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Abstract

For several sensor networks applications, it is criticabxtend the lifetime of each individual sensor node in
order to remain operational for the longest time possibleeré&fore, the power consumption rate should be evenly
distributed over all the nodes in the system. Traditionalting algorithms attempt to minimize the total power
consumption of the system, but they do not attempt to eveislyiloute the load over all the nodes in the network.
In this paper, we present an efficient routing algorithm thatimizes the energy skew among nodes in a network
with lossy links. We propose asroptimal polynomial time centralized multi-hop routingckmique that maximizes
the lifetime a system of distributed power sources, comsidethe quality of the wireless links and the vagaries
of the radio communication channel. Our technique aims &nlgvdistribute the power consumption rate which
yields in a minimal-skew solution. We theoretically provet our technique is efficient. Finally, we illustrate the
quality of the solutions provided by our algorithms on a ddbenchmarks that consider the quality of the wireless
channels based on models using real RF transcievers. Wethhbwur solution provides significant increase in the
lifetime of the network (up to five times) at the cost of a stigicrease in the latency of the end-to-end paths (up
to 10%).
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. INTRODUCTION

Battery-powered networked embedded systems are beingywided in various application domains. Practical
limitations do not allow replacement of dead batteries raftgstem deployment. Hence, reduction of energy
consumption, as a mechanism to prolong the battery lifetimas gained significant attention in sensor networks
community. Previous research efforts have shown that conuation dissipates significant amount of energy [18].
Consequently, design choices and protocols that affectitheunt of required transmission have a great impact
on system lifetime. For example, minimum-hop routing aidpon reduces the number of transmissions required to
deliver a message at the destination, and improves systergyedissipation [9].

On the other hand, many applications heavily rely on robust @on-stop operation of sensing and computing
nodes (or simply nodes) to perform their intended funciiiman such classes of applications, failure of a node
causes the entire system to fail, and hence, the lifetimbetystem is determined by the lifetime of the first node
that fails. Consequently, even distribution of energy igstson becomes an important design concern in addition
to total system energy dissipation. Intuitively, even riisttion of (minimum-skew) energy dissipation maximizes
the lifetime of the nodes with shortest lifetime, and prasrthe application lifetime. The existing energy-aware
routing algorithms are generally oblivious to fair distrilon of energy consumption among nodes, and exhibit poor
results.

In this paper, we present an efficient routing algorithms thetimizes the energy skew among nodes in a mesh
network. Our algorithm is a centralized scheme that is dlpl@ptimal. This algorithm efficiently finds the best
routing strategy for a given traffic pattern in any networkdiogy, including mesh networks. Experimental results
on our benchmarks show an increase of up to five times in sysfetime when comparing with optimal shortest
path routing with a slight penalty in the overall latency bétend-to-end paths.

Before we continue, we would like to clarify some assumioised in the remaining of our work. First, our
solution is applicable when the quality of the links used rfauting does not dramatically change over time. This
assumption is confirmed for good quality links by [6]. Secondr solution works only in the case of unicast
routing algorithms. The use of broadcast or multicast rgutitechanisms has been left for future work.



Il. RELATED WORK

Most of the previous routing protocols ([11][12][13] [3}] for wirelessad-hocnetworks concentrate on finding
and maintaining routes in the face of changing topology edusy mobility or other environmental changes. Typical
protocols use shortest path algorithms based on hop coeagraphic distance, or transmission power. The first
two are important in minimizing delay and maximizing thrbpgt. The third objective is peculiar to wireless
ad-hocnetworks, and is important because typically the nodeshmdhave a limited power supply, and radio
communication consumes a large fraction of this supply.ddress this issue, several power-aware routing protocols
have been developed ([19] [16] [20] [15] [21]). In most of skeapproaches, the aim is to minimize the energy
consumed per packet in order to deliver it to the destinafidre typical approach is to use a distributed shortest
path algorithm in which the edge costs are related to the poeguired to transmit a packet between the two
nodes involved. The problem with this technique is that naztethe minimum-energy path are quickly drained of
power, affecting the network connectivity when they failhlg some of the most sophisticated routing algorithms
associate a cost with routing through a node with low powsemgs ([19] [20]), they present at best heuristic
solutions.

