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Abstract. The event-driven programming style is pervasive as an effi-
cient method for interacting with the environment. Unfortunately, the
event-driven style severely complicates program maintenance and un-
derstanding, as it requires each logical flow of control to be fragmented
across multiple independent callbacks.
We propose a backward-compatible extension to Java, called TaskJava,
which supports lightweight, interleaved computations without forego-
ing standard control mechanisms like procedures and exceptions. At the
same time, TaskJava programs can be automatically translated into ef-
ficient event-based code.
This technical report presents, in detail, a formalization of TaskJava.
We formalize the operational semantics, typing rules, and modular com-
pilation strategy for a core sublanguage. We then prove a number of
properties of this core language, including type soundness, observational
equivalence of translated programs, and freedom from certain classes of
bugs.

1 Introduction

A wide variety of applications, from high-performance servers to enterprise ap-
plications to GUIs to embedded systems, rely on an event-based programming
style [18]. Event-driven programming implements a stylized programming idiom
where programs use non-blocking I/O operations, and the programmer breaks
the computation into fine-grained callbacks (or event handlers) that are each
associated with the completion of an I/O call (or event). This approach per-
mits the interleaving of many simultaneous logical tasks with minimal overhead,
under the control of an application-level cooperative scheduler. Each callback ex-
ecutes some useful work and then either schedules further callbacks, contingent
upon later events, or invokes a continuation, which resumes the control flow
of its logical caller. The event-driven style has been demonstrated to achieve
high throughput in server applications [19, 24], resource-constrained embedded
devices [12], and business applications [4].

Threads represent an alternative programming model commonly used for
many of these applications. However, although threads are useful and convenient



for many situations, threads have disadvantages as well, including the potential
for race conditions and deadlocks, as well as high memory consumption [23].
Within the systems research community, there is currently no agreement that one
approach is better than the other [18, 19, 22, 23, 2]. In addition, in some contexts,
threads either cannot be used at all (such as within an operating system kernel)
or can only be used in conjunction with events (such as thread-pooled servers for
Java Servlets [4]). Thus, we believe that events are here to stay and an important
target for programming language improvements.

Unfortunately, programming with events comes at a cost: event-driven pro-
grams are extremely difficult to understand and maintain. Each logical unit
of work must be manually broken into multiple callbacks scattered through-
out the program text. This manual code decomposition is often in conflict with
higher-level program structuring. For example, calls do not return directly to
their callers, so it is difficult to make use of procedural abstraction as well as a
structured exception mechanism. The event-driven style also loses many of the
benefits of object-oriented programming. Rather than modeling a concept from
the application domain as a class, one must artificially break the functionality
into multiple callback classes, which conform to a generic interface for use by
the scheduler. Aside from being tedious and unnatural, this style impedes the
use of inheritance to implement related domain concepts, making code reuse
difficult. Overall, the event-driven style makes it difficult for both programmers
and programming tools to reason about the runtime behavior of an application,
and can lead to difficult to track errors.

We make two contributions in this paper. First, we introduce tasks as a
new programming model and associated language construct for interleaved com-
putation that enables the programmer to apply ordinary higher-level program
structuring constructs such as exceptions and inheritance while maintaining the
flexibility and efficiency of event-driven programming. Second, we provide a for-
malization of event driven programming using TaskJava and the compilation of
TaskJava, and use the formalization to prove type safety as well as demonstrate
that certain common classes of errors in event-driven programs cannot occur in
TaskJava.

TaskJava. For the first contribution, we present the design of a backward-
compatible extension to Java called TaskJava that incorporates tasks. Similar
to a Java thread, a TaskJava task encapsulates an independent unit of work
in a method called run. In this way, the logical control flow of each unit of
work is preserved. At the same time, tasks can be automatically implemented
by the compiler in an event-driven style, thereby obtaining the low-overhead
and high-throughput advantages of events. To achieve this goal, tasks employ
non-blocking I/O libraries, as in event-driven systems. Rather than registering a
callback with each I/O call, however, programmers use a special wait primitive
that we provide. Conceptually, a wait causes the current task to block until
one of a specified set of events occurs. Our compiler uses a task’s wait calls to
automatically convert the run method into an equivalent set of callbacks. More
specifically, the run method is broken by the compiler at each wait call into
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two separate methods, one that executes up to the wait call (which is replaced
with an event registration) and one to continue after a waited-for event is sig-
naled. This implementation strategy is achieved by employing a restricted form
of continuation-passing style (CPS), a well-studied compiler transformation that
is popular for functional programming languages [1, 3].

In addition to being called by a task’s run method, wait may be called by
methods on non-task classes that are declared as asynchronous. Asynchronous
methods are written and invoked like standard methods, but they are translated
by the compiler using CPS, in the same manner as a task’s run method. Asyn-
chronous methods enable procedural abstraction and layering in the presence of
non-blocking calls.

By enabling language-level abstractions, TaskJava can prevent two signifi-
cant classes of errors that arise in event-driven programs: the lost continuation
problem and the lost exception problem. The lost continuation problem occurs
when a callback has an execution path in which the callback’s continuation is
neither invoked nor passed along to the next callback in the event chain. A lost
continuation causes the intended sequential behavior of the program to be bro-
ken, often producing errors that are difficult to trace to their source. Because
TaskJava methods return to their callers as usual, the lost continuation problem
is avoided.

The lost exception problem occurs when an error condition produced by a
callback is not properly handled by the subsequent continuation, potentially
causing the program to crash or continue executing in undefined ways. This
problem arises because the continuation-passing nature of the event-driven style
subverts the usage of language-level exception-handling mechanisms. Instead,
exceptional conditions are typically encoded as special return values that are
passed on to the continuation. This approach loses the static guarantee that
all exceptions are handled, as the continuation can easily fail to check for all
possible error scenarios. In contrast, TaskJava allows the programmer to use the
same exception mechanisms as in Java, and can use a similar analysis to check
that a TaskJava program does not raise any uncaught checked exceptions (of
course, as in Java, programs can still raise runtime exceptions that may not be
caught).

Compiler implementation and case study. We have implemented the Task-

Java compiler in the Polyglot compiler framework [17]. To gain experience with
tasks and to concretely illustrate their benefits, we extended Fizmez [5], an open
source web server, to use interleaved computation. We implemented two ver-
sions: one using hand-coded, explicit continuation passing and one using Task-

Java. In the TaskJava implementation, the control flow of the original program
is preserved. In the hand-coded implementation, the control flow is implicit and
broken across many classes. In our performance tests, the TaskJava implemen-
tation performed with a maximum 16% addition in latency, and 44% addition
in througput compared with the hand-tuned version. Since the TaskJava imple-
mentation has not been optimized, we believe that the performance penalties
can be further reduced, while retaining the language-level benefits of tasks.
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CoreTaskJava. For the second contribution, we formalize the TaskJava lan-
guage and its implementation strategy. To do this, we define two core languages
that extend Featherweight Java (FJ) [14]:

• CoreTaskJava (CTJ), which extends FJ with tasks and asynchronous meth-
ods.
• EventJava (EJ), which extends FJ to support explicit events and event

registration.

CTJ formalizes TaskJava and EJ formalizes low level event-driven program-
ming. We provide the operational semantics and static typing rules for both
languages and a translation relation from CTJ to EJ, which serves to formalize
the continuation-passing transformation performed by the TaskJava compiler.
We use these formal systems to prove several key properties about CTJ pro-
grams:

• Type soundness: This property ensures that well-typed CTJ programs don’t
get “stuck” (i.e., incur a run-time type error), and it is proven in the
standard “progress and preservation” style [25].
• Translation correctness: This property ensures that a CTJ program and

its EJ translation are observationally equivalent. The property is proven
by showing that the execution traces of the two programs are bisimulation
equivalent.

In particular, as a corollary of the type soundness theorem, we obtain the no
lost exception property: a well-typed CTJ program never throws an uncaught
checked exception. We also formalize the no lost continuation property in the
core languages. Since methods in CTJ never directly generate continuations,
we can prove the lost continuation property for CTJ. Further, as a corollary of
translation correctness, we can conclude that the event-driven implementation
of CTJ programs cannot have lost continuations. On the other hand, general EJ
programs may have lost continuations. The proof uses the bisimulation equiva-
lence to generate dynamic traces in the original CTJ program and its translation.
The full proofs for these theorems are provided in a separate technical report
[9].

Organization. The rest of the paper is organized as follows. In Section 2, we give
an informal overview of tasks, demonstrate through an example what TaskJava

programs look like, and contrast with event-driven programs. In Section 3, we
formalize the TaskJava model and compilation algorithm in a core calculus. In
Section 4, we then state and prove the central formal properties of CTJ programs:
subject reduction, progress, and soundness. Finally, in Section 5, we formalize
a translation strategy and prove the observational equivalence between CTJ
programs and their EventJava translations. In Section 6, we describe our web
server case study. We survey related work in Section 8 and conclude in Section 9.
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2 Programming with Tasks

This section informally introduces the TaskJava language extensions and demon-
strates their benefits for implementing event-based applications. We use a run-
ning example consisting of a simple web server written in an event-driven style.
We will contrast a standard event-driven implementation with an implementa-
tion taking advantage of the asynchronous programming features provided by
TaskJava.

The server processes simple one-line HTTP requests for files, whose contents
are sent to the client. To keep the example short, we omit some details that
would be needed in a realistic implementation (character set translation, multi-
line requests, and the processing of long files a block at a time). We assume
that each connection between a client and the server, called a channel in Java
terminology, supports the following events:

• READ RDY EVT: This event signals that there is incoming data available to
be read from a channel.
• WRITE RDY EVT: This event signals that the associated channel is ready for

writing.
• ACPT RDY EVT: This event signals an accept request is available on the

associated channel.
• ERR EVT: This event signals that an error has occurred on the channel.

Event-driven systems employ a user-level scheduler, which accepts requests
for event notifications and schedules the execution of these notifications. The
implementation of these schedulers varies widely, based on the abstractions of
the underlying I/O library and on differing design choices.

In our example, static final fields are used as an enumeration to identify
event types of interest. A set of these event identifiers is passed to a scheduler
to indicate interest in an event. The scheduler returns an event object containing
the details of an event which occurred (event type, channel, error information,
etc.). The event objects are instances of an Event class, which is defined as
follows:

public class Event {

// Enumeration of event identifiers

// provided by the scheduler.

public static final int READ_RDY_EVT = 1;

public static final int WRITE_RDY_EVT = 2;

public static final int ACPT_RDY_EVT = 3;

public static final int ERR_EVT = 4;

// type () returns which kind of event occurred.

public int type() { ... }

// getError() returns the event’s error,

// or null if no error occurred.

public IOException getError() { ... }

}
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01 public interface Callback {
02 void run(Object retVal);

03 }
04 public interface Continuation extends Callback {
05 void error(Exception e);

06 }
07 public class EventIO {
08 public static class Reader {
09 ...

10 public void readLine(Continuation cont) {
11 Scheduler.register(ch, Event.READ RDY EVT,

12 Event.ERR EVT,

13 new ReadCb(this, cont));

14 }
15 private static class ReadCb implements Callback {
16 ...

17 public void run(Object retVal) {
18 Event event = (Event)retVal;

19 if (event.type() == Event.READ RDY EVT) {
20 rdr.ch.read(rdr.cbuf); // do the actual read

21 String line = scanChars();

22 if (line!=null) cont.run(line);

23 else Scheduler.register(rdr.ch,

24 Event.READ RDY EVT,

25 Event.ERR EVT, this);

26 }
27 else { // ERR EVT

28 assert event.type() == Event.ERR EVT;

29 cont.error(event.getError());

30 }
31 }
32 }
33 }
34 public static void write(CharChannel ch,

35 CharBuffer data,

36 Continuation cont) {
37 ...

38 }
39 public static void accept(CharChannel ch,

40 Continuation cont) {
41 ...

42 }
43 ...

44 }

Fig. 1. An event-driven nonblocking I/O library
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Other event definitions are possible. As described in section 6.2, TaskJava is
scheduler-agnostic and can be easily adapted to different schedulers.

2.1 An Event-driven Web Server

Event-driven I/O library We first describe a simple event-driven I/O li-
brary implemented on top of Java’s nonblocking I/O primitives (figure 1). This
library interacts with an event scheduler (not shown) by making a call to
Scheduler.register, which associates a set of events (specified using event
identifiers) for a given I/O channel with a provided callback. When any one of
these events occurs, an event object is passed to the run method of the callback
(the callback’s interface is defined in lines 1 - 3). The registration of an event
set is one-time: after one of the events has occurred, the entire set of events as-
sociated with the callback is removed from the scheduler. Of course, a callback
may re-register itself or a different callback with the scheduler.

Unlike most libraries, an event-driven library cannot simply return results via
the program stack. To work around this issue, we define a continuation interface
in lines 4 - 6. The caller must provide an instance of Continuation to each I/O
request. When the request has completed, the continuation is then called with
the result. For convenience, the continuation interface extends the Callback

defined by the scheduler. In addition to the completion method, run, it defines
a method for handling exceptions, error.

The Reader class. In lines 7 through 33, we define a Reader class, which sup-
ports reading one line at a time from a channel. To use the class, one constructs
a Reader instance and then makes requests through the readLine method. If
the request is successful, a string representing one line of input is passed to the
run method of the user-provided continuation.

A readLine request is initiated by registering a callback with the scheduler,
associating it with the READ RDY EVT and ERR EVT events. The actual read is
performed within this callback.

Unfortunately, reads on a socket-based channel are not guaranteed to return
an entire request. Thus, multiple read calls may be needed to retrieve a sin-
gle request. In a multi-threaded or non-concurrent implementation, one would
typically implement this using two nested loops, with the outer calling read on
the channel and the inner loop scanning through the characters that were read,
looking for a newline. This code might look as follows:

char c = ’\0’;

while (c!=’\n’) {

ch.read(cBuf); // blocking read

// Copy from the buffer

while (cBuf.hasRemaining() &&

(c=cBuf.get())!=’\n’) {

sBuf.put(c);

}

}
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In an event-driven program, we instead interleave other I/O requests while
we wait for data to arrive on the channel. Unfortunately, this means that the
outer loop must be broken across multiple callbacks. After each read on the
channel, the characters read are scanned for a newline (equivalent to the inner
loop above). If one is found, the resulting line is passed to the continuation (line
22). Otherwise, the callback is re-registered with the scheduler, awaiting the
availability of more data on the channel (line 23). This reregistration creates,
in effect, an “outer loop” which continues the register-callback cycle until a line
has been read.

Error handling is also more complex than in a non-event implementation.
An error on the channel cannot be thrown as an exception but must be instead
passed to the continuation. In the readLine method, if the event returned was
an error, the error method of the user’s continuation is called (line 29). Then,
no further callbacks are registered, ending the processing by this reader class.

The write and accept methods. The implementation of the EventIO.write

and EventIO.acceptmethods follows the same approach as readLine. An initial
request is registered with the scheduler. The associated channel operation (write
or accept) may require multiple calls to complete the request. Thus, the callback
re-registers itself with the scheduler until the request has completed.

Using the Event Library Figure 2 shows a simple web server built on top
of this event I/O library. The server contains two loops: one for accepting new
connections and a second, per connection, for reading requests and sending re-
sponses. Since these loops cross I/O calls, they must be broken into several
callbacks. A loop thus becomes a circular sequence of callbacks.

The accept loop is initiated by the start method (line 46), which calls
EventIO.accept, passing a newly created AcceptCont continuation. After pro-
cessing a newly accepted channel, this continuation calls EventIO.accept again
(line 58), providing itself as a continuation.

The request loop is initiated within AcceptCont, which passes a new instance
of ReadCont to readLine (line 57). Upon completion of a read, the read continu-
ation parses the request and reads the associated file (lines 73 - 76). The response
is written using EventIO.write, which is passed an instance of WriteCont as a
continuation (line 78). Upon completion of the write, this continuation initiates
another read (line 88), passing the original ReadCont instance as a continuation,
thus starting another iteration of the loop.

The error methods of all three continuations log the exception and then
close the associated channel. By not initiating another request, they implicitly
exit the associated loop.

Disadvantages of the event-driven implementation Clearly, it is difficult
to follow the control flow of this event driven program. Since a register call and
the processing of the associated event are broken across two functions (which
are called from different places in the program), there is no way to encapsulate
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45 public class EventWebServer {
46 public static void start(CharChannel acceptCh) {
47 EventIO.accept(acceptCh, new AcceptCont(acceptCh));

48 }
49 static class AcceptCont implements Continuation {
50 CharChannel acceptCh;

51 AcceptCont(CharChannel acceptCh) {
52 this.acceptCh = acceptCh;

53 }
54 public void run(Object retVal) {
55 CharChannel ch = (CharChannel)retVal;

56 EventIO.Reader rdr = new EventIO.Reader(ch);

57 rdr.readLine(new ReadCont(ch, rdr));

58 EventIO.accept(acceptCh, this);

59 }
60 public void error(Exception e) {
61 ... print error message to log ...

