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Abstract

Consider the problem of classifying motions, encoded as dynamical models of a certain class. Standard nearest neigh-
bor classification then reduces to find a suitable distance function in the space of the models. In this paper we present a
supervised differential-geometric method to learn a Riemannian metric for a given class of dynamical models in order to im-
prove classification performances. Given a training set of models the optimal metric is selected among a family of pullback
metrics induced by the Fisher information tensor through a parameterized diffeomorphism. Experimental results concerning
action and identity recognition based on simple scalar features are shown, proving how learning a metric actually improves
classification rates when compared with Fisher geodesic distance and other classical distance functions.

1 Introduction

Human motion recognition is one of the most popular fields in computer vision, due to both its applicative potential and
its richness in terms of the technical issues involved. Consider then the problem of classifying a number of movements,
represented as sequences of image features: Representing those sequences in a compact way as simple dynamical models has
proved to be effective in problems like dynamic textures or gait identification.
The motion classification problem then reduces to finding the appropriate distance function in the space of the dynamical
models of the chosen class. A number of distance functions for linear systems has been already introduced, in particular in the
context of system identification: Martin’s distance between cepstrums [1], subspace angles [2], gap metric [3] and its variants
nu-gap [4] and graph metric [5], kernel methods [6]. Besides, a vast literature can be found about dissimilarity measures
between hidden Markov models [7, 8], most of them variants [9] of the Kullback-Leibler divergence [10, 11]. However, a
simple mental experiment is enough to understand how no single distance function can possibly outperform the others in
each and every classification problem, since labels can be assigned arbitrarily to any given dataset.

The most reasonable thing to do, when possessing some a-priori information in terms of partially labelled data or similarity
classes, is then try andlearn in a supervised fashion the “best” distance function for a precise classification problem. This
topic has become quite popular in the last few years (see for instance [12, 13, 14, 15, 16, 17, 18]). Many unsupervised
algorithms, in particular, take an input dataset and embed it in some other space, implicitly learning a metric (locally linear
embedding [19] among the others), but fail to learn a full metric for the whole input space.
In this paper we propose a differential-geometric method that, given a dataset ofunlabeledlinear systems of a given class,
allows to learn the Riemannian metric that minimizes the inverse volume element around the data, this way forcing the
geodesic of the manifold to pass through the region where the data are actually distributed. We will show how this improves
the classification performance by posing the problem in the region where the systems actually live. More precisely, if the
models belong to a Riemannian manifoldM , any diffeomorphism ofM onto itself induces apullback metricon M . By
designing a suitable family of diffeomorphisms depending on a parameterp we then obtain a family of pullback metrics on
M . We can then analytically compute the volume element of the induced metric as a function ofp, and pose a well-defined
optimization problem to get the value of the parameter.

To prove the advantages of a classification scheme based on a metric learnt from the data, we consider two different
problems: action recognition and identity recognition from gait. We use the image sequences collected in the Mobo database
[20] to show experiments in which simple nearest-neighbor classifiers based on the pullback of the classical Fisher metric
between stochastic models outperform analogous classifiers based on all the known distances between models.



2 Learning pullback metrics

The study of the geometrical structure of the space formed by a family of probability distribution is first due to Rao [21], and
was developed by Nagaoka and Amari [22, 23]. A family S of probability distributionsp(x, ξ) depending on an-dimensional
parameterξ can be regarded in fact as ann-dimensional manifold. If the Fisher information matrix

gij
.= E

[∂logp(x, ξ)
∂ξi

∂logp(x, ξ)
∂ξj

]

