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Abstract

For several sensor networks applications, it is critical toextend the lifetime of each individual sensor node in
order to remain operational for the longest time possible. Therefore, the power consumption rate should be evenly
distributed over all the nodes in the system. Traditional routing algorithms attempt to minimize the total power
consumption of the system, but they do not attempt to evenly distribute the load over all the nodes in the network.
In this paper, we present an efficient routing algorithm thatminimizes the energy skew among nodes in a network
with lossy links. We propose anε-optimal polynomial time centralized multi-hop routing technique that maximizes
the lifetime a system of distributed power sources, considering the quality of the wireless links and the vagaries
of the radio communication channel. Our technique aims to evenly distribute the power consumption rate which
yields in a minimal-skew solution. We theoretically prove that our technique is efficient. Finally, we illustrate the
quality of the solutions provided by our algorithms on a set of benchmarks that consider the quality of the wireless
channels based on models using real RF transcievers. We showthat our solution provides significant increase in the
lifetime of the network (up to five times) at the cost of a slight increase in the latency of the end-to-end paths (up
to 10%).

Index Terms

Power Optimization, Battery-Aware Routing, Distributed Embedded Systems, Sensor Networks.

I. I NTRODUCTION

Battery-powered networked embedded systems are being widely used in various application domains. Practical
limitations do not allow replacement of dead batteries after system deployment. Hence, reduction of energy
consumption, as a mechanism to prolong the battery lifetime, has gained significant attention in sensor networks
community. Previous research efforts have shown that communication dissipates significant amount of energy [18].
Consequently, design choices and protocols that affect theamount of required transmission have a great impact
on system lifetime. For example, minimum-hop routing algorithm reduces the number of transmissions required to
deliver a message at the destination, and improves system energy dissipation [9].

On the other hand, many applications heavily rely on robust and non-stop operation of sensing and computing
nodes (or simply nodes) to perform their intended functionality. In such classes of applications, failure of a node
causes the entire system to fail, and hence, the lifetime of the system is determined by the lifetime of the first node
that fails. Consequently, even distribution of energy dissipation becomes an important design concern in addition
to total system energy dissipation. Intuitively, even distribution of (minimum-skew) energy dissipation maximizes
the lifetime of the nodes with shortest lifetime, and prolongs the application lifetime. The existing energy-aware
routing algorithms are generally oblivious to fair distribution of energy consumption among nodes, and exhibit poor
results.

In this paper, we present an efficient routing algorithms thatminimizes the energy skew among nodes in a mesh
network. Our algorithm is a centralized scheme that is globally optimal. This algorithm efficiently finds the best
routing strategy for a given traffic pattern in any network topology, including mesh networks. Experimental results
on our benchmarks show an increase of up to five times in systemlifetime when comparing with optimal shortest
path routing with a slight penalty in the overall latency of the end-to-end paths.

Before we continue, we would like to clarify some assumptions used in the remaining of our work. First, our
solution is applicable when the quality of the links used forrouting does not dramatically change over time. This
assumption is confirmed for good quality links by [6]. Second, our solution works only in the case of unicast
routing algorithms. The use of broadcast or multicast routing mechanisms has been left for future work.
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II. RELATED WORK

Most of the previous routing protocols ([11][12][13] [3][14]) for wirelessad-hocnetworks concentrate on finding
and maintaining routes in the face of changing topology caused by mobility or other environmental changes. Typical
protocols use shortest path algorithms based on hop count, geographic distance, or transmission power. The first
two are important in minimizing delay and maximizing throughput. The third objective is peculiar to wireless
ad-hocnetworks, and is important because typically the nodes involved have a limited power supply, and radio
communication consumes a large fraction of this supply. To address this issue, several power-aware routing protocols
have been developed ([19] [16] [20] [15] [21]). In most of these approaches, the aim is to minimize the energy
consumed per packet in order to deliver it to the destination. The typical approach is to use a distributed shortest
path algorithm in which the edge costs are related to the power required to transmit a packet between the two
nodes involved. The problem with this technique is that nodeson the minimum-energy path are quickly drained of
power, affecting the network connectivity when they fail. While some of the most sophisticated routing algorithms
associate a cost with routing through a node with low power reserves ([19] [20]), they present at best heuristic
solutions.

