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Abstract. In this work we consider the problem of detecting humans in
a single image, together with classifying their pose. Specifically, our goal is
to simultaneously answer two questions: 1) is there a human body in the
image and, if so, 2) does her pose match one of the pose classes present in
a given set of unlabeled examples?
Starting from a set of descriptors recently proposed for human detection,
we derive a probabilistic model for the statistics of these features and
show how such a model can be used to answer these two questions. In
particular, we show how our model is effective at detecting humans while
providing an efficient representation for the tasks of pose classification and
matching.
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1 Introduction

Human detection and localization from a single image is an active area of research
that has witnessed a surge of interest in recent years [1–5]. Simply put, given as
input an image patch, we want to devise an automatic procedure that yields a
positive answer whenever the patch contains a human body.

This is a hard problem because of the wide range of variability that images
of humans exhibit. Given that is impractical to explicitly model the changes due
to nuisance factors such as clothing, lighting conditions, viewpoint, body pose,
partial and/or self-occlusions, it is natural to use a descriptive model to represent
the human/non human statistics.

The problem then reduces to a binary classification task for which we can di-
rectly apply general statistical learning techniques. Consequently, the main focus
of research on human detection so far has been on deriving a suitable representa-
tion ([1, 3, 5, 4]), i.e. one that is most insensitive to typical appearance variations,
so that it provides good features to a standard classifier.

Building on the success in object recognition and wide-baseline matching with
local descriptors based on histograms of gradient orientations [6], recently a simi-
lar representation [5] has proven to be particularly successful for human detection.
The main idea of such features is to use distributions of gradient orientations in
order to be insensitve to color, brightness and contrast changes and, to some
extent, local deformations. However, to account for more macroscopic variations,
due for example to changes in pose, a more complex statistical model is warranted.
We go beyond standard classifiers operating directly on the feature set. Our ap-
proach relies on a statistical model of the feature generation process. Guided by
considerations on the nature of the basic elements used to build these descriptors,
we show how a special class of hierarchical Bayesian processes can be used as
generative models for these features and applied to the problem of detection and
pose classification.

This work can be interpreted as an attempt to bridge the gap in the literature
between the two related problems of human detection and pose estimation. In
human detection, since a simple yes/no answer is required, there is no need to
introduce a complex model with latent variables associated to physical quantities.
In pose estimation, on the other hand, the goal is to infer these quantities and
therefore a full generative model is a natural approach. Between these extremes
lies our approach. We estimate a probabilistic model with a set of latent variables,
which do not necessarily admit a direct interpretation in terms of configurations
of objects in the image. However, these quantities are instrumental to both human
detection and the pose classification problem.

The main difficulty that any approach to pose classification has to face is in
the representation of the pose information. Humans are highly articulated objects
with many degrees of freedom, which makes defining pose classes a remarkably
difficult problem. Even assuming manual labeling, how do you judge the distance
between two poses? We believe that in such conditions the only avenue is an
unsupervised method. We propose an approach which allows for unsupervised
clustering of images of humans and provides a low dimensional representation
encoding essential information on their pose. A main difference with standard
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clustering or dimensionality reduction techniques is that we derive a probabilis-
tic framework, which allows principled ways to combine and compare different
models, as required for tasks such as human detection, pose classification and
matching.

2 Related work

The literature on human detection and pose estimation is too broad for us to
review here. Therefore we will review the main approaches, emphasizing the most
relevant to our work. We refer the reader to the survey [7] for further investiga-
tions.

We focus on human detection and pose estimation from a single image. We do
not consider the widely studied case where temporal information or a background
model are available, for which effective algorithms based on silhouettes [8–12] or
motion patterns [13–15] can be applied. This is a fundamental problem with a
range of sensible applications, such as image understanding and image retrieval.
It makes sense to try to solve it because we know that the information is there,
since humans can tell what people are doing from photographs. The question is
how to represent this information, and the answer we give constitutes the main
novelty of this work.

We can roughly classify the approaches to human detection according to the
basic representation used: Haar wavelets [3, 1, 16], edges [4, 2], gradient orien-
tations [5, 17], gradients and second derivatives [18, 19] and regions from image
segmentation [20].

