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Abstract

We develop a classification algorithm for hybrid autoregressive models of human motion for the purpose of video-based
analysis and recognition. We assume that some temporal statistics are extracted from the images, and we use them to infer a
dynamical system that explicitly models contact forces. We then develop a distance between such models that explicitly factors
out exogenous inputs that are not unique to an individual or her gait. We show that such a distance is far more discriminative
than the distance between simple linear systems, where most of the energy is devoted to modeling the dynamics of spurious
nuisances such as contact forces.

1. Introduction
The analysis of human motion has been a subject of interest in the vision community for decades, further reinforced in

recent years by applications in security, biomechanics and entertainment. All aspects of the problem, from modeling to
detection, tracking, classification, and recognition are the subject of active research [13, 31]. From a modeling perspective,
humans are physical objects interacting in physical space in ways that are mediated by forces, masses and inertias that can
be described, to first approximation, by ordinary differential equations. In other words, humans are dynamical systems.
Analytically, each individual can be described by a model that includes intrinsic parameters (masses, inertias), internal states
(skeletal configurations, internal forces), also a property of the individual, and external forces (inputs), including contact
forces, that depend on the environment and other nuisance factors. From the point of view of perception, humans and their
clothes interact with light and an imaging device to yield output images.

While “static” (e.g. pose, skeletal configurations [21]), “quasi-static” (e.g. graphs of transitions between poses [29],
cumulative video statistics [5]), or “kinematic” representations [6] already contain significant information on both the identity
of humans and their action,1 dynamics also play a crucial role, that has been recognized early on by Johansson [16] who
showed that even if we strip the image of all of its pictorial content and look at displays of moving dots, from their motion
we can often tell whether a person is young or old, happy or sad, man or woman.2 In this paper we concentrate on dynamics
as a perceptual cue for human motion recognition.3

If we agree in viewing humans as dynamical systems, then learning their dynamic characteristics is a system identification
task [23]. System identification is a well established field, and yet in almost 50 years of research the problem of performing
decision tasks, such as detection and recognition, in the space of dynamical models is largely unexplored. Several attempts
have been made to endow the space of dynamical models with a metric and probabilistic structure, such as the Gap metric
[34], subspace angles [10], Martin’s distance [25]. However, even for simple linear systems deciding “how far” two models
are is not straightforward, and learning a distribution (e.g. a prior) in model space is even less so [19].4 In particular, if we
want to be able to learn models that have discriminative power, we have to factor out nuisance factors, such as external forces,
that do not depend on the particular individual or gait. Therefore, in this work we consider models that explicitly represent

1It is often easy to tell that someone is running, rather than walking, from a single snapshot.
2One could argue that moving dot displays also contain pose and kinematic information; however, dynamics remains an important cue, as one can guess

by watching two-hundred pound imitators display Charlie Chaplin’s walk (different masses, inertias and skeletal configuration, same perceptual dynamics).
Furthermore, one single snapshot of such moving dot displays rarely yields much information.

3This does not mean that kinematics, or pose or even pictorial cues are not important, and eventually all will have to be integrated into a coherent system.
We believe, however, that dynamics has been largely unexploited, hence our emphasis in this paper.

4Note that each of these techniques has been applied to the analysis and classification of human motion ([4] for subspace angles and Martin’s distance,
[26] for the Gap metric) with encouraging but limited results.
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contact dynamics; such models are hybrid, in the sense that they involve both continuous dynamics and discrete “switches.”
Therefore, the simplest instance of our problem involves performing inference and classification of hybrid dynamical models.
Since the analysis is complex enough for repetitive gaits (e.g. walking, running, jumping), we concentrate on this case.
Ideally an individual should be recognized regardless of the gait, and in particular during transient maneuvers, but this is
beyond the scope of this paper.