Researchers have explored the fundamental limits of ereffgyent collaborative data-gathering by deriving
upper bounds on the lifetime of increasingly sophisticatendsor networks [2]. But they do not devise any efficient
algorithm for routing.

Another method proposed to extend the sensor network apeahtime consist of organizing the sensors into a
maximal number of disjoint set covers that are activatedasgively. Only the sensors from the current active set
are responsible for monitoring all targets and for transngjtthe collected data, while nodes from all other sets are
in a low-energy sleep mode [4]. The proposed method, howéver,heuristic. Furthermore, a shortest cost path
routing algorithm is studied which uses link costs that reflemth the communication energy consumption rates
and the residual energy levels at the two end nodes [7]. Tipsoaph also formulates the technique as a linear
programming problem. Nevertheless, aoptimal polynomial time routing algorithm that maximizéee lifetime
of the system with respect to the distributed energy souhassnot been devised in any of the prior studies.
Furthermore, to the best of our knowledge, no probabilisistributed routing scheme that attempts to minimize
the skew in energy have been proposed.

Authors in [17] present a distributed method for lifetimeximaization. Their method starts out with assuming
a certain lifetime and attempts to search for the optimaiifiie with a bounded error (by starting out with an
arbitrary lifetime) within a certain number of rounds. Ouettmod however, proposes a simpler approach (despite
being centralized) that calculates the optimal lifetimegpiynomial time. More importantly, the main advantage
of our method is that we take into account the lossy chanielthors in [10] also propose a similar approach
assuming the communication links are lossless.

[11. PRELIMINARIES AND MODELS

The problem at hand is to design an effective routing mechatdsmaximize the application lifetime, which is
given by the lifetime of the first node that fails. If nodes hadentical initial energy resources, the objective can
be rephrased as minimizing the maximum energy consumpétmaf the nodes.

We model the network using an unconstrained connectedtddepaphG, = (V;, E;), whereV; denotes set of
nodesuvy, v, ..., vy, and E represents the set of directed links. Note that directed graphs can be utilized to
model any network topology. We will show that our algorithsnaptimal for any directed graph.

We represent the energy consumed by ned transmit or receive an information unit (also called peobr
message in this paper) byandr;, respectively. These two parameters account for the eneamgumption incurred
by communication and computation (or possibly other saiode@nergy consumption) required to transmit or receive
a packet. We assume that nodehas an energy level;, which is initially equal toE; o (V(i,5) € Vi E;jo > 0).
Note thatF; decreases as packets are received and/or sent bywpode

Let f;; be the number of packets transmitted from néde its immediate neighbor nodgover link /;; in a
routing scenario. We assume that network has some petipgimperty in data transmission, in which cagg,
can be interpreted as the number of packets transmitted guarunit of time or itstransmission rateThe lifetime
of nodew; is defined as follows:
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Where} ;. cp. fij is the total number of packets transmitted from negdeand similarly,> .., cp_ fji is
the total number of packets received by

T, = (1)

IV. DEFINITION

In the following formulation we attempt to minimize the skéwenergy consumption (due to wireless commu-
nication) in the network. The skew is defined as follows:
There exists exponential number of paths connecting sowraestination nodes. For every path, we form the
following definition. There exists a node in every path that bas maximum energy consumption (ideally if
each path is isolated from the rest of the network, the eneagpgumption rate must be identical throughout the
path, however, in reality, nodes may have incoming/outg@&dges from/to the rest of the network. Therefore, the
energy consumption rate may not be necessarily uniformdyriduted). In every pathP; connecting a source to
a destination node, we identify the node with maximum enemgysumption rate ag;n... We define the skew
of energy consumption as the difference betwggp,, andp;,.. of pathsi and j. In the following Sections,
we will illustrate how our formulation minimizes the diflemce of maximum energy consumption in every two
paths. Please note that despite the number of paths are ejgdnéhe upper bound on the number of nodes with
maximum energy consumption is still (wheren is total number of nodes). The definition of minimum skew is
rephrased in Equation 2.

