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Abstract

Human identification from gait is a challenging task in realistic surveillance scenarios in which people walking along
arbitrary directions are shot by a single camera. In this paper, motivated by the view-invariance issue in the human ID from
gait problem, we address the general problem of classifying the “content” of human motions of unknown “style”. Given a
dataset of sequences in which different people walking normally are seen from several well-separated views, we propose a
three-layer scheme based on bilinear models, in which image sequences are mapped to observation vectors of fixed dimension
using Markov modeling. We test our approach on the CMU Mobo database, showing how bilinear separation outperforms
other approaches, opening the way to view- and action-invariant identity recognition, as well as subject- and view-invariant
action recognition.

1 Introduction

Biometrics has received a growing attention in the last decade, as automated identification systems became essential in the
context of surveillance and security. In addition to standard biometrics like face recognition of fingerprint comparison, people
have started to work on non-cooperative approaches in which the person to identify moves freely in the surveyed environment,
and is possibly unaware of his/her identity being checked. In this perspective, the problem of recognizing people from natural
gait has been studied by several people as a non-intrusive biometric approach [34], starting from a seminal work of Niyogi
and Adelson [26].

A variety of techniques have been introduced, most based on silhouette analysis [4, 35]. Many other gait signatures,
however, have been studied, ranging from optical flow [23], to velocity moments [29] shape symmetry [14], frieze patterns
[24], height and stride estimation, static body parameters [16], area-based metrics [10], or multiple features [3, 28, 6].
Concerning classification, a number of methods apply some pattern recognition technique after dimensionality reduction
(through eigenspaces [1, 25], or PCA/MDA [32, 13]). Others employ stochastic models like hidden Markov models (HMMs)
to describe gait dynamics [17, 15].

In the last few years, a number of public databases have been made available which can be used as a common ground
on which validate the algorithms. The USF database [27], for instance, has been designed to study the effect of many
factors (covariates) on identity classification in a realistic, outdoor context with cameras located at a distance. However, the
experiments contemplate only two cameras at fairly close viewpoints (some 30 degrees), while people is shot while walking
along the opposite side of an ellipse, so that the resulting views are almost fronto-parallel. Appearance-based algorithms
work well in the experiments concerning viewpoint variability, while one would guess they should not for widely separated
views. In a realistic setup, the person to identify would walk in the surveyed area from an arbitrary direction. View-invariance
[33, 36, 2, 18, 28, 16] is then a crucial issue to make identification from gait suitable for real-world applications.

1.1 View-invariance in gaitID

This problem has been actually studied in the gait ID context by many people. If a 3D articulated model of the moving person
is available, tracking can be used as a preprocessing stage to drive recognition. Cunado et al. [5], for instance, used their
evidence gathering technique to analyze the leg motion in both walking and running gait. They provided estimates of the
inclination of thigh and leg, by deriving a phase-weighted Fourier description gait signature in an automatic way. Yam et al
[36] also worked on a similar model-based approach. Urtasun and Fua [33] proposed an approach to gait analysis that relies



on fitting 3D temporal motion models to synchronized video sequences, while Bhanu and Han [2] matched a 3D kinematic
model to 2D silhouettes.
Model-based 3D tracking, however, is a difficult task, as manual initialization is often required, and optimization in a high-
dimensional parameter space is sensitive to convergence defects. Kale et al. [18] proposed instead a method to generate
a synthetic side-view of the moving person using a single camera, if the person is far enough. Shakhnarovich et al. [28]
suggested a view-normalization technique in a multiple camera context, using the volumetric intersection of the visual hulls
of all the camera silhouettes. Johnson e Bobick also presented a multi-view gait recognition method using static body
parameters recovered during the walking motion across multiple views [16].