In order to distill the essence of the problem, we concentrate on dynamics, and assume that some representation of a human
gait has been inferred, either in the form of joint angles in a skeletal model (e.g. [7]), or in the form of joint positions, e.g. from
a motion-capture system. In other words, we use data similar to Johansson’s displays, that distill dynamic information. Note
that, although we assume that the “image-to-model” problem is solved, which is not quite the case even today, and although
we do not use any images in this work, this is vision work indeed. In fact, the models we study are designed and analyzed for
the purpose of vision-based classification: If we were to infer and analyze models for, say, computer graphics, or robotics,
or biomechanics, the models would be quite different, and their inference would likely entail additional measurements (e.g.
forces) that are not directly available in a vision context. So, we concentrate on inference and classification of hybrid
dynamical models designed for vision-based human motion analysis and recognition. This is not a trivial problem, and even
some of the basic ingredients are missing from the literature, as we explain in the following section.

1.1. Relation to previous work

The literature on human motion recognition is too broad for us to review here. We will provide a synthetic overview of the
main approaches, both for the problem of classification of motion gaits [31] and of identification of people by their gait [29].

The proposed approaches can be classified as model-based [6, 4, 20, 18] representing the motion as the parameters of a
model fitted to the data, or holistic [22, 33], where some statistics is extracted from the video sequence and used for classifica-
tion. In all cases the first step consists in deriving a compact representation of the motion, such as binary silhouettes [29, 18],
optical flow [22], joint angles of an articulated body model with image-based tracking [6, 4, 27], or other spatio-temporal
motion descriptors [3, 12] . Then some statistics are computed on the reduced data and pattern recognition techniques such
as PCA [3], bilinear models [20], Hidden Markov Models [?, 18], K-Nearest Neighbor [22] or Support Vector Machines [21]
are applied to the classification problem.

As we motivated in the introduction, we take the approach of modeling the dynamics of human gaits with hybrid linear
models. Inference of the state and model parameters for a switching linear model is, in general, NP complete [32]. While
several heuristic algorithms exist (e.g. [35, 1]), there is no optimal algorithm of reasonable complexity for the model orders
that we need to consider. Therefore, we concentrate on a specific class of models, that is switching autoregressive (AR) ones.
These are a subclass of switching linear system that is particularly attractive since, for each mode, the optimal estimator can
be written as a closed-form function of the data [23]. For hybrid-AR models, recent algebraic approaches to filtering and
identification [24] have shown promising results, however they do not provide probabilistic information on the estimates and
therefore are not suited to our purposes. We will derive our own identification algorithm in Sect. 2.2, and this is our first
contribution.

Our second challenge is to define a distance in the space of hybrid-AR models. To the best of our knowledge, this has only
been done once before [11] for the case where the models are represented by deterministic unknown parameters, rather than
having a distribution of them. We show that the simple extension of [11] to a stochastic model yields non-sensical distances
that either are non-zero when the two models are identical (eq. 6), or that can be infinity for models that are arbitrarily close
in the deterministic sense (eq. 7). We propose a notion of discrepancy that is very intuitive because it ends up coinciding
with the Euclidean distance between the optimal estimators.

The main achievement of this paper is to show that the distance between hybrid models is far more discriminative than
the distance between linear models that was previously used to classify gaits based on their dynamics. While this may not
be surprising at first, since hybrid-AR models are a super-class of linear models, and therefore they naturally have more
modeling power, note that discriminative power usually decreases with model complexity, since we can have orbits of model
parameters that yield the same output statistics. This is not the case in our model, and we show that it sharply classifies gait
data where linear models yield total confusion.



2. Modeling human dynamics for classification
2.1. Autoregresssive Models

Consider a Gaussian linear time-invariant autoregressive (AR) model of order n:

yt =
n∑

i=1

Aiyt−i + et yt ∈ Rp et ∼ N (0, R) (1)

The equation can be rewritten in normal form:
yt = ϕtθ + et (2)

ϕt =
ˆ

yt−1 ⊗ Ip yt−2 ⊗ Ip · · · yt−n ⊗ Ip

˜
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θT
1 θT

2 · · · θT
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where ⊗ denotes the kronecker tensor product and Ip is the identity matrix of dimension p.