Researchers have explored the fundamental limits of energy-efficient collaborative data-gathering by deriving
upper bounds on the lifetime of increasingly sophisticatedsensor networks [2]. But they do not devise any efficient
algorithm for routing.

Another method proposed to extend the sensor network operational time consist of organizing the sensors into a
maximal number of disjoint set covers that are activated successively. Only the sensors from the current active set
are responsible for monitoring all targets and for transmitting the collected data, while nodes from all other sets are
in a low-energy sleep mode [4]. The proposed method, however,is a heuristic. Furthermore, a shortest cost path
routing algorithm is studied which uses link costs that reflect both the communication energy consumption rates
and the residual energy levels at the two end nodes [7]. This approach also formulates the technique as a linear
programming problem. Nevertheless, anε-optimal polynomial time routing algorithm that maximizesthe lifetime
of the system with respect to the distributed energy sourceshas not been devised in any of the prior studies.
Furthermore, to the best of our knowledge, no probabilistic distributed routing scheme that attempts to minimize
the skew in energy have been proposed.

Authors in [17] present a distributed method for lifetime maximization. Their method starts out with assuming
a certain lifetime and attempts to search for the optimal lifetime with a bounded error (by starting out with an
arbitrary lifetime) within a certain number of rounds. Our method however, proposes a simpler approach (despite
being centralized) that calculates the optimal lifetime inpolynomial time. More importantly, the main advantage
of our method is that we take into account the lossy channels.Authors in [10] also propose a similar approach
assuming the communication links are lossless.

III. PRELIMINARIES AND MODELS

The problem at hand is to design an effective routing mechanism to maximize the application lifetime, which is
given by the lifetime of the first node that fails. If nodes haveidentical initial energy resources, the objective can
be rephrased as minimizing the maximum energy consumption rate of the nodes.

We model the network using an unconstrained connected directed graphGs = (Vs, Es), whereVs denotes set of
nodesv1, v2, . . . , vn, andEs represents the set of directed linkslij . Note that directed graphs can be utilized to
model any network topology. We will show that our algorithm is optimal for any directed graph.

We represent the energy consumed by nodevi to transmit or receive an information unit (also called packet or
message in this paper) byti andri, respectively. These two parameters account for the energy consumption incurred
by communication and computation (or possibly other sources of energy consumption) required to transmit or receive
a packet. We assume that nodevi has an energy levelEi, which is initially equal toEi,0 (∀(i, j) ∈ Vs Ei,0 > 0).
Note thatEi decreases as packets are received and/or sent by nodevi.

Let fij be the number of packets transmitted from nodei to its immediate neighbor nodej over link lij in a
routing scenario. We assume that network has some periodicity property in data transmission, in which case,fij

can be interpreted as the number of packets transmitted overlij in unit of time or itstransmission rate. The lifetime
of nodevi is defined as follows:
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Ti =
Ei,0

(ti.
∑

∀j; lij∈Es
fij) + (ri.

∑

∀j; lji∈Es
fji)

(1)

Where
∑

∀j; lij∈Es
fij is the total number of packets transmitted from nodevi, and similarly,

∑

∀j; lji∈Es
fji is

the total number of packets received byvi.

IV. D EFINITION

In the following formulation we attempt to minimize the skewin energy consumption (due to wireless commu-
nication) in the network. The skew is defined as follows:
There exists exponential number of paths connecting source to destination nodes. For every path, we form the
following definition. There exists a node in every path that hasthe maximum energy consumption (ideally if
each path is isolated from the rest of the network, the energyconsumption rate must be identical throughout the
path, however, in reality, nodes may have incoming/outgoing edges from/to the rest of the network. Therefore, the
energy consumption rate may not be necessarily uniformly distributed). In every pathPi connecting a source to
a destination node, we identify the node with maximum energyconsumption rate aspimax. We define the skew
of energy consumption as the difference betweenpimax and pjmax of pathsi and j. In the following Sections,
we will illustrate how our formulation minimizes the difference of maximum energy consumption in every two
paths. Please note that despite the number of paths are exponential, the upper bound on the number of nodes with
maximum energy consumption is stilln (wheren is total number of nodes). The definition of minimum skew is
rephrased in Equation 2.