1.2 From view-invariance to style-invariance

View-invariance though can be seen as a particular case of more general issue. Consider a dataset of observations possessing
more than a single categorical label: for instance a database of human movements. Each motion can in fact be classified
according to the person who performed it, the category of action performed (i.e. walking, reaching out, pointing, etc.), or (if
the number of cameras is finite) the viewpoint from which the sequence is shot.
This situation is naturally described in terms of multi-linear models. Bilinear models, in particular [31], can be seen as a tool
for separating “style” and “content” of the objects to classify, meaning two distinct class labels of the same objects. As they
are capable to learn how factors interact in such a mixed training set, bilinear models allow for instance to build a classifier
which, given a new sequence in which aknownperson is seen from a viewnot in the training set, can iteratively estimate
both identity and view parameters, significantly improving recognition performances. Analogously, other important vision
problems like identity recognition fromunknown actions, or againview-invariantor identity-invariantaction recognition can
be addressed in terms of bilinear classification.
Therefore we here propose athree-layer modelin which each motion sequence is considered as an observation depending on
three factors (identity, actiontype, andview) from which a bilinear model can be trained by considering two of those factors
at a time. While in the first layer features are extracted from single images, in the second level each feature sequence is
given as input to a Markov model. Assuming fixed dynamics, the HMM would cluster the movement into a fixed number of
poses. The stacked vector of these poses would then form an observation vector representing the sequence. After learning a
bilinear model for such a set of observations, we can then classify (determine the content of) new sequences characterized by
a different style label. In the final Section we will show experiments on the CMU Mobo database concerning ID and action
recognition, showing how this approach performs significantly better than other known approaches.

2 Bilinear models

Bilinear models have been introduced by Tenenbaum et al. [31] as a tool for separating what they call “style” and “content”
of objects to classify, meaning two distinct class labels of the same objects. Common but useful examples can be font and
letters in writing, or word and accent in speaking.

In thesymmetricmodel, style and content are represented by two parameter vectorsas andbc with dimensionI andJ
respectively. Given a training set ofK-dimensional observations{ysc

k }, k = 1, .., K with two different labelss ∈ [1, .., S]
(style) andc ∈ [1, .., C] (content), we assume it can be described by a bilinear model of the type

ysc
k =

I∑

i=1

J∑

j=1

wijkas
i b

c
j (1)

that, lettingWk denote thek-th matrix of dimensionI × J with entrieswijk, can be rewritten asysc
k = (as)T Wkbc. The

matricesWk define abilinear mapfrom the style and content spaces to theK-dimensional observation space.
When the interaction factors can vary with style (i.e.ws

ijk depend ons) we get anasymmetricmodel

ysc = Asbc (2)

whereAs denotes theK × J matrix with entries{as
jk =

∑
i ws

ijkas
i}, a style-specific linear map from the content space to

the observation space.
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2.1 Training an asymmetric model

Given a training set of observations with two labels, a bilinear model can be fitted to the data by means of simple linear
algebraic techniques. If the training set has (roughly) the same number of measurements for each style and each content
class, an asymmetric model can be fit to the data by singular value decomposition (SVD). Once stacked the training data into
the(SK)× C matrix

Y =




y11 · · · y1C

· · · · · · · · ·
yS1 · · · ySC


 (3)

the asymmetric model can be written asY = AB whereA andB are the stacked style and content parameter matrices,
A = [A1 · · ·AS ]′, B = [b1 · · ·bC ]. The least-square optimal style and content parameters are then easily found by
computing the SVD of (3) Y = USVT , and assigning

A = [US]col=1..J B = [VT ]row=1..J .

If the training data are not equally distributed among the classes, the least-square optimum has to be found [31].

2.2 Content classification of unknown style

Suppose that we have learned a bilinear model from a training set of data, and a new set of observations becomes available
in a new style, different from all those present in the training set,but with content labels between those learned in advance.
In this case an iterative procedure can be set up to factor out the effects of style and classify the content labels of the test
observations. As a matter of fact, knowing the content class assignments of the new data is easy to find the parameters for
the new stylẽs by solving forAs̃ in the asymmetric model (2). Analogously, having a mapAs̃ for the new style we could
easily classify the test vectors by measuring their distance fromAs̃bc for each (known) content vectorbc.

The question can be solved by fitting a mixture model to the learned bilinear model by means of the EM algorithm [7].
The EM algorithm alternates between computing the probabilitiesp(c|s̃) of the current content label given an estimate of
the style (E step), and estimating the linear map for the unknown style given the current content class probabilities (M step).
More precisely, we assume that the probability generated by the new styles̃ and contentc is given by a Gaussian distribution

p(y|s̃, c) ∝ exp−‖y −As̃bc‖2
2σ2

(4)

while its total probability1 is p(y) =
∑

c p(y|s̃, c)p(s̃, c) where in absence of prior informationp(s̃, c) is supposed to be
equally distributed.