62 acceptCh.close();

63 }
64 }
65 static class ReadCont implements Continuation {
66 CharChannel ch; EventIO.Reader rdr;

67 WriteCont writeCont;

68 public ReadCont(CharChannel ch, Reader rdr) {
69 this.ch = ch; this.rdr = rdr;

70 this.writeCont = new WriteCont(this);

71 }
72 public void run(Object retVal) {
73 String filename = parseRequest((String)retVal);

74 try {
75 CharBuffer sendData = readFile(filename);

76 }
77 catch (Exception e) { this.error(e); }
78 EventIO.write(ch, sendData, writeCont);

79 }
80 public void error(Exception e) { ... }
81 }
82 static class WriteCont implements Continuation {
83 ReadCont readCont;

84 public WriteCont(ReadCont readCont) {
85 this.readCont = readCont;

86 }
87 public void run(Object retVal) {
88 readCont.rdr.readLine(readCont);

89 }
90 public void error(Exception e) { ... }
91 }
92 }

Fig. 2. Event-driven web server
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these within a single function call. Also, if we would want to call a given function
(e.g., readLine) from multiple places, we cannot take advantage of the implicit
return behavior of function calls — we must pass the return point to the common
function explicitly (e.g., as a callback).

There are two classes of bugs which are much more likely to occur in an
event-driven implementation. A lost continuation occurs when a callee does not
call the continuation passed to it by its caller. For example, if line 22 is left
out of the ReadCb class in figure 1, the results of a read request will never be
processed. If line 23 is left out, the read request will not even be completed. In
general, except when a logical flow of control terminates, every control flow path
through a callback must end with a call to a continuation or the registration of
another callback.

The lost exception problem is the corresponding issue for error control flow.
Unfortunately, exceptions cannot be used effectively in the above style. Error
control flow can be factored into a separate sequence of callbacks (as done using
the error method in the example), but it is still easy to forget to check for an
error or to skip the corresponding continuation call. Potential instances of this
problem in the example of figure 1 include not registering for the ERR EVT event
(lines 12 and 25) and dropping the error continuation (line 29).

2.2 A Web Server in TaskJava

Figure 3 shows a TaskJava I/O library providing the same functionality as the
event-driven code in Figure 1. Rather than call continuations to signal comple-
tion of a request, readline, write, and accept return values directly to their
callers.

The wait function. Like event-driven systems, TaskJava programs are used
with non-blocking I/O libraries and with a user-defined event scheduler. How-
ever, rather than forcing programmers to explicitly register a callback to be
called when an event occurs, TaskJava provides a primitive wait function, which
takes a set of event identifiers and suspends the current method until one of the
events occurs, at which point the method resumes.

A wait call does not cause the program to block at the operating system
level. Instead, the containing method is automatically translated into a form of
continuation-passing style (CPS). The method is broken by the compiler at each
wait call into two separate methods, one that executes up to the wait call and
one that continues after the event is signaled. The wait call is replaced in the
first method by an event registration, as in the event-driven style shown earlier.

Asynchronous methods. Methods that contain a call to waitmust be declared
with an async modifier. These are called asynchronous methods. The modifier
indicates to the compiler that it should perform a CPS translation of the method.
Asynchronous methods provide programmers with the procedural abstraction
that is lacking in explicit event-driven programs. With the exception of the
additional annotation, such methods appear to clients as standard Java methods.
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01 public class TaskIO {
02 public static class Reader {
03 ...

04 public async String readLine() throws IOException {
05 String line;

06 // keep reading until we finish a line

07 do {
08 Event event = wait(ch, Event.READ RDY EVT,

09 Event.ERR EVT);

10 if (event.type() == Event.READ RDY EVT) {
11 ch.read(cbuf);

12 line = scanChars();

13 }
14 else {
15 assert event.type() == Event.ERR EVT;

16 throw event.getError();

17 }
18 } while (line==null);

19 return line;

20 }
21 public static async void write(CharChannel ch,

22 CharBuffer data)

23 throws IOException

24 {
25 while (data.hasRemaining()) {
26 Event event = wait(ch, Event.WRITE RDY EVT,

27 Event.ERR EVT);

28 if (event.type() == Event.READ RDY EVT)

29 ch.write(data);

30 else {
31 assert event.type() == Event.ERR EVT;

32 throw event.getError();

33 }
34 }
35 }
36 public static CharChannel accept(CharChannel ch)

37 throws IOException { ... }
38 ...

39 }

Fig. 3. A task-based nonblocking I/O library
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If a method calls an asynchronous method, it must also be declared async.
Since the callee will not return a value directly, the calling method must be trans-
lated to use continuation passing style as well. Thus, when a wait call completes,
results are propagated back up the logical call stack by calling each method’s
continuation. This behavior is transparent to the programmer. Methods that
are not declared async do not require any translation. Further, asynchronous
methods may call any standard Java method.

wait-based I/O Library Implementation We now look in more detail at
the I/O library of figure 3. The readLine method of TaskIO.Reader is declared
async and returns a String containing a line of data read from the channel. If
an error occurs, this method throws an IOException.

Unlike the event-driven case, our interleaved calls to read may be contained
within a single loop (lines 7 - 18). At the head of this loop, a call to wait

is made, stopping execution of the method until either the READ RDY EVT or
ERR EVT events occur (line 8). An event object associated with the event is
returned by wait upon resumption of the method. If a READ RDY EVT event is
returned, the channel is read (line 11) and the resulting buffer scanned for a
newline. If a newline is encountered, the loop is exited and the associated line of
data returned to the caller. Otherwise, the loop continues until either an entire
line has finished or an error occurs.

If an ERR EVT event is returned by wait, the associated exception is obtained
from the event and then re-thrown to the caller of readLine (line 16).

The TaskIO.write and TaskIO.accept methods are implemented in a sim-
ilar manner to readLine. Both methods are declared async and throw an
IOException to signal an error. The accept method returns to its caller a new
channel created for the incoming connection. write is declared void since it
does not return a value. It does, however, block the caller until the write has
completed.

Tasks Figure 4 shows a simple web server built on top of this task-based I/O
library, equivalent in functionality to the server of figure 2. As with the event-
driven implementation, this server contains two loops: one for accepting new
connections and a second, per connection, for reading requests and sending re-
sponses. However, these two loops are encapsulated within tasks, the units of
concurrency for TaskJava programs. Any class that implements the Task inter-
face, such as AcceptTask and RequestTask in figure 4, is considered a task.
Much like Java’s Thread interface, the Task interface defines a single method,
run, which takes no parameters and returns no value. This method may contain
calls to wait and async methods. It should provide the main control flow for
the task.

Instances of a task may be created by using the spawn keyword, which is
followed by a constructor call (the constructor may be either the default con-
structor or any public constructor declared on the task’s class). The spawn of a
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40 public class TaskWebServer {
41 public static start(CharChannel acceptCh) {
42 spawn AcceptTask(acceptCh);

43 }
44 public static class AcceptTask implements Task {
45 CharChannel acceptCh;

46 AcceptTask(CharChannel acceptCh) {
47 this.acceptCh = acceptCh;

48 }
49 public void run() {
50 try {
51 while (true) {
52 CharChannel ch = TaskIO.accept(acceptCh);

53 spawn RequestTask(ch);

54 }
55 } catch (IOException e) {
56 ... print error message to log ...

57 acceptCh.close();

58 }
59 }
60 }
61 public class RequestTask implements Task {
62 private CharChannel ch;

63 public RequestTask(CharChannel ch) { this.ch = ch; }
64 public void run() {
65 TaskIO.Reader rdr = new TaskIO.Reader(ch);

66 try {
67 while (true) { // main request loop

68 String filename

69 = parseRequest(rdr.readLine());

70 charBuffer sendData = readFile(filename);

71 TaskIO.write(ch, sendData);

72 }
73 } catch (IOException e) {
74 ...

75 }
76 }

Fig. 4. Implementation of Web Server in TaskJava
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task calls the appropriate constructor to create a new object and then the run

method to start execution of the task.
If a task makes a wait call, either directly or through an async method,

the task is effectively blocked until an event registered by wait occurs. How-
ever, tasks do not block at the operating system level. Instead the run method
is translated into continuation passing style. Each asynchronous call is passed
a Callback object (generated by the TaskJava compiler), which, when called,
resumes the task.

Web server implementation We will now look at how tasks are used in the
web server of figure 4. To start the server, one calls the start method, which
spawns a new AcceptTask task, passing it the channel to be used to listen for
new connections (line 42). The body of this task’s run method contains a loop
which calls TaskIO.accept to accept a new connection and then spawns a new
RequestTask task to process requests on the new channel (line 53).

If the accept call throws an IOException, this is caught at line 55. In this
case, an error message is logged and the connection closed. Since the loop has
been exited, the run method returns, effectively terminating the task.

The run method of RequestTask first creates a TaskIO.Reader for the new
channel (line 65). It then enters its main loop for handling requests (lines 68 -
71). The name of the file to retrieve is obtained by calling rdr.readLine() to
read a line of input and then parseRequest to parse the request. The requested
file is read and its contents written to the channel using TaskIO.write. If an
IOException is thrown, it is caught at line 74, where the error is logged, the
channel closed, and the task terminated. Otherwise, if no error occurs, the next
request is read from the channel.

Benefits of TaskJava Simpler control flow. Unlike the pure event-driven
implementation, the TaskJava version has a simple control flow, which is made
explicit through standard structured programming constructs (while, for, etc.).
This makes it easy for the programmer as well as automatic tools to reason about
the program’s behavior.

Elimination of potential errors. In addition, the lost continuation and lost
exception problems are not issues in this implementation. Each method call will
always return control back to its caller, unless an exception is thrown or the
entire program terminated. Standard Java exceptions are used to structure error
handling. The TaskJava compiler, like the Java compiler, statically verifies that
each thrown exception is explicitly handled.

Better use of Object Orientation. The TaskJava web server also has a
more natural object-oriented design. The classes used in this implementation
(AcceptTask and RequestTask) have a natural correspondence to the problem
domain. In the event-driven version, the request task is broken into two callbacks:
ReadCont and WriteCont. In a more realistic server with more complex error
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Program P ::= CL return e;

Class List CL ::= class C extends C {T̄ f̄; K M̄}
Constructor K ::= C(T̄ f̄) { super(f̄); this.f̄= f̄;}

FJ+ Method M ::= T m(T̄ x̄) throws C̄ {return e;}
Type T ::= C | Bag<T>

Base Expressions ebase ::= x | e.f | e.m(ē) | new C(ē) | (C)e

| {ē} | throw e | try {e;} catch (C x) { e; }
e ::= ebase

EJ e ::= ebase | reg(e, e)

CTJ Async methods M ::= . . . | async C m(C̄ x̄) throws C̄ {return e;}
e ::= ebase | spawn C(e) | wait(e)

Fig. 5. Syntax of FJ+, EJ, CTJ.

handling, even more callback classes may be needed. For example, the event-
driven web server in the case study of section 7 requires six callback classes to
process an HTTP request.

As a result, it is much easier to extend request handling in the TaskJava web
server. For example, to support different protocols and content types, one might
use the template method design pattern [10]. Key steps in the processing of a
request (e.g., reading the request, obtaining the response, sending the response)
might be factored out into separate methods on RequestTask. The run method
now calls these template methods at the appropriate points in request process-
ing. To change implementation of some step in a request, one subclasses from
RequestTask and overrides the appropriate method. For example, to support
SSL, one would override the methods which read the request and write the re-
sponse. The new read method would call the superclass’s read method and then
decrypt the request. The new write method would encrypt the response and then
call the superclass’s write method.

It is unclear how a similar extensibility scheme could be implemented in an
event-driven server, given the need to break control flow over many continuation
classes.

3 Formal Model

We formalize TaskJava and prove our theorems in a core calculus extending
Featherweight Java (FJ) [14]. We do this in three steps: first, we define FJ+, an
extension to FJ with exceptions and built-in multiset data structures; second,
we define EventJava (EJ), a core calculus for event-driven programs into which
tasks will be compiled; and finally, we define the core features of TaskJava in
CoreTaskJava (CTJ).
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3.1 FJ+

The syntactic elements of FJ+ are described in Figure 5. An FJ+ program con-
sists of a class table mapping class names to classes, and an initial expression.
As in FJ, the notation D̄ denotes a sequence of elements from domain D. A
class consists of a list of typed fields, a constructor, and a list of typed methods.
The metavariable C ranges over class names, f over field names, m over method
names, and x over formal parameter names. An expression is either a formal, a
field access, a method call, an object allocation, a type cast, a set, the throw of
an exception, or a try expression. We assume there exist built-in classes Object
and Throwable. The class Throwable is a subclass of Object and both have no
fields and no methods.

We define the operational semantics of FJ+ as additions to the rules of FJ 1

and then EventJava and CoreTaskJava as mutually exclusive additions to these
rules.

Program execution is modeled as a sequence of rewritings of the initial ex-
pression, which either terminates when a value is obtained or diverges if the
rewritings never yield a value. For all three languages, programs evaluate to
either non-exception values of the form v ::= new C() | new C(v̄) | {v̄} or ex-
ception values of the form throw new Ce(v̄), where Ce <: Throwable. In the
evaluation and typing rules, we use v as shorthand for a non-exception value,
v̄ for a sequence of non-exception values, and ve for the non-exception value
new C(v̄).

Figures 7 and 8 list the operational rules of FJ+. We use the symbol E to
represent an evaluation context, i.e., an expression where the next subexpres-
sion to be evaluated (using a leftmost, call-by-value ordering) has been replaced
with a placeholder []. Formally,

E ::= [] | E.f | E.m(e) | v.m(v̄, E, ē) | new C(v̄, E, ē)

| {v̄, E, ē} | (C)E | throw E | try {E; } CK

We write E[e] to represent the expression created by substituting the subexpres-
sion e for the placeholder in the evaluation context E. Evaluation contexts are
used in the evaluation rules, the type soundness theorems, and the translation
relation.

As in Featherweight Java, the computation rules for cast only permit progress
when the type of the value being cast is a subtype of the target type. Otherwise,
the computation becomes “stuck”. The subtyping relation, defined in Figure 6, is
extended to include bags (rule S-Bag) and exception effects (rule S-Exc). Based
on the subtyping relation, we define a join operator ⊔ on types, where T ⊔ T′ is
the least upper bound of types T and T′. It is extended to sets of types in the

1 We use the rules in chapter 19 of Types and Programming Languages [20] rather
than those of the original FJ paper [14], as they provide deterministic, call-by-value
evaluation.
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T <: T′

T <: T
(S-Self)

T <: T′ T
′ <: T′′

T <: T′′
(S-Trans)

CT (C) = class C extends D {...}

C <: D
(S-Cls)

T <: T′

Bag < T > <: Bag < T
′ >

(S-Bag)

T|τ̄ <: T′|τ̄ ′

T <: T′ τ̄ ⊆: τ̄ ′

T|τ̄ <: T′|τ̄ ′ (S-Exc)

Fig. 6. Subtyping rules for FJ+, EJ, and CTJ.

obvious way. We write ⊔T̄ to denote the least upper bound of all types in the set
T̄. The join operator is undefined for joins between class types and bag types.

e −→ e′

fields(C) = T̄ f̄

(new C(v̄)).fi −→ vi

(E-1)
mbody(m,C) = (x̄, e0)

(new C(v̄)).m(v̄e) −→ [v̄e/x̄, new C(v̄)/this]e0

(E-2)

C <: C′

(C′)(new C(v̄)) −→ new C(v̄)
(E-3)

∀Ti ∈ T̄.Ti <: T

(Bag < T >){v̄} −→ {v̄}
(E-4)

new C(v̄, throw ve, ē) −→ throw ve (E-5) (throw ve).m(ē) −→ throw ve (E-6)

v.m(v̄, throw ve, ē) −→ throw ve (E-7) {v̄, throw ve, ē} −→ throw ve (E-8)

(throw ve).f −→ throw ve (E-9) (C)(throw ve) −→ throw ve (E-10)

throw throw ve −→ throw ve (E-11) try {v; } CK −→ v (E-12)

v = new C(v̄) C <: Ce

try {throw v; } catch (Ce x) {e; } −→ [v/x]e
(E-13)

v = new C(v̄) C 6<: Ce

try {throw v; } catch (Ce x) {e; } −→
throw v

(E-14)

Fig. 7. Computation rules for FJ+.