is nondegenerate,G = [gij ] is a Riemannian tensor, andS is a Riemannian manifold. The squared distanceds2 between two
nearby distributionsp(x, ξ) andp(x, ξ + ∂ξ) is known to be twice the respectiveKullback-Leibler divergence[10]. Some
approximations of this measure have been introduced based on Monte-Carlo methods or simplifying approximations [11, 7].
The problem of defining a metric for linear dynamical systems has been studied also in the framework of robust control.
One criterion is to compare the outputs when the inputs are restricted to the class of inputs that give bounded outputs. This
approach was introduced by Zames and El-Sakkary [3] [24] using the notion ofgap metric. The original rationale for the
(linear) gap metric was to provide a suitable topology in which small errors in the gap in open-loop systems would correspond
to small errors in the norm of the stable closed-loop. Another solution calledν-gap metricto the problem of comparing two
systems that is appropriate for feedback analysis was suggested by Vinnicombe [4].
Another distance function has recently been introduced based on the notion ofcepstrum, the inverse Fourier transform of the
logarithm of the spectral density. Martin [1] defined a new metric for the set of SISO ARMA models, based on the inner
product of the cepstra(cn)n∈Z, c∗n = c−n, yielding a Euclidean metricd(c, c′) = |c− c′|2 =

∑
n n|cn − c′n|2. De Cock [2]

showed how the cepstrum norm of a SISO ARMA model is a function of the principal angles between the row space of the
controllability matrices of the model and its inverse.

2.1 Learning metrics from the data: pullback metrics

None of the above distances (which have usually been designed for a precise goal) can obviosly outperform the others in
every classification problem. Labels can be assigned arbitrarily to dynamical systems, so that a distance which works well
for a particular labeling would fail if employed in a different classification task. When having some knowledge about the
dataset (similarity between pairs, partial labeling, etc.) it makes much more sense tolearn a distance metric reflecting this
information, and use the learnt metric for classification (see [25]). Many unsupervised algorithms take an input dataset and
embed it in some other space, implicitly learning a metric ([19] among the others). However, they fail to learn a full metric
for the whole input space, so that the embedding has usually to be recomputed when new data are available1.

Some simple notions of differential geometry can provide us with a fundamental tool to build a structured family of
metrics on which to define an optimization problem, the basic ingredient of a metric learning algorithm. Consider a family
of diffeomorphisms between the Riemannian manifoldM in which the datasetD ⊂ M resides and itself:

Fλ : M → M, m 7→ Fλ(m) (1)

This family of maps induces a family ofpullbackmetrics on the space itself. Let us callTmM the tangent space toM in m.
Any diffeomorphismF is associated with apush-forwardmap

F∗ : TmM → TF (m)M
v ∈ TmM 7→ v′ ∈ TF (m)M

defined as(F∗v)f = v(f ◦ F ) for all the smooth functionsf onM . Then, given a Riemannian metricg : TM × TM → R
onM , the diffeomorphismF induces apullbackmetric onM as follows:

g∗m(u, v) .= gF (m)(F∗u, F∗v). (2)

Any parametric family of differentiable maps (1) generates naturally a parametric family of metrics on the original spaceM .
The geodesic (shortest path) connecting two points under the pullback metric is thelifting of the geodesic associated with the
original metric. In other words, the pullback geodesic between two points is just the geodesic connecting their images with
respect to the original metric.

1Even though some work on out-of-sample extensions of spectral methods has been done [26].
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3 Volume element minimization

As our task is to classify data, a natural optimization criterion would be to maximize the classification performance achieved
by using the learnt metric for a simple nearest-neighbor classifier. Xing et al. [25] have recently proposed a way to solve
this optimization problem forlinear mapsy = A1/2x, when some pairs of points are known to be “similar”. This leads to
a parameterized family of Mahalanobis distances‖x − y‖A. Given the linearity of the map the problem of minimizing the
squared distance between similar points turns out to be convex, hence solvable with efficient numerical algorithms. Other
people [27] have successfully faced the same problem in a linear framework, by solving an optimization problem based on
information theory (relevant component analysis).