In the E step the algorithm calculates the probabilities

p(s̃, c|y) =
p(y|s̃, c)p(s̃, c)

p(y)

and classifies the test data by finding the content classc which maximizesp(c|y) = p(s̃, c|y).
In the M step the style matrix which maximizes the log likelihood of the test data is estimated, yielding

As̃ =
∑

c ms̃c(bc)T

∑
c ns̃cbc(bc)T

wherems̃c =
∑

y p(s̃, c|y)y is the mean observation weighted by the probability of having styles̃ and contentc, and
ns̃,c =

∑
y p(s̃, c|y).

The effectiveness of the method critically depends on the goodness of the representation chosen for the observation vectors.
However, it was originally presented as a way of findingapproximatesolutions to problems in which two factors are involved
[31], without precise context-based knowledge. In the gaitID context, for instance, Elgammal and Lee have analyzed the
geometry of cycles in the visual space, and adopted local linear embedding [31] as a tool to re-sample homogeneously each
cycle into a fixed number of poses.

1The general formulation allows the presence of more than one unknown style, [31].
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3 A three-layer model

As we mentioned above, in human motion analysis movements can be characterized by a number of different labels: each
motion can in fact be classified according to the identity of the person, the category of action performed (i.e. walking,
reaching out, pointing, etc.), or (if the number of cameras is finite) the viewpoint from which the sequence is shot.
They hence naturally fall in a context of multilinear modeling, in which a dataset of observations can be thought of as a linear
mixture driven by two or more factors.
Elgammal and Lee have recently used them to separate pose and ID from a database of poses in the context of GaitID [21, 8].
Here we propose the use of bilinear models to represent and classify movements regardless the “style” with which they
are executed. In more practical terms, this allows us to address problems likeview-invariant identity recognition, identity
recognition fromunknowngaits, classification of actions fromunknown viewpointsor performed bynew persons.

We designed athree-layer modelin which each motion sequence is considered as an observation depending on three
factors (identity, action type, andview) from which a bilinear model can be trained by considering two of those factors at a
time. We can then apply the technique of Section2.2to classify motions regardless their style, as we will see in Section4.

3.1 First layer: feature representation

We chose a simple but effective feature representation of the silhouettes to reduce the computational load. In particular, given
a silhouette we detect its center of mass, rescale it to the associated bounding box, and project its contours on one or more
lines passing through the center of mass (see Figure1). We chose this after testing a number of different representations:
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Figure 1:Feature extraction. Left: a number of lines is drawn through the center of mass of the silhouette. Right: the distance
of the points on the contour from the line is computed: these values for all the lines form the feature vector.

among those the principal axes of the body-parts as they appear in the image [22], size functions [11], and PCA representation
of the contours. Specially the latter turned out to be rather unstable.

3.2 Second layer: HMMs as sequence descriptors

If the contour is projected onto 2 orthogonal lines, and we set 10 components for each projection, each image is then
represented by a 40-dimensional feature vector. Image sequences are then encoded as sequences of feature vectors, in
general of different duration. To make them suitable inputs for a bilinear model learning stage (Section2.1) we need to find
a homogeneous representation. Hidden Markov models [9] provide us with a tool for transforming each sequence into a
fixed-length observation vector2 .

2Even though they have been widely applied to gesture or action recognition, HMMs have been rarely studied as a tool in the gait ID problem [15, 30].
In particular, Kale and Chellappa [19] used the Baum-Welch forward algorithm to compute the log-likelihood of the sequence with respect to a set of learnt
Markov models.
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A hidden Markov modelis a statistical model whose states{Xk} form aMarkov chain; the only observable quantity is a
corrupted versionyk of the state calledobservation process. Using the notation in [9] we can associate the elements of the
finite state spaceX = {1, ..., n} with coordinate versorsei = (0, .., 0, 1, 0, .., 0) ∈ Rn and write the model as

{
Xk+1 = AXk + Vk+1

yk+1 = CXk + diag(Wk+1)ΣXk

where{Vk+1} is a sequence of martingale increments and{Wk+1} is a sequence of i.i.d. Gaussian noisesN (0, 1). The
model parameters will then be thetransition matrixA = (aij) = P (Xk+1 = ei|Xk = ej), the matrixC collecting the
means of the state-output distributions(being thej-th columnCj = E[p(yk+1|Xk = ej)]) and the matrixΣ of the variances
of the output distributions. The set of parametersA,C 3 andΣ of an HMM can be estimated, given a sequence of observations
{y1, ..., yT }, through (again) an application of the Expectation-Maximization (EM) algorithm (see [9] for the details).