3.2 EventJava

EventJava (EJ) is a core calculus that extends FJ+ with support for events and
event registration. Figure 5 gives the syntax for EJ, showing the extensions from
FJ+. The set of EJ expressions additionally contains a built-in function reg,
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e −→ e′

e0 −→ e′0

e0.f −→ e′0.f
(E-15)

e0 −→ e′0

e0.m(ē) −→ e′0.m(ē)
(E-16)

ei −→ e′i

v0.m(v̄, ei, ē) −→ v0.m(v̄, e′i, ē)
(E-17)

ei −→ e′i

new C(v̄, ei, ē) −→ new C(v̄, e′i, ē)
(E-18)

e0 −→ e′0

(T )e0 −→ (T )e′0
(E-19)

e0 −→ e′0

{v̄, e0, ē} −→ {v̄, e′0, ē}
(E-20)

e0 −→ e′0

throw e0 −→ throw e′0
(E-21)

et −→ e′t

try {et; } catch (Ce x) {e; } −→ try {e′t; }catch (Ce x) {e; }
(E-22)

Fig. 8. Congruence rules for FJ+.

which registers a set of events and a callback with the scheduler. For use with
the reg function, we assume the system scheduler implementation includes a
class Event. Further, EJ provides a built-in class Callback:

class Callback extends Object {

Object run(Object retVal) { return new Object(); } }

The type signature of reg is Bag < Event > × Callback→ Object.

The operational semantics of EJ programs is given with respect to a program
state. An EventJava program state σe consists of (1) an expression representing
the in-progress evaluation of the currently executing callback, and (2) a bag
E of pending event registrations of type Bag < Event > × Callback. In the
operational rules, we write this state as e|E .

After the initialization expression has been evaluated, the program enters an
event processing loop. The event processing loop runs until the set of event reg-
istrations E is empty. In each iteration of the loop, one event registration (s, c)
is nondeterministically removed from E . An event η is then nondeterministically
chosen from s, and the callback function c.run(η) is executed. A registration is
one-time; after the selection of an event η , the entire event set s is excluded from
further consideration, unless the set is explicitly re-registered with the scheduler.
If an empty set of events is passed along with a callback, the callback is guaran-
teed to be called at some point in the future. An instance of NullEvent is then
passed to the callback. This semantics models a single-threaded event server.

Note that the parameter of a callback’s run method has a type of Object,
even though it will be passed an Event. This slight discrepancy simplifies the
translation between CTJ (which also uses callbacks for completion of asyn-
chronous method calls) and EJ. As a result, the body of each callback class
must downcast the retVal parameter to Event. Downcasts could be avoided by
extending EJ and CTJ with generics, as in Featherweight Generic Java [14].

We define evaluation contexts for EventJava in the same manner as FJ+.
The grammar for evaluation contexts has the following extensions for syntactic
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e −→e e′

Figure 7, rules E-1 - E-14.
Figure 8, rules E-15 - E-22.

e0 −→e e′0

reg e0, e1 −→e reg e′0, e1

(Ee-23)
e0 −→e e′0

reg v, e0 −→e reg v, e′0
(Ee-24)

reg throw v, e −→e throw v (Ee-25) reg v0, throw v1 −→e throw v1 (Ee-26)

e|E
l

=⇒e e′|E ′

e −→e e′

e|E
ǫ

=⇒e e′|E
(Ee-Con)

E[reg v0, v1]|E
v0=⇒e E[v1]|E ∪ (v0, v1)

(Ee-Reg)

(s, vcb) ∈ E η ∈ s

v|E
η

=⇒e vcb.run(η)|E \ (s, vcb)
(Ee-Run)

(∅, vcb) ∈ E η0 = new NullEvent()

v|E
η0=⇒e vcb.run(η0)|E \ (∅, vcb)

(Ee-η∅Run)

throw ve|E
ǫ

=⇒e throw ve|∅ (Ee-Throw)

Fig. 9. Operational Semantics of EJ.

forms specific to EventJava:

E ::= . . . | reg(E, e) | reg({v̄}, E)

Figure 9 lists the operational rules unique to EventJava. In these rules, s
ranges over event sets and η ranges over events. We define two evaluation rela-
tions for EventJava programs. The −→e relation extends the FJ+ −→ relation
with congruence rules to evaluate the arguments of a reg call. The =⇒e relation
then extends this relation to EventJava program states. Rule Ee-Con incorpo-
rates the −→ relation into the context of a program state.

Each transition rule of the =⇒e relation has an associated observable ac-
tion, denoted by a label above the transition arrow. This action represents the
impact of the transition on the scheduler. A label may be either: (1) an event
set, representing a registration with the scheduler, (2) a single event, represent-
ing the selection of an event by the scheduler, or (3) ǫ, representing a transition
which has no impact on the scheduler’s state.

3.3 CoreTaskJava

The syntax of CoreTaskJava (CTJ) extends FJ+ with three new constructs: the
spawn syntax for creating tasks; a wait primitive, which accepts a set of events
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and blocks until one of them occurs; and asynchronous methods via the async

modifier. A task in CTJ subclasses from a built-in class Task:

class Task extends Callback {}

A task’s run method contains the body of the task and is called after a task is
spawned. 2

Informally, tasks are modeled as concurrent threads of execution that block
when waiting for an asynchronous call to complete. We define evaluation contexts
for CTJ expressions in the same manner as FJ+. The grammar for evaluation
contexts has the following extensions for syntactic forms specific to CTJ:

E ::= ... | wait E | spawn E

As with EJ, the semantics is defined with respect to a program state. A CTJ
program state σc consists of: (1) an expression representing the in-progress eval-
uation of the currently executing task, and (2) a set B of (Bag < Event >, E[])
pairs representing the evaluation contexts of blocked tasks and the events that
each task is blocked on. In the operational rules, we write this state as e|B.

After a CTJ program’s initialization expression has been evaluated, the pro-
gram nondeterministically selects a task from the blocked set, then nondeter-
ministically selects an event from the task’s event set, and evaluates the task
until it either terminates or blocks again. Another task is then selected nonde-
terministically. This process repeats until the program reaches the state where
the current expression is a value and the blocked set is empty. Tasks and the as-
sociated event sets are added to B through calls to wait. In addition, the spawn

of a task is modeled by placing the task in B with an empty event set, ensuring
that the task will eventually be scheduled.

Figure 10 lists the operational rules for CoreTaskJava. As with EventJava, the
rules are written using two relations. The −→c relation extends the FJ+ −→ re-
lation with congruence rules to evaluate the arguments of wait and spawn calls.
The =⇒c relation (defined in figure 10) then extends this relation to CoreTask-
Java program states. The evaluation of the −→ rules in the context of a program
state is handled by Rule Ec-Con. Each transition of the =⇒ relation is labeled
with an observable action, as defined above for EventJava.

3.4 Type Checking

FJ+ and EJ Typing judgments for expressions in FJ+ have the form Γ ⊢ e :
T |τ̄ , where the environment Γ maps variables to types, T is a type (using the
type grammar in Figure 5), and τ̄ is set of exception classes (Throwable or a

2 In the implementation, Task does not subclass from Callback and its run method
takes no parameters. We subclass from Callback here to simplify the presentation
of the formalization.

20



e −→c e′

Figure 7, rules E-1 - E-14.
Figure 8, rules E-15 - E-22.

e0 −→c e′0

wait e0 −→c wait e′0
(Ec-23)

wait throw v −→c throw v (Ec-24)

e0 −→c e′0

spawn e0 −→c spawn e′0
(Ec-25)

spawn throw v −→c throw v (Ec-26)

e|B
l

=⇒c e′|B′

e −→c e′

e|B
ǫ

=⇒c e′|B
(Ec-Con)

throw v|B
ǫ

=⇒c throw v|∅ (Ec-Throw)

w = wait {v̄}

E[w]|B
{v̄}

=⇒c new Object()|B ∪ ({v̄}, E[])
(Ec-Wait)

({v̄}, E[]) ∈ B η ∈ {v̄}

v|B
η

=⇒c E[η]|B \ ({v̄}, E[])
(Ec-Run)

(∅, E[]) ∈ B η0 = new NullEvent()

v|B
η0=⇒c E[η0]|B \ (∅, E[])

(Ec-η∅Run) E[spawn C(v̄)]|B
∅

=⇒c

E[new C(v̄)]|B ∪ (∅, (new C(v̄)).run([]))
(Ec-Spn)

Fig. 10. Operational Semantics of CTJ.

subclass of Throwable). For checking exceptions, we introduce a new relation
τ̄ ⊆: τ̄ ′, which is true when,for each class C ∈ τ̄ , there exists a class C′ ∈ τ̄ ′ such
that C <: C′.

Figure 11 lists the typing rules for FJ+. These rules extend the typing rules
of FJ by adding typing of bags and tracking the set of exceptions τ̄ which may
be thrown by an expression. In particular, rule T-9 assigns an arbitrary type T

to a throw statement, based on the statement’s context.
The override function (rule T-11) is changed to check that the set of ex-

ceptions thrown by a method’s body is a subset of those declared to be thrown
by the method signature. The auxiliary function mtype(C, m) returns the type
signature of method m in class C. A method’s type signature has the form:
T̄f → Tr throws τ̄ , where T̄f represents the types of the formal arguments,
Tr represents the type of the return value, and τ̄ represents the exceptions de-
clared to be thrown by the method. EventJava extends the rules of FJ+ with an
additional rule to assign a type to reg expressions (figure 12).

CoreTaskJava Typing rules for CTJ are listed in figures 13 and 14. Typing
statements for expressions in CTJ have the form Γ, C, M ⊢ e : T |τ̄ , where C is
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Γ ⊢ e : T |τ̄

x : T ∈ Γ

Γ ⊢ x : T|∅
(T-1)

Γ ⊢ e0 : C0|τ̄ fields(C0) = T̄ f̄

Γ ⊢ e0.fi : Ti|τ̄
(T-2)

Γ ⊢ e0 : C0|τ̄0

mtype(m,C0) = T̄f → Tr throws τ̄m Γ ⊢ ē : T̄a|τ̄a T̄a <: T̄f

Γ ⊢ e0.m(ē) : Tr|τ̄0 ∪ τ̄m ∪ τ̄a

(T-3)

fields(Cc) = T̄c f̄ Γ ⊢ ē : T̄e|τ̄ T̄e <: T̄c

Γ ⊢ new Cc(ē) : Cc|τ̄
(T-4)

Γ ⊢ e0 : T0|τ̄ T0 <: T

Γ ⊢ (T)e0 : T|τ̄
(T-5)

Γ ⊢ e0 : T0|τ̄ T <: T0 T 6= T0

Γ ⊢ (T)e0 : T|τ̄
(T-6)

Γ ⊢ e0 : T0|τ̄ T 6<: T0 T0 6<: T stupid warning

Γ ⊢ (T)e0 : T|τ̄
(T-7)

Γ ⊢ ∀ei ∈ ē . ei : Ti T = ⊔Ti τ̄ = ∪τ̄i

Γ ⊢ {ē} : Bag < T > |τ̄
(T-8)

Γ ⊢ e0 : C0|τ̄ C0 <: Throwable

Γ ⊢ throw e0 : T|τ̄ ∪ C0

(T-9)

Γ ⊢ et : Tt|τ̄t

Ce <: Exception Γ ∪ x : Ce ⊢ ec : Tc|τ̄c τ̄ ′
t = {τ ∈ τ̄t | τ 6<: Ce}

Γ ⊢ try {et; } catch (Ce x) {ec; } : Tt ⊔ Tc|τ̄
′
t ∪ τ̄c

(T-10)

override(m,D, T̄c → Trc, τ̄ )

mtype(m,D) = T̄d → Trd throws τ̄d ⇒
T̄c = T̄d ∧ Trc = Trd ∧ τ̄ ⊂: τ̄d

override(m,D, T̄c → Trc, τ̄)
(T-11)

M OK in C

{x̄ : T̄|∅, this : C|∅} ⊢ e0 : Te|τ̄e Te <: Tr

τ̄e ⊂: τ̄ CT (C) = class C extends D {...} override(m,D, T̄ → Tr, τ̄)

Tr m(T̄ x̄) throws τ̄ {return e0; } OK in C
(T-12)

C OK

K = C(T̄s f̄s, T̄c f̄c){super(f̄s); this.f̄c = f̄c; }
fields(Cs) = T̄s f̄s

M OK in C

class C extends Cs {T̄c f̄c; K M} OK
(T-13)

P OK

⊢ e : T|∅ CL OK

⊢f CL return e OK
(T-14)

Fig. 11. Typing rules for FJ+.
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Γ ⊢ e : T |τ̄

Figure 11, rules T-1 - T-13.

Γ ⊢ es : Bag < Event >|τ̄s Γ ⊢ ec : Callback|τ̄c

Γ ⊢ reg es, ec : Event|τ̄s ∪ τ̄c

(Te-14)

P OK

⊢ e : T|∅ CL OK

⊢e CL return e OK
(Te-15)

E OK

⊢ {v̄e} : Bag < Event >
⊢ new C(v̄c) : C|∅
C <: Callback

⊢ {({v̄e}, new C(v̄c))} OK
(Te-16)

Fig. 12. Typing rules for EJ.

the name of the enclosing class and M the definition of the enclosing method.
The auxiliary function isaync(M) returns true if the method definition M has
an async modifier and false otherwise. Likewise, isasync(C, m) returns true if
the definition of method m in class C has an async modifier.

Rules Tc-3 and Tc-15 ensure that asynchronous calls and wait calls may
only be made by asynchronous methods or the run method of a task. Rules
T-11 and T-12 of FJ+ have each been split into two cases, one for asynchronous
methods and one for standard methods. This ensures that asynchronous methods
may only override asynchronous methods and non-asynchronous methods may
only override non-asynchronous methods. Rule Tc-12b also verifies that the run

method of a task has not been declared async.

Rule Tc-14 ensures that sets of blocked tasks are well-formed. If ⊢ B OK,
then B consists of a set of pairs, where the first element of the pair is a set
of events and the second element of the pair is an evaluation context E[]. The
evaluation context must be well-typed when [] is replaced with an event.

4 Properties of CoreTaskJava programs

We now describe the central formal properties of CTJ programs: subject reduc-
tion, progress, and soundness.

We start by defining normal forms for CTJ and EJ, special forms for expres-
sions obtained by rewriting until no rewrite rule from −→e or −→c is possible.
A CTJ expression e is in normal form if it matches one of the following forms:
E[spawn C(v̄)], E[wait v], E[(T )v] where the type of non-exception value v is
not a subtype of T , throw ve, or a non-exception value v. Similarly, an EJ expres-
sion e is in normal form if it matches one of the following forms: E[reg v1, v2],
E[(T )v] where the type of non-exception value v is not a subtype of T , throw ve,
or a non-exception value v.
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Γ, C, M ⊢ e : T |τ̄

x : T ∈ Γ

Γ, C, M ⊢ x : T |∅
(Tc-1)

Γ, C, M ⊢ e0 : C0|τ̄ fields(C0) = T̄ f̄

Γ, C, M ⊢ e0.fi : Ti|τ̄
(Tc-2)

Γ, C, M ⊢ e0 : C0|τ̄0

mtype(m,C0) = T̄f → Tr throws τ̄m Γ, C, M ⊢ ē : T̄a|τ̄a T̄a <: T̄f

isasync(m,C0) =⇒
(C <: Task ∧ methname(M) = run) ∨ isasync(M)

Γ, C, M ⊢ e0.m(ē) : Tr|τ̄0 ∪ τ̄m ∪ τ̄a

(Tc-3)

fields(Cc) = T̄c f̄ Γ, C, M ⊢ ē : T̄e|τ̄ T̄e <: T̄c

Γ, C, M ⊢ new Cc(ē) : Cc|τ̄
(Tc-4)

Γ, C, M ⊢ e0 : T0|τ̄ T0 <: T

Γ, C, M ⊢ (T)e0 : T|τ̄
(Tc-5)

Γ, C, M ⊢ e0 : T0|τ̄ T <: T0 T 6= T0

Γ, C, M ⊢ (T)e0 : T|τ̄
(Tc-6)

Γ, C, M ⊢ e0 : T0|τ̄ T 6<: T0 T0 6<: T stupid warning

Γ, C, M ⊢ (T)e0 : T|τ̄
(Tc-7)

Γ, C, M ⊢ ∀ei ∈ ē . ei : Ti T = ⊔Ti τ̄ = ∪τ̄i

Γ, C, M ⊢ {ē} : Bag < T > |τ̄
(Tc-8)

Γ, C, M ⊢ e0 : C0|τ̄ C0 <: Throwable

Γ, C, M ⊢ throw e0 : T|τ̄ ∪ C0

(Tc-9)

Γ, C, M ⊢ et : Tt|τ̄t

Ce <: Exception Γ ∪ x : Ce, C, M ⊢ ec : Tc|τ̄c τ̄ ′
t = {τ ∈ τ̄t | τ 6<: Ce}

Γ, C, M ⊢ try {et; } catch (Ce x) {ec; } : Tt ⊔ Tc|τ̄
′
t ∪ τ̄c

(Tc-10)

Γ, C, M ⊢ e0 : Bag < Event >|τ̄
(C <: Task ∧ methname(M) = run) ∨ isasync(M)

Γ, C, M ⊢ wait e0 : Event|τ̄
(Tc-15)

Γ, C, M ⊢ e0 : C|τ̄ C <: Task

Γ, C, M ⊢ spawn e0 : C|τ̄
(Tc-16)

Fig. 13. Expression typing rules for CTJ.
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override(m,D, T̄c → Trc, τ̄ )

mtype(m,D) = T̄d → Trd throws τ̄d ⇒
T̄c = T̄d ∧ Trc = Trd ∧ τ̄ ⊂: τ̄d

override(m,D, T̄c → Trc, τ̄)
(Tc-11)

M OK in C

{x̄ : T̄|∅, this : C|∅}, C, M ⊢ e0 : Te|τ̄e

Te <: Tr τ̄e ⊂: τ̄ CT (C) = class C extends D {...}
override(m,D, T̄ → Tr, τ̄) ¬isasync(m,D)

Tr m(T̄ x̄) throws τ̄ {return e0; } OK in C
(Tc-12a)

{x̄ : T̄, this : C}, C, M ⊢ e0 : Te|τ̄e Te <: Tr τ̄e ⊂: τ̄
CT (C) = class C extends D {...} override(m,D, T̄ → Tr, τ̄)

isasync(m,D) ¬(C <: Task ∧ m = run)

async Tr m(T̄ x̄) throws τ̄ {return e0; } OK in C
(Tc-12b)

C OK

K = C(T̄s f̄s, T̄c f̄c){super(f̄s); this.f̄c = f̄c; }
fields(Cs) = T̄s f̄s M OK in C

class C extends Cs {T̄c f̄c; K M} OK
(Tc-13)

P OK

⊢ e : T|∅ CL OK

⊢c CL return e OK
(Tc-14)

B OK

⊢ {v̄} : Bag < Event >
⊢ Ē[new Event()] : T̄

⊢ {({v̄}, E[])} OK
(Tc-17)

Fig. 14. Method, class, program, and blocked task typing rules for CTJ.