Parameter estimation

Assuming Gaussian prior on the parameters: θ ∼ N (θ0, P0)and given a sequence of observations : yN = {y1, y2, · · · , yN}the
posterior distribution of the parameters θ is [23]:

p(θ|yN , θ0, P0, R) = G(θ; θ̂, P̂ ) (3)

where:
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and G(θ; θ̂, P̂ ) is the Gaussian density with mean θ̂ and variance P̂ evaluated at θ:

G(θ; θ̂, P̂ ) = (2π)−
d
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1
2 exp

„
−1

2
(θ − θ̂)T P̂−1(θ − θ̂

«
(5)

For an intuitive understanding of these expressions consider the simple case of scalar measurements y ∈ R. The equation

of P̂ reduces to: P̂ =
(
P0 +

PN
t=1 y2

t

R

)−1

=
(
P0 + (N − 1)Σy

R

)−1

, where Σy is the sample variance of the measurements.

The variance P̂ is a measure of the uncertainty we have in the estimated parameters. As we could expect, it decreases as
the length N of the observation sequence and the signal-to-noise ratio Σy

R increase. In the limit N → ∞, the variance P̂

becomes zero and the estimate θ̂ is the true value of the parameters.

Model distance (AR)

We use the posterior distributions p(θ|yN ) on the parameters to define a distance between models. As a first attempt we
consider the expectation of the Euclidean distance between the parameters θ1|yN

1 ∼ N (θ̂1, P̂1), θ2|yN
2 ∼ N (θ̂2, P̂2):

de(θ1, θ2)
2 = E[(θ1 − θ2)

T (θ1 − θ2)] =

= (θ̂1 − θ̂2)
T (θ̂1 − θ̂2) + Trace(P̂1 + P̂2) (6)

Unfortunately, this is not a distance; in particular, it is easy to see that d(θ1, θ1) 6= 0. A second attempt is to consider the
symmetric Kullback-Leibler divergence (K-L) between the two distributions:

KL(p1||p2) =
∫

p1(x) log
p1(x)
p2(x)

+ p2(x) log
p2(x)
p1(x)

dx (7)



which for our Gaussians becomes:
KL(θ1||θ2) = 1

2
Trace
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The problem with this approach is that as the variances Σ̂1, Σ̂2 go to zero (i.e. the confidence on the parameter estimates
increases), divergence goes to infinity. This happens because K-L is a measure of the extent to which two probability
distributions agree. If the two distributions have no common support the K-L distance is infinite indipendently of how far the
distributions are. Such a condition is met for example when we have good estimates from sequences generated by models
with different underlying parameters.

We can overcome these problems by using a metric between probabilites distributions known with several names, as the
Wasserstein distance, the Mallows distance, the Ornestein distance, or the rho-bar distance. Using the L2 metric, it is defined
between two densities P and Q as :

dW (P, Q)2 = inf
F
{EF [(X − Y )T (X − Y )] :

(X, Y ) ∼ F, X ∼ P, Y ∼ Q} (8)

where the infimum is taken over all the joint densities F which have marginals equal to P and Q. This distance represents
the solution to the Monge-Kantorovich mass transfer problem, and can be interpreted as the mininimum amount of work that
is required to transport a mass of soil with distribution P to an excavation having distribution Q. For Gaussian distributions
dW can be computed analytically as [9]:

dW (N (θ̂1, P1),N (θ̂2, P2))
2 = (θ̂1 − θ̂2)

T (θ̂1 − θ̂2) +

Tr(P1 + P2 − 2(P1P2)
1
2 ) (9)

This measure has some desirable properties. First it is a proper distance, in particular it satisfies the triangular inequality.
This guarantees that if the estimated densities P̂ , Q̂ are good (i.e d(P, P̂ ) and d(Q, Q̂) are small), also the estimated distance
d(P̂ , Q̂) is close to the true distance d(P,Q): |d(P,Q) − d(P̂ , Q̂)| ≤ |d(P, P̂ )| + |d(Q, Q̂)|. Second, it is equal to the
Euclidean distance in the case of deterministic distributions P1 = P2 = 0.