Unfortunately, maximizing classification performance is in practice very hard in a nonlinear context. A reasonable ap-
proach consists then on choosing a different objective function, which has to be correlated with the natural one in the sense
that it should improve classification performances. An interesting choice has been recently suggested by G. Lebanon [28] in
the context of document retrieval (see also [29]). The idea is to minimize the volume element associated with the pullback
metric, in order to force the geodesics to pass through the most populated regions of the original space. More precisely, the
function to minimize is

O(D) =
N∏

k=1

(det g(mk))−
1
2∫

M
(det g(m))−

1
2 dm

. (3)

whereg(mk) denotes the Riemannian metric at the pointmk of a dataset living on a Riemannian manifoldM . This is
clearly related to finding a lower dimensional representation of the dataset, in a similar fashion to dimensionality reduction
techniques like locally linear embedding [19] or laplacian eigenmaps [30]2. The function (3) to optimize can also be seen as
the inverse of Jeffreys’ prior [31, 28].

3.1 Algorithm

To find the expression of the Gramiandet g∗ associated with the pullback metric (2) we first need to choose a base of the
tangent spaceTmM to M . Let us then denote with{∂i}, i = 1, ..., dim M the base ofTmM . We can then compute the
push-forward of the vectors of this base, getting in turn a base forTF (m)M . By definition [32], the push-forward of a vector
v ∈ TmM is

Fp(v) .= d
dtFp(m + t · v)

∣∣
t=0

, v ∈ TmM. (4)

The diffeomorphismFp then induces a base for the space of vector fields onM , wi
.= {Fp(∂i)}, for i = 1, ..., dim M . We

can rearrange these vectors as rows of a matrixJ = [w1; · · · ; wdim M ]. The volume element of the pullback metricg∗ in a
pointm ∈ M is then given by the determinant of the Gramian [28],

det g∗(m) .= det[g(F∗p(∂i), F∗p(∂j))]ij = det(JT gJ).

If J is a square matrix (as in the following) we get simply

det g∗(m) = det(J)2 · det g(m).

We can then easily find the expression of the objective function (3). Of course, once found the optimal metric, standard
classification algorithms require to measure the geodesic distance between any two points. As geodesics forg∗p are liftings,
we only need to know the geodesics of the original Riemannian space.

4 Learning metrics for linear dynamical models

Even though large classes of non-linear models can be endowed with a Fisher metric tensor, most efforts have focused on the
relatively simpler task of analyzing the Fisher geometry of some important classes of linear models [33, 34]. In particular,
the analytic expressions of the entries of the Fisher information matrix for several manifolds of linear MIMO systems have
been discovered by Hanzon et al. [35].

Let us consider first the class of stable autoregressive discrete-time processes of order 2, AR(2), in a stochastic setting
in which as before the input signal is a Gaussian white noise with zero mean and unit variance. This set can be given a

2In [30] in particular, dimensionality reduction is considered a factor in improving classification.
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Riemannian manifold structure under Fisher metric [36]. A natural parametrization uses the non-unit coefficients(a1, a2)
of the denominator of the transfer function,h(z) = z2/(z2 + a1z + a2) (which corresponds to the AR differencey(k) =
−a1y(k − 1)− a2y(k − 2)). To impose stability the necessary conditions are

1 + a1 + a2 > 0, 1− a1 + a2 > 0, 1− a2 > 0.

The manifold is then composed by a single connected component (see Figure1). The Riemannian Fisher tensor can be
expressed as [37]

g(a1, a2) =
1

(1 + a1 + a2)(1− a1 + a2)(1− a2)

(
1 + a2 a1

a1 1 + a2

)
. (5)

However, alternative local coordinates are given by the Schur parametersγ1 = a1/(1 + a2), γ2 = a2 under which the metric
tensor simplifies as

g(γ1, γ2) =
1

(1− γ2
2)

(
(1+γ2)

2

(1−γ2
1)

0
0 1

)
(6)

while the parameter domain becomes|γ1| < 1, |γ2| < 1.