25



Lemma 1 (Normal forms). If an (CTJ or EJ) expression e is in normal
form, either no reduction of the expression e by the =⇒ relation is possible, or
the reduction step must be an observable action.

Proof. Immediate from the structure of each normal form and the =⇒ relation.

Subject Reduction We are now ready to relate the evaluation relation to the
typing rules. Subject reduction states that, if a CTJ program in a well-typed
state takes an evaluation step, the resulting program state is well-typed as well.
We start first with a theorem for the −→ relation and then extend this to the
=⇒c relation.

Theorem 1 (−→c Subject Reduction). If Γ ⊢ e : Te|τ̄e and e −→c e′, then
Γ ⊢ e′ : Te′ |τ̄e′ for some Te′ |τ̄e′ <: Te|τ̄e.

The proof of this theorem is based on several technical lemmas. When the
given lemma is standard for soundness proofs, we omit the proof of the lemma
for brevity.

Lemma 2. If mtype(m, C) = T̄ → Tr throws τ̄ , then mtype(m, C′) = T̄ →
Tr throws τ̄ ′, where τ̄ ′ ⊆: τ̄ , for all C′ <: C.

Lemma 3 (Non-exception values). Non-exception values of the form v ::=
new C() | new C(v̄) | {v̄} have a type of the form T|∅.

Lemma 4 (Term substitution preserves typing). If Γ ∪ x̄ : T̄ ⊢ e0 : T0|τ̄0,
and Γ ⊢ v̄ : T̄′|∅ where T̄′ <: T̄, then Γ ⊢ [v̄/x̄]e0 : T′0|τ̄0 for some T′0 <: T0.

Lemma 5 (Weakening). If Γ ⊢ e : T|τ̄ , then Γ ∪ x : T′ ⊢ e : T|τ̄ .

Lemma 6 (Return types). If mtype(m, C) = T̄ → Tr throws τ̄ and
mbody(m, C) = (x̄, e), then for some C′ where C <: C′, there exists some T′r
and τ̄ ′ such that T′r <: Tr, τ̄ ⊆: τ̄ ′, and Γ ∪ x̄ : T̄ ∪ this : C′ ⊢ e : T′r|τ̄

′.

Lemma 7 (Subtyping of joined types). T <: (T ⊔ T′) for all types T, T′.

Lemma 8 (Subsets and the ⊆: relation). If τ̄ ⊆ τ̄ ′, then τ̄ ⊆: τ̄ ′.

Proof (for Theorem 1). By induction on the derivation of e −→ e′, using a case
analysis on the evaluation rules.

We use Te|τ̄e to represent the type of expression e and Te′ |τ̄e′ to represent
the type of e′.

Computation rules:

– Rule E-1 (field computation): We have e = (new C(v̄)).fi and e′ = vi. By
the premise of the theorem, we know that e is well typed. The last rule in
the type derivation of e must be rule T-2, yielding a type of the form Ti|τ̄
where Ti is the type of field fi in T̄ f̄.
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If e is well-typed, then the receiver must also be well-typed. If we apply type
rule T-4 and lemma 3 to new C(v̄), we obtain the type C|∅. By the premise
of rule T-4, we know that each individual value in v̄ must be well-typed and
is a subtype of the associated field fi of class C. Thus, vi has type Te|∅,
where Te <: Ti. This is a subtype of Ti|∅ – the theorem holds for this case.

– Rule E-2 (method invocation): We have e = (new C(v̄)).m(v̄a) and e′ =
[v̄a/x̄, new C(v̄0)/this]e0. From the premise of the theorem, we know that
e is well typed. The last rule in the type derivation of e must be rule T-3,
yielding a type of the form Tr|τ̄0 ∪ τ̄m ∪ τ̄a. From lemma 3, we know that
τ̄0 and τ̄a must both be ∅, resulting in a simplified type for e of Tr|τ̄m.
If e is well-typed, then the subexpressions new C(v̄) and v̄a must also be
well-typed. From type rule T-3 and lemma 3, we obtain a type for v̄a of T̄e|∅,
where T̄e <: T̄f (where x̄ : T̄f ). From type rule T-4 and lemma 3, we obtain
a type for new C(v̄) of the form C|∅ and a restriction that ⊢ v̄ : T̄e <: T̄c,
where T̄c represents the types of class C’s fields.
From lemma 6, we know that the subexpression e0 in e′ has a type T′r|τ̄

′,
where T′r <: Tr and τ̄ ′ ⊆: τ̄m. Thus, the type of e0 is a subtype of Tr|τ̄m.
From type rule T-12, we know that this, when used in e0, has a type of
C′|∅, where C′ is the class where the method m is defined. Based on rule
T-11, we know that C <: C′.
We can now derive a type for e′. e0 has a type T′r|τ̄

′. We have shown above
that v̄a is a subtype of x̄ and that new C(v̄) has a type of C|∅, which is a
subtype of this in e0. Thus, when we substitute v̄a for x̄ and new C(v̄) for
this in e0, lemma 4 tells us that we obtain an expression e′ whose type is
T′′r |τ̄

′′, where T′′r |τ̄
′′ <: T′r|τ̄

′ (the type of e0).
Since we have also shown that T′r <: Tr and τ̄ ′ ⊆: τ̄m. By subtyping rule
S-Trans, this implies that e′ is a subtype of e: T′′r |τ̄

′′ <: Tr|τ̄m.
– Rule E-3 (casts of classes): We have e = (C′)new C(v̄) and e′ = new C(v̄). By

the premise of the theorem, we know that e is well-typed. Either typing rules
T-5, T-6, or T-7could apply, depending on the relationship between C′ and
the type of subexpression e0 = new C(v̄) (we will call this type T0). Since
e0 is a subexpression of e, it must be well-typed. Rule T-4 must be the last
typing rule in the derivation. From the consequence of rule T-4 and lemma
3, we have ⊢ new C(v̄) : C|∅ and T0 = C. Since the premise of the evaluation
rule gives us C <: C′, we have T0 <: C′ and thus the last typing rule for the
derivation of e must be T-5. From our type derivation of new C(v̄) above, we
have the premise ⊢ e0 : C|∅. Substituting this into the consequence of rule
T-5, we get Te|τ̄e = C′|∅.
Since e′ = e0, we have already derived a type for e′ using type rule T-4: C|∅.
From the premise of the evaluation rule, we have C <: C′, so Te′ |τ̄e′ <: Te|τ̄e.

– Rule E-4 (casts of bags): We have e = (Bag < T >){v̄} and e′ = {v̄}. We
must find a type derivation for e consistent with the premise ∀Ti ∈ T̄.Ti <: T,
where Ti is the type of the associated element of the sequence v̄, vi. The
subexpression e0 = {v̄} can be typed by rule T-8. To ensure that e is well-
typed, the premises of this rule and lemma 3 give us the restrictions T′ =
⊔Ti and τ̄ = ∅, where ⊢ vi : Ti|∅. Substituting these restrictions in the

27



consequence for rule T-8, we get a type for e0 of T′ >|∅. Since T′ is the join
of all element types Ti and all are subtypes of T, T′ must be a subtype of
T. Thus, we can apply type rule T-5to e. If we substitute in the restrictions
obtained from the type derivation of {v̄} into the consequence of rule T-5,
we get Te|τ̄e = Bag < T >|∅.
From the above analysis, we already have a type derivation for e′ using rule
T-8: ⊢ {v̄} : Bag < T′ >|∅. Since T′ <: T, we have Te′ |τ̄e′ <: Te|τ̄e.

– Rule E-5 (throw within a constructor): We have e = new C(v̄, throw ve, ē)
and e′ = throw ve. From the form of e, we know that the last type rule in
its derivation must be rule T-4. In order for e to be well-typed, the premises
of rule T-4 must hold. This gives us the restriction ⊢ v̄, throw ve, ē : T̄e|τ̄ ,
where T̄e <: T̄f and T̄f represents the types of class C’s fields. From lemma 3,
we know that v̄ cannot throw any exceptions. We will represent the possible
exceptions thrown by ē as τ̄ē.
Based on the restrictions from the premises of T-4, the type of throw ve must
be a subtype of the corresponding field’s type, Ti. Type rule T-9 is the
only rule which matches the form of throw ve, so this must be the last
rule in its type derivation. Since the type T in the consequence is unbound,
we select T = Ti to satisfy the restriction derived above from rule T-4.
From the premises of rule T-9, we obtain the restrictions ⊢ ve : C0|τ̄0 and
C0 <: throwable. Since ve is a non-exception value, we can use lemma 3 to
simplify τ̄0 to ∅. Substituting these restrictions into the consequence of rule
T-9, we get ⊢ throw ve : Ti|C0. We can now substitute the types we have
computed for v̄, throw ve, ē into the consequence of rule T-4 to obtain a type
for e: Te|τ̄e = C|τ̄ē ∪ C0.
We now derive a type for e′. Since e′ = throw ve, ve must have the same type
as the corresponding subexpression in e: C0|∅. Based on the form of e′, the
last type rule in its type derivation must be rule T-9. We have established
above that ve satisfies the premises of this rule. Since the type T is unbound,
we now select T = C. Substituting this into the consequence for rule T-9, we
get ⊢ e′ : C|C0. By lemma 8, C0 ⊆: τ̄ē ∪ C0. Thus, we have Te′ |τ̄e′ <: Te|τ̄e.

– Rules E-6 – E-11, Ec-24, and Ec-26: Similar reasoning as that for rule E-
5 can be applied to these rules. In each case, e is a well-typed expression
containing the subexpression throw new Ce(v̄) and e′ = throw new Ce(v̄).
From the restrictions we obtain by the type derivation of e and type rule
T-9, the type of e′ is T|C. Since we can choose T = Te and τ̄e must contain
Ce (e′ is a subexpression of e and not within a try-catch block), Te′ |τ̄e′

must be a subtype of Te|τ̄e.
– Rule E-12 (try of a non-exception value): We have e =

try {v; } catch (Ce x) {ec; } and e′ = v. From the premise, we know
that e is well-typed. Based on the form of e, type rule T-10 must be the
last rule used in the type derivation. Substituting the subexpressions of
e into the premises of rule T-10, we get ⊢ v : Tt|τ̄t, x:Ce ⊢ ec : Tc|τ̄c, and
τ̄ ′
t = {τ ∈ τ̄t | τ 6<: Ce}. From lemma 3, we know that τ̄t = ∅ and thus

τ̄ ′
t = ∅. Substituting these types into the consequence of rule T-10, we get
Te|τ̄e = Tt ⊔ Tc|τ̄c.
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Since e′ = v is the same v we typed as a subexpression of e, e′ must have
the same type as v. Thus, Te′ |τ̄e′ = Tt|∅. When joining a type with other
types, the resulting type must be equal to or a supertype of the original type.
Thus, Tt <: Tt ⊔ T̄c. This fact and ∅ ⊆: τ̄c, lead to Tt ⊔ Tc|τ̄c <: Tt|∅. Thus,
Te|τ̄e <: Te′ |τ̄e′ .

– Rule E-13 (catch of an exception): We have e =
try {throw new C(v̄); } catch (Ce x) {ec; } and e′ = [v/x]ec. From
the premise, we know that e is well-typed. Based on the form of e,
type rule T-10 must be the last rule used in the type derivation. Sub-
stituting the subexpressions of e into the premises of rule T-10, we get
⊢ throw new C(v̄) : Tt|τ̄t, x : Ce ⊢ ec : Tc|τ̄c, and τ̄ ′

t = {τ ∈ τ̄t | τ 6<: Ce}.

We wish to further narrow the type of et = throw new C(v̄), so we construct
a type derivation. Based on the form of et, the last rule in the derivation must
be type rule T-9. By rule T-4 and lemma 3, the subexpression new C(v̄) can
be typed as C|∅. From the premises of rule T-9, we obtain the restriction
C <: Throwable. Substituting the type of new C(v̄) into the consequence of
rule T-9, and choosing Tc for the unbound type variable in the consequence,
we obtain ⊢ et : Tc|C. Relating this to e and the premises of rule T-10, we
get Tt = Tc and τ̄t = C.

From the premise of evaluation rule E-13 that C <: C0 and τ̄t = C, we find
that τ̄ ′

t = ∅. Intuitively, no exceptions are thrown by the try block which are
not caught by the catch block. We can now substitute what we have derived
into the consequence of type rule T-10 to obtain a type for e: Te|τ̄e = Tc|τ̄c.

We now consider the type of e′. In the type derivation of e, we gave ec (the
catch block’s body) the type Tc|τ̄c. This type was computed in the type
environment Γ = x : Ce. The exception value v thrown from the try block
has the form new C(v̄), which we typed using rule T-4 as C|∅. From the
premise of the evaluation rule, we have C <: C0. Thus, the type of v is a
subtype of the type of x. From lemma 4, we get ⊢ [v/x]ec : T′c|τ̄

′
c, where

T′c <: Tc and τ̄ ′
c ⊆: τ̄c.

We now have Te|τ̄e = Tc|τ̄c and Te′ |τ̄e′ = T′c|τ̄
′
c. Thus, Te′ |τ̄e′ <: Te|τ̄e.

– Rule E-14 (exception escaping a try-catch block): We have e =
try {throw new C(v̄)} catch (Ce x) {ec; } and e′ = throw new C(v̄). From
the premise, we know that e is well-typed. Based on the form of e, type rule T-
10 must be the last rule used in the type derivation. Substituting the subex-
pressions of e into the premises of rule T-10, we get ⊢ throw new C(v̄) : Tt|τ̄t,
x : Ce ⊢ ec : Tc|τ̄c, and τ̄ ′

t = {τ ∈ τ̄t | τ 6<: Ce}.

We wish to further narrow the type of et = throw new C(v̄), so we construct
a type derivation. Based on the form of et, the last rule in the derivation must
be type rule T-9. By rule T-4 and lemma 3, the subexpression new C(v̄) can
be typed as C|∅. From the premises of rule T-9, we obtain the restriction
C <: Throwable. Substituting the type of new C(v̄) into the consequence of
rule T-9and choosing Tc for the unbound type variable T, we obtain ⊢ et :
Tc|C.
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From the premise of evaluation rule E-14 that C 6<: Ce and from τ̄t = C, we
find that τ̄ ′

t must be C. We can now substitute what we have derived into
the consequence of type rule T-10 to obtain a type for e: Te|τ̄e = Tc|C ∪ τ̄c.
We now consider the type of e′. Since e′ is just et, we can reuse the type
derivation for et above: ⊢ et : Tc|C. Since C ⊆: C∪τ̄c, we have Te′ |τ̄e′ <: Te|τ̄e.

