick, ‘‘Practical Application

and Implementation of Distributed System-Level Diagnosis

Theory,’’ the 20th International Symposium on Fault-Tolerant

Computing Systems, pp.332-339 (June 1990).

[Birm87] K. P. Birman and T. Joseph, ‘‘Reliable Communication in the

Presence of Failures,’’ ACM Transactions on Computer Systems,

vol.5, no.1, pp.47-76 (Feburary 1987).

[Birm91] K. P. Birman, A. Schiper, and P. Stephenson, ‘‘Lightweight Causal

and Atomic Group Multicast,’’ ACM Transactions on Computer

190

Systems, vol.9, no.3, pp.272-314 (August 1991).

[Birm93] K. P. Birman, ‘‘The Process Group Approach to Reliable

Distributed Computing,’’ Communications of the ACM, vol.36,

no.12, pp.36-53 (December 1993).

[Blou99] D. M. Blough and H. W. Brown, ‘‘The Broadcast Comparison

Model for On-Line Fault Diagnosis in Multicomputer Systems:

Theory and Implementation,’’ IEEE Transactions on Computers,

vol.48, no.5, pp.470-493 (May 1999).

[Blum01] T. Blum and C. Paar, ‘‘High-Radix Montgomery Modular

Exponentiation on Reconfigurable Hardware,’’ IEEE Transactions

on Computers, vol.50, no.7, pp.759-764 (July 2001).

[Bode95] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz,

J. N. Seizovic, and W.-K. Su, ‘‘Myrinet: A Gigabit-per-Second

Local Area Network,’’ IEEE Micro, vol.15, pp.29-36 (February

1995).

[Boho01] V. Bohossian, C. C. Fan, P. S. LeMahieu, M. D. Riedel, L. Xu, and

J. Bruck, ‘‘Computing in the RAIN: A Reliable Array of

Independent Nodes,’’ IEEE Transactions on Parallel and

Distributed Systems, vol.12, no.2, pp.99-113 (February 2001).

[Brac85] G. Bracha and S. Toueg, ‘‘Asynchronous Consensus and Broadcast

Protocols,’’ Journal of the ACM, vol.32, no.4, pp.824-840

(October 1985).

191

[Budh93] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg, ‘‘The

Primary-Backup Approach,’’ in Distributed systems (2nd Ed.) , Sape

Mullender ed., ACM Press, pp.199-216 (1993).

[Busk93] R. W. Buskens and R. P. Bianchini, ‘‘Distributed On-Line Diagnosis

in the Presence of Arbitrary Faults,’’ the 23rd International

Symposium on Fault-Tolerant Computing Systems, pp.470-479

(June 1993).

[Cast82] X. Castillo, S. R. McConnel, and D. P. Siewiorek, ‘‘Derivation and

Calibration of a Transient Error Reliability Model,’’ IEEE

Tr ansactions on Computers, vol.C-31, no.7, pp.658-671 (July

1982).

[Cast99a] M. Castro and B. Liskov, ‘‘Practical Byzantine Fault Tolerance,’’ the

Third Symposium on Operating Systems Design and

Implementation, pp.173-186 (February 1999).

[Cast99b] M. Castro and B. Liskov, ‘‘Authenticated Byzantine Fault Tolerance

Without Public-Key Cryptography,’’ Technical Memo

MIT/LCS/TM-589, MIT Laboratory for Computer Science (1999).

[Cast00] M. Castro and B. Liskov, ‘‘Proactive Recovery in a Byzantine-Fault-

Tolerant System,’’ the Fourth Symposium on Operating Systems

Design and Implementation, pp.273-287 (October 2000).

[Chan96a] T. D. Chandra and S. Toueg, ‘‘Unreliable Failure Detectors for

Reliable Distributed Systems,’’ Journal of the ACM, vol.43, no.2,

192

pp.225-267 (March 1996).

[Chan96b] T. D. Chandra, V. Hadzilacos, and S. Toueg, ‘‘The Weakest Failure

Detector for Solving Consensus,’’ Journal of the ACM, vol.43, no.4,

pp.685-722 (July 1996).