VP;&P; connecting source(s) to destination(s)
Minimize|pimaa} - pjmax’ (2)

Fig. 1.  Minimum Skew Definition

V. MINIMAL -SKEW ROUTING

A. Problem Formulation and-Approximation Algorithm

Given a sensor networki; and a specific traffic pattern, the objective is to route the gtcko that after
completion of packet routing, the minimum remaining battenergy among all of the nodes is maximized. This
objective would maximize the lifetime of the first failing nedand subsequently, maximizes the application lifetime.
We assume that there is a specific neda G, which serves as the gateway or base station or destinatide, n
and all of transmitted packets have to be delivered.t8pecifically, the given traffic pattern is composed of a
set of (node, quantity) pairs, which specifies the source and the number of packetsnéel to be sent to.
Our formulation, however, accommodates a more extensijectie which covers the aforementioned objective as
described in Equation 2.

Furthermore, we temporarily assume that all nodes haveigdnnitial energy levels. In Subsection V-C, we
will extend our results to show that our model and techniquextensible to cases where nodes have dissimilar
initial energy levels.



Each packet transmitted from a source nodé ¢an be viewed as a unit flow in the netwdrk. More precisely,
x;; units of flow going through the link;; represent:;; packets transmitted fromy to v;. This traffic decreases the
energy resources at andv; by z;; x t; andx;; x r;, respectively. The given traffic pattern can be interpreted as
a flow supply vectorF'S, which specified the amount of flow supply at nodes. All of pasketve to be received
at nodet, and hence, Node is the only node with negative flow supply (positive flow demarit)e supply for
nodet is set such that the total supply over all the nodes in the or&tve zero.

The problem of packet routing is equivalent to finding a feasii#twork flow inG;. Intuitively, the objective of
maximizing the minimum remaining energy of the nodes is \elant to minimizing the maximum flow passing
through nodes. Note that the remaining energy at internedieot a source or destination) nodewith x; units
of flow passing through it i€Z; — z;.(r; + ¢;). In the remainder of this section, we transfoé to a new network
G in which, min-cost flow solution generates the optimal solutiWWe proceed to describe the transformation
procedure, along with mathematical properties of our teglenand proofs of correctness.

Fig. 2. Node partitioning

We construct the networks; = (V;, E;) from the graphG; according to the following rules. Each node in
graphGs is split into & 4+ 2 nodes wheré: is a tunable parameter that controls the accuracy of thdisoluVe
refer to the resulting set of nodes agartition. In each partition, two nodes serve as receiver and tratesngar
input and output) and the rest of the nodes are called splitgire 2 illustrates an example partition in which,
nodesv(xy2y(i—1)+1 andv.); are the receiver and the transmitter of the partition, retsgy. Figure 3 shows
an example networks; and the resulting networks; after transformation.

Each intermediate node in G, consumes; + ¢; units of energy to relay a packet. Therefovg,can relay at
mostu; = E;/(r; + t;) packets before running out of batteny. forms an upper bound on the number of packets
that can pass through nodg In order to embed this constraints into the problem, wegastie flow upper bound
of u, = u;/k to each of the split nodes. The upper bounds guarantee thatiopacannot pass more flow after
relaying u; units of flow, or equivalently, a node cannot route packetsrafs battery is dead. The flow upper
bound for all of the receiver and transmitter nodes is infiridpte that the upper bound, = u,;/k on the split
nodes in partitioni, implicitly sets the upper bound af; for the receiver and transmitter nodes of the partition.
The receiver, transmitter and split nodes are assigned aaspeguence of costs for passing the unit flow. The
cost associated with receiver and transmitter nodes of t#iparis zero. The costs associated with split nodes of
a partition are increasing from left to right (Figure 2). Thisedts the min-cost flow solution to utilize the split
nodes from left to right, when passing flow through the panitiSpecifically, we assign the following costs to the
nodes in partition:
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Fig. 3. Original network and the resulting network after partitioning