Congruence rules:

– Rule E-15 (field receiver reduction): We have e = e0.f and e′ = e′0.f .
By the theorem’s premise, the expression e and subexpression e0 must be
well typed. The last rule in the type derivation of e must be rule T-2, yield-
ing a type of the form Ti|τ̄ where Ti is the type of field fi in T̄ f̄. By the
premise of rule T-2, the subexpression e0 has the type C0|τ̄ . By the inductive
hypothesis, we know that, if e0 → e′0 and ⊢ e′0 : C′

0|τ̄
′, then C′

0 <: C0 and
τ̄ ′ ⊆: τ̄ . By subtyping rule S-Cls, if C′

0 <: C0, then field fi of C0 is also
present in C′

0 and will have the same type, Ti. In other words, the fields of
C′

0 are a superset of those in C0: fields(C′
0) = T̄ ∪ T̄′ f̄ ∪ f̄′.

We can now derive a type for e′ using type rule T-2. From premises ⊢ e′0 :
C′

0|τ̄ and fields(C′
0) = T̄ ∪ T̄′ f̄ ∪ f̄′, we obtain ⊢ e′0.fi : Ti|τ̄ ′. Since τ̄ ′ ⊆: τ̄ ,

we have Te′ |τ̄e′ <: Te|τ̄e.
– Rule E-16 (method receiver reduction): We have e = e0.m(ē) and e′ =

e′0.m(ē). By the theorem’s premise, the expressions e and subexpressions
e0 and ē are well-typed. Based on the form of e , the last rule in the type
derivation for e must be type rule T-3. The premises of this rule give us the
restrictions ⊢ e0 : C0|τ̄0, mtype(m, C0) = T̄f → Tr throws τ̄m, ⊢ ē : T̄a|τ̄a,
and T̄a <: T̄f . From the consequence of this rule, the type of e must have
the form Tr|τ̄0 ∪ τ̄m ∪ τ̄a.
We now derive a type for e′. If e′ is well-typed, then, based on the form of
e′, the last type rule in the derivation must be rule T-3. By the inductive
hypothesis, we know that, if e0 → e′0, then e′0 must be a subtype of e0. From
the derivation above we have ⊢ e0 : C0|τ̄0. Thus, e′0 must have a type of the
form C′

0|τ̄
′
0 where C′

0 <: C0 and τ̄ ′
0 ⊆: τ̄0. This gives use the first premise of

rule T-3. To derive the second premise of rule T-3, we use lemma 2 and the
fact that C′

0 <: C0: mtype(m, C′
0) = T̄f → Tr throws τ̄ ′

m, where τ̄ ′
m ⊆: τ̄m.

Since the subexpression ē is the same in e and e′, then it must have the same
type in e′: ⊢ ē : T̄a|τ̄a. This gives us the third and fourth premises for rule 3.
Now we can substitute the types we’ve derived for each subexpression into
the consequence for rule 3: ⊢ e′ : Tr|τ̄ ′

0∪ τ̄ ′
m∪ τ̄a. Since τ̄ ′

0 ⊆: τ̄0 and τ̄ ′
m ⊆: τ̄m,

then Te′ |τ̄e′ <: Te|τ̄e.
– Rule E-17 (method argument reduction): We have e = v0.m(v̄, ei, ē) and

e′ = v0.m(v̄, e′i, ē). By the theorem’s premise, the expressions e and subex-
pressions v and v̄, ei, ē are well-typed. Based on the form of e, the last rule
in the type derivation for e must be type rule T-3. The premises of this rule
give us the restrictions ⊢ v : C0|τ̄0, mtype(m, C0) = T̄f → Tr throws τ̄m,
⊢ v̄ : T̄v|τ̄v, ⊢ ei : Ti|τ̄i, and ⊢ ē : T̄a|τ̄a, where T̄v, Ti, T̄a <: T̄f . By lemma
3, we know that τ̄0 = ∅ and τ̄v = ∅. Substituting these restrictions into the
consequence of rule T-3, we get Te|τ̄e = Tr|τ̄m ∪ τ̄i ∪ τ̄a.
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We now derive a type for e′. Based on the form of e′, the last type rule in
the derivation must be rule T-3. Since the receiver of the method call is the
same for both e and e′, the types of the receiver and the method must be the
same as well. This gives us the first two premises of rule T-3: ⊢ v : C0|∅ and
mtype(m, C0) = T̄f → Tr throws τ̄m. Likewise, the subexpressions v̄ and
ē are the same in both expressions, yielding the same types: ⊢ v̄ : T̄v : ∅ and
⊢ ē : T̄a|τ̄a. By the inductive hypothesis, we know that, if ei → e′i, then
e′i must be a subtype of ei. Thus, e′i has a type of the form T′i|τ̄

′
i , where

T′i <: Ti and τ̄ ′
i ⊆: τ̄i. Since T̄i is a subtype of the associated method argument

type in T̄f and T̄′i <: T̄i, we satisfy the fourth premise: T̄v, T
′
i, T̄a <: T̄f . Given

these premises for rule T-3, the consequence gives us the following type for
e′: Te′ |τ̄e′ = Tr|τ̄m ∪ τ̄ ′

i ∪ τ̄a.

Since τ̄ ′
i ⊆: τ̄i, then Te′ |τ̄e′ <: Te|τ̄e.

– Rules E-18, E-20, E-21, E-22, Ec-23, and Ec-25: These follow similar reason-
ing to that of rule E-17. By the premise of the theorem, e is well typed. From
the form of e , we know that the last rule in the type derivation must be rule
T-4, T-8, T-9, T-10, Tc-15, and Tc-16, respectively. We use the premises of
these rules to derive types for the subexpressions of e. Then, we derive a
type for e′. All but one subexpression is the same for both e and e′, enabling
us to use the types we derived for these subexpressions. By the premise of
the evaluation rule, the remaining subexpression e′0 is associated with the
corresponding subexpression e0 of e by an evaluation step. By the inductive
hypothesis, we know that e′0 must be a subtype of e0. This allows us to
establish that the type of e′ is a subtype of the type of e.

– Rule E-19 (reduction of casts): We have e = (T)e0 and e′ = (T)e′0. From
the theorem’s premise, we know that e is well-typed. The last rule in the
typing derivation for e may be either T-5, T-6, or T-7, depending on the
relationship between the type of e0 and T. Without loss of generality, we
represent the type of e0 as T0|τ̄0.

By the premise of the evaluation rule, e0 → e′0. Thus, by the inductive
hypothesis, we know that e′0 must be a subtype of e0. In other words, e′0 has
a type of the form T′0|τ̄

′, where T′0 <: T0 and τ̄ ′ ⊆: τ̄ . Based on the form of
e′, the last rule used in its type derivation must be either T-5, T-6, or T-7,
depending on the relationship between T′0 and T.

We now derive types for e and e′, based on the possible relationships T has
with T0 and T′0:

1. T0 <: T: Type rule T-5 has the premise T0 <: T and thus must be the
last rule in the type derivation for e. Substituting the type of e0 into the
consequence of this rule, we get Te|τ̄e = T|τ̄0.

Since the subtyping relationship is transitive, T0 <: T implies that T′0 <:
T. Thus, if e′ is well-typed, type rule T-5 must be the last rule in its type
derivation. By the inductive hypothesis, e′0 is well-typed. Substituting
the type we derived for e′0 above into the consequence of rule T-5, we
get Te′ |τ̄e′ = T|τ̄ ′

0. Since τ̄ ′
0 ⊆: τ̄0, Te′ |τ̄e′ <: Te|τ̄e.
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2. T <: T0 and T 6= T0: Type rule T-6 has the premises T <: T0 and T 6=
T0 and thus must be the last rule in the type derivation for e. Substituting
the type of e0 into the consequence of this rule, we get Te|τ̄e = T|τ̄0.
Next, we derive a type for e′. By the inductive hypothesis, e′0 is well-
typed and T′0 <: T0. However, this relationship does not constrain the
relationship between T and T′0. Thus, any of type rule T-5, T-6, or T-
7may be the last rule in the type derivation of e′. However, substituting
the type of e0 into the consequences of each of these rules yields the same
type: Te′ |τ̄e′ = T|τ̄ ′

0. Since τ̄ ′
0 ⊆: τ̄0, we get Te′ |τ̄e′ <: Te|τ̄e.

3. T0 6<: T and T 6<: T0: Type rule T-7 has the premises T0 6<: T and
T 6<: T0 and thus must be the last rule in the type derivation for e.
Substituting the type of e0 into the consequence of this rule, we get
Te|τ̄e = T|τ̄0.
By the inductive hypothesis, e′0 is well-typed and T′0 <: T0. However, by
contradiction, if T and T0 do not have a relationship, then T and T′0 do
not have a relationship either. Thus, if e′ is well-typed, then type rule T-
7 must be the last rule in its derivation. Substituting the type of e′0 into
the consequence for rule T-7, we get Te′ |τ̄e′ = T|τ̄ ′

0. Since τ̄ ′
0 ⊆: τ̄0, then

Te′ |τ̄e′ <: Te|τ̄e.

We now extend subject reduction to CTJ program states.

Theorem 2 (=⇒c Subject Reduction). If ⊢ e : Te|τ̄e and B OK and e|B =⇒c

e′|B′, then ⊢ e′ : Te′ |τ̄e′ and B′ OK.

Proof. By using a case analysis on the evaluation rules:

– Rule Ec-Con (step via −→c relation): By theorem 1, we have Te′ |τ̄e′ <: Te|τ̄e.
The blocked task set remains unchanged and B OK is a premise of the
theorem.

– Rule Ec-Throw (throw): The expression e remains unchanged and, thus is
well-typed. B′ is the empty set, which is well-typed by rule Tc-17.

– Rule Ec-Wait (wait): The value new Object() is well-typed by rule T-4. By
the premise of the theorem, E[wait {v̄}] is well-typed and, by type rule Tc-
15, the wait call has type Event|∅. Thus, E[new Event()] will be well-typed
and B′ OK by rule Tc-17.

– Rules Ec-Run and Ec-η∅Run (selection of an event): By rule Tc-17, E[] is
well-typed when the placeholder is replaced with an object of type Event.
Thus, E[η] and E[η0] are well-typed. B′ = B \ ({v̄}, E[]) and is OK by rule
Tc-17.

– Rule Ec-Spn (spawn): By type rules T-4 and Tc-16, new C(v̄) and
spawn C(v̄) both have type C|∅. Thus, substituting new C(v̄) for
spawn C(v̄) will result in a well-typed expression. From type rule Tc-16 we
know that C <: Task. Thus, the expression (new C(v̄)).run(new Event()) is
well-typed by rule T-3 and B’ OK by Tc-17.

Note that, when taking a step via the =⇒c relation, a subtype relationship
no longer holds between the original expression and the new expression. If the
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evaluation context is of the form E[wait{v̄}], the current expression may be
replaced with one from the blocked set. This new expression need not have a
subtype relationship with the previous one. As we shall see in theorem 5, this
does not prevent us from making the usual claims about the type safety of CTJ
programs.

Progress The progress theorem states that well-typed CTJ programs cannot
get “stuck”, except when a bad cast occurs.

We first state a technical lemma needed for the proofs:

Lemma 9 (Canonical forms). The forms of values are related to their types
as follows:

– If ⊢ ν : C|τ̄ , and ν is a value, then ν has either the form new C(v̄), where
⊢ v̄ : T̄f , or the form throw new C(v̄), where C <: Throwable.

– If ⊢ ν : Bag < T >|τ̄ , and ν is a value, then ν has either the form {v̄}, where
⊢ v̄ : T̄|∅ and T = ⊔T̄, or the form throw new C(v̄), where C <: Throwable.

Theorem 3 (−→c Progress). Suppose ⊢ e : T |τ̄ . Then either e is a normal
form or there exists an expression e′ such that e −→c e′.

Proof. We prove theorem 3 by induction on the depth of the derivation of ⊢ e :
T |τ̄ , using a case analysis on the last type rule for each derivation

The handling of exceptions in this proof is interesting due to the type rule
for throw (T-9) – it assigns an arbitrary type. If the exception type τ̄ , is non-
empty, we must consider values of the form throw ve whenever we consider
values. Thus, expressions that may step by a computation rule may also step
to a throw expression. This is reflected in our canonical forms lemma, which
includes a throw expression for each value form.

We now present the detailed case analysis for each type rule:

– Rule T-1 (variables): This is a contradiction, as x is not well-typed in an
empty type environment.

– Rule T-2 (fields): We have e = e0.fi where ⊢ e0 : C0|τ̄ . By the inductive
hypothesis, one of the following is true for the subexpression e0:
• e0 is a value v: By lemma 9, e0 must have either the form new C(v̄) or

the form throw new C(v̄). In the first case, computation rule E-1 can be
applied. In the second case computation rule E-9 can be applied. Both
cases yield a value for e′.
• e0 is one of the following normal forms: E[spawn C(v̄)], E[wait {v̄}],

E[(T )v] (where ⊢ v : T ′ and T ′ 6<: T ), or v (a non-exception value). In
this case, e is also of the same form, and thus is a normal form.
• There exists an e′0 such that e0 → e′0: Congruence rule E-15 can be

applied to yield a new expression e′.
– Rule T-3 (method calls): We have e = e0.m(ē) where ⊢ e0 : C0|τ̄0 and
⊢ ē : T̄|τ̄a. By the inductive hypothesis, one of the following is true for the
subexpression e0:
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1. e0 is a value v. By lemma 9, e0 must have either the form new C(v̄) or
the form throw new C(v̄). In the second case, evaluation rule E-6 can
be applied, yielding a value for e′. If e0 has the form new C(v̄), then we
must look at the form of the method’s actuals as well. We analyze each
element of the sequence ē in order, applying the inductive hypothesis:
(a) ei is a value and thus ē has the form v̄, vi, ē

′. As a value, vi must
have either the form new C(v̄′), {v̄′}, or throw ve. In the third case,
computation rule E-7 may be applied, yielding a value for e′. In
the first two cases, if ei is not the last element in the sequence,
the inductive hypothesis can be applied to the next element in the
sequence. If ei is the last element in the sequence and has either the
form new C(v̄′) or {v̄′}, then, computation rule E-2 may be applied
to yield a new expression e′.

(b) ei is one of the following normal forms: E[spawn C(v̄)], E[wait {v̄}],
or E[(T )v] (where ⊢ v : T ′ and T ′ 6<: T ). Then, ē is of the form
v̄,normal form, ē′. As a result, e is of the same form as ei, and thus
is a also a normal form.

(c) There exists an e′i such that ei → e′i. Thus, ē is of the form
v̄, ei, ē

′ and congruence rule E-17 can then be applied to yield a
new expression e′.

2. e0 is one of the following normal forms: E[spawn C(v̄)], E[wait {v̄}], or
E[(T )v] (where ⊢ v : T ′ and T ′ 6<: T ). In this case, e is also of the same
form, and thus is a normal form.

3. There exists an e′0 such that e0 → e′0. Congruence rule E-16 can then be
applied to yield a new expression e′.

– Rule T-4 (constructors): We have e = new Cc(ē) where ⊢ ē : T̄e|τ̄ . We analyze
each element of the sequence ē in order, applying the inductive hypothesis:
1. ei is a value and thus ē has the form v̄, vi, ē

′. As a value, vi must have
either the form new C(v̄′), {v̄′}, or throw ve. In the third case, compu-
tation rule E-5 may be applied, yielding a value for e′. In the first two
cases, if ei is not the last element in the sequence, the inductive hypoth-
esis can be applied to the next element in the sequence. If ei is the last
element in the sequence and has either the form new C(v̄′) or {v̄′}, then,
e is a value.

2. ei is one of the following normal forms: E[spawn C(v̄)], E[wait {v̄}],
or E[(T )v] (where ⊢ v : T ′ and T ′ 6<: T ). Then, ē is of the form
v̄,normal form, ē′. As a result, e is of the same form as ei, and thus
is a also a normal form.

3. There exists an e′i such that ei → e′i. Thus, ē is of the form v̄, ei, ē
′ and

congruence rule E-18 can then be applied to yield a new expression e′.
– Rule T-5(casts where T0 <: T): We have e = T (e0) where ⊢ e0 : T0|τ̄ . By the

induction hypothesis, one of the following is true for e0:
1. e0 is a value. By the premise of the typing rule, we have T0 <: T. As a

value, e0 must have either the form new C(v̄), {v̄}, or throw ve. Com-
putation rules E-3, E-4, and E-5 (respectively) can be applied to yield a
new expression e′.
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2. e0 is one of the following normal forms: E[spawn C(v̄)], E[wait {v̄}], or
E[(T )v] (where ⊢ v : T ′ and T ′ 6<: T ). In this case, e is also of the same
form, and thus is a normal form.