[Chap99] S. J. Chapin, D. Katramatos, J. Karpovich, and A. S. Grimshaw,

‘‘Resource Management in Legion,’’ Future Generation Computer

Systems, vol.15, no.5-6, pp.583-594 (October 1999).

[Ch ́ er ̀92] M. Ch ́ er ̀eque, D. Powell, P. Reynier, J.-L. Richier, and J. Voiron,

‘‘Active Replication in Delta-4,’’ the 22nd International Symposium

on Fault-Tolerant Computing Systems, pp.28-37 (July 1992).

[Cher98] A. Cherif and T. Katayama, ‘‘Replica Management for Fault-

Tolerant Systems,’’ IEEE Micro, vol.18, no.5, pp.64-65

(September-October 1998).

[Choc01] G. V. Chockler, I. Keidar, and R. Vitenberg, ‘‘Group

Communication Specifications: A Comprehensive Study,’’ ACM

Computing Surveys, vol.33, no.4, pp.427-469 (December 2001).

[Chwa81] K. Y. Chwa and S. L. Hakimi, ‘‘Schemes for Fault-Tolerant

Computing: A Comparison of Modularly Redundant and t-

Diagnosable Systems,’’ Information and Control, vol.49,

pp.212-238 (1981).

[Cray98] Cray Reserach, Inc., ‘‘Introducing NQE,’’ Publication IN-2153

3.3 (March 1998).

193

[Cris99] F. Cristian and C. Fetzer, ‘‘The Timed Asynchronous Distributed

System Model,’’ IEEE Transactions on Parallel and Distributed

Systems, vol.10, no.6, pp.642-657 (June 1999).

[Czaj98] K. Czajkowski, I. T. Foster, N. T. Karonis, C. Kesselman, S. Martin,

W. Smith, and S. Tuecke, ‘‘A Resource Management Architecture

for Metacomputing Systems,’’ the Fourth Workshop on Job

Scheduling Strategies for Parallel Processing, pp.62-82 (March

1998).

[D ́ efa00] X. D éfago, ‘‘Agreement-Related Problems: From Semi-Passive

Replication to Totally Ordered Broadcast,’’ PhD thesis, Number

2229, École Polytechnique F éd érale de Lausanne,

Switzerland (August 2000).

[D ́ efa04] X. D éfago, A. Schiper, and P. Urb ́ an, ‘‘Total order broadcast and

multicast algorithms: Taxonomy and survey,’’ ACM Computing

Surveys, vol.36, no.4, pp.372-421 (December 2004).

[Dole87] D. Dolev, C. Dwork, and L. Stockmeyer, ‘‘On the Minimal

Synchronism Needed for Distributed Consensus,’’ Journal of the

ACM, vol.34, no.1, pp.77-97 (January 1987).

[Doud97] A. Doudou and A. Schiper, ‘‘Muteness Detectors for Consensus

with Byzantine Processes,’’ Technical Report 97-230, École

Polytechnique F éd érale de Lausanne, Switzerland (October 1997).

[Dris03] K. Driscoll, B. Hall, H. Sivencrona, and P. Zumsteg, ‘‘Byzantine

194

Fault Tolerance, from Theory to Reality,’’ the 22nd International

Conference on Computer Safety, Reliability and Security

(SAFECOMP 2003), pp.235-248 (September 2003).

[Dwor88] C. Dwork, N. A. Lynch, and L. Stockmeyer, ‘‘Consensus in the

Presence of Partial Synchrony,’’ Journal of the ACM, vol.35, no.2,

pp.288-323 (April 1988).

[Feit90] D. G. Feitelson and L. Rudolph, ‘‘Distributed Hierarchical Control

for Parallel Processing,’’ IEEE Computer, vol.23, no.5, pp.65-77

(May 1990).