[0,-1]

[2,1][-2,1]

a

a

a1

2

Figure 1: Graphical representation of the manifold of stable autoregressive systems of order 2,AR(2), with the non-unit
coefficients of the denominator ofh(z) as parameters. It forms a simplex with vertices[−2, 1], [2, 1], [0,−1].

Consider now the class of stable discrete-time linear SISO systems of order 1,
{

x(k + 1) = ax(k) + bu(k)
y(k) = cx(k) (7)

for which we can choose a canonical representation by settingc = 1, so that the transfer function ish(z) = b/(z − a). We
denote this class of systems withM(1, 1, 1). Under the conditions|a| < 1 (stability) andb 6= 0 (minimality) this family of
linear models form a manifold with local coordinates(a, b), consisting of the two connected components{(a, b) : a < 0, b <
0} and{(a, b) : a < 0, b > 0}. Using the generalized polar coordinatesr

.= b√
1−a2 , θ =atanh(a) the Fisher tensor becomes

g(r, θ) =
(

1 0
0 r2

)
(8)

and the manifoldM(1, 1, 1) coincides with the two-dimensional plane, vertical axis excluded (r 6= 0).

4.1 Geodesics

We can use the analytic expressions of the Fisher metric to write the geodesic equations for these classes of linear systems.
Using Einstein’s notation the geodesic equation reads

d2

dt2
xa + Γa

bc

d

dt
xb d

dt
xc = 0
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where{Γa
bc} are the Christoffel coefficients of the second kind [32], Γa

bc = Γbcdg
ad wheregad = g−1(a, d) are the entries of

the inverse of the metric tensor, and the Christoffel coefficients of the first kind are a function of the derivatives of the metric:

Γabc
.=

1
2
gad(

d

dxc
gbd +

d

dxb
gcd − d

dxd
gcb).

Ravishanker [38] has explicitly computed the expression for the Fisher metric of ARMA(p,q) systems using as parametriza-
tion the inverses of poles and zeros, and we could then solve the geodesic differential equation analytically.

However, all the geodesics of stable AR(2) systems endowed with the Fisher metric (6) as a function of the Schur param-
eters have been analytically computed by Rijkeboer [39, 36].
The analytical expressions of the geodesics of the manifoldM(1, 1, 1) endowed with the Riemannian tensor induced by the
scalar product of a Hilbert spaceH2 have been instead computed by Hanzon [40] through an isometry with a Riemannian
surface. We will use it instead of the Fisher tensor in the following3. More precisely, given two systemsΣ1 = (r1, θ2) and
Σ2 = (r2, θ2) their geodesic distance according to the metric (8) is

d(Σ1,Σ2) = (r2
1 − 2r1r2 cos(θ2 − θ1) + r2

1)
1/2

if |θ1 − θ2| ≤ π andsgn(r1) = sgn(r2);
d(Σ1, Σ2) = |r1|+ |r2|

otherwise.

4.2 Volume elements of pullback metrics for spaces of linear models

The algorithm of Section3.1adapts easily to the case in which the dataset is a collection of linear systems.
One natural choice for a diffeomorphism ofAR(2) onto itself is suggested by the simplicial form of the manifold (see

Figure1),

Fp(m) = Fp([m1,m2,m3]) =
1

λ ·m [λ1 ·m1, λ2 ·m2, λ3 ·m3] (9)

wherep = λ = [λ1, λ2, λ3] with λ1 +λ2 +λ3 = 1, whilem = [m1,m2,m3] collects the simplicial components of a system
a in the manifold:

a = [a1, a2]′ = m1[0,−1]′ + m2[2, 1]′ + m3[−2, 1]′, a ∈ AR(2). (10)

Theorem 1 The volume element of the pullback metric onAR(2) induced by the diffeomorphism (9) is given by

detg∗p(m) ∝ (λ1λ2λ3)2

(λ ·m)6
· 1
m2

1m2m3
.