C(k+2)(i-1)+1 =0
Ckr2)(i-1)+2 = 1
C(k+2)(i-1)43 =N+ €
Chi2)i-1)4a =n(n+1+4+¢€) +e

: (3)

C(k+2)i—1 =N (Z?z C(k+2)(i—1)+j> +e

Ck+2)i =0
The cost on each split node is enforced such that it would batgréhan the cumulative cost of the split nodes
with smaller indices over all of the partitions. Intuitiyelour cost assignment technique enforces the optimal min-
cost flow solution to utilize the split nodes with smaller ice, before trying to utilize a particular split node. This
simple yet effective idea exhibits the main property of aahinique by which, we minimize the maximum energy
consumption of the nodes. For simplicity, we define cost rahkere cost rank?; has the following property:

R; > Z n: Rj (4)
j<i
Consequently, Equations 3 may be reworded as follows:

Ck+2)(i-1)+1 =0
Cht2)(i-1)+2 = Ba
Clk+2)(i-1)+3 = R2
C(k4+2)(i—1)+4 = R3 (5)

Ckr2)i-1 = Ri
Ck+2)i =0



The loss in edges may also be accommodated easily. For theokakaplicity, we add the extensions for lossy
edges in Section V-B The aforementioned procedure provideglbdefined set of steps to creatg from G;.
A packet routed from a sensor nodeto the base station in G5, corresponds to a unit of— > ¢ flow in G;.
Similarly, our partition construction scheme along with thgper bound settings on split nodes guarantee that any
flow solution in G, represents a feasible routing solution@f. Note that the given traffic pattern fa¥; can be
readily translated into a flow supply vectaF'§) for G;. F'S specifies the amount of flow supply or demand for
all of the nodes.

We now prove that our cost assignment strategy implies thamtin-cost flow solution in7; corresponds to
a routing scheme i+, that minimizes the maximum consumed energy at the nodesg(dvadently, maximizes
the minimum remaining energy over all of the nodes). kgtrepresent the amount of flow on ed@jej). Let y;
represent the amount of flow going through split nddim partition i. Similarly, let¢; denote the associated cost
of unit flow passing through that node {#;. The min-cost flow problem for grap@; with the given supply and
demand vectorf'S, can be written as:

Minimize ¢ kyin (6)
Vi
Subject to:
Sowg— > i =0b(i) Q)
{7:(4.)€A} {5:(i)eA}
0 <z <wyj; V(i,j) € Vi (8)
0<y <u; V() eV 9)

Equation (7) is the flow conservation condition at each nodeEguhtions (8) and (9) are capacity constraints
for the arcs and the nodes respectively. We assume thatvles munds on arc flows as well as the lower bounds
on node flows are zero. Moreover, the number of nodes in net@gris denoted byn.

The flow that passes through the receiver or transmitter notlespartition represents the total flow passing
through that partition, or equivalently, it determines #@ergy consumption at the sensor node corresponding to
the partition. The more the flow, the shorter the lifetime of $kasor node. Therefore, the objective is to minimize
the maximum amount of flow passing through partitions.

The flow passing through any partition has to pass through iit rpdes, and subsequently, min-cost flow
solutions utilize the splits with lower costs before higlmmst splits. We denote the number of split nodes in
partition ¢ that carry a non-zero flow by;.

k+1 S
i = {EF? y(k+2)(z—1>+ﬂ 10)

!
u;

Theorem 5.1:The objective function in Equation 6 minimizes the maximum flowthe nodes of network
Gs = (Vs, Es) with maximum errore wheree < u, = u;/k = 1/k. This is equivalent to maximizing the minimum
battery lifetime of the nodes in network; (or its transformed network’;) and therefore analogous to maximizing
the lifetime of the system.

Proof: Proof is formed by contradiction. Assume our technique gaesrsolution. where the flow entering
each partition is represented By Let fi.x = (max(f;)Vi). Assume there exist another solutibh with maximum
flow denoted byf: .. where f* . < fmax + €.