∀Pi&Pj connecting source(s) to destination(s)

Minimize|pimax − pjmax| (2)

Fig. 1. Minimum Skew Definition

V. M INIMAL -SKEW ROUTING

A. Problem Formulation andǫ-Approximation Algorithm

Given a sensor networkGs and a specific traffic pattern, the objective is to route the packets so that after
completion of packet routing, the minimum remaining battery energy among all of the nodes is maximized. This
objective would maximize the lifetime of the first failing node, and subsequently, maximizes the application lifetime.
We assume that there is a specific nodet in Gs, which serves as the gateway or base station or destination node,
and all of transmitted packets have to be delivered tot. Specifically, the given traffic pattern is composed of a
set of (node, quantity) pairs, which specifies the source and the number of packets that need to be sent tot.
Our formulation, however, accommodates a more extensive objective which covers the aforementioned objective as
described in Equation 2.

Furthermore, we temporarily assume that all nodes have identical initial energy levels. In Subsection V-C, we
will extend our results to show that our model and technique is extensible to cases where nodes have dissimilar
initial energy levels.
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Each packet transmitted from a source node tot can be viewed as a unit flow in the networkGs. More precisely,
xij units of flow going through the linklij representxij packets transmitted fromvi to vj . This traffic decreases the
energy resources atvi andvj by xij × ti andxij × rj , respectively. The given traffic pattern can be interpreted as
a flow supply vector,FS, which specified the amount of flow supply at nodes. All of packets have to be received
at nodet, and hence, Nodet is the only node with negative flow supply (positive flow demand). The supply for
nodet is set such that the total supply over all the nodes in the network is zero.

The problem of packet routing is equivalent to finding a feasible network flow inGs. Intuitively, the objective of
maximizing the minimum remaining energy of the nodes is equivalent to minimizing the maximum flow passing
through nodes. Note that the remaining energy at intermediate (not a source or destination) nodevi with xi units
of flow passing through it isEi − xi.(ri + ti). In the remainder of this section, we transformGs to a new network
Gt in which, min-cost flow solution generates the optimal solution. We proceed to describe the transformation
procedure, along with mathematical properties of our technique and proofs of correctness.

Fig. 2. Node partitioning

We construct the networkGt = (Vt, Et) from the graphGs according to the following rules. Each node in
graphGs is split into k + 2 nodes wherek is a tunable parameter that controls the accuracy of the solution. We
refer to the resulting set of nodes as apartition. In each partition, two nodes serve as receiver and transmitter (or
input and output) and the rest of the nodes are called splits.Figure 2 illustrates an example partition in which,
nodesv(k+2)(i−1)+1 and v(k+2)i are the receiver and the transmitter of the partition, respectively. Figure 3 shows
an example networkGs and the resulting networkGt after transformation.

Each intermediate nodevi in Gs consumesri + ti units of energy to relay a packet. Therefore,vi can relay at
mostui = Ei/(ri + ti) packets before running out of battery.ui forms an upper bound on the number of packets
that can pass through nodevi. In order to embed this constraints into the problem, we assign the flow upper bound
of u′i = ui/k to each of the split nodes. The upper bounds guarantee that a partition cannot pass more flow after
relaying ui units of flow, or equivalently, a node cannot route packets after its battery is dead. The flow upper
bound for all of the receiver and transmitter nodes is infinity. Note that the upper boundu′i = ui/k on the split
nodes in partitioni, implicitly sets the upper bound ofui for the receiver and transmitter nodes of the partition.
The receiver, transmitter and split nodes are assigned a special sequence of costs for passing the unit flow. The
cost associated with receiver and transmitter nodes of a partition is zero. The costs associated with split nodes of
a partition are increasing from left to right (Figure 2). This directs the min-cost flow solution to utilize the split
nodes from left to right, when passing flow through the partition. Specifically, we assign the following costs to the
nodes in partitioni:
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Fig. 3. Original network and the resulting network after partitioning

c(k+2)(i−1)+1 = 0
c(k+2)(i−1)+2 = 1

c(k+2)(i−1)+3 = n+ ε
c(k+2)(i−1)+4 = n(n+ 1 + ε) + ε

...