Let us choose as base of the tangent space inAR(2) the set∂1 = [1/2, 1/2]′, ∂2 = [−1/2, 1/2]′. To compute the Gramian
we need to express the diffeomorphism with respect toa. From Equation (10) a1 = 2(m2 −m3), a2 = m2 + m3 −m1,
while the inverse relation ism2 = 1+a1+a2

4 , m3 = 1−a1+a2
4 , m1 = 1−a2

2 . HenceFλ can be expressed in terms ofa1, a2 as

Fλ(a) = 1
∆ [2λ2(1 + a1 + a2)− 2λ3(1− a1 + a2), λ2(1 + a1 + a2) + λ3(1− a1 + a2)− 2λ1(1− a2)]′

where∆ = 2λ1(1− a2) + λ2(1 + a1 + a2) + λ3(1− a1 + a2), so that

Fλ(a + tv) = [2λ2(1 + a1 + tv1 + a2 + tv2)− 2λ3(1− a1 − tv1 + a2 + tv2),

λ2(1 + a1 + tv1 + a2 + tv2) + λ3(1− a1 − tv1 + a2 + tv2)− 2λ1(1− a2 − tv2)]′.

We can then compute4 d
dtFλ(m + t · v)

∣∣
t=0

, and in particular

w1 = d
dtFλ(m + t · ∂1)

∣∣
t=0

= [2λ1λ2(3− a2 + a1) + 2λ3(2λ2 − λ1)(1− a1 + a2),

2λ1λ2(3− a2 + a1) + 2λ1λ3(1− a1 + a2)]

3The related geometries have indeed much in common, [40].
4The straightforward details are neglected to improve the readability of the proof.
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while
w2 = d

dtFλ(m + t · ∂2)
∣∣
t=0

= [−2λ1λ3(3− a2 + a1) + 2λ2(λ1 − 2λ3)(1 + a1 + a2),

2λ1λ3(3− a2 + a1) + 2λ1λ2(1 + a1 + a2)].

The determinant of the matrixJ is then (after a few passages)

detJ = 32
λ1λ2λ3

∆3
=

1
2

λ1λ2λ3

(λ ·m)3
.

Eventually, the function (3) to maximize assumes the form

O(p) =
N∏

k=1

(λ ·mk)3∫
AR(2)

(λ ·m)3m1
√

m2m3dm
(11)

where the normalization factor

I(λ) =
∫

AR(2)

(λ ·m)3m1
√

m2m3dm

forbids trivial solutions in which the volume element is minimized by shrinking the whole space. It can be computed by
decomposing the cube(λ ·m)3 using Tartaglia’s formula, obtaining

I(λ) =
∑

c1+c2+c3=3

3!
c1!c2!c3!

3∏

j=1

λ
cj

j

∫

AR(2)

m1+c1
1 m

1/2+c2
2 m

1/2+a3
3 dm.

About M(1, 1, 1), Henon’s map is the simplest non-trivial diffeomorphism of the plane:x′ = y + x2 + a, y′ = −bx. Here
we choose a modified version:

Fp(r, θ) = [ bθ + ar2 + br, br + aθ2 + bθ ], (12)

with p = [a, b].

Theorem 2 The volume element of the pullback metric onM(1, 1, 1) induced by the diffeomorphism (12) is given by

detg∗p(x) = 4a2(2arθ + br + bθ)2r2.

It is easy to realize that in this case

J =
[

2ar + b b
b 2aθ + b

]

so thatdetJ = 2a(2arθ + br + bθ), while from Equation (8) det g(r, θ) = r2.
This time the function (3) can be expressed as

O(D) ∝
∏

k

1
rk(2arkθk) + brk + bθk

· 1
I(a, b)

(13)

whereI(a, b) is again the normalization factor. Note that whenI(p) is hard to compute, or the original manifoldhas no finite
volume(and hence does not admit Jeffrey’s prior), an acceptable replacement isI(p) =

∑N
k=1(detg(x))−1/2.