[Fetz95] C. Fetzer and F. Cristian, ‘‘On the Possibility of Consensus in

Asynchronous Systems,’’ 1995 Pacific Rim International

Symposium on Fault-Tolerant Systems, pp.86-91 (December

1995).

[Fisc85] M. J. Fischer, N. A. Lynch, and M. S. Paterson, ‘‘Impossibility of

Distributed Consensus with One Faulty Process,’’ Journal of the

ACM, vol.32, no.2, pp.374-382 (April 1985).

[Frac02a] E. Frachtenberg, J. Fernandez, F. Petrini, and S. Pakin, ‘‘STORM:

Lightning-Fast Resource Management,’’ 2002 ACM/IEEE

conference on Supercomputing, pp.1-26 (November 2002).

[Frac02b] E. Frachtenberg, F. Petrini, J. Fernandez, and S. Coll, ‘‘Scalable

Resource Management in High Performance Computers,’’ IEEE

International Conference on Cluster Computing (Cluster 2002),

195

pp.305-314 (September 2002).

[Garc82] H. Garcia-Molina, ‘‘Elections in a Distributed Computing System,’’

IEEE Transactions on Computers, vol.31, no.1, pp.48-59 (January

1982).

[Codine] GENIAS Software GmbH, CODINE: Computing in Distributed

Networked Environments. Germany (1995).

[Gent01] W. Gentzsch, ‘‘Sun Grid Engine: Tow ards Creating a Compute

Power Grid,’’ the First IEEE/ACM International Symposium on

Cluster Computing and the Grid, pp.35-36 (May 2001).

[Ghor98] D. P. Ghormley, D. Petrou, S. H. Rodrigues, A. M. Vahdat, and T. E.

Anderson, ‘‘GLUnix: A Global Layer Unix for a Network of

Workstations,’’ Software - Practice and Experience, vol.28, no.9,

pp.929-961 (July 1998).

[Gosc90] A. Goscinski and M. Bearman, ‘‘Resource Management in Large

Distributed Systems,’’ ACM Operating Systems Review, vol.24,

no.4, pp.7-25 (October 1990).

[Graf93] T. P. Graf, R. G. Assini, J. M. Lewis, E. J. Sharpe, J. J. Turner, and

M. C. Ward, ‘‘HP Task Broker: A Tool for Distributing

Computational Tasks,’’ Hewlett-Packard Journal, vol.44, no.4,

pp.15-22 (August 1993).

[Gray86] J. N. Gray, ‘‘Why Do Computers Stop and What Can Be Done

About It,’’ Proc. 5th Symp. on Reliability in Distributed Software

196

and Database Systems, pp.3-12 (January 1986).

[Grop96] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, ‘‘A High-

Performance, Portable Implementation of the MPI Message Passing

Interface Standard,’’ Parallel Computing, vol.22, no.6, pp.789-828

(September 1996).

[Guer97] R. Guerraoui and A. Schiper, ‘‘Software-based Replication for Fault

Tolerance,’’ IEEE Computer, vol.30, no.4 , pp.68-74 (April 1997).

[Hadz93] V. Hadzilacos and S. Toueg, ‘‘Fault-Tolerant Broadcasts and Related

Problems,’’ in Distributed Systems, 2nd Edition, Sape Mullender

ed., ACM Press New York, pp.97-146 (1993).

[Herl90] M. P. Herlihy and J. M. Wing, ‘‘Linearizability: A Correctness

Condition for Concurrent Objects,’’ ACM Transactions on

Programming Languages and Systems, vol.12, no.3, pp.463-492

(July 1990).

[Hilt95] M. Hiltunen, ‘‘Membership and System Diagnosis,’’ the 14th

Symposium on Reliable Distributed Systems, pp.208-217 (1995).

[Hoss84] S. Hosseini, J. Kuhl, and S. Reddy, ‘‘A Diagnosis Algorithm for

Distributed Computing Systems with Dynamic Failure and Repair,’’

IEEE Transactions on Computers, vol.33, no.3, pp.223-233

(March 1984).