3.2.1 Sequence representation

Given a sequence of feature vectors extracted from all the silhouettes of a sequence, EM yields as output a finite state
representation of the motion, in which the transition matrixA encodes the sequence’s dynamics, while the columns of theC
matrix are theposesrepresenting each state in the observation space. There is no need to estimate the period of the cycle, as
poses are automatically associated with states of the Markov model. Furthermore, sequences with variable speed cause no
trouble, in opposition to methods based on the estimation of the fundamental frequency of the motion [23].

As in the gait ID case the dynamics is the same for all the sequences (as all of them are instances of the walking motion)
it can be factored out: the topology of the resulting HMM is constant. If we also assume that people are walking at constant
speed, the transition matrixA is of no use and can be neglected. Hence the matrixC of the poses can be used as a descriptor
for the entire sequence4.

BILINEAR MODEL

IMAGE FEATURES

IMAGE SEQUENCE

HMMs

Figure 2:Scheme of the three-layer model for collections of multiple-label movements. Features (bottom layer) are extracted
from each image of the sequence. Those feature vectors are fed to an HMM with a fixed number of states, yielding a dataset
of Markov models, one for each sequence (second layer). The stacked versions of theC matrices of these models are then
used as input vectors for the bilinear model (top layer).

3.3 Third layer: bilinear model of HMMs

The pose matrixC of each sequence can eventually be stacked into a single observation vector representing the sequence.
The dataset of sequences is then encoded as a dataset of these observation vector of homogeneous length, even though the

3Note thatA, C here have nothing in common withA,C of Section2.
4Of course, two HMMs are equivalent up to a permutation of the (finite) state space. In other words, similar sequences can differ in the order of their

poses. We then normalize the ordering of the states by finding for each sequence the state permutation which correspond to the best match between itsC
matrix and the others.
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original sequences had different duration. They can then be used to build a bilinear model for a dataset of human motions.
The procedure can then be summarized as follows:
• each image sequence is transformed into a sequence of feature vectors;

• those feature sequences are fed to EM algorithm, yielding anN -state HMM for each movement;
• the (pose)C matrix of each HMM is stacked to yield on observation vector;
• the algorithm of Section2.1 is used to build an asymmetric bilinear model for the dataset.

The three-layer model is depicted in Figure2. Given a dataset of motions, we can use this algorithm to built an asymmetric
bilinear model from the sequences related to all style labels but one (training set). We can then use a bilinear classifier (Section
2.2) to label the the sequences associated with the remaining style (testing set), as we will see in the rest of the paper.

4 Experiments

We used the CMU Mobo database [12] to extensively test the bilinear approach to gaitID and action recognition. As its six
cameras are widely separated, it gives us a real chance of testing the algorithm in a rather realistic setup. In the Mobo database
25 different people perform four different walking-related actions: walking at low speed, walking at high speed, walking
along an inclined slope, and walking while carrying a ball. The sequences were acquired indoor, with the people walking on
a treadmill at constant speed. The cameras are more or less equally spaced around the treadmill, roughly positioned around
the origin of the world coordinate system [12]. Each sequence is composed by some 340 frames, encompassing 9-10 full
walking cycles (left-parallel-right-parallel). We renamed the six cameras originally called 3,5,7,13,16,17 as 1,2,3,4,5,6.

4.1 From view-invariant gaitID to ID-invariant action recognition

The sequences of the Mobo database have then three different labels: identity, action, and viewpoint. We then set up four
series of test in which we built bilinear models by selecting a content label and a style label among the three, respectively: con-
tent=ID, style=view (view-invariant gaitID); content=ID, style=action (action-invariant gaitID); content=action, style=view
(view-invariant action recognition); content=action, style=ID (style-invariant action classification). The remaining factor can
then be considered as a nuisance. In each experiment we used the sequences related to all the style labels but one as training
set, and built an asymmetric bilinear model as in Section2.1. We then used the sequences associated with the remaining style
as test data, and implemented the bilinear classifier (Section2.2).