Thus, (10) conveys that:

VYmax < Pmax

Considering the cost on splits in Figure 2 and Equation (3), ereleide that the overall cost of flow for solution
L is greater than the overall cost of flow for soluti@éi. This contradicts the optimality of min-cost flow technique
since the solution foundZ() does not have the minimum cost. Therefore, by contradictios solution* cannot
exist and our formulation minimizes the maximum flow (or maizies the minimum lifetime).

Due to the flow conservation condition in min-cost flow techmigit is trivial that the flow in any nodes may
not be reduced individually to minimize the objective fuont



The intuition behind our proposed technique is that the cesigament on the splits forces the network to rout
a flow from thekth split of nodeuv;, if it cannot be routed through any number of other nodes wlifs- 1)th
splits is empty. |

Theorem 5.2:The solutionL , generated by our technique, minimizes the difference ef nfaximum node
flows throughout every two disjoint paths connecting sourc@ testination node (with tolerance of= 1/k -
minimal-skew). In other words, these two nodes further ninaste the minimum lifetime of the nodes along each
path and are regarded as the bottleneck nodes (i.e. suck hade the maximum energy consumption rate along
their corresponding paths).

Proof: This proof is presented by contradiction as well. Assumeetlesists a feasible solutioh* which was

transformed fromZL and the flows of two partitions and j was altered such that their difference is reduced. We
denote the new flows in solutioh by f; and f;. Without loss of generality, we assunfe< f;.
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Fig. 4. Flow exchange to obtain minimal-skew solution

We investigate both possible scenarios. One scenario ®eduen the transformation involves changing the flow
in only one partition (increasing; or decreasingf;) According to the flow conservation theorem, this scenario is
not feasible. The other scenario, as shown in Figure 4, take pihen the flow of partition is increased and
the flow of partition; is decreased (by a value of greater tlrsuch that:

[f; = L <If5 = fil + e
and (11)
Fi+ =it fite

From Equation 9, it can be easily shown that:

fi<fi<[fi </ (12)
Therefore, the number of splits that are utilized for passigflow follows the same convention:
Vi < i <y < (13)

As discussed before, in each partition, each split has atbastalone is greater tham™ times the cumulative
cost of all the precedent splits with smaller indices £ number of nodes irGs (original graph)). Since the
solutionsZ and L* are similar except in partitionsand j, therefore, the overall cost of solutidnis greater than
the cost ofL*(y; > z/};?). This contradicts the optimality of min-cost flow algorithm the solution. must have
the minimum cost. Hence, solutial cannot exist. [ |

Theorem 5.3:The solution of minimal-skew routing is unique in the sensat tie lifetime of nodes in the
network in descending order is unique.

Proof: AssumeF and F” are the vectors containing the flow of all nodes in descendidgrdor two optimal
solutions,L and L. Obviously F[1] = F'[1], otherwise the two total costs would be different (that cadlicts the
optimality of the solution). Inductively, this argumentltis for every index. Assumé'[;] = F'[i], fori =1...k.
If F[k+ 1] < F'[k+ 1] then because of the special cost assignment of the spktsast of 7/ [k + 1] itself would
be larger than the total cost df[i]s, i = k + 1...n. Therefore, the total cost of solutioff is greater than the
cost of L. This contradicts the optimality of solutioly. This completes the proof. |



B. Discussion on Lossy Channels

In general, accommodating lossy communication channetsimmum cost flow technique is not quite an easy
task due to flow conservation conditions. In the case wherexitstence of lossy communication links are inevitable,
the packets received at the receiver is less than the nuniljgciiets transmitted. This scenario corresponds to
flow attenuation in our minimum cost formulation. To addrdss data/flow loss in communication links, ideally we
prefer to remove certain portion of the flow traveling throlaghedge and transfer it to a auxiliary node which is
considered as a "dummy” sink node. Other gateways and sidkqare also connected to the aforementioned node.
This can be accomplished by adding intermediate nodes oy ewerconnection edge. Moreover, the intermediate
nodes have to be connected through "lossy” edges with cast a€¢dummy” sink node. The upper bound on
"lossy” edges corresponds to the loss rate of every interection edge. The limitation we face, however, is that
the initial flow in every edge tends to be directed through tssy edge until the "lossy” edge reaches its capacity.
This causes a potential problem where the interconnectigasedre not utilized with their full capacity. Therefore,
this will incur in an increase in loss rate. To address trssiés we propose the following transformation:

dummy sink node

Fig. 5. Edge splitting

Each edge is divided into split edges;y, ..., ¢;(141)—1 andk lossy edges, ..., l;141)—1 connecting intermediate
nodes to a dummy node as shown in Figure 5. The costs on splis @dgespond tdr,, Rs, ... Ro,. While the cost
on lossy edges correspond &, Ry, ... Rox+1. This will ensure that initially edge;;, is utilized and subsequently
lossy edgd;.. Despite, we attempt to characterize the probabilisticinreadf loss with a deterministic approach,
over a long run, the behavior of our model become analogogsetady behavior of real systems. The above cost
distribution will ensure that edgesy, lik, €ik11, - €i(kt1)—1, li(k+1)—1 are utilized accordingly. Changing the cost
ranks associated with the edges enables us to accommodtiatecotnbinations of edge utilization. All Theorems
and Lemmas proven in the this Section still holds for graph$ wassy edges (with minor modifications). The
proofs are omitted due to lack of space.

C. Dissimilar Initial Energy Levels

Throughout our formulation, we assumed that the initial gpéevels in all nodes are similar. Dissimilar initial
energy levels, however, can be simply accommodated by gindithe capacity of the splits (upper-bounds on the
splits). Throughout our formulation, we assumed that thiainenergy levels in all nodes are similar. Dissimilar
initial energy levels, however, can be simply accommodatedodifying the capacity of the splits (upper-bounds
on the splits). The main property of our technique is that vegasvarious costs to different levels of energy stored
in a battery. When a battery is fully charged, it can be usedereasily than the case it has half of the full charge.
Therefore, in the case where some nodes in the network do metflith energy level, the already used portion of
their battery corresponds to the splits with lesser coshddethose splits could be assigned upper bound of zero
in the min-cost flow formulation as if they have been alreadydus



D. Time Complexity Analysis

The formulation used for the proposed min-cost flow problem indEigns (2) through (9) is an LP formulation
which can be solved with standard LP solvers. Throughout operxents, we used Matlab as an LP solver. The
use of LP-solvers enabled us the ability to have non-integaphcity in the formulation and non-integral flow in
the solution. In order to provide combinatorial algorithtossolve such problem, integrality constraints must be
enforced. Fortunately all the problem parameters such gghgdemands and capacities assigned to splits can be
scaled by a factor ok (the number of splits) and meet the integrality constraiftserefore, the time complexity
of our technique is after scaling would 16 (m log(nk))(m + nklog(nk))) wherem is the number of edges in
the graph;n and k are the number of nodes and splits in each partition, relspéctThe time complexity can be
easily derived from the time complexity of the min-cost floga@ithms and the size of our constructed network
(O(nk)). The original time-complexity of min-cost flow is reported itl].[

E. Discussion on Multicommodity

In scenarios where several sources and destinations algedvand the communication pairs exchange “different”
type of messages, routing problems can be modeled as nmiticdity flow. Out technique can not directly
address this class of problems [8]. The problem itself is kmdav be NP-complete. However, we believe that
our methodology can be applied in conjunction with the kndwearistics for multicommodity flow problems and
generate reasonable results. We have not considered #éisis af networks but we plan to study it in near future.