[Hsue97] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, ‘‘Fault Injection

Techniques and Tools,’’ IEEE Computer, vol.30, no.4, pp.75-82

197

(April 1997).

[Hwan99] K. Hwang, H. Jin, E. Chow, C.-L. Wang, and Z. Xu, ‘‘Designing

SSI Clusters with Hierarchical Checkpointing and Single I/O

Space,’’ IEEE Concurrency, vol.7, no.1, pp.60-69 (January-March

1999).

[Kaas89] M. F. Kaashoek, A. S. Tanenbaum, S. F. Hummel, and H. E. Bal,

‘‘An Efficient Reliable Broadcast protocol,’’ ACM Operating

Systems Review, vol.23, no.4, pp.5-19 (October 1989).

[Kaas91] M. F. Kaashoek and A. S. Tanenbaum, ‘‘Group Communication in

the Amoeba Distributed Operating System,’’ the 11th Interational

Conference on Distributed Computing Systems, pp.222-230 (May

1991).

[Kaas96] M. F. Kaashoek and A. S. Tanenbaum, ‘‘An Evaluation of the

Amoeba Group Communication System,’’ the 16th International

Conference on Distributed Computing Systems, pp.436-448 (May

1996).

[Kalb99] Z. Kalbarczyk, R. K.Iyer, S. Bagchi, and K. Whisnant,

‘‘Chameleon: A Software Infrastructure for Adaptive Fault

Tolerance,’’ IEEE Transactions on Parallel and Distributed Systems,

vol.10, no.6, pp.560-579 (June 1999).

[Kapl94] J. A. Kaplan and M. L. Nelson, ‘‘A Comparison of Queueing,

Cluster, and Distributed Computing Systems,’’ NASA Technical

198

Memorandum 109025, NASA LaRC (June 1994).

[Katz03] D. S. Katz and R. R. Some, ‘‘NASA Advances Robotic Space

Exploration,’’ IEEE Computer, vol.36, no.1, pp.52-61 (January

2003).

[Kihl97] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, ‘‘Solving

Consensus in a Byzantine Environment Using an Unreliable Fault

Detector,’’ International Conference on Principles of Distributed

Systems, pp.61-75 (December 1997).

[Kihl98] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, ‘‘The

SecureRing Protocols for Securing Group Communication,’’ IEEE

31st Hawaii International Conference on System Sciences, vol.3,

pp.317-326 (January 1998).

[Kihl03] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, ‘‘Byzantine

Fault Detectors for Solving Consensus,’’ The Computer Journal,

vol.46, no.1, pp.16-35 (January 2003).

[Kuhl81] J. G. Kuhl and S. Reddy, ‘‘Fault-Diagnosis in Fully Distributed

Systems,’’ the 11th International Symposium on Fault Tolerant

Computing, pp.100-105 (June 1981).

[Lamp82a] L. Lamport, R. Shostak, and M. Pease, ‘‘Byzantine Generals

Problem,’’ ACM Transactions on Programming Languages and

Systems, vol.4, no.3, pp.382-401 (July 1982).

[Lamp82b] L. Lamport, ‘‘Time, Clocks, and the Ordering of Events in a

199

Distributed System,’’ Communications of the ACM, vol.21, no.7,

pp.558-565 (July 1982).

[Lamp98] L. Lamport, ‘‘The Part-Time Parliament,’’ ACM Transactions on

Computer Systems, vol.16, no.2, pp.133-169 (May 1998).

[Lamp01a] L. Lamport, ‘‘Paxos Made Simple,’’ ACM SIGACT News

(Distributed Computing Column), vol.32, no.4, pp.18-25

(December 2001).

[Lamp05] L. Lamport, ‘‘Generalized Consensus and Paxos,’’ Technical

Report, MSR-TR-2005-33, Microsoft Research (March 2005).

[Lamp01b] B. Lampson, ‘‘The ABCD’s of Paxos,’’ Presented at the 20th annual

ACM symposium on Principles of Distributed Computing (August

2001).