For discrete distributions, the Wasserstein distance is equivalent to the Earth’s movers distance, a metric commonly used
for measuring texture and color similarities.

In the general case of mixture of Gaussian distributions no close form solution is available an approximation must be used,
as we will show in the next section.

2.2. Hybrid Autoregressive Models

In order to properly model contact forces in human motion we follow the approach of [2] in using hybrid models where the
switches correspond to ground contacts. However, unlike [2], we intend to use such models for classification, and therefore
we introduce a different, and to the best of our knowledge novel, switching autoregressive model. This has some similarity
with the Autoregressive HMM proposed in [17], although for each autoregressive model we consider the distribution of the
observations yt for finite length sequences instead of using the asymptotic distribution of yt, t →∞.

Consider a discrete Markov chain with m states, transition matrix M and prior probabilities πm = [π1, · · · , πm]. To each
state q is associated an AR model with noise covariance Rq and parameter θq with prior distribution θq ∼ N (θ0,q, P0,q) The
equations of the system are:

yt = ϕtθqt + eqt , eqt ∈ N (0, Rqt)
p(qt|qt−1) = M(qt, qt−1) , p(q1) = πq1 (10)

A graphical representation of this model is shown in figure 1. As we can see from the figure, the AR parameters θm =
{θ1, · · · , θm} are time-invariant random vectors, and the observed outputs yt induce a distribution on hidden states qt and
model parameters θm. The motivation of this model is that we assume m undelying autoregressive models, whose parameters
θi are random but fixed, and the transitions between models are determined by the hidden states qt.

In other hybrid AR systems proposed in the literature [11], the parameters θ are modeled as unknown deterministic values.
A learning algorithm is derived to compute the maximum likelihood estimate θML = arg maxθ p(yN |θ)given an observation
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Figure 1. Dynamical Bayesian network representing our proposed hybrid autoregressive model. Nodes are random vectors and edges are
conditional dependence relations. The picture clearly shows the presence of multiple loops in the graph which make exact inference a
computationally intractable problem.

sequence yN . Unfortunately, this method does not provide a natural way to compare parameters of two models θ1, θ2, and a
common solution [11] is to use the Euclidean distance between the parameters, ||θ1 − θ2||. Our approach is different in the
sense that we treat θ as a random vector with given prior distribution p(θ) and compute the posterior given the observations
p(θ|yN ). This allows us to consider multiple model hypotheses by inferring (multimodal) posteriors on the model parameters
and comparing models by using distances between these probabilities distributions.

We can relate the two approaches by considering the case of flat prior p(θ) ' const. Then the posterior p(θ|yN ) is
proportional to the likelihood p(yN |θ), and the maximum likelihood estimate is also the maximum a posteriori θML = θ̂.
The distance dML = ||θ̂1 − θ̂2|| measures how far the principal modes of the posterior distributions p(θ1|yN ) and p(θ2|yN )
are. In the case of hybrid models this solution is suboptimal since the posteriors p(θi|yN ) are typically multimodal mixtures,
as we can see in figure 4, while the distance dML takes into account only one parameter hypothesis.

Parameter Estimation
Given an observation sequence yN we want to estimate the posterior distribution:

p(θ|yN ,Λ) =
X
qN

p(θ|qN , yN , Λ)p(qN |yN , Λ) =

=
X
qN

mX
i=1

p(θi|qN , yN , Λ)p(q = i|qN )p(qN |yN , Λ) (11)

where Λ = {θm
0 , Pm

0 , Rm,M, π} are the model parameters, with θm
0 = {θ0,1, · · · , θ0,m}, Pm

0 = {P0,1, · · · , P0,m},
Rm = {R1, · · · , Rm}. Similarly to (3), we have that p(θi|qN

j , yN ,Λ) = G(θi; θ̂i, P̂i) are Gaussian, p(q = i|qN ) is the
relative frequency of state i in the sequence qN , and p(qN |yN ,Λ) is the posterior of the hidden states given the observations,
can be computed in closed form and will be given in the next section. Unfortunately, marginalizing the hidden states qN =
{q1, · · · , qN} is intractable because it would require evaluating an exponential number of hypotheses.