Viola et al. [1] propose an efficient coarse-to-fine approach based on Adaboost
and a set of computationally efficient Haar-like features, while Papageorgiu et al.
[3] use a similar representation with a support vector machine (SVM). Gavrila et
al. [4] build a real-time system that matches the edge map of the image with a
set of templates organized in a hierarchical structure, automatically constructed
from examples. Ioffe et al. [2] assemble segments as pair of parallel edges using
Adaboost, associate a likelihood to them and find the body part locations by
incrementally sampling subassemblies through an efficient importance sampling
scheme.

Most approaches to pose estimation are based on body part detectors, either
designed ad-hoc from cues such as edges, shape, color and texture [20–24] or
learned from training data [18, 19].

The optimal configuration of the part assembly is then computed using dy-
namic programming as first introduced in [23] and later applied in [18, 19], or
by performing inference on a generative probabilistic model, using either Data
Driven Markov Chain Monte Carlo [25], Belief Propagation or its non-Gaussian
extensions [21, 24].

These works focus on only one of the two problems, either detection or pose
estimation. Our approach is different, in that our goal is to extract more infor-
mation that a simple yes/no answer, while at the same time not reaching the full
level of detail of determining the precise location of all body parts. Thus we want
to simultaneously perform detection and pose classification, and we want to do it
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in an unsupervised manner. In this aspect, our work is related to the constellation
models of Weber et al. [26], although we do not have an explicit decomposition
of the object in parts.

We start from the representation [5] based on gradient histograms recently
applied to human detection with excellent results, and derive a probabilistic model
for it. We show that with this model one can successfully detect humans and
classify their poses.

The statistical tool used in this work, Latent Dirichlet Allocation (LDA) [27],
has been introduced in the text analysis context and recently applied to the prob-
lem of recognition of object classes [28–30]. Contrary to most approaches (all but
[29]) where the image is treated as a “bag of features” and all spatial information
is lost, we encode the location and orientation of edges in the basic features so
that this essential information is explicitly represented by the model.

3 A Probabilistic Model for Gradient Orientations

This section contains a brief overview of the features that we use as the basic
representations of images, followed by a description of the probabilistic model
that we propose and how it can be applied to the feature generation process.

3.1 Histogram of Oriented Gradients

Local descriptors based on gradient orientations are one of the most successful
representations for image-based detection and matching, as was firstly demon-
strated by Lowe in [31]. Among the various approaches within this class, the best
performer for the case of humans as of today appears to be the feature proposed
in [5]. This descriptor is obtained by computing weighted histograms of gradient
orientations over a grid of spatial neighborhoods (cells), which are then grouped in
overlapping regions (blocks) and normalized for brightness and contrast changes.

[5] provides a thorough experimental study of the performances of this detector
for various configurations: spatial and orientation binning methodology, size and
shape of the cell, number and arrangement of cells in each block and normalization
schemes. We refer to the original paper for details.

Here we give a brief description of the feature for the default settings, which
has been used in this work.

Assume that we are given a patch of 64× 128 pixels. We divide the patch into
cells of 8×8 pixel, and for each cell a gradient orientation histogram is computed.
The histogram represents a quantization in 9 bins of gradient orientations in the
range 0o − 180o. Each pixel contributes to the neighbor bins, both in orientation
and space, by an amount proportional to the gradient magnitude and linearly
decreasing with the distance from the bin center.

The cells are grouped in blocks of 2 × 2 cells, and the contribution of each
pixel is also weighted by a Gaussian kernel with σ = 8, centered in the block.
Finally the cell histograms within one block are normalized to have unit L2 norm.
The final descriptor is a collection of histograms from overlapping block, with
horizontal and vertical spacing of 8 pixel between neighboring blocks.
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The main properties of such a representation is robustness to local deforma-
tions, illumination changes and, to a limited extent, viewpoint and pose changes
due to coarsening of the histograms.

In order to handle the larger variations typical of human body images, we need
to complement this representation with a model. Instead of using general machine
learning techniques, we propose a probabilistic model that can accurately describe
the generation process of this features.

3.2 Latent Dirichlet Allocation

In this section we review the main statistical tool used in this work, latent Dirichlet
allocation. We borrow notations and terminology from the document analysis
framework in which it was firstly introduced. For further details we refer the
reader to [27].