3. There exists an e′0 such that e0 → e′0. Congruence rule E-19 can then be
applied to yield a new expression e′.

– Rule T-6 (casts where T <: T0 and T 6= T0): We have e = T (e0) where
⊢ e0 : T0|τ̄ . By the premise of the typing rule, we have T0 6<: T. By the
induction hypothesis, one of the following is true for e0:
1. e0 is a value. As a value, e0 must have either the form new C(v̄), {v̄},

or throw new Ce(v̄). The third case is not possible since, by type rule
T-9, ⊢ throw new Ce(v̄) : ⊥|Ce. ⊥ is a subtype of all other types, which
contradicts the premise of typing rule T-6.
If e0 has either the form new C(v̄) or {v̄}, then e has the form E[(T )v],
where the type of v is not a subtype of T . This is a runtime casting error.

2. e0 is one of the following normal forms: E[spawn C(v̄)], E[wait {v̄}], or
E[(T )v] (where ⊢ v : T ′ and T ′ 6<: T ). In this case, e is also of the same
form, and thus is a normal form.

3. There exists an e′0 such that e0 → e′0. Congruence rule E-19 can then be
applied to yield a new expression e′.

– Rule T-7 (casts where T0 6<: T and T 6<: T0): We have e = T (e0) where
⊢ e0 : T0|τ̄ . This case is handled in the same manner as type rule T-6.

– Rule T-8 (bags): We have e = {ē} where ⊢ ē : T|τ̄ . We analyze each element
of the sequence ē in order, applying the inductive hypothesis:
1. ei is a value and thus ē has the form v̄, vi, ē

′. As a value, vi must have
either the form new C(v̄′), {v̄′}, or throw ve. In the third case, compu-
tation rule E-8 may be applied, yielding a value for e′. In the first two
cases, if ei is not the last element in the sequence, the inductive hypoth-
esis can be applied to the next element in the sequence. If ei is the last
element in the sequence and has either the form new C(v̄′) or {v̄′}, then,
e is a value.

2. ei is one of the following normal forms: E[spawn C(v̄)], E[wait {v̄}],
or E[(T )v] (where ⊢ v : T ′ and T ′ 6<: T ). Then, ē is of the form
v̄,normal form, ē′. As a result, e is of the same form as ei, and thus
is a also a normal form.

3. There exists an e′i such that ei → e′i. Thus, ē is of the form v̄, ei, ē
′ and

congruence rule E-20 can then be applied to yield a new expression e′.
– Rule T-9 (throw): We have e = throw e0 where ⊢ e0 : C0|τ̄ and C0 <:

Throwable. By the inductive hypothesis, one of the following is true for e0:
1. e0 is a value. By lemma 9, e0 must have the either form new C(v̄) or

throw ve. In the first case, e is then a value. In the second case, compu-
tation rule E-11 can be applied to yield a value.

2. e0 is one of the following normal forms: E[spawn C(v̄)], E[wait {v̄}], or
E[(T )v] (where ⊢ v : T ′ and T ′ 6<: T ). In this case, e is also of the same
form, and thus is a normal form.

3. There exists an e′0 such that e0 → e′0. Congruence rule E-21 can then be
applied to yield a new expression e′.
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– Rule T-10(try-catch blocks): We have e =
try {et; } catch (Ce x) {ec; } where ⊢ et : Tt|τ̄t. By the inductive
hypothesis, one of the following is true for e0:
1. et is a value. As a value, et must have either the form new C(v̄), {v̄}, or

throw new Ce(v̄). For the third case, either E-13 or E-14 can be applied,
depending on the relationship between Ce and the exceptions caught by
the catch block.
If et has either the form new C(v̄) or {v̄}, then computation rule E-12 can
be applied to e, yielding a value.

2. et is one of the following normal forms: E[spawn C(v̄)], E[wait {v̄}], or
E[(T )v] (where ⊢ v : T ′ and T ′ 6<: T ). In this case, e is also of the same
form, and thus is a normal form.

3. There exists an e′t such that et → e′t. Congruence rule E-22 can then be
applied to yield a new expression e′.

– Rule Tc-15 (wait): We have e = wait e0 where ⊢ e0 : Bag < Event >|τ̄ . By
the inductive hypothesis, one of the following is true for e0:
1. e0 is a value. By lemma 9, e0 must have either the form {v̄} or

throw new Ce(v̄). In the first case, we have an expression of the form
E[wait {v̄}] where each element of v̄ is a subtype of Event. In the second
case, computation rule Ec-24 can be applied to yield a value.

2. e0 is an expression of the form E[(T )v], where the type of v is not a
subtype of T . Then, e is also of the form E[(T )v].

3. e0 is one of the following normal forms: E[spawn C(v̄)], E[wait {v̄}], or
E[(T )v] (where ⊢ v : T ′ and T ′ 6<: T ). In this case, e is also of the same
form, and thus is a normal form.

4. There exists an e′0 such that e0 → e′0. Congruence rule Ec-23 can then
be applied to yield a new expression e′.

Theorem 4 (=⇒c Progress). Suppose ⊢ e : T |τ̄ and B OK. Then one of the
following must be true:

– e is a value and B = ∅.
– e is of the form E[(T )v], where E[] is an evaluation context and v is a value

whose type is not a subtype of T . We call this a runtime cast error.
– There exists an expression e′ and set of blocked tasks B′ such that e|B =⇒c

e′|B′.

Proof. From theorem 3, we know that either e is a normal form or there exists
an expression e′ such that e −→ e′. If e −→ e′, then, by evaluation rule Ec-Con,
e|B

ǫ
=⇒ e′|B. If e is a normal form, we perform a case analysis over normal forms

and the contents of B:

– If e has the form E[spawn C(v̄)] or E[wait {v̄}], then e steps by rules Ec-
Spn and Ec-Wait, respectively.

– If e has the form E[(T )v] where v is a value whose type is not a subtype of
T , then a runtime cast error has occurred, and no step may be taken.

– If e is an exception value, and B is not empty, then e|B =⇒ e′|B′ by evalua-
tion rule Ec-Throw.
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– If e is a non-exception value and B is not empty, then e|B =⇒ e′|B′ by either
evaluation rule Ec-Run or Ec-η∅Run.

– If e is a value and B = ∅, then the program has terminated and cannot step.

Soundness We now combine theorems 2 and 4 to extend our guarantee to entire
program executions. First, we need two lemmas regarding exceptions:

Lemma 10 (−→c Exceptions). If ⊢ e : T|τ̄ , and e −→∗
c throw new C(v̄), then

∃τi ∈ τ̄ | C <: τi.

Proof. By induction over evaluation steps. By the inductive hypothesis, an ar-
bitrary expression from the sequence ei has type ⊢ ei : Ti|τ̄i, where τ̄i ⊆: τ̄ . If
ei −→ ei+1, then, by theorem 2, ⊢ ei+1 : Ti+1|τ̄i+1, where τ̄i+1 ⊆: τ̄i.

From type rule T-9, ⊢ throw new C(v̄) : T|C. If e −→∗ throw new C(v̄), then
C ⊆: τ̄ .

Lemma 11 (=⇒c Exceptions). If ⊢ e : T|∅, and e|∅ =⇒∗
c e′|B′, then ⊢ e′ :

T ′|∅.

Proof. From lemma 10, we know that evaluation of e through the −→c relation
cannot yield an exception value (there is no class C such that C ⊆: ∅).

During the program’s evaluation, new expressions may be created through
application of evaluation rule Ec-Spn (spawn) followed by evaluation rule Ec-
η∅Run (execution of a null event), but these expressions will be of the form
(new C(v̄)).run(η0), where C <: Task. Since the run method of C does not
declare any thrown exceptions, then, by type rule T-11, neither does the
run method of class C. By lemma 10, we know that such expressions will not
evaluate to an uncaught exception.

Now, we can state the main result for this section: a well-typed CTJ program
either terminates to a non-exception value, diverges, or stops due to a runtime
cast error.

Theorem 5 (Soundness). If Pc = CL return e is a CTJ program and ⊢c

Pc OK, then one of the following must be true:

– e|∅ =⇒∗
c v|∅, where v is a non-exception value.

– e|∅ ↑
– e|∅ =⇒∗

c E[(T )v]|B, where the type of v is not a subtype of T .

Proof. By induction over evaluation steps. The initial state of P is e|∅. By theo-
rem 4, either e is a value, e is a runtime cast error, or there exists an e′|B′ such
that e|∅ =⇒c e′|B′. By theorem 2, e′ is well-typed and B′ OK.

Next, we look at an arbitrary state ei|Bi such that e|∅ =⇒∗
c ei|Bi. By the

inductive hypothesis, ei|Bi is well-typed. By theorem 4, either ei is a value, ei is
a runtime cast error, or there exists an ei+1|Bi+1 such that ei|Bi =⇒c ei+1|Bi+1.
By theorem 2, ei+1 is well-typed and Bi+1 OK.

Thus, the program will either step forever, terminate, or become stuck due
to a runtime cast error. If the program terminates, by lemma 11, it cannot
terminate due to an uncaught exception.
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No lost exceptions Note that a CTJ program never evaluates to an uncaught
exception. The type system statically ensures that both the initialization ex-
pression and the run methods of any spawned tasks catch all exceptions thrown
during evaluation. We state this more formally as follows:

Corollary 1 (No lost Exceptions). If ⊢ e : T|∅, and e|∅ =⇒∗
c e′|B′, then

⊢ e′ : T ′|∅.

No lost continuations As discussed in the introduction, when one writes
event-driven programs in a continuation passing style, it is possible to drop
a continuation and thus never pass the result of an asynchronous operation
to its logical caller. This problem is easily avoided in CTJ programs by using
asynchronous methods and wait calls instead of continuations. Such calls are
evaluated in the same manner as standard method calls. More specifically, the
language semantics ensure that, if program execution reaches an asynchronous
method call or wait call, either evaluation of the calling expression is eventually
resumed (with the results of the call), execution stops due to a runtime cast
error, or the program diverges. More formally, we can state:

Corollary 2 (No lost continuations). For any program state E[e0]|B, where
e0 is an asynchronous method call or a wait call, either:

– E[e0]|B =⇒∗
c E[v]|B′, where v is a value,

– E[e0]|B ↑, or
– E[e0]|B =⇒∗

c E′[(T )v]|B′, where the type of v is not a subtype of T .

We first prove for the more general case where e0 is an arbitrary expression.
We do this using two lemmas:

Lemma 12 (−→c Evaluation to normal forms). An expression e either
evaluates to a normal form or diverges.

Proof Idea This can be proven by induction over evaluation steps using theorem
3 (at each step, either an evaluation rule can be applied or a normal form has
been reached).

Lemma 13 (=⇒c Evaluation to normal forms). For any program state
E[e0]|B, either:

– E[e0]|B =⇒∗
c E[v]|B′, where v is a value,

– E[e0]|B ↑, or
– E[e0]|B =⇒∗

c E′[(T )v]|B′, where the type of v is not a subtype of T .

Proof. By induction over evaluation steps. By lemma 12, either e0 −→
∗
c e′0, where

e′0 is a normal form, or evaluation diverges. We look at each possible outcome:

– If the evaluation diverges, the second case of the lemma is satisfied.
– If the normal form is a runtime cast error, the third case of the lemma is

satisfied.
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– If the normal form is a spawn call, evaluation rule Ec-Spn replaces the call
with an expression of the form new C(v̄). Then, either the entire expression is
a value, satisfying the first case of the lemma, or by the inductive hypothesis,
further evaluation either diverges, reaches a value, or reaches a runtime cast
error.

– If the normal form is a wait call, evaluation rule Ec-Wait can be ap-
plied to add the current evaluation context Ew[] and the set of waited-
for events sw to the blocked set Bw, resulting in a new program state
new Object|B ∪ (sw, Ew[]). The only evaluation rules that may be applied to
this new state are Ec-Run and Ec-η∅Run, which select a blocked evaluation
context for execution. If B = ∅, then (sw, Ew[]) must be selected. Otherwise,
induction over evaluation steps and theorem 4 can be used to show that
either (sw, Ew[]) is selected for evaluation through rule Ec-Run, evaluation
diverges, or a runtime cast error occurs. The second two cases satisfy this
lemma.
If (sw, Ew[]) is selected by rule Ec-Run, then an event η is selected from
sw and Ew[η] is evaluated. Either the entire expression is a value, satisfying
the first case of the lemma, or, by the inductive hypothesis, further evaluation
either diverges, reaches a value, or reaches a runtime cast error.

Proof (of corollary 2). Immediate from lemma 13.

5 Translating CoreTaskJava to EventJava

A CTJ program is translated to EJ by rewriting tasks and asynchronous methods
to use a continuation-passing style. We describe this translation using a set of
syntax transformation rules. Informally, these rules:

• Change each asynchronous method to forward its result to a continuation
object passed in as an input parameter, rather than returning the result
to its caller.
• Methods containing asynchronous method calls are split at the first asyn-

chronous call. The evaluation context surrounding the call is moved to the
run method of a new continuation class. An instance of this class is added
to the parameter list of the call. The continuation class itself may need to
be split as well, if the new run method contains asynchronous calls.
• Methods containing wait calls are split in the same manner. The evalu-

ation context surrounding the call is moved to the run method of a new
continuation class. The wait call is replaced by a reg call, with the contin-
uation class passed as the callback parameter. As above, the continuation
class itself may need to be split as well, if the new run method contains
asynchronous calls.
• If the original body of an asynchronous method may throw exceptions to

its caller, the method is changed to catch these exceptions and pass them
to a special error method on the continuation object. This error method
contains the same body as the run method. However, it replaces the use
of retVal (the result of a call) with a throw of the exception.
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Translation rules For the formalization of the translation, we consider a dy-
namic translation strategy where a CoreTaskJava program is translated as it
executes. The original CTJ program is run until it reaches an asynchronous call
or normal form. Then, the expression in the current evaluation context is trans-
lated to EventJava. If the expression is an asynchronous method or wait call,
the class table is augmented with a new callback class which contains the evalu-
ation context as its body. In either case, evaluation then continues until another
asynchronous method or normal form is reached, upon which another transla-
tion is performed. We will show that the executions of the original TaskJava
program and the dynamically translated EventJava program are observationally
equivalent.

Definition 1 (→֒ relation). We use the symbol →֒ to represent the evaluation
relation created by this interleaving of execution and translation.

We use this approach to simplify the state equivalence relation and to avoid
creating extra classes to store partial results. Of course, the TaskJava compiler
implementation performs a static translation. There are also slight differences
in the translation strategy due to limitations in the core calculus (e.g., lack of a
switch statement).

We assume that the translation of a CTJ program occurs after a typechecking
pass, so that all expressions are elaborated with their types. We only show type
elaborations where they are pertinent to the rules. In particular, they are used
for distinguishing asynchronous from standard methods and for properly casting
the result of an asynchronous call.

The translation relation ; is defined in Figure 15. Rules TR-AC1 and TR-
AC2 perform a dynamic translation of asynchronous method calls. They rewrite
the asynchronous method about to be called, adding a continuation parameter
to which the result of the call is forwarded. In addition, if the original call may
throw exceptions, these are caught in the rewritten method and passed to the
continuation’s error method. Lastly, the evaluation context of the call is moved
to a newly created callback class, Ccb, based on the code templates listed in
figure 16.

Rule TR-Wt translates wait calls to reg calls, moving the evaluation context
to a new continuation class, which is then passed as a callback to reg. Rule TR-
Sp translates a spawn call to a reg call with an empty event set. The last three
rules handle normal forms that do not need to be translated.

Example 1. Figure 17 shows a simple CTJ program which demonstrates cre-
ation of a task, calls between asynchronous methods, and wait calls. Figure 18
shows the evaluation of this program alongside the evaluation of the dynamically
translated program. Figure 19 shows the new classes and methods created by
the translation.

Each evaluation step is labeled with a number. A =⇒ between steps in
the table indicates an observable action, a −→ between steps indicates a non-
observable action, and a ; between steps indicates a dynamic translation. When
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ec‖CL ; ee‖CL
′

ec = E[(v0 : Crcv).m(v̄a)]
τ̄ 6= ∅ CLrcv = class Crcv extends C′ {f̄ K M̄}

async Tr m(T̄a x̄) throws τ̄ {return eb; } ∈ M̄

e′b = try {cb.run(eb); } catch (Exception e) {cb.error(e); }
M̄
′ = M̄ ∪ Object m′(T̄a x̄, Callback cb) {return e′b; }

CL′
rcv = class Crcv extends C′ {f̄ K M̄

′} fresh Ccb

ec‖CL ∪ CLrcv ; v0.m
′(v̄a, new Ccb())‖CL ∪ CLrcv ∪ Callbackexc(Ccb, E[], Tr)

(TR-AC1)

ec = E[(v0 : Crcv).m(v̄a) CLrcv = class Crcv extends C′ {f̄ K M̄}
async Tr m(T̄a x̄) {return eb; } ∈ M̄

M̄
′ = M̄ ∪ Object m′(T̄a x̄, Callback cb) {return cb.run(eb); }

CL′
rcv = class Crcv extends C′ {f̄ K M̄

′} fresh Ccb

ec‖CL ∪ CLrcv ; v0.m
′(v̄a, new Ccb())‖CL ∪ CLrcv ∪ Callbacknoexc(Ccb, E[], Tr)

(TR-AC2)

ec = E[wait {v̄}] fresh Ccb ecb = new Ccb()

ec‖CL ; reg {v̄}, ecb‖CL ∪ Callbacknoexc(Ccb, E[], Event)
(TR-Wt) E[spawn C(v̄)]‖CL ;

E[reg ∅, new C(v̄)]‖CL
(TR-Sp)

v‖CL ;

v‖CL
(TR-Val)

throw new Ce(v̄)‖CL ;

throw new Ce(v̄)‖CL
(TR-Th)

⊢ v : T′ T
′ 6<: T

E[(T)v]‖CL ; E[(T)v]‖CL
(TR-Cst)

Fig. 15. Translation rules

a method is called, we show both the pre-substitution and post-substitution val-
ues of each expression. The equivalence of these expressions is indicated by the
≡ symbol.