The functions (11) and (7) can be maximized by means of any numerical optimization scheme, simple (like gradient
descent) or more sophisticated.

5 Human motion experiments

To test the effectiveness of the approach we considered a significant vision application, namely the recognition of actions
and identities from image sequences. We used the Mobo database [20], a collection of 600 image sequences of 25 people
walking on a treadmill in four different variants (slow walk, fast walk, walk on a slope, walk carrying a ball), seen from 6
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different viewpoints corresponding to cameras equally distributed around the subject (see Figure2-left). Each sequence of
the database possesses three labels: action, view, and identity.

The database comes already with preprocessed silhouettes of the moving body as black and white images. As the results
of the above sections concern only single input-single output linear systems, we chose to extract from each image the width
of the minimum box containing the silhouette. This way, each image sequence is represented as a scalar signal. Each scalar
sequence has been then passed as input to an identification algorithm: we hence generated a dataset of linear systems of the
two classes discussed above, one system for each labeled motion sequence.

This metric learning approach is based on the assumption that the two optimization problems, i.e. maximizing classifi-
cation performance and minimizing volume elements are indeed correlated. We empirically evaluated the goodness of this
conjecture by measuring the performance of a nearest-neighbor classifier based on the optimal pullback metrics induced by
the diffeomorphisms (12), (9), and comparing the results with those of NN classifiers based on all the other known distances
(included the Fisher geodesic distance).

1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

Figure 2: Left: location and orientation of the six cameras in the Mobo experiment (the origin of the frame is roughly in
the position of the walking person on the treadmill). Right: Performance of NN classifier based on all the known distances
between dynamical models, included the pullback metric induced by the Fisher geometry. Correct classification rate for the
used metrics averaged on the size of the training set, in the ID experiment. 1 - Frobenius norm of the matrices in canonical
form; 2 - gap metric; 3-ν-gap matric; 4 - subspace angles; 5 - basis Fisher metric; 6 - pullback metric with diffeomorphism
(14); 7 - pullback metric with diffeomorphism (9).

5.0.1 Identity recognition

In a first experiment we selected a training set of models, and used the pullback geodesic distance to classify theidentity
of the person appearing in a different set of randomly selected sequences. This is a very difficult problem, as there are 25
different people, and the one-dimensional signal we chose to represent sequences clearly provides insufficient information.
However, measuring the comparative performance of the metrics can be useful to see how learning a metric appositively gives
an advantages when using a NN classifier. We implemented a naive Frobenius norm of the system matrices in canonical form,
gap andν-gap metrics [3, 4], subspace angles [2, 1], and of course the Fisher geodesic distance together with the associated
optimal pullback metric.

Figure2-right shows the percentage of correctly classified testing systems over several runs in which we randomly selected
an increasing number of systems in both training and testing set. We also tested a different diffeomorphism for AR(2) systems,
namely

Fλ(m) = [ λm1 + (1− λ)m2, λm2 + (1− λ)m3, λm3 + (1− λ)m1 ], (14)

with 0 < λ < 1. We can notice how the other distances do not show any significantly different behavior. This of course was
to expect, since they have not been designed to solve classification tasks (usually for identification purposes). This has been
the case in all our experiments. Hence, in the following we will only report the performance of the second best distance for
comparison.
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5.0.2 Action recognition
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Figure 3: Top: Recognition performance of second-best distance (left) and optimal pullback metric forAR(2) systems
and diffeomorphism (14) (right) in the action recognition experiment. Here the whole dataset was considered, regardless
of the viewpoint. Increasingx indices(1 : 50) mean decreasing size of the testing set. Increasingy indices(1 : 5)
represent increasing size of the training set. Bottom-left: Difference between the two performances. Bottom-right: relative
performances for view 5 only. Again, the pullback metric outperforms the best competitor.