We are given a collection of documents, with the following representation:

– Words w,the basic units of our data, take values in a dictionary of W unique
elements, w ∈

{
1, · · · ,W

}
.

– A document w =
(
w1, w2, · · · , wN

)
is a sequence of N words. The number

of words N is a random variable, for example a Poisson process. Since the
distribution of N does not affect the derivation of the model, we will not
consider it in what follows.

– The corpus D =
{
w1,w2, · · · ,wM

}
is a collection of M documents.

The main goal of LDA is to find a model that assigns high probabilities to the
elements of the corpus and to documents similar to them. In order to do so, it
introduces a set of K latent variables, called topics. Each word in the document
is assumed to be generated by one of the topics. Under this model, the generative
process for each document w in the corpus is as follows:

1. Choose θ ∼ Dirichlet(α).
2. For each word wn, n = 1, · · · , N :

(a) Choose a topic zn ∼ Multinomial(θ).
(b) Choose a word wn ∼ Multinomial(βzn).

where the hyperparameter α ∈ RK
+ represents the prior on the topic distribu-

tion, θ ∈ RK
+ are the topic proportions, and β ∈ R+

W×K are the parameters of
the word distributions conditioned on topics, i.e. βij = P (w = j|zi = 1). In figure
1 we show a graphical representation of the LDA model.

Here we can safely assume that the topic distributions β are deterministic pa-
rameters, later for the purpose of inference we will treat them as random variables
and assign them a Dirichlet prior: β.k ∼ Dirichlet(η) , where β.k denotes the k-th
column of β.

Then the likelihood of a document w is:

p(w|α, β) =
∫

p(θ|α)

(
N∏

n=1

∑
zn

p(zn|θ)p(wn|zn, β)

)
dθ (1)
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Equation (1) shows how the documents are represented as a continuous mix-
ture distribution. The advantage over standard mixture of discrete distributions
[32], is that we allow each document to be generated by more than one topic.
LDA bears close relation to probabilistic latent semantic analysis (pLSA,[33]),
where documents are mixtures of topics with document-specific proportions. Un-
like pLSA, however, LDA is a proper generative model and, as we will see in the
next section, this allows us to combine multiple models in a principled way, as it
is required in tasks such as detection and classification.

The model can be simplified if we represent documents as bags of words.
Specifically, a document w is a collection of word counts rj :

w = (r1, r2, · · · , rW ) , rj = |i : wi = j, i ∈ {1, · · · , N}| (2)

By marginalizing over the hidden variable z:

p(w|θ, β) =
∑

z

p(w|z, β)p(z|θ) (3)

we obtain the following two-level hierarchical process:

1. Choose θ ∼ Dirichlet(α).
2. For each word j, j = 1, · · · ,W in the dictionary, choose a word count rj as:

rj ∼ p(rj |θ, β) (4)

where the word counts are drawn from a discrete distribution conditioned on
the topic proportions θ: p(rj |θ, β) = βj.θ .

Fig. 1. Graphical representation of the Latent Dirichlet Allocation model. Each node is a
random variable and each box represents sampling. The larger box generates documents
in the corpus, the inner box samples words for each document, and the top box generates
the topic distributions.

3.3 A Bayesian Model for Gradient Orientation Histograms

Now we can show how the described two-level Bayesian process finds a natural
application in modeling the spatial distribution of gradient orientations.
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Here we consider the histogram of oriented gradients [5] as the basic feature
from which we build our generative model, but let us point out that the frame-
work we introduce is very general and can be applied to any descriptor based on
histograms.

In this histogram descriptor, we have that each bin represents the intensity
of the gradient at a particular location, defined by a range of orientations and a
local neighborhood (cell). Thus the bin height denotes the strength and number
of the edges in the cell.

If we quantize histogram bins and assign a unique word to each bin, we obtain
a representation for which we can directly apply the LDA framework. By analogy
with document analysis, an orientation histogram computed on an image patch
is a document w represented as a bag of words (2), where the bin heights are
the word counts rj . We assume that such a histogram is generated by a mixture
of basic components (topics), where each topic z induces a discrete distribution
p(r|β.z) on bins representing a typical configuration of edges common to a class
of elements in the dataset. By summing the contributions from each topic (3), we
obtain the total count rj for each bin, distributed according to (4).