[Lamp96] B. W. Lampson, ‘‘How to Build a Highly Available System Using

Consensus,’’ the 10th International Workshopt, pp.1-17 (October

1996).

[Li01] M. Li, D. Goldberg, W. Tao, and Y. Tamir, ‘‘Fault-Tolerant Cluster

Management for Reliable High-Performance Computing,’’

International Conference on Parallel and Distributed Computing

and Systems, pp.480-485 (August 2001).

[Li02] M. Li, W. Tao, D. Goldberg, I. Hsu, and Y. Tamir, ‘‘Design and

Validation of Portable Communication Infrastructure for Fault-

Tolerant Cluster Middleware,’’ IEEE International Conference on

200

Cluster Computing (Cluster 2002), pp.266-274 (September 2002).

[Li04] M. Li and Y. Tamir, ‘‘Practical Byzantine Fault Tolerance Using

Fewer than 3f+1 Active Replicas,’’ the 17th International

Conference on Parallel and Distributed Computing Systems,

pp.241-247 (September 2004).

[Lisk91] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira, and M.

Williams, ‘‘Replication in the Harp File System,’’ the 13th ACM

Symposium on Operating Systems Principles, pp.226-238

(October 1991).

[Litz88] M. J. Litzkow, M. Livny, and M. W. Mutka, ‘‘Condor - A Hunter of

Idle Workstations,’’ the Eighth International Conference on

Distributed Computing Systems, pp.104-111 (June 1988).

[Livn82] M. Livny and M. Melman, ‘‘Load Balancing in Homogeneous

Broadcast Distributed Systems,’’ ACM Computer Network

Performance Symposium, pp.47-55 (April 1982).

[Made02] H. Madeira, R. R. Some, F. Moreira, D. Costa, and D. Rennels,

‘‘Experimental Evaluation of a COTS System for Space

Applications,’’ International Conference on Dependable Systems

and Networks (DSN’02), pp.325-330 (June 2002).

[Maen81] J. Maeng and M. Malek, ‘‘A Comparison Connection Assignment

for Self-Diagnosis of Multiprocessor Systems,’’ the 11th

International Symposium on Fault Tolerant Computing, pp.173-175

201

(June 1981).

[Male80] M. Malek, ‘‘A Comparison Connection Assignment for Diagnosis

of Multiprocessor Systems,’’ the Seventh Internationall symposium

on Computer Architecture, pp.31-36 (May 1980).

[Minn01] R. Minnich, ‘‘Bipolar Disorder in Cluster Networking,’’ IEEE

International Conference on Cluster Computing (Cluster 2001)

(October 2001). http://www.cacr.caltech.edu/cluster2001/program/

talks/minnich.pdf.

[Mose94] L. E. Moser, P. M. Melliar-Smith, and V. Agrawala, ‘‘Processor

Membership in Asynchronous Distributed Systems,’’ IEEE

Tr ansactions on Parallel and Distributed Systems, vol.5, no.5,

pp.459-473 (May 1994).

[Mugl03] J. Mugler, T. Naughton, S. L. Scott, B. Barrett, A. Lumsdaine, J. M.

Squyres, B. des Ligneris, F. Giraldeau, and C. Leangsuksun,

‘‘OSCAR Clusters,’’ Ottawa Linux Symposium (OLS’03),

pp.409-419 (July 2003).

[Mull90] S. J. Mullender, G. van Rossum, A. S. Tanenbaum, R.

van Renesse, and H. van Staveren, ‘‘Amoeba: A Distributed

Operating System for the 1990s,’’ IEEE Computer, vol.23, no.5,

pp.44-53 (May 1990).

[NIST94] NIST, Digital Signature Standard,Federal Information Processing

Standards PUB-186 (May 1994).

202

[Oust82] J. K. Ousterhout, ‘‘Scheduling Techniques for Concurrent

Systems,’’ the Third International Conference on Distributed

Computing Systems, pp.22-30 (October 1982).

[Peas80] M. Pease, R. Shostak, and L. Lamport, ‘‘Reaching Agreement in the

Presence of Faults,’’ Journal of the ACM, vol.27, no.2, pp.228-234

(April 1980).