A possible approach to inference would be to apply Gibbs sampling to obtain sequences of hidden states qN and model
parameters θm distributed according the posterior. However, we have observed that for this model the parameters typically
have highly peaked multimodal distributions, which make likely for the Gibbs sampler to be trapped in local modes and thus
would require to draw a large number of samples to obtain good approximations.

On the other hand, the graphical model in figure 1 shows that each parameter θi is statistically dependent on all the
observations yt. These would make convergence problematic for inference algorithms such as loopy belief propagation.

We could think of applying variational inference techniques in order to obtain an approximate model with a smaller
number of dependencies for which the inference problem would be easier. Typically these methods work by approximating
the posterior of the hidden variables qN given observations yN and parameters θm. However notice that by doing so there is
no simple way to break the dependencies between outputs and parameters, therefore we would not remove the main source
of complexity in the model.

Then our solution is to approximate the posterior using a bank of K filters, where each filter is tuned on a segmentation
hypothesis qN

j . At each time t we generate a new hypothesis qN
t by imposing a jump to the most likely sequence and

discarding the less likely ones. We approximate the posterior with:

p(θ|yN , Λ) ' 1

C

KX
j=1

mX
i=1

p(θi|qN
j , yN , Λ)p(q = i|qN

j )p(qN
j |yN , Λ) (12)

where C =
∑K

j=1 p(qN
j |yN ,Λ) and qN

j are the filter hypotheses. Therefore this approximation is a mixture of a constant
number Km of Gaussians. In practice we have duplicate hypotheses (due to permutation of the states) and hypotheses with
low posterior, so the effective number of components is smaller (figure 4).



Hidden State Filtering

In order to obtain a good approximation of the posterior (12) we need to estimate the K most probable hidden state sequences
qN
1 , · · · , qN

K given the measurements yN :

q̂N
1 , · · · , q̂N

K = arg max
qN
1 ,··· ,qN

K

K∑
i=1

p(qN
i |yN ,Λ) (13)

We can derive a recursive equation for the posterior up to time t:

p(qt|yt, Λ) =
Kt−1

Kt
p(yt|qt, yt−1, Λ)p(qt|qt−1, Λ)p(qt−1|yt−1, Λ)

where Kt = p(yt|Λ) is a constant independent of qt, p(qt|qt−1,Λ) = M(qt−1, qt), t > 1 and p(q1|q0,Λ) = πq1 . Substitu-
iting p(yt|qt, yt−1,Λ) ∼ N (ϕT

t θ̂qt,t−1, ϕ
T
t P̂qt,t−1ϕt + Rqt), and taking the logarithms, we have:

log p(qt|yt, Λ) = log p(qt−1|yt−1, Λ) + C+
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where C is a constant, Γ =
(
ϕT

t P̂qt,t−1ϕt + Rqt

)
and θ̂i,t, P̂i,t are the estimates at time t of the parameters θi associated to

state i (compare to (4)):
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To find the most probable state sequences (13) we use a bank of K filters, each matched to a hidden state sequence
hypothesis qN

i , and the posterior p(qN |yN ,Λ) is computed recursively with (14). We initialize the filters at t = 1 so that
there is at least one hypothesis qi,1 = i for each possible initial state value i = {1, · · · ,m}. Then for each time t = 2, · · · , N
we iterate the following rules to maintain the K hypothesis:

• For each hypothesis qt
i , compute the posterior loglikelihood log p(qt

i |yt) using (14).
• Extend the hypotheses qt

j , j = 1, · · · ,K to t + 1 by assuming no switch: qt+1
j = {qt

j , qj,t}
• Let the most probable sequence qt

o split at time t+1, i.e. generate m−1 new hypotheses qt+1
K+i such that {qK+i,t+1} =

{1, · · · ,m}\{qo,t}.
• Cut off the m− 1 least probable sequences, so only K are left.