Such feature formation process has some properties that are desirable for our
application:

First, different bins can be attributed to different topics, so the underlying
edge collection representing the image can be seen as a mosaic from the edge
collections of the topics.

Second, even within the same bin we have contributions from multiple topics,
and this models the fact that the bin height is the count of edges in a neighborhood
which may include parts generated by different components.

Finally, let us point out that by assigning a unique word to each bin we
model spatial information, encoded in the word identity, whereas most previous
approaches [30, 28] using similar probabilistic models for object class recognition
did not exploit this kind of information.

4 Probabilistic Detection and Pose Estimation

Given a set of positive and negative examples, our goal is to learn a model that
can be applied for both human detection and pose estimation.

In detection, we are presented with a previously unseen image Inew and asked
to choose between two hypotheses: either it contains a human or it is a background
image.

The first step is to compute the gradient histogram representation w(I) for
the test and training images.

Then we apply our probabilistic framework. The natural approach is to learn
a model for humans and background images and use a threshold on the likelihood
ratio3 for detection:

3 Ideally we would like to use the posterior ratio R =
P (Human|Inew)/P (Background|Inew). However notice that R is equal to (5) if
we assume equal priors P (Human) = P (Background).
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L =
P (w(Inew)|Human)

P (w(Inew)|Background)
(5)

For the the LDA model, the likelihoods p(w(I)|α, β) are computed as in (1),
where α, β are model parameters and can be learned from data. In practice, we
can assume α known and compute an estimate of β from the training corpus. In
order to do so, we can choose from two main set of inference algorithms: mean
field or variational inference [27] and Gibbs sampling [34]. Mean field algorithms
provide a lower bound on the likelihood, while Gibbs sampling gives statistics
based on a sequential sampling scheme. As shown in figure 2, in our experiments
Gibbs sampling exhibited superior performances over mean field in terms of clas-
sification accuracy. We have experimented with two variations, a direct method
and Rao-Blackwellised sampling (see [35] for details). Both methods gave similar
performances, here we report the results obtained using the direct method, whose
main iteration is as follows:

1. For each document wi = (ri,1, · · · , ri,W ):
(a) Sample θ(i) ∼ p(θ|wi, α, β)
(b) Sample v

(i)
j. ∼ Multinomial(βj.θ

(i), ri,j)
2. For each topic k

(a) Sample β.k ∼ Dirichlet(
∑

i v
(i)
.k + η)

In pose classification, we start from a set of unlabeled training examples of
human poses. From this data we learn the topic distribution β. This defines a
probabilistic mapping to the topic variables, which can be seen as an economical
representation encoding essential information on the pose. That is, from a image
Inew, we estimate the topic proportions θ̂(Inew) as:

θ̂(Inew) =
∫

θp(θ|w(Inew), α, β)dθ (6)

Pose information can be recovered by matching the new image Inew to an
image I in the training set. For matching, ideally we would like to compute the
matching score Sopt as the posterior probability of the test image Inew given the
training image I and the model α, β:

Sopt(I, Inew) = P (w(Inew)|w(I), α, β) (7)

(7) is computationally expensive since for each pair I, Inew it requires comput-
ing an expectation of the form (6), so we opted for a suboptimal solution. For each
training document I, in the learning step we compute the posterior topic propor-
tions θ̂(I) as in (6). Then the matching score S between the test image Inew and
the training image I is given by the dot product between the two vectors θ̂(I)
and θ̂(Inew):

S(I, Inew) =< θ̂(I), θ̂(Inew) > (8)
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5 Experiments

In the first set of experiments we tested the efficacy of our model for the human
detection task. We used the dataset provided by [5], consisting in 1822 64 × 128
images of pedestrians in various configurations and 1671 images of outdoor scenes
not containing humans.

We collected negative examples by random sampling 10 patches from each of
the first 1218 non-human images. These, together with 1208 positive examples
and their left-right reflections, constituted our training set. We used the learned
model to classify the remaining 614 positive and 4530 patches from 453 negative
images.