c(k+2)i−1 = n

(

∑k
j=2 c(k+2)(i−1)+j

)

+ ε

c(k+2)i = 0

(3)

The cost on each split node is enforced such that it would be greater than the cumulative cost of the split nodes
with smaller indices over all of the partitions. Intuitively, our cost assignment technique enforces the optimal min-
cost flow solution to utilize the split nodes with smaller indices, before trying to utilize a particular split node. This
simple yet effective idea exhibits the main property of our technique by which, we minimize the maximum energy
consumption of the nodes. For simplicity, we define cost rank where cost rankRi has the following property:

Ri >
∑

j<i

n ·Rj (4)

Consequently, Equations 3 may be reworded as follows:

c(k+2)(i−1)+1 = 0
c(k+2)(i−1)+2 = R1

c(k+2)(i−1)+3 = R2

c(k+2)(i−1)+4 = R3
...

c(k+2)i−1 = Rk

c(k+2)i = 0

(5)



6

The loss in edges may also be accommodated easily. For the sakeof simplicity, we add the extensions for lossy
edges in Section V-B The aforementioned procedure provides a well-defined set of steps to createGt from Gs.
A packet routed from a sensor nodes, to the base stationt, in Gs, corresponds to a unit ofs− > t flow in Gt.
Similarly, our partition construction scheme along with theupper bound settings on split nodes guarantee that any
flow solution inGt represents a feasible routing solution inGs. Note that the given traffic pattern forGs can be
readily translated into a flow supply vector (FS) for Gt. FS specifies the amount of flow supply or demand for
all of the nodes.

We now prove that our cost assignment strategy implies that the min-cost flow solution inGt corresponds to
a routing scheme inGs that minimizes the maximum consumed energy at the nodes (or equivalently, maximizes
the minimum remaining energy over all of the nodes). Letxij represent the amount of flow on edge(i, j). Let yi

represent the amount of flow going through split nodek in partition i. Similarly, let ci denote the associated cost
of unit flow passing through that node inGt. The min-cost flow problem for graphGt with the given supply and
demand vector,FS, can be written as:

Minimize
∑

∀i

ci,kyi,k (6)

Subject to:
∑

{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}

xji = b(i) (7)

0 ≤ xij ≤ uij ; ∀(i, j) ∈ Vt (8)

0 ≤ yi ≤ u
′

i; ∀(i) ∈ Vt (9)

Equation (7) is the flow conservation condition at each node andEquations (8) and (9) are capacity constraints
for the arcs and the nodes respectively. We assume that the lower bounds on arc flows as well as the lower bounds
on node flows are zero. Moreover, the number of nodes in networkGs is denoted byn.

The flow that passes through the receiver or transmitter nodes of a partition represents the total flow passing
through that partition, or equivalently, it determines theenergy consumption at the sensor node corresponding to
the partition. The more the flow, the shorter the lifetime of thesensor node. Therefore, the objective is to minimize
the maximum amount of flow passing through partitions.

The flow passing through any partition has to pass through its split nodes, and subsequently, min-cost flow
solutions utilize the splits with lower costs before highercost splits. We denote the number of split nodes in
partition i that carry a non-zero flow byψi.

ψi =

⌈

∑k+1
j=2 y(k+2)(i−1)+j

u′i

⌉

(10)

Theorem 5.1:The objective function in Equation 6 minimizes the maximum flow in the nodes of network
Gs = (Vs, Es) with maximum errorε whereε ≤ u′i = ui/k = 1/k. This is equivalent to maximizing the minimum
battery lifetime of the nodes in networkGs (or its transformed networkGt) and therefore analogous to maximizing
the lifetime of the system.

Proof: Proof is formed by contradiction. Assume our technique generates solutionL where the flow entering
each partition is represented byfi. Let fmax = (max(fi)∀i). Assume there exist another solutionL∗ with maximum
flow denoted byf∗max wheref∗max < fmax + ε.