To get a significantly large dataset, we adopted the period estimation technique in [27] to separate the original long
sequences into a larger number of subsequences each spanning three walking cycles. This way we obtained a collection of
2080 sequences, roughly equally divided among the six views, the 25 IDs, and the four actions. We then computed feature
matrices for each subsequence, and applied the HMM-EM algorithm withn = 2 states to generate a dataset of pose matrices
C, each containing two pose vectors as columns. We finally stacked those columns into a single observation vector for each
subsequence. These observation vectors would finally form our dataset. We used the set of silhouettes provided with the
database, after some preprocessing to clean away artifacts from the original images. In the following we will measure the
performance of the algorithm using both the percentage of correct best matches and the percentage of test sequences for
which the correct identity is one of the firstk = 3 matches.

The bilinear classifier depends on a small number of parameters (Section2.2), in particular the varianceσ of the mixture
distribution (4), and the dimensionJ of the content space. They can though be learned in a learning stage, by computing
the score of the algorithm when applied to the training set for each value of the parameters. Basically the model needs to be
allowed a large enough content space to accommodate all the content labels. Most important of all, however, is the initial
value of the probabilityp(c|y) with which each test vectory belongs to a content classc. Again, this can be learned from
the training set by maximizing the classification performance using some sort ofsimulated annealingtechnique to overcome
local maxima.

4.2 Identity versus view

In the first series of tests we considered “identity” as content label and “viewpoint” as style label. This way we could test the
view-invariance of a gaitID bilinear classifier. We report here the results of different kinds of tests. In Figure3 we selected the
subset of the dataset associated with a single action (nuisance). We then measured the performance of the bilinear classifier
for view-invariant gaitID using view 1 as test view, for an increasing number of persons in the dataset. To get an idea of
the comparative performance of our algorithm, we implemented a simple nearest neighbor classifier which assigns to each
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Figure 3:View-invariant gaitID for sequences related to the same action: “slow” (left) and “ball” (right). View 1 is used as
test view, and the classifcation rate is plotted for increasing numbers of identities in the dataset. The percentage of correct
best matches is shown in solid red, while the rate of a correct match in the first 3 is plotted in dotted red. For comparison the
performance of the KL-nearest neighbor classifier on the dataset of HMMs is shown in solid black (pure chance is also plot
in dashed black).

test sequence the identity of the closest Markov model (using the standard Kullback-Leibler divergence [20]). Figure 3
clearly shows how the bilinear classifier greatly outperforms a naive NN classification of the Markov models built from the
sequences. The depressing results of the KL-NN approach testifies the difficulty of the task.
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Figure 4:View-invariant gaitID for sequences related to actions “slow” (left) and “ball” (right), and different selection of the
test view (from 1 to 6). The first 12 identities are considered. Colors as above.

Figure4 instead compares the two algorithms as the test viewpoint varies, for the two sub-datasets related to the actions
“slow” and “ball” with 12 identities. Again the NN-KL classifier performs around pure-chance levels, while the bilinear
classifier reaches excellent scores of some 90% for some views. Relatively large deviations in the second plot are due,
according to our experience, to the parameter learning algorithm being stuck to a local maximum. Figure5-left illustrates
the performance of the algorithm as a function of the nuisance factor, i.e. the performed action: ball=1, fast=2, incline=3,
slow=4. The classifier does not exhibit any particular dependence. We also implemented for sake of comparison thebaseline
algorithm described in [27], which basically computes similarity scores between a probe sequenceSP and each gallery
(training) sequenceSG by pairwise frame correlation. Figure5-right compares the results of the bilinear classification with
the results of both the baseline algorithm and the KL-based approach for all the six possible test views, in the complete

7



1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

90

100

Nuisance = action

C
la

s
s
if
ic

a
ti
o

n
 r

a
te

ID vs view #1, fixed action

1 2 3 4 5 6
0

10

20

30

40

50

60

70

Missing view

C
la

s
s
if
ic

a
ti
o

n
 r

a
te

ID vs view, action "slow" only, 25 people

Figure 5: Performance of the bilinear classifier in the ID vs view experiment. Left: score as a function of the nuisance
(action), test view 1. Right: score for the dataset of sequences related to the action “slow”, and different selection of the test
view (from 1 to 6), 25 identities. The classification rate of the baseline algorithm is in blue: the other colors are as above.

dataset with 25 identities. It can be easily appreciated that the structure introduced by the bilinear model improves greatly the
identification performance, rather homogeneously over all the views. The baseline algorithm instead seems to work better for
sequences coming from cameras 2 and 3, which have rather close viewpoints, while it delivers the worst results for camera
1, the most isolated from the others [12]. The KL-based nearest neighbor approach is not distinguishable from pure chance.
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Figure 6:Action-invariant gaitID for sequences related to viewpoints 1 (left) and 5 (right), and different selection of the test
action (from 1 to 4). The first 12 identities are considered. Colors as in Figure4.