The first step is to compute the histograms of oriented gradients from the
image patches. We used the parameter settings described in section 3.2. Then, in
order to apply our probabilistic model, it is necessary to quantize the histogram
bins. We have verified experimentally that 8 quantization levels yields satisfactory
discrimination performances while providing an economical representation.

Given the number of topics K and the prior hyperparameters α, η, we learn
topic distributions β and topic proportions θ̂(I) using either Gibbs sampling or
Mean Field. We assume scalar priors, αi = a, ηi = b. We tested different settings
for a, b and we noticed that their values are not crucial for the final results. In the
experiments shown we used a = 2/K and b = 0.1.

The number of topics K is an important parameter that should be carefully
chosen based on considerations on modeling power and complexity. With a higher
number of topics we can more accurately fit the data, which can be measured
by the increase in the likelihood of the training set. This does not come for free:
we have a larger number of parameters and an increased computational cost for
learning. Eventually, an excessive topic number causes overfitting, which can be
measured as the likelihood in the test dataset decreases. For the INRIA data,
experimental evaluations suggested that a good tradeoff is obtained with K = 20.

We learn two models, one for positive and one for negative examples. For
learning we run the Gibbs sampling algorithm described in section 4 for a total
number of 300 samples per document, including 50 samples to compute the like-
lihoods (1). We also trained the model using the Mean Field approximation. For
details on the implementation we refer to [35]. We compute the likelihood ratio
(5) and yield positive answer if L > 1.

In figure 2 we show the performances of our LDA detector on the INRIA test
images compared with:

– Linear SVM classifier: we used the SVMlight [36] implementation with error
weight C = 0.01 and cost factor j equal to the ratio between positive and
negative examples.

– pLSA classifier: we learned the topic distributions p(w|z) for positive and
negative pLSA models from the training data with standard EM [33], Then
using the fold-in heuristic [33] we computed the likelihood
p(w) =

∏
i

∑
z p(wi|z)p(z) of test feature w for both models, and use the

likelihood ratio (5) for detection. The only parameter here is the number of
topics K, we used K = 20.
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– K-Means classifier. We learned positive and negative models, each as a collec-
tion of K = 20 clusters using K-Means. The decision rule is wether the closest
cluster belongs to the positive or the negative model.

From the plot we see how the results of our approach are comparable with
the performances of the Linear SVM, while being far superior to the other un-
supervised clustering techniques. We would like to stress that a comparison on
detection performances with state-of-the discriminative classifiers4 would be un-
fair, since our model targets pose classification which is a problem sensibly harder
than binary detection. If a fair comparison needs to be made, then we should
divide the dataset in classes and compare our model with a multiclass classifier.
But then we would face the difficult problem of how to label human poses.

The particularly poor performances of the pLSA model can be explained by the
fact that it is not a proper generative model, and the pseudo-likelihood provided
by the fold-in heuristic for different models are not directly comparable.

Let us mention that the performances of all these classifiers could be improved
by using boosting, we do not purse this avenue since we do not focus on construct-
ing the best possible human detector.

In figure 3 we show the distributions of sample topics from the 20-topic INRIA
positive model and a 8-topic model learned on a less challenging dataset, the Mobo
sequences, which we will describe shortly. We see how topics roughly correspond
to pose classes, this is clear in particular from the results on the Mobo dataset.
It is difficult to attribute a semantic meaning to poses given the high number
of degrees of freedom of the human body. Thereby our approach can be seen as
an unsupervised method to discover pose classes, which are represented by the
topics and the associated distributions. From figure 3 we can also see how topics
concentrate most of their gradient distribution on different parts of the image,
showing the mosaic effect induced by this model.

For the second round of experiments, we used the Mobo dataset [37] provided
by the Carnegie Mellon group. It consists of sequences of subjects performing
different motion patterns, each sequence taken from 6 different views. In the
experiments we used 22 sequences of fast walking motion, picking the first 100
frames from each sequence.

In the first experiment we trained the model with all the views and set the
number of topics equal to the number of views, K = 6. As expected, each topic
distribution represents a view and by assigning every image I to the topic k with
highest proportion k = arg maxk θ̂k(I) we correctly associate all the images from
the same view to the same topic.