The specific steps taken by each program are:

1. The program starts by running the initialization expression, spawn T1(), with an
empty set of blocked tasks. Since the expression is a normal form, translation rule
TR-Sp is invoked to convert the spawn to a reg.

2. An observable evaluation step is taken by both programs, adding the task to
the blocked set of the CTJ program and the event set of the EJ program. The
spawn/reg expression is replaced by a dummy value.

3. Another observable evaluation step is taken by both programs, selecting the null
event η0. In both programs, the run method of the task T1 is called.

4. A non-observable evaluation step is taken by both programs, replacing the call of
run with the method’s body. Since the next evaluation step is an asynchronous
call, the EJ expression is translated by rule TR-AC2. This rule creates method
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Callbackexc(Ccb, E[], T) ≡
class Ccb extends Callback {

Object run(Object retVal) {
return E[(T)retVal];

}
Object error(Exception exc) {
return E[throw exc];

}
}

Callbacknoexc(Ccb, E[], T) ≡
class Ccb extends Callback {
Object run(Object retVal) {

return E[(T)retVal];
}

}

Fig. 16. Code templates used by the transformation

class T1 extends Task {
Object run(Event e) {

return this.m1(READ, SEND);

}
async Event m1(Event e1, Event e2) {

return this.m2(e1, e2);

}
async Event m2(Event e1, Event e2) {

return wait {e1, e2};
}

}
spawn T1();

Fig. 17. An example CTJ program
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Step CoreTaskjava Program State EventJava Program State

1 spawn T1()|∅ spawn T1()|∅ ;

reg ∅, new T1()|∅
∅

=⇒
∅

=⇒
2 new Object()|(∅, (new T1()).run([])) new Object()|(∅, new T1())

η0
=⇒

η0
=⇒

3 (new T1()).run(η0)|∅ −→ (new T1()).run(η0)|∅ −→
4 [η0/e, (new T1())/this] [η0/e, (new T1())/this]

(this.m1(READ, SEND))|∅ (this.m1(READ, SEND))|∅
≡ ≡

(new T1()).m1(READ, SEND)|∅ (new T1()).m1(READ, SEND)|∅;

−→ (new T1()).m1’(READ, SEND, new CB1())|∅ −→
5 [READ/e1,SEND/e2,(new T1())/this] [READ/e1,SEND/e2,(new CB1())/cb(new T1())/this]

(this.m2(e1, e2))|∅ (cb.run(this.m2(e1, e2)))|∅
≡ ≡

(new T1()).m2(READ, SEND)|∅ (new CB1()).run((new T1()).m2(READ, SEND))|∅ ;

−→ (new T1()).m2’(READ, SEND, new CB2())|∅ −→
6 [READ/e1, SEND/e2,(new T1())/this] [READ/e1, SEND/e2,(new CB2())/cb, (new T1())/this]

(wait {e1, e2})|∅ (cb.run(wait {e1, e2}))|∅
≡ ≡

wait {READ, SEND}|∅ (new CB2()).run(wait {READ, SEND})|∅;

reg {READ, SEND}, new CB3()|∅
{READ,SEND}

=⇒
{READ,SEND}

=⇒
7 new Object()|({READ, SEND}, []) new Object()|({READ, SEND}, new CB3())

SEND
=⇒

SEND
=⇒

8 SEND|∅ (new CB3()).run(SEND)|∅ −→
9 [SEND/retVal, (new CB2())/cb, (new CB3())/this]

(cb.run((Event)retVal))|∅
≡

(new CB2()).run((Event)SEND)|∅ −→
10 (new CB2()).run(SEND)|∅ −→
11 [SEND/retVal, (new CB1())/cb, (new CB2())/this]

(cb.run((Event)retVal))|∅
≡

(new CB1()).run((Event)SEND)|∅ −→
12 [SEND/retVal,(new CB2())/this](Event)retVal|∅

≡
(Event)SEND|∅ −→

13 SEND|∅

Fig. 18. Evaluation steps of example program.

43



class T1 extends Task {
...

Object m1’()(Event e1, Event e2, Callback cb) {
return cb.run(this.m2(e1, e2));

}
Object m2’()(Event e1, Event e2, Callback cb) {

return cb.run(wait {e1, e2});
}

}
class CB1 extends Callback {

Object run(Object retVal) {
return (Event)retVal;

}
}
class CB2 extends Callback {

Object run(Object retVal) {
return (new CB1()).run((Event)retVal);

}
}
class CB3 extends Callback {

Object run(Object retVal) {
return (new CB2()).run((Event)retVal);

}
}

Fig. 19. Generated classes and methods from example

m1’ based on method m1, creates the callback class CB1, and changes the call of m1
to a call of m1’.

5. An evaluation step is taken by both programs, replacing the call of m1/m1’ with
the method’s body. The EJ expression is then translated by rule TR-AC2, which
creates method m2’, creates the callback class CB2, and changes the call of m2 to a
call of m2’.

6. An evaluation step is taken by both programs, replacing the call of m2/m2’ with
the method’s body. The EJ expression is then translated by rule TR-Wt, which
creates the callback class CB3 and replaces the wait call with a reg call.

7. Both programs take an observable step. The CTJ program adds a pair containing
the {READ, SEND} event set and an empty evaluation context to the blocked tasks
set. The evaluation context is empty because the calling functions have no further
computation – the selected event becomes the result of the program execution.
The EJ program adds the pair ({READ, SEND}, new CB3()) to the pending event
set.

8. The scheduler selects the event SEND from the set and both programs take an
observable step to consume the event. For the CTJ program, the resulting program
state is a value and empty blocked task set, causing the program to terminate. For
the EJ program, the result is a call to the run method of CB3.

9. The EJ program takes a non-observable step, replacing the call to CB3.run with
its body.

10. The EJ program takes another step, removing the downcast to Event.

11. The EJ program takes a step, replacing the call to CB2.run with its body.

12. The EJ program takes a step, removing the downcast to Event.

13. The EJ program takes a step, replacing the call to CB1.run with its body.
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14. The EJ program takes a step, removing the downcast to Event. This leaves the

value SEND and an empty event set. Thus, the EJ program terminates with the

same result as the corresponding CTJ program.

Soundness of Translation We now prove observational equivalence between
a CTJ program and the EJ program obtained by evaluating the CTJ program
under the →֒ relation. As consequence of this equivalence, we prove the lost
continuation property.

Mapping Relation First, we must establish a relationship between CTJ and EJ
program states.

Definition 2. We write e0 ←→ e1 for CTJ expression e0 and EJ expression e1

if there exists an e′0 and e′1, such that e′0 and e′1 are in normal form, e0 −→∗
c e′0,

e1 −→∗
e e′1, and one of the following is true:

– e′0 = e′1
– e′0 = E′

0[(T )v] and e′1 = E′
1[(T )v], where the type of v is not a subtype of T .

– e′0 = E′
0[wait s] and e′1 = reg s, new CB(), where, for all η ∈ s, E′

0[η]←→
(new CB()).run(η).

– e′0 = E′
0[spawn C(v̄)] and e′1 = E′

1[reg ∅, new C(v̄)], where,
E′

0[new C(v̄)]←→ E′
1[new C(v̄)].

Definition 3. We define a relation⇐⇒ between CoreTaskJava states and Even-
tJava states:

ec0|(s1, Ec1[])...(sn, Ecn[])⇐⇒ ee0|(s1, new CB1())...(sn, new CBn())

where:

– ec0 ; ee0 and
– For all η in si, Eci[η]←→ (new CBi()).run(η).

Lemma 14 (Evaluation to normal form). If ec ; ee, then ec ←→ ee.

Proof Idea We prove this lemma by structural induction on the forms of ec where
a translation rule may be applied. For asynchronous method call rules TR-
AC1 and TR-AC2, evaluation leads to either another asynchronous method call
(for which we use the inductive hypothesis) or ee −→∗ e′e, where e′e is a normal
form. For the second case, we show that ec −→∗ e′c, where e′c is also in normal
form, and one of the following is true:

– e′c = e′e (both evaluate to a value)
– e′c = E′

c[(T )v] and e′e = E′
e[(T )v], where the type of v is not a subtype of T

(both encounter a bad cast)
– e′c = E′

c[wait s], e′e = reg s, new CB(), where, for all η ∈ s, E′
c[η] ←→

(new CB()).run(η).
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– e′c = E′
c[spawn C(v̄)] and e′e = E′

e[reg ∅, new C(v̄)], where, E′
c[new C(v̄)]←→

E′
e[new C(v̄)].

For rule TR-Wt, both expressions are already in normal form. Thus, zero
−→ steps are required to reach normal form, ec = E[wait s], and ee =
reg s, new CB(). We then show that, for all η ∈ s, E[η]←→ (new CB()).run(η).

For rule TR-Sp, both expressions are already in normal form, Thus zero
−→ steps are required to reach normal form, ec = E[spawn C(v̄)], and ee =
E[reg ∅, new C(v̄)]. Upon completion of the spawn or reg call, the placeholder
will be replaced with the null event η0, leading to the same resulting expression
in both cases.

For the remaining rules, ec = ee, and the theorem is trivially true.

Lemma 15 (Observable steps). If ec and ee are in normal form, and
ec|B ⇐⇒ ee|E, then either:

– ec|B
l

=⇒ e′c|B
′ and ee|E

l
=⇒ e′c|E

′, where e′c|B
′ ⇐⇒ e′e|E

′.

– Both ec and ee are of the form E[(T )v], where the type of v is not a subtype
of T .

– Both ec and ee are values and B and E are empty.

Proof Idea Case analysis on normal forms. Only the forms E[wait s] and
E[spawn C(v̄)] are non-trivial. In each case, there is a corresponding =⇒ evalu-
ation step for the translated expression which registers the same event set along
with a callback for which the ←→ relation holds.

Bisumulation To relate executions of a CTJ program through the =⇒c and
the →֒ relations, we must precisely define equivalence. We use stutter bisimula-
tion, which permits each relation to take an arbitrary number of non-observable
steps (through the −→ relation) before taking a matching pair of observable
steps which interact with the scheduler. This is necessary because the translated
program may need to take additional steps to reach the same execution state as
the original program.

Definition 4. A relation r between program states is a stutter bisimulation

relation if σ1 r σ2 implies:

1. For all σ1

ǫ
=⇒

∗
σ′

1

o
=⇒ σ′′

1 , there exists a σ′
2, σ

′′
2 such that σ′′

1 r σ′′
2 and

σ2

ǫ
=⇒

∗
σ′

2

o
=⇒ σ′′

2 , where o is either an In or Out label.

2. For all σ2

ǫ
=⇒

∗
σ′

2

o
=⇒ σ′′

2 , there exists a σ′
1, σ

′′
1 such that σ′′

1 r σ′′
2 and

σ1

ǫ
=⇒

∗
σ′

1

o
=⇒ σ′′

1 , where o is either an In or Out label.

Theorem 6 (Bisimulation). The relation ⇐⇒ is a stutter bisimulation rela-
tion.
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Proof. Consider an arbitrary pair of program states eci|Bi and eei|Ei from the
original and translated programs where eci ; eei. Suppose that the program
states are related by the ⇐⇒ relation. Then, by lemma 14, if eci steps to a
normal form, eei steps to a corresponding normal form. Once at a normal form,
if the original program takes an observable step, the translated program can take
a step with the same observation, by lemma 15. The resulting program states
satisfy the ⇐⇒ relation.

We have shown the proof for only one direction – if the CTJ program takes
a sequence of steps, the EJ program can take a corresponding sequence of steps.
To show the other direction, we use lemmas 16 and 17 below, which state that at
most one transition rule applies for each expression. Thus, once we have identified
a corresponding sequence of evaluation steps between the two executions, we
know that no other sequences are possible from the same initial states (assuming
the same choice of selected events).

Lemma 16 (Deterministic execution of CTJ programs). If e|B =⇒c

e′|B′ and e|B =⇒c e′′|B′′, then e′ = e′′ and B′ = B′′.

Proof Idea From theorem 4, we know that, if e|B is well-typed, then, either the
program execution halts (due to normal termination or a runtime cast error), or
a step can be taking via the =⇒c relation. A case analysis for each rule of the
=⇒c relation shows that, if e is well-typed, then no other rule may be applied
to e.

Lemma 17 (Deterministic execution of EJ programs). If e|E =⇒e

e′|E ′ and e|E =⇒e e′′|E ′′, then e′ = e′′ and E ′ = E ′′.

Proof Idea Same approach as used for lemma 16.

No lost continuations We can now state the lost continuation property for
translated CTJ programs. Informally, in the dynamic translation of a CTJ pro-
gram, if a callback is passed to an asynchronous method call or reg call, either
the program diverges, gets stuck due to a runtime cast error, or the callback is
eventually called.

Theorem 7 (No lost continuations). Consider a CoreTaskJava program
Pc = CLc return e0 such that ⊢c Pc OK. If e0|∅ →֒

∗ e′|E ′, where e′ has either the
form E[(new Cr(v̄)).m(v̄, new Ccb(v̄cb))] or the form E[reg({v̄}, new Ccb(v̄cb))]
where Ccb <: Callback, then either e′|E ′ diverges or e′|E ′ →֒∗ e′′|E ′′, where
e′′ has either the form E[(new Ccb(v̄cb)).run(v)] or the form E[(T )verr], where
the type of verr is not a subtype of T .

Proof. We use theorem 6 to construct a proof by contradiction. Consider an
arbitrary CTJ program fragment of the form E[e0], where e0 is an asynchronous
call or wait call, and E[] contains an observable action based on the result of this
call. By corollary 2, the subexpression e0 either evaluates to a value, diverges, or
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reaches a runtime cast error. By translation rules TR-AC1, TR-AC2, or TR-Wt,
the call will be translated to one of the EventJava forms listed in the theorem
above.3 The evaluation context containing the observable action will be moved
to a callback in the translated program. If this callback is never called (violating
theorem 7), the observable action in E[] will not occur, violating theorem 6.

6 Implementation

6.1 Compiling TaskJava Programs to Java

The TaskJava compiler implements a source-to-source translation of TaskJava

programs to (event-driven) Java programs. In this section, we describe the dif-
ferences between our compiler implementation and the formalized translation
presented in section 3. We refer to calls to wait and to async methods col-
lectively as asynchronous calls. Note that this translation is only needed for
methods containing asynchronous calls — all other methods are left unchanged.

Figure 20 shows the compiler’s output for the RequestTask class of figure
4. We will use this as a running example in the following description of the
translation approach.

CPS transformation of Tasks. The compiler uses continuation-passing style
to break up the run methods of tasks into a part that is executed up to an
asynchronous call and a continuation. Rather than implement the continuation
as a separate class, we keep the continuation within the original method. The
body of a task’s run is now enclosed within a switch statement (e.g. lines 7
- 32 of RequestTask), with a case for the initial code leading up to the first
asynchronous call and a case for each continuation. An integer field (called
state. step) is used to track the next continuation to run.

Callback classes are still created — these provide a standard interface for
the callee to invoke upon completion of a call. In our example, the class
run callback (lines 40 - 56) is created as a callback for RequestTask. To re-
sume a task, the callback simply sets the state. step variable to the correct
value, sets the result of the call (this is stored in the field state. retVal), and
re-invokes the task’s run method. This approach is necessary because the Java
compiler does not support a tail call optimization. In a pure continuation passing
style translation (as used in our formalization), loops which cross asynchronous
calls could result in a stack overflow.

Task state. Any state which must be kept across asynchronous calls (e.g. the
next step of the switch statement) is stored in a new state field of the task
(line 3 in the example). An inner class is defined to include these new fields
(RequestTask state, lines 35 - 39).