VI. EXPERIMENTAL RESULTS

We generated various benchmarks based on random graphseldtlvely large number of nodes to illustrate
the effectiveness of our centralized technique. For sititpliwe assumed that the energy level in all benchmarks
is uniform. Our benchmark sets resemble real-world netsioltk most network applications, it might be unlikely
that a large portion of sensor nodes are placed within closrimpity of each other. Instead, they are placed on
a grid with certain random properties. It can be envisionga docally random globally regular networks.” Such
scenario can be imagined with the following example: Certaimber of sensor nodes is required to be placed in
a building. Each room has a specific number of sensor nodes igicbnstant, yet, the position of the nodes is
random within each room. We call this set as random networtsgvid distribution. We generate such benchmarks
by dividing the area into unit-size tiles. A tile that doed have a sensor node is selected randomly. We place a
node in the tile with uniform distribution. This procedureépeated until all tiles are covered. If more sensor nodes
are required to be inserted, the same course is recurrddalirdensor nodes are placed. One hundred sensors are
placed within areas of siz&60 x 40, 160 x 60, 160 x 80, 200 x 40, 200 x 60, 200 x 80 and 200 x 100. We refer
to this set of benchmarks as "grid” networks. In all netwoitkeee source nodes are placed on far left side of the
square area while the destination nodes/ gateways aredptecthe right side of the square. This particularly assist
us to place the source/destination not within the closeipritx of each other. The connectivity between nodes is
determined by statistical models developed using real Riistievers under different conditions and scenarios [5].
Only communication links with reliability greater tha89% are considered. In the next set of experiments, the
locations of the nodes are generated conforming to a randoforon distribution over areas various size. The We
refer to this class of random networks as "random” networks.

Firstly, we illustrated the effectiveness of our techniquewo benchmarks. One benchmark belongs to our class
of "grid” networks while the other resembles "random” netiwoEach network consists of 100 nodes scattered
over an area o200 square meters.

The graph topology of "grid” and "random” networks are illiated in Figures 6 and 8 respectively.

Figure 7 depict the normalized energy consumption rate ofmthaes in the system sorted in ascending order
for various numbers of splitsk] in the "grid” network. The effectiveness of our algorithm oow the energy
consumption rate becomes evenly distributed is clearlyatestnated wherk is increased. Figure 7 illustrates the
same graph for the "random” network shown in Figure 8.

In the next set of experiments, the size on benchmarks isdalfior every particular size, twenty benchmarks are
generated with three source and three destination nodesiriipare our scheme against other routing algorithms, we
consider a shortest path routing algorithm based on miniroosh flow. Figures 10, 11 , 12 and 13 demonstrate the
lifetime resulted from our scheme compared to min-costrieghe. In all diagrams, each data-point corresponds to
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Fig. 6. Graph topology (h=100, grid distribution)
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Fig. 7. Normalized energy consumption rate in sorted order (n=108,digtribution)

the average taken over twenty benchmarks. Throughout gtafias, as the number of splits increases, the lifetime
improves due to forcing the network to utilize vertex digjopaths more effectively. Overall, the average lifetime
of the systems (fok = 4) is increased by a factor af.38 compared to min-cost routing approach.

Figures 14, 15, 16 and 17 exhibits the delay trade-offs of outimg algorithm with respect to the min-cost
shortest path for various benchmarks.

Overall, the average delay of our scheme ot 4) is 10% greater than the min-cost shortest path. The average
delay is not vastly increased due to existence of multipleexedisjoint paths between sources and destinations in
our benchmarks. The average delay also increases slighthyeds(number of splits) is increased.

In general, highly connected networks such as grids prosidarge number of parallel paths between nodes
which is of our interest and enhances the flexibility of datatira.

VIlI. CONCLUSION

We proposed a polynomial timeoptimal technique for multi-hop routing in wireless netk® with distributed
battery sources. Our technique maximizes the lifetime efffistem. Furthermore, it evenly distributes the energy
consumption rate which yields in a minimal-skew solution f@de utilization. We theoretically proved that our
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Fig. 8. Graph topology (n=100, random distribution)
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Fig. 9. Normalized energy consumption rate in sorted order (n=10@dora distribution)

technique is efficient and has polynomial time complexity.tik@mmore, our technique accommodates routing
through lossy links while the optimality is not sacrificed. rOnvestigation on various benchmarks revealed the
quality of the solutions generated by our methodology evéh & small number of splits.
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