In a second experiment, we selected a training set of models, and used the pullback geodesic distance to classify theaction
performed by the person in a different set of randomly selected sequences. Recall that all the actions in the Mobo database are
just slightly different variations of the walking gait, and we were using asinglescalar feature. Figure3 illustrates the relative
performances of the optimal pullback metric for autoregressive systems under deformation map (14) and its best competitor.
The correct classification rate has been measured for different sizes of both training and testing set, by randomly selecting for
each class of action an equal increasing number of systems to build the two collections. To test the approach more thoroughly
we also conducted six separate experiments by selecting the portion of the dataset associated with a single view, for each
possible view. These are completely different classification problems, as the datasets can turn out to live in different sub-
manifolds. It is in fact interesting to try and see what happens when we choose a different class of diffeomorphisms. Figure
4 illustrates the average performance of the classifiers associated with the optimal pullback metric for AR(2) models with
(this time) diffeomorphism (9) and the best competing distance for four view-dependent experiments. This time increasing
abscissae (from 1 to 7) mean an increased testing set size. As usual the average is computed by repeated random selections,
and the optimal metric performs far better than the others.

Of course the choice of the family of deformations affects the range of candidate metric tensors the algorithm can select
from. We have seen as a matter of fact how the first family of mappings, which depends on 2 parameters instead of 1,
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Figure 4:Correct action classification rates for four different viewpoints. Sequences are represented as autoregressive order
2 systems. The performance (in red) of the pullback metric associated with the map (9) is shown outperforming the best
competitor (in blue) for increasing sizes of the testing set.

produces a much wider selection choice for the optimization algorithm, eventually delivering a better performance. The same
phenomenon can be appreciated in the identity experiment (see Figure2).

It is really interesting to understand whether the size of the training set we use to learn the optimal metric has or not
an influence on the classification performance. Of course, as our method exploits the training set to understand the local
structure of the data, it is reasonable to conjecture that larger training sets should lead to better recognition rates, as long
as the training data better represent the whole dataset. This is confirmed by Figure5, where the recognition rate is plotted
against the size of the training set. Finally, let us visualize the effect of the optimal diffeomorphism on the dataset. We can
easily do it in the action recognition experiment, as there are only 4 labels. Figure6-left shows an instance of the original
dataset represented as a set of points in theAR(2) simplex. Points of the training set are drawn as squares, while systems
in the testing set are represented as crosses. Figure6-right shows how the diffeomorphism deforms the space, plotting the
images of the dataset according to the optimal map. Data-points are colored according to their true class. We can visually
appreciate how the deformation improves the separation between clusters.

6 Conclusions

In this paper we discussed the problem of learning the “best” metric for a classification problem involving linear dynamical
models. Given a training set of models we pose a related optimization problem in which the pullback metric induced by a
diffeomorphism which minimizes the volume element around the available data is learned. We adopt as basis metric tensor
the classical Fisher information matrix. This yields a global embedding, while usual spectral methods only provide images
of training points.

We have also shown experimental results concerning identity and action recognition, which proved how such a learnt
metric actually improves classification performance with respect to the Fisher metric and all the other known distances
between dynamical models. Setting and solving the minimization problem for MIMO systems is the next natural step. This
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Figure 5:Effect of the size of the training set on the recognition accuracy in the action recognition experiment,M(1, 1, 1)
systems. As the size ofD increases (abscissa indices) the number of correct matches grows in both the overall experiment
for all view (left) and for view 2 (right).

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2

−0.1

−0.05

0

0.05

0.1

0.15

−1.7 −1.65 −1.6 −1.55 −1.5

0.82

0.84

0.86

0.88

0.9

0.92

Figure 6:Effect of the optimal diffeomorphism (9) on the dataset.

will be of course of paramount importance to test this approach in a more realistic scenario.
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