This algorithm exploits the finite memory property of our hybrid model. Past data do not contain information on what happens
after a switch, therefore only the most likely sequence among all with a switch at a given time has to be considered. The
number of filters K determines the quality of the estimates. With K ≥ N , the algorithm is guaranteed to find the optimal
state sequences (13) [14]. In order to improve the performances it is useful to assume a minimum segment length l and allow
splitting and cut off only for sequences that did not switch in the last l steps.

Distance between Hybrid AR models

We obtain a discrepancy measure between models by extending to hybrid models the distance (9) between posteriors of
autoregressive parameters. Let the posterior distribution of the parameter θk be

p(θk|yN
k ,Λ) =

nk∑
i=1

αk,iG(θk; θ̂k,i, P̂k,i)

The Wasserstein distance between general mixtures of gaussians cannot be computed in closed form. Following [15], we
approximate dW (θ1, θ2) by solving a maximum flow problem. We have:

dW (θ1, θ2) =

Pn1
i=1

Pn
j=1 fi,jdW (N (θ̂1,i, P̂1,i),N (θ̂1,i, P̂1,i))Pn1

i=1

Pn
j=1 fi,j

(17)



Subject 1 2 3 4 5 6 7 8 9 10 11 Total
Walk 14 14 7 14 14 2 5 14 7 14 9 114
Run 14 8 9 14 8 - 7 3 - 8 8 79

Limp 4 2 4 5 5 - 5 5 - 5 5 40
Total 32 24 20 33 27 2 17 22 7 27 22 233

Figure 2. List of motion capture data sequences in the gait dataset. For each subject (first column), number of walking, running and limping
sequences collected.

Figure 3. Short clips (about 3 seconds) from the sequences of the gait dataset. Subject 1 walking (top), running (center) and limping
(bottom)

where the Wasserstein distance between normal distributions is given in (9) and fi,j ≥ 0 is the optimal admissible flow that
satisfies the constraints: n∑

j=1

fi,j ≤ α1,i ,

n1∑
i=1

fi,j ≤ α2,j ,

n1∑
i=1

n2∑
j=1

fi,j = 1

In the next section we will use this distance to compare hybrid dynamical models learned from human motion data.

3. Experiments
Our goal in this research is to recognize human motion based on dynamic signatures. We believe that dynamics contain a

significant amount of information: Johansson’s stripped-down moving-dot displays [16] can allow one to infer whether the
person is young, old, happy, sad, even man or woman, which is information likely not coded in the pose or configuration. In
particular, we use a hybrid dynamical model because we have determined that the contact dynamics, which is an exogenous
event independent of the individual and her gait, is a dominant dynamic event that must be factored out of the classification
and recognition process. However, our framework applies to the recognition of dynamic events in general, without restriction
to human motion. In particular, even within human motion, our framework applies to different representations, from the
trajectories of moving intensity blobs, to the joint angles estimated from a video-based tracking system, to the position of
retro-refractive markers in motion capture.