4.3 Identity versus action

In a different experiment we validated the assumption that a person can be recognizedeven from an action he never performed
before, provided that we have seen this action performed by other people. In our case the assumption is quite reasonable,
since all the actions in the database are nothing but different variations on the gait gesture. We then built bilinear models
for content=ID, style=action from a training set of sequences related to three actions, and classified the remaining sequences
(instances of the fourth action) using the bilinear method. Figures6 to 8 support the ability of bilinear classification to allow
identity recognition even from different gestures.

The best-match ratio is around90% for twelve persons, even though it slightly declines (Figure7) for larger datasets (the
parameter learning algorithm is stopped after a fixed period of time, yielding suboptimal models). The NN-KL classifier
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Figure 7:Action-invariant gaitID. In the left diagram sequences related to viewpoint (nuisance)#5 are considered, and “ball”
is used as missing action (test style). In the right diagram sequences related to viewpoint#4 are considered, and “fast” is
used as test (missing) action. The classifcation rate is plotted for increasing numbers of identities, colors as above.

performs relatively better in this experiment, but well below an acceptable level. Again, Figure8 illustrates the various
recognition rates as functions of the nuisance (viewpoint).
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Figure 8: Performance of the bilinear classifier in the ID vs action experiment as a function of the nuisance (view=1:5),
averaged over all the possible choices of the test action. The average best-match performance of the bilinear classifier
is shown in solid red, with minimum and maximum scores in solid magenta. The related best-3 matches ratio is plotted in
dotted red, minimum and maximum scores in dotted magenta. The average performance of the KL-nearest neighbor classifier
is shown in solid black, minimum and maximum in blue. Pure chance is in dashed black.

4.4 Action versus identity

In the third experiment we considered the situation in which we know a database of action performed by a number of
persons, and we want to recognize one of those known actions when performed by anunknownperson (style-invariant action
classification). In this case content = action, style = identity, while the viewpoint from which the image sequences are shot is
a nuisance factor. Figure9-left shows the performance of the bilinear method on theentiredataset, regardless the viewpoint,
for all the possible choices of the test identity. The scores obtained with two different image feature representations are show:
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contour projection as in Section3.1, and principal axes of fixed regions of the silhouette [28, 16, 22]. 5 Again, Figure9-right
shows the results as function of the nuisance (viewpoint).
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Figure 9: Identity-invariant action recognition using the bilinear classifier. Left: the entire dataset is considered, regardless
the nuisance label (the viewpoint from which the sequence is shot). The correct classification percentage is shown as a
function of the test identity in black (for models using Lee’s features) and red (contour projections). Related mean levels
are drawn as dotted lines. Right: recognition rate as a function of the nuisance (view=1:6), averaged over all the possible
choices of the test identity. The average best-match performance of the bilinear classifier is shown in red, with minimum and
maximum scores in magenta.

4.5 Action versus view

In a final experiment we considered the problem of recognizing aknown actionperformed bya view not in the dataset. In
this case the content label is “action”, the style label is “view”, and identity is the nuisance factor. Figure10-left shows the
correct classification rate on the entire dataset, regardless the identity of the walking person, for all the possible choices of
the test viewpoint. The scores obtained with the two mentioned features are shown, proving how feature choice is essential
for the performance of the three-layer model. A comparison with the results obtained for fixed-nuisance datasets (Figure
10-right) confirms that the variability induced by a third factor disturbs the performance of the algorithm.

To conclude, it is worth to mention that the bilinear classifier itself is almost instantaneous. However, the parameter
learning algorithm can typically take a few minutes as simulated annealing works its way towards the optimal solution.

5 Conclusions

In this paper, motivated by the view-invariance issue in the gaitID problem we addressed the problem of classifying multiple-
label motions. We designed a three-layer model in which hidden Markov models with a fixed number of states are used to
cluster each sequence into a fixed number of poses to generate the observation data for an asymmetric bilinear model. We
used the CMU Mobo database [12] to set up an experimental comparison between the bilinear approach and other standard
algorithms in several experiments ranging from view-invariant gaitID to identity-invariant action recognition, showing how
bilinear modelling can improve recognition performances when the test motion is performed in an unknown style.
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