Thus, (10) conveys that:
ψ∗

max < ψmax

Considering the cost on splits in Figure 2 and Equation (3), we conclude that the overall cost of flow for solution
L is greater than the overall cost of flow for solutionL∗. This contradicts the optimality of min-cost flow technique
since the solution found (L) does not have the minimum cost. Therefore, by contradiction, the solutionL∗ cannot
exist and our formulation minimizes the maximum flow (or maximizes the minimum lifetime).

Due to the flow conservation condition in min-cost flow technique, it is trivial that the flow in any nodes may
not be reduced individually to minimize the objective function.
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The intuition behind our proposed technique is that the cost assignment on the splits forces the network to rout
a flow from thekth split of nodevi, if it cannot be routed through any number of other nodes whose (k − 1)th
splits is empty.

Theorem 5.2:The solutionL , generated by our technique, minimizes the difference of the maximum node
flows throughout every two disjoint paths connecting source to a destination node (with tolerance ofε = 1/k -
minimal-skew). In other words, these two nodes further musthave the minimum lifetime of the nodes along each
path and are regarded as the bottleneck nodes (i.e. such nodes have the maximum energy consumption rate along
their corresponding paths).

Proof: This proof is presented by contradiction as well. Assume there exists a feasible solutionL∗ which was
transformed fromL and the flows of two partitionsi and j was altered such that their difference is reduced. We
denote the new flows in solutionL by fi andfj . Without loss of generality, we assumefi < fj .

Fig. 4. Flow exchange to obtain minimal-skew solution

We investigate both possible scenarios. One scenario occurs when the transformation involves changing the flow
in only one partition (increasingfi or decreasingfj) According to the flow conservation theorem, this scenario is
not feasible. The other scenario, as shown in Figure 4, takes place when the flow of partitioni is increased and
the flow of partitionj is decreased (by a value of greater thanε) such that:

|f∗j − f∗i | < |fj − fi| + ǫ

and
f∗j + f∗i = fj + fi + ǫ

(11)

From Equation 9, it can be easily shown that:

fi < f∗i < f∗j < fj (12)

Therefore, the number of splits that are utilized for passingthe flow follows the same convention:

ψi < ψ∗
i < ψ∗

j < ψj (13)

As discussed before, in each partition, each split has a costthat alone is greater than “n” times the cumulative
cost of all the precedent splits with smaller indices (n = number of nodes inGs (original graph)). Since the
solutionsL andL∗ are similar except in partitionsi andj, therefore, the overall cost of solutionL is greater than
the cost ofL∗(ψj > ψ∗

j ). This contradicts the optimality of min-cost flow algorithm asthe solutionL must have
the minimum cost. Hence, solutionL cannot exist.

Theorem 5.3:The solution of minimal-skew routing is unique in the sense that the lifetime of nodes in the
network in descending order is unique.

Proof: AssumeF andF ′ are the vectors containing the flow of all nodes in descending order for two optimal
solutions,L andL′. ObviouslyF [1] = F ′[1], otherwise the two total costs would be different (that contradicts the
optimality of the solution). Inductively, this argument holds for every index. AssumeF [i] = F ′[i], for i = 1 . . . k.
If F [k+ 1] < F ′[k+ 1] then because of the special cost assignment of the splits, the cost ofF ′[k+ 1] itself would
be larger than the total cost ofF [i]s, i = k + 1 . . . n. Therefore, the total cost of solutionL′ is greater than the
cost ofL. This contradicts the optimality of solutionL′. This completes the proof.
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B. Discussion on Lossy Channels

In general, accommodating lossy communication channels inminimum cost flow technique is not quite an easy
task due to flow conservation conditions. In the case where theexistence of lossy communication links are inevitable,
the packets received at the receiver is less than the number of packets transmitted. This scenario corresponds to
flow attenuation in our minimum cost formulation. To address the data/flow loss in communication links, ideally we
prefer to remove certain portion of the flow traveling throughan edge and transfer it to a auxiliary node which is
considered as a ”dummy” sink node. Other gateways and sink nodes are also connected to the aforementioned node.
This can be accomplished by adding intermediate nodes on every interconnection edge. Moreover, the intermediate
nodes have to be connected through ”lossy” edges with cost zero a ”dummy” sink node. The upper bound on
”lossy” edges corresponds to the loss rate of every interconnection edge. The limitation we face, however, is that
the initial flow in every edge tends to be directed through the lossy edge until the ”lossy” edge reaches its capacity.
This causes a potential problem where the interconnection edges are not utilized with their full capacity. Therefore,
this will incur in an increase in loss rate. To address this issue, we propose the following transformation:

Fig. 5. Edge splitting

Each edge is divided intok split edgeseik, ..., ei(k+1)−1 andk lossy edgeslik, ..., li(k+1)−1 connecting intermediate
nodes to a dummy node as shown in Figure 5. The costs on split edges correspond toR1, R3, ...R2k while the cost
on lossy edges correspond toR2, R4, ...R2k+1. This will ensure that initially edgeeik is utilized and subsequently
lossy edgelik. Despite, we attempt to characterize the probabilistic nature of loss with a deterministic approach,
over a long run, the behavior of our model become analogous tosteady behavior of real systems. The above cost
distribution will ensure that edgeseik, lik, eik+1, ..., ei(k+1)−1, li(k+1)−1 are utilized accordingly. Changing the cost
ranks associated with the edges enables us to accommodate other combinations of edge utilization. All Theorems
and Lemmas proven in the this Section still holds for graphs with lossy edges (with minor modifications). The
proofs are omitted due to lack of space.

C. Dissimilar Initial Energy Levels

Throughout our formulation, we assumed that the initial energy levels in all nodes are similar. Dissimilar initial
energy levels, however, can be simply accommodated by modifying the capacity of the splits (upper-bounds on the
splits). Throughout our formulation, we assumed that the initial energy levels in all nodes are similar. Dissimilar
initial energy levels, however, can be simply accommodatedby modifying the capacity of the splits (upper-bounds
on the splits). The main property of our technique is that we assign various costs to different levels of energy stored
in a battery. When a battery is fully charged, it can be used more easily than the case it has half of the full charge.
Therefore, in the case where some nodes in the network do not have full energy level, the already used portion of
their battery corresponds to the splits with lesser cost. Hence, those splits could be assigned upper bound of zero
in the min-cost flow formulation as if they have been already used.
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D. Time Complexity Analysis

The formulation used for the proposed min-cost flow problem in Equations (2) through (9) is an LP formulation
which can be solved with standard LP solvers. Throughout our experiments, we used Matlab as an LP solver. The
use of LP-solvers enabled us the ability to have non-integral capacity in the formulation and non-integral flow in
the solution. In order to provide combinatorial algorithmsto solve such problem, integrality constraints must be
enforced. Fortunately all the problem parameters such as supply/demands and capacities assigned to splits can be
scaled by a factor ofk (the number of splits) and meet the integrality constraints. Therefore, the time complexity
of our technique is after scaling would beO((m log(nk))(m + nk log(nk))) wherem is the number of edges in
the graph;n andk are the number of nodes and splits in each partition, respectively. The time complexity can be
easily derived from the time complexity of the min-cost flow algorithms and the size of our constructed network
(O(nk)). The original time-complexity of min-cost flow is reported in [1].

E. Discussion on Multicommodity

In scenarios where several sources and destinations are involved and the communication pairs exchange “different”
type of messages, routing problems can be modeled as multicommodity flow. Out technique can not directly
address this class of problems [8]. The problem itself is known to be NP-complete. However, we believe that
our methodology can be applied in conjunction with the knownheuristics for multicommodity flow problems and
generate reasonable results. We have not considered this class of networks but we plan to study it in near future.