[Powe88] D. Powell, P. Ve ŕissimo, G. Bonn, F. Waeselynck, and D. Seaton,

‘‘The Delta-4 Approach to Dependability in Open Distributed

Computing Systems,’’ the 18th International Symposium on Fault-

Tolerant Computing, pp.246-251 (June 1988).

[Prep67] F. P. Preparata, G. Metze, and R. T. Chien, ‘‘On the Connection

Assignment Problem of Diagnosable Systems,’’ IEEE Transactions

on Electronic Computers, vol.16, pp.848-854 (December 1967).

[Pris00] R. D. Prisco, B. Lampson, and N. A. Lynch, ‘‘Revisiting the

PAXOS Algorithm,’’ Theoretical Computer Science, vol.243,

no.1-2, pp.35-91 (July 2000).

[Rama98] R. Raman, M. Livny, and M. Solomon, ‘‘Matchmaking: Distributed

Resource Management for High Throughput Computing,’’ the

Seventh IEEE International Symposium on High Performance

Distributed Computing, pp.140-146 (July 1998).

[Reit94] M. K. Reiter, ‘‘Secure Agreement Protocols: Reliable and Atomic

Group Multicast in Rampart,’’ the 2nd ACM Conference on

203

Computer and Communications Security, pp.68-80 (November

1994).

[Reit95] M. K. Reiter, ‘‘The Rampart Toolkit for Building High-Integrity

Services,’’ Theory and Practice in Distributed Systems (Lecture

Notes in Computer Science 938), pp.99-110 , Springer-Verlag,

Berlin Germany (1995).

[Reit96] M. K. Reiter, ‘‘A Secure Group Membership Protocol,’’ IEEE

Tr ansactions on Software Engineering, vol.22, no.1, pp.31-42

(January 1996).

[Rive78] R. L. Rivest, A. Shamir, and L. M. Adleman, ‘‘A Method for

Obtaining Digital Signatures and Public-key Cryptosystems,’’

Communications of the ACM, vol.21, no.2, pp.120-126 (Feburary

1978).

[Rive92] R. L. Rivest, ‘‘The MD5 Message-Digest Algorithm,’’ Internet

RFC-1321 (April 1992).

[Robe00] A. L. Robertson, ‘‘Linux-HA Heartbeat Design,’’ the Fourth

International Linux Showcase and Conference (October 2000).

[Robe04] A. L. Robertson, ‘‘The Evolution of the Linux-HA Project,’’

UKUUG LISA/Winter Conference High-Availability and Reliability

(February 2004).

[Rush] J. M. Rushby, ‘‘Reconfiguration and Transient Recovery in State

Machine Architectures,’’ the 26th International Symposium on

204

Fault-Tolerant Computing, pp.6-15 (June 1996).

[Russ98] S. H. Russ, J. Robinson, B. K. Flachss, and B. Heckels, ‘‘The

Hector Distributed Run-Time Environments,’’ IEEE Transactions

on Parallel and Distributed Systems, vol.9, no.11, pp.1104-1112

(November 1998).

[Russ99] S. H. Russ, K. Reece, J. Robinson, B. Meyers, R. Rajan, L.

Rajagopalan, and C.-H. Tan, ‘‘Hector: An Agent-Based Architecture

for Dynamic Resource Management,’’ IEEE Concurrency, vol.7,

no.2, pp.47-55 (April-June 1999).

[Schn84] F. B. Schneider, ‘‘Byzantine Generals in Action: Implementing Fail-

Stop Processors,’’ ACM Transactions on Computer Systems, vol.2,

no.2, pp.145-154 (May 1984).

[Schn90] F. B. Schneider, ‘‘Implementing Fault-Tolerant Services Using the

State Machine Approach: A Tutorial,’’ ACM Computing Surveys,

vol.22, no.4, pp.299-319 (December 1990).