To obtain a more challenging setup, we restricted to a single view and tested
the classification performances of our approach in matching poses. We learned a
model with K = 8 topics from 16 training sequences, and used the remaining 6
for testing. In figure 3 we show sample topics distributions from this model. In
figure 4, for each test sequence we display a sample frame and the associated top
ten matches from the training data according to the score (8). We can see how

4 For example, [5] shows that sensible improvements over the Linear SVM can be ob-
tained using support vector machines with Radial Basis function kernel.
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the pose is matched against change of appearance and motion style, specifically a
test subject pose is matched to similar poses of different subjects in the training
set. This shows how the topic representation factors out most of the appearance
variations and retains only essential information on the pose.

In figure 5, we plot the similarity matrix S(Inew, I) between test Inew and
training I frames, which shows the correlation between the respective motions as
measured by the model. We can see the parallel diagonal lines corresponding to
the different motion cycles, similar the ones obtained in motion autocorrelation
studies [13]. Let us point out that the computation of this matrix requires only
dot products between low dimensional unit vectors θ̂, so our approach provides
also an efficient method for matching poses to a large dataset. In order to give a
quantitative evaluation of the pose matching performances, we labeled the dataset
by mapping the set of walking poses to the interval [0, 1]. We manually mapped to
0 all the frames at the beginning of the double support phase, when the swinging
foot touches the ground, and to 1 the frames where the legs are approximately
parallel. We labeled the remaining frames automatically using linear interpolation
between keyframes. The average interval between keyframes is 8.1 frames, this
motivates our choice of the number of topics K = 8.

For each test frame, we compute the pose error as the difference between
the associated pose value and the average pose of the best top 10 matches in
the training dataset. We obtain an average error of 0.14, corresponding to 1.2
frames. In figure 6 we show the average pose error when matching test frames to
a single train sequence. Although the different appearance affects the matching
performances, overall the results shows how our approach can be successfully
applied to automatically match poses of different subjects.

6 Conclusions

In this work we introduced a novel approach to human detection, pose classifi-
cation and matching from single image. Starting from a representation robust to
a limited range of variations in the appearance of humans in images, we derived
a generative probabilistic model which allows for automatic discovery of pose
information. The model can successfully perform detection and provides a low
dimensional representation of the pose. It automatically clusters the images using
representative distributions and allows for an efficient approach to pose matching.
We verified experimentally the efficacy of our approach by applying it to human
detection, pose clustering and pose matching on two large image datasets.
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Mobo sequences. For each topic k, we show 12 images in 2 rows. The first column shows
the distribution of local orientations associated with topic k: (top) visualization of the
orientations and (bottom) average gradient intensities for each cell. The right 5 columns
show the top ten images in the dataset with highest topic proportion θ̂k, shown below
each image. We can see how topics are roughly related to pose classes, for example INRIA
topic 1 clusters images with multiple people, topic 3 has mainly side views, topic 4 has
images of people with legs apart, and so on. Let us remark the difficulty of classifying
and giving a semantic meaning to the wide range of poses in this dataset. For the easier
Mobo dataset, the relation between topic and pose is more clear, as we can see from the
topics in the last row. We can also see how most of the energy of the topic distributions
are concentrated in different parts of the image patch, this accounts for the additive
nature of our mixture model.
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Fig. 4. Pose matching examples. On the left one sample frame from test sequences, on
the right the top 10 matches in the training set based on the similarity score (8), reported
below the image. We can see how our approach allows to match poses even despite large
changes in appearance, and the same pose is correctly matched across different subjects.
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Fig. 5. Similarity measure (8) between entire test and training dataset. Every block is a
100 frame-long sequence, each rows is a test frame and each columns is a training frame.
Dark indicates large similarity, light denotes small values. We can see that our measure
perform consistently across subjects. On the right, a zoom-in of the box highlighted of
the left, showing the matching between a single test and train sequence. We can clearly
see the diagonal lines typical of walking gait motion patterns.

Fig. 6. Pose matching for test and training sequence pairs. Each row is a test sequence,
each column a training sequence. We display the average pose error in matching the test
frames to the frames of the specific training sequence. The highest error corresponds to
about 2 frames, while the mean error is 0.32 and amounts to approximately 1.3 frames.