VI. EXPERIMENTAL RESULTS

We generated various benchmarks based on random graphs withrelatively large number of nodes to illustrate
the effectiveness of our centralized technique. For simplicity, we assumed that the energy level in all benchmarks
is uniform. Our benchmark sets resemble real-world networks. In most network applications, it might be unlikely
that a large portion of sensor nodes are placed within close proximity of each other. Instead, they are placed on
a grid with certain random properties. It can be envisioned as a ‘locally random globally regular networks.’ Such
scenario can be imagined with the following example: Certain number of sensor nodes is required to be placed in
a building. Each room has a specific number of sensor nodes whichis constant, yet, the position of the nodes is
random within each room. We call this set as random networks with grid distribution. We generate such benchmarks
by dividing the area into unit-size tiles. A tile that does not have a sensor node is selected randomly. We place a
node in the tile with uniform distribution. This procedure isrepeated until all tiles are covered. If more sensor nodes
are required to be inserted, the same course is recurred until all sensor nodes are placed. One hundred sensors are
placed within areas of size160 × 40, 160 × 60, 160 × 80, 200 × 40, 200 × 60, 200 × 80 and200 × 100. We refer
to this set of benchmarks as ”grid” networks. In all networks, three source nodes are placed on far left side of the
square area while the destination nodes/ gateways are placed on the right side of the square. This particularly assist
us to place the source/destination not within the close proximity of each other. The connectivity between nodes is
determined by statistical models developed using real RF transcievers under different conditions and scenarios [5].
Only communication links with reliability greater than80% are considered. In the next set of experiments, the
locations of the nodes are generated conforming to a random uniform distribution over areas various size. The We
refer to this class of random networks as ”random” networks.

Firstly, we illustrated the effectiveness of our technique on two benchmarks. One benchmark belongs to our class
of ”grid” networks while the other resembles ”random” network. Each network consists of 100 nodes scattered
over an area of200 square meters.

The graph topology of ”grid” and ”random” networks are illustrated in Figures 6 and 8 respectively.
Figure 7 depict the normalized energy consumption rate of thenodes in the system sorted in ascending order

for various numbers of splits (k) in the ”grid” network. The effectiveness of our algorithm onhow the energy
consumption rate becomes evenly distributed is clearly demonstrated whenk is increased. Figure 7 illustrates the
same graph for the ”random” network shown in Figure 8.

In the next set of experiments, the size on benchmarks is varied. For every particular size, twenty benchmarks are
generated with three source and three destination nodes. Tocompare our scheme against other routing algorithms, we
consider a shortest path routing algorithm based on minimumcost flow. Figures 10, 11 , 12 and 13 demonstrate the
lifetime resulted from our scheme compared to min-cost technique. In all diagrams, each data-point corresponds to
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Fig. 7. Normalized energy consumption rate in sorted order (n=100, grid distribution)

the average taken over twenty benchmarks. Throughout all diagrams, as the number of splits increases, the lifetime
improves due to forcing the network to utilize vertex disjoint paths more effectively. Overall, the average lifetime
of the systems (fork = 4) is increased by a factor of4.38 compared to min-cost routing approach.

Figures 14, 15, 16 and 17 exhibits the delay trade-offs of our routing algorithm with respect to the min-cost
shortest path for various benchmarks.

Overall, the average delay of our scheme (fork = 4) is 10% greater than the min-cost shortest path. The average
delay is not vastly increased due to existence of multiple vertex disjoint paths between sources and destinations in
our benchmarks. The average delay also increases slightly asthe k (number of splits) is increased.

In general, highly connected networks such as grids providea large number of parallel paths between nodes
which is of our interest and enhances the flexibility of data routing.

VII. C ONCLUSION

We proposed a polynomial timeε-optimal technique for multi-hop routing in wireless networks with distributed
battery sources. Our technique maximizes the lifetime of the system. Furthermore, it evenly distributes the energy
consumption rate which yields in a minimal-skew solution for node utilization. We theoretically proved that our
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Fig. 9. Normalized energy consumption rate in sorted order (n=100, random distribution)

technique is efficient and has polynomial time complexity. Furthermore, our technique accommodates routing
through lossy links while the optimality is not sacrificed. Our investigation on various benchmarks revealed the
quality of the solutions generated by our methodology even with a small number of splits.
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Fig. 12. min-skew/min-cost lifetime for various number of splits - k (n=100, rand distribution)

Fig. 13. min-skew/min-cost lifetime for various number of splits - k (n=100, rand distribution)
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Fig. 14. Average delay of min-skew/min-cost for various number of splits - k (n=100, grid distribution)

Fig. 15. Average delay of min-skew/min-cost for various number of splits - k (n=100, grid distribution)

Fig. 16. Average delay of min-skew/min-cost for various number of splits - k (n=100, rand distribution)
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Fig. 17. Average delay of min-skew/min-cost for various number of splits - k (n=100, rand distribution)