[Seng92] A. Sengupta and A. T. Dahbura, ‘‘On Self-Diagnosable

Multiprocessor Systems: Diagnosis by the Comparison Approach,’’

IEEE Transactions on Computers, vol.41, no.11, pp.1386-1396

(November 1992).

[Shin87] K. G. Shin and P. Ramanathan, ‘‘Diagnosis of Processors with

Byzantine Faults in a Distributed Computing System,’’ the 17th

International Symposium on Fault-Tolerant Computing Systems,

205

pp.55-60 (July 1987).

[Some99] R. R. Some and D. C. Ngo, ‘‘REE: A COTS-Based Fault Tolerant

Parallel Processing Supercomputer for Spacecraft Onboard

Scientific Data Analysis,’’ IEEE Digital Avionics Systems

Conference, pp.7.B.3-1 - 7.B.3-12 (1999).

[Stee94] P. Steenkiste, ‘‘A Systematic Approach to Host Interface Design for

High-Speed Networks,’’ IEEE Computer, vol.27, no.3, pp.47-57

(March 1994).

[Stot00] D. T. Stott, B. Floering, D. Burke, Z. Kalbarczyk, and R. K. Iyer,,

‘‘NFTAPE: A Framework for Assessing Dependability in

Distributed Systems with Lightweight Fault Injectors,’’ the Fourth

IEEE International Computer Performance and Dependability

Symposium (IPDS-2K), pp.91-100 (March 2000).

[SunCA3] Sun Microsystems, Inc., ‘‘Sun Cluster 3 Architecture: A Technical

Overview,’’ White Paper (March 2001).

[Ture92] J. Turek and D. Shasha, ‘‘The Many Faces of Consensus in

Distributed Systems,’’ IEEE Computer, vol.25, no.6, pp.8-17

(June 1992).

[von98] T. von Eicken and W. Vogels, ‘‘Evolution of the Virtual Interface

Architecture,’’ IEEE Computer, vol.31, no.11, pp.61-68

(November 1998).

[Walt94] C. J. Walter, N. Suri, and M. Hugue, ‘‘Continual On-Line Diagnosis

206

of Hybrid Faults,’’ the Fourth IFIP Working Conference on

Dependable Computing for Critical Applications, pp.233-249

(1994).

[Whis02] K. Whisnant, R. Iyer, P. Jones, R. Some, and D. Rennels, ‘‘An

Experimental Evaluation of the REE-SIFT Environment for

Spaceborne Applications,’’ International Conference on

Dependable Systems and Networks (DSN’02), pp.585-594 (June

2002).

[Yang88] C.-L. Yang and G. M. Masson, ‘‘A Distributed Algorithm for Fault

Diagnosis in Systems with Soft Failures,’’ IEEE Transaction on

Computers, vol.37, no.11, pp.1476-1480 (November 1988).

[Yin03] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin,

‘‘Separating Agreement from Execution for Byzantine Fault

Tolerant Services,’’ the 19th ACM Symposium on Operating Systems

Principles, pp.253-267 (October 2003).

[Zhou02] L. Zhou, F. B. Schneider, and R. van Renesse, ‘‘COCA: A Secure

Distributed On-line Certification Authority,’’ ACM Transactions on

Computer Systems, vol.20, no.4, pp.329-368 (November 2002).

[Zhou92] S. Zhou, ‘‘LSF: Load Sharing in Large-Scale Heterogenous

Distributed Systems,’’ Workshop on Cluster Computing (December

1992).

[Zhou93] S. Zhou, X. Zheng, J. Wang, and P. Delisle, ‘‘Utopia: A Load

207

Sharing Facility for Large, Heterogeneous Distributed Computer

Systems,’’ Software - Practice and Experience, vol.23, no.12 ,

pp.1305-1336 (December 1993).

[Zhu95] W. Zhu, C. F. Steketee, and B. Muilwijk, ‘‘Load Balancing and

Workstation Autonomy on Amoeba,’’ Australian Computer Science

Communications, vol.17, no.1, pp.588-597 (February 1995).

208