If local variables are declared in a block which becomes broken across con-
tinuations, they must be declared in a scope accessible to both the original code

3 We assume that the Callback base class is not available to CTJ programmers. Thus,
subclasses of Callback appearing in a translated program must have been generated
from one of these three translation rules.
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01 public class RequestTask implements Task {
02 private CharChannel ch;

03 RequestTask state state = new RequestTask state();
04 public RequestTask(CharChannel ch) { this.c = c; }
05 public void run() {
06 while (true) {
07 switch ( state. step) {
08 case 0:
09 state.rdr = new TaskIO.Reader(ch);

10 case 1:
11 rdr.readLine(new run callback(this, 2));
12 return;

13 case 2:
14 try {
15 if ( state. error!=null) throw state. error;
16 state.filename =
17 parseRequest((String) state. retVal);

18 state.sendData = readFile( state.filename);
19 TaskIO.write(ch, state.sendData,

20 new run callback(this, 3));
21 return;

22 } catch (Exception e) {
23 ch.close(); return;
24 }
25 case 3:
26 try {
27 if ( state. error!=null) throw state. error;
28 state. step = 1; break;
29 } catch (Exception e) {
30 ch.close(); return;
31 }
32 }
33 }
34 }
35 static class RequestTask state extends Object {
36 String fileName; EventIO.Reader rdr;

37 CharBuffer sendData; int step = 0;
38 Object retVal; Object error;

39 }
40 static class run callback extends tj.runtime.Callback {
41 RequestTask task; int nextStep;

42 run callback(RequestTask task, int nextStep) {
43 this.task = task; this.nextStep = nextStep;

44 }
45 public void run(Object retVal) {
46 task. state. retVal = retVal;
47 task. state. error = null;
48 task. state. step = this.nextStep;

49 task.run();
50 }
51 public void run(Exception e) {
52 task. state. retVal = null; task. state. error = e;

53 task. state. step = this.nextStep;
54 task.run();
55 }
56 }
57 }

Fig. 20. Translated code for RequestTask

and the continuation. Currently, we solve this problem by changing all local
variables to be fields of the state object.
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Asynchronous methods. async methods are translated in a similar manner
to tasks. However, since simultaneous calls of a given method are possible, the
state object is passed as a parameter to the method, rather than added as a
field to the containing class. The state object is created at the start of the call,
stored within each callback, and passed to the method when it is resumed. The
original parameters to the method call are also stored in this object.

Loops. If an asynchronous call occurs with a loop, the explicit loop statement
(e.g. while or for) is removed and replaced with a “branch and goto” style of
control flow, simulated using steps of the switch statement.

In our example, case 1 at line 10 represents the top of the original while loop.
At line 28, we have reached the bottom of the loop and return back to the top
by setting the current step back to 1 and then breaking out of the switch. The
entire switch statement has been enclosed in a loop (line 6) to enable control
to return to line 10 without a recursive call.

Exceptions. Exceptions are passed from callee to caller via a separate error

method on the callback. The callback assigns the exception to the error field
of the state object and then re-invokes the run method (lines 52 - 54 in the
example). When a call may have thrown an exception, the continuation code
checks whether the error variable has been set (lines 15 and 27). If so, it re-
throws the exception. The catch block is duplicated across each continuation
that the original catch block enclosed.

6.2 The scheduler

We wish to avoid making our compiler dependent on a specific scheduler imple-
mentation and its definition of events. One approach (assumed by the examples
of section 2) is to specify a scheduler to the compiler, perhaps as a command
line option. The compiler then replaces wait calls with event registrations for
this scheduler. This may still require the compiler to make some assumptions
about the signature of the scheduler’s register call.

We chose a more flexible approach in our implementation. We do not include
a wait call at all, but instead provide a second type of asynchronous method —
asyncdirect. From the caller’s perspective, an asyncdirect method looks like
a value-returning asynchronous method with an implicit (rather than explicit)
callback.

However, the declaration of an asyncdirectmethod must contain an explicit
callback. No translation of the code in the method’s body is performed — it is
the method’s responsibility to call the callback upon completion. Typically, a
direct asynchronous method registers an event, stores a mapping between the
event and the callback and then returns. Upon completion of the event, the
mapping is retrieved and the callback is invoked.

This approach easily permits more than one scheduler to be used within the
same program. Also, existing scheduler implementations can be wrapped with
asyncdirect methods and used by TaskJava.
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7 Case Study

Fizmez. To evaluate TaskJava in the context of a real application, we modified
an existing program to use interleaved computation. We chose Fizmez [5], a
simple, open source web server, which originally processed one client request at a
time. We first extended the server to interleave request processing by spawning a
new task for each accepted client connection. To provide a basis for comparison,
we also implemented a hand-coded, event-driven version of Fizmez that uses
explicit continuation passing.

Task version. The structure of the task implementation is similar to the ex-
ample web server of figure 4. Each iteration of the server’s main loop accepts a
socket and spawns a new WsRequest task. This task reads HTTP requests from
the new socket, retrieves the requested file and writes the contents of the file to
the socket.

The original Fizmez server used standard blocking sockets provided by the
java.io package. To use Fizmez with TaskJava, we built a (reusable) asyn-
chronous method layer on top of Java’s nonblocking I/O package (java.nio).
This layer, which is similar to the TaskIO example of Figure 3, provides a block-
ing API that subsets the standard java.io package, allowing us to convert I/O
calls to TaskJava by only changing class names in field and method argument
declarations.

Overall, we were able to maintain the same organization of the web server’s
code as was used in the original implementation. We only had to create one new
class, excluding the I/O library. The original request processing code was part of
the main web server class. We re-factored this out into a new class, WsRequest,
since tasks are now processed concurrently, requiring per-task state.

Explicit event version. As with the TaskJava version, we built our hand-coded
event-driven implementation on top of a reusable non-blocking I/O library (much
like the EventIO library of figure 1).

The event-driven implementation required major changes to the original
Fizmez code. The web server no longer has an explicit main loop. Instead, an
accept callback re-registers itself with the scheduler to process the next con-
nection request. More seriously, the processing of each client request, which is
implemented in a single method in the original and TaskJava implementations,
is split across six callback classes and a shared state class in the explicit event
implementation.

Implementation experiences. Figure 21 demonstrates the issues we faced
when refactoring Fizmez for the event-driven implementation. Part (a) shows a
sequence of method calls which appear in the original and task-based implemen-
tations. This sequence sends HTTP response headers to the client.

Since each call involves writing a string to the client’s channel, in the event-
driven version, each call must occur in a separate continuation invocation. In
addition, these calls are made from two different places — once when taking the
response from a cache and once when reading the response from a file.
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sendCode("200");

updateClient("Server: "+ws.getConf("ServerString")+"\n");
updateClient("Content-Length: "+

String.valueOf(responseLength)+"\n");
updateClient("Content-Type: "+mimeType+"\n\n");

(a) Version for original and TaskJava servers

public static class SendRespHeadersCont
implements WriteContinuation

{
WsRequest req; int step;
GenericContinuation cont;

SendRespHeadersCont(WsRequest req) { this.req = req; }
public void start(GenericContinuation cont) {

this.cont = cont; this.step = 1;
req.sendCode("200", this);

}
public void writeDone() {

switch (this.step) {

case 1:
this.step = 2;

req.updateClient("Server: "+
req.ws.getConf("ServerString")
+"\n", this);

break;
case 2:

this.step = 3;
req.updateClient("Content-Length: " +

String.valueOf(req.responseLength)
+"\n", this);

break;

case 3:
this.step = 4;

req.updateClient("Content-Type: "+req.mimeType+"\n\n",
this);

break;

case 4:
this.step = 5;

cont.run();
break;

default:
throw new RuntimeException("Unexpected step value’’);

}

}
public void writeError(Exception e) {

req.closeChannel("Error: " + e.toString());
}

}

(b) Version for event-based server

Fig. 21. Code to send HTTP response headers
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Client Latency(ms) Throughput(req/sec)
threads Event Task Event Task

1 33.0 31.1 30.2 32.1
25 76.8 79.2 322.1 306.3
50 112.4 120.0 443.4 413.5
100 187.6 197.0 351.0 262.2
200 317.3 345.8 403.5 225.8
300 455.8 462.4 324.2 328.6
400 601.4 695.9 216.0 212.0

Table 1. Web server performance test results

One could implement this using four callback classes, where each callback
in the sequence calls the next. The continuation to be called upon completion
of the four writes would be passed along from callback to callback. To avoid
creating so many classes, we used an alternative approach: we created a single
callback and used a step number variable to keep track of which callback should
be called next. Part (b) of figure 21 shows our implementation. Unfortunately,
our original implementation of the switch logic contained a bug — we left out
the break statement from case 3 and the assignment to step in case 4. This
caused the continuation to be invoked twice.

7.1 Performance Experiments.

We compared the performance of the TaskJava and explicit event-driven web
server implementations using a multi-threaded driver program that submits 25
requests per thread for a 100 kilobyte file (stored in the web server’s cache).
Latency is measured as the average time per request and throughput as the
total number of requests divided by the total test time (not including client
thread initialization).

The performance tests were run on a Dell PowerEdge 1800 with two 3.6Ghz
Xeon processors and 5 GB of memory. Table 1 shows the experimental results.
The columns labeled “Event” and “Task” represent results for the hand-coded
event-driven server and the TaskJava server, respectively.

The overhead that TaskJava contributes to latency is within 10%, except at
400 client threads, where it reaches 16%. The throughput penalty for TaskJava is
low up through 50 threads, but then becomes more significant, reaching 44% at
200 threads. Above 200 threads, the total throughput of both implementations
drops, and the overhead becomes insignificant.

These results are not surprising, as the hand-coded event implementation
has inherent performance advantages over the TaskJava version. We have not
yet made any efforts to optimize the continuation-passing code generated by
our compiler. For many applications, the readability and reliability benefits of
TaskJava outweigh the downside of the performance cost. Over time, this group
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of applications should grow larger, as we reduce the penalty by optimizing the
code generated from our compiler.

Potential improvements. The most significant source of overhead in TaskJava

is the allocation of callback/continuation objects. The hand-coded server imple-
mentation preallocates and reuses callbacks. For example, in the web server,
the callbacks needed for each connection are allocated at the same time as the
associated request object. These callbacks are then reused until the associated
connection is closed. In contrast, the TaskJava compiler currently allocates a new
callback for each asynchronous call.

In the general case, it is difficult for a compiler to preallocate callbacks.
Preallocation requires an interprocedural optimization to determine placement
of callback instances to avoid simultaneous calls using the same callback. For
example, in the hand-coded implementation, we associate reused callbacks with
each connection, as we know that, by design, there will be only one read or write
request pending on a given connection at a time. In future work, we intend to
enhance the TaskJava compiler to preallocate any callbacks used within a loop
at the start of the containing method. This does not require any interprocedural
analysis and should significantly reduce the allocation overhead of TaskJava.

8 Related Work

Event-driven programming is pervasive in many applications, including servers
[18, 19] and routers [15], GUIs, sensor networks applications [12, 13], and long-
running business processes [4]. In [2], event-based and thread-based styles are
broken into two distinct differences: manual vs. automatic stack management
and manual vs. automatic task management. Threads provide automatic stack
and task management, while events provide manual stack and task manage-
ment. By this classification, TaskJava provides manual task management and
automatic stack management. A hybrid cooperative/pre-emptive approach to
task management is also possible in TaskJava by using a thread-pooled sched-
uler. Asynchronous methods in TaskJava make explicit when a method may yield
control, addressing the key disadvantage of automatic stack management cited
by [2].

Coroutines and cooperative threading. Many implementations exist for
coroutines or cooperative threading in C and C++ (State Threads [21] and
GNU Pth [8], for example). In fact, [8] lists twenty such implementations. Like
TaskJava, these frameworks avoid race conditions by only scheduling context
switches when a thread makes a blocking I/O call or explicitly yields. Context
switching is implemented through C or assembly-level stack manipulation. This
enables one to preserve the natural control flow of the program, avoiding the lost
continuation and exception problems. Unfortunately, stack manipulation is not
possible for virtual machine-based languages, like Java. In addition, cooperative
threading requires a contiguous stack space to be allocated per thread, which
may result in a significant overhead when many threads are created. Perhaps
more importantly, these approaches are tied to a specific scheduler and notion of
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events. TaskJava programs can be “linked” against any scheduler which provides
the (very generic) semantics of the wait call. For example, one might build
schedulers for application-specific events such as incoming email messages or
user requests to a web-based application.

Simplifying event systems through metaprogramming. The Tame frame-
work [16] implements a limited form of CPS transformation through C++ tem-
plates and macros. The goal of Tame, like TaskJava, is to reuse existing event
infrastructure without obscuring the program’s control flow. Continuations are
passed explicitly between functions. However, the code for these continuations is
generated automatically and the calling function rewritten into case blocks of a
switch statement, similar to the transformation performed by the TaskJava com-
piler. Thus, Tame programs can have the benefits of events without the software
engineering challenges of an explicit continuation passing style.

By using templates and macros, Tame can be delivered as a library, rather
than requiring a new compiler front-end. However, this approach does have dis-
advantages: the syntax of asynchronous calls is more limited, exceptions are not
supported, template error messages can be cryptic, and the implementation only
works against a specific event scheduler.

Lastly, Tame favors flexibility and explicit continuation management over
safety. As such, it does not prevent either the lost continuation or the lost ex-
ception problems.

Language and compiler support for events. The C library and source-
to-source compiler Capriccio [23] provides cooperative threading, implemented
using stack manipulation. It avoids the memory consumption problems common
to most cooperative and operating system thread implementations by using a
whole-program analysis and dynamic checks to reduce the stack memory con-
sumed by each thread. This downside of this approach is the loss of modular
compilation. Capriccio also suffers from the other weaknesses of cooperative
threading — difficulty implementing on top of a VM architecture and lack of
scheduler flexibility.

The language nesC [12] addresses interleaved computation for embedded ap-
plications. It provide two constructs for structuring activities: the task, a deferred
computation mechanism, and the event, a handler intended for interrupts and
notifications. In short, nesC is an event-driven system with direct language sup-
port for writing in a continuation passing style. As such, it suffers from the lost
continuation problem — there is no guarantee that the completion event will
actually be called. This approach was chosen by the designers of nesC because
it can be implemented with a fixed-size stack and without any dynamic memory
allocation.

Continuations. Continuations in the Scheme programming language [1] permit
a programmer to save the current stack and resume execution from a different
context. TaskJava’s asynchronous methods are a limited form of continuation.
Although asynchronous methods do not support some programming styles possi-
ble with continuations, providing a more limited construct enables the TaskJava

compiler to statically and modularly determine which calls may be saved and
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later resumed. This limits the performance penalty for supporting continuations
(such as storing call state on the heap) to those calls which actually use this
construct.

Static analysis of event-driven programs. Techniques for analyzing and
verifying event-driven systems has been an active research direction (e.g., [7, 11]).
Hybrid approaches are also possible. For example, [6] implements a combination
of library design with debugging and program understanding tools. TaskJava has
the potential to greatly aid such techniques, by making the dependencies among
callbacks and the event flows in the system syntactically apparent.

9 Conclusion

We have described the task programming model and its instantiation in the
TaskJava extension to Java. Our examples illustrate how tasks provide a clean
model for interleaved computation, avoiding the need of event-based systems to
break control flow across blocking calls. At the same time, our compilation strat-
egy allows tasks to be automatically translated into efficient event-driven code.
We formalized a core language for TaskJava through an extension to Feather-
weight Java. Based on this formalization, we have proven key properties of the
language, including type soundness, freedom from lost continuations/exceptions,
and observational equivalence of the translation. Finally, we demonstrated the
feasibility of our approach through a case study of a TaskJava web server.

9.1 Future work

TaskJava is the first step toward our goal of writing robust and reliable programs
for large scale asynchronous systems.

Static analysis tools. By providing language mechanisms that make common
event-driven programming idioms explicit, TaskJava programs are not only more
readable to humans, but also enable program analysis tools to understand the
precise semantics of event flow. We are currently developing a suite of program
analysis tools that analyze safety properties of event-driven programs, leveraging
the features of TaskJava. Since the flow of events in these programs is visible to
the tool, we expect the analysis to be more precise when compared to tools that
have to reason about event flow through function pointers and objects.

Language extensions. We also plan to extend the capabilities of TaskJava. For
example, the Tame framework provides fork and join constructs for the parallel
initiation of asynchronous calls. We are working with the Tame developers to
find a formulation of these constructs that is compatible with exceptions and
that provides the safety guarantees of TaskJava.

Formal model. Finally, we believe that our formal model may provide new
insights into event-driven programs. One such insight may be taken from the
relationship between CoreTaskJava and EventJava programs. A CTJ program
interacts with the scheduler in two ways: through spawn and through wait.
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These interactions are both translated into event registrations. In a program
written directly using callbacks, making the distinction between these cases ex-
plicit yields more information about the programmer’s intent. This may help
with various static analyses.
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