In the specific case described in this section, the data used in the experiments is given as a set of joint angle trajectories
on a skeletal model of the human body. These angles may be obtained from a video-based full body tracker or from a
motion capture system. We opted for the latter for ease of collection and ground-truth testing. We used a 6-camera infrared
motion capture system running at 60Hz; we used 20 retro-reflective markers on the test subjects at the proximity of the body
joint locations and recorded the marker trajectories during the motion. The subjects were asked to walk, run and limp on a
treadmill. We collected a total of 233 sequences from 11 subjects, see table 2 for details. Each sequence is sampled at 60 Hz
and is about 6 second-long.
From marker positions we estimated body skeleton model and join angles with an approach similar to the one proposed in
[28]. First we estimate the reference frame moving with the body limb from the set of markers attached to the limb. Then
the joint positions are obtained as the center of rotation of the reference frames of adjacent limb. From joint positions,
by enforcing fixed limb length we obtained skeleton model and joint angles. Since we do not use a reference model for
the skeleton, the estimated skeletons vary from person to person, this affecting the joint angles estimates and making the
recognition problem harder. In figure 3 we show some sample clips of the data sequences. Of course we could use pose and
configuration information to aid the classification, since that is available in our dataset. However, we are not going to do so
because (a) these data are generally not reliable when estimated directly from video, and (b) although pose and configuration
are important, many groups are addressing them, and we therefore want to focus our attention on dynamics. Naturally,
eventually all will have to be integrated into a complete classification system.
From each sequence, we extracted the 24 angles corresponding to the 8 joints defining the positions of hips, femurs, tibias
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Figure 4. Histogram of the number of components of the parameter posterior (12) for the gait sequences in the dataset. These results show
that we cannot assume the posterior to be unimodal.

and feet. The angles are expressed in the exponential map parameterization. Since the number of parameters of the AR
model is p2, where p is the dimension of the measurements, we had to reduce the dimensionality of the data. For this
purpose we applied PCA to each sequence, and retained the first p = 4 components. Given a sequence yN

i we learned the
posterior (12) using the algorithm described in section 2.1. The model we propose is very general and contains a number of
parameter that should to be tuned to the particular class of signals under investigation. In these experiments, we used first-
order autoregressive models, i.e. n = 1 in (1). We set prior means θm

0 to zero and the prior variances Pm
0 to p0I , where p0 is

a large number, thus modeling the lack of prior information on the parameters. The noise variances Rm are set to the identity,
so that in (15) we obtain least squares estimates. We have 2 hidden states and the Markov chain parameters M,π are so that
all state have equal probability and the average length of a segment is L: M(i, i) = L

L+1 , M(i, j) = 1
(L+1)(m−1) i 6= j,

πi = 1
m . The posteriors are computed with a bank of K filters. To have optimal segmentations we would need K to be

not smaller than the sequence length N , typically about 400. In practice we noticed reducing K to 50 does not change
significantly the approximation (12). Since some of the computed segmentation hypotheses are equivalent (they are equal
up to a permutation of the states), the filtering is followed by a hypothesis reduction step where we remove the duplicate
hypotheses. Then we proceed to computing the posterior on the parameters (12). Of all the components of (12), typically
only few of them have weight significantly different form zero. Therefore we proceed to pruning all the hypothesis that have
weight below a small threshold. In figure (4) we show the histogram of the number of components of the posteriors learned
from the gait sequences. We see that most of the sequences have multimodal distribution, with number of modes limited by
the number of filters K.

3.1. Hybrid models for dynamic discrimination

The point of this section is to show that hybrid models have more discriminative power than simpler linear models [4]. Our
intent here is to show that discrimination between different classes (e.g. different gaits by the same individual, or different
individuals walking the same gait) is made possible by a hybrid model where it was not by using a linear dynamical model.

This is, therefore, a feasibility study, and we do not need to compete with other gait or individual recognition techniques
that use different (static) features. Our approach is meant to complement them, not to replace them.

In figure (5) we show the pairwise distance between models learned from the dataset sequences. We clearly see that the
hybrid models can discriminate between gait classes. For comparison, we learned first order autoregressive models from the
same sequences and computed the Euclidean distance between the maximum likelihood parameter estimates. By using this
simpler model measure we would not be able to discriminate between gaits. The confusion between limp and walk may
be due to the different parameterizations of the motion, to the dimensionality reduction step or simply to the fact that the
dynamics of the two gaits are very close.

4. Discussion
We have presented a technique to perform classification in the space of hybrid autoregressive models that we have used to

classify human gait. We have shown that classification based on a hybrid model yields significant improvements over simple
linear systems.

In order to achieve our results, we had to devise a novel (approximate) filtering and identification technique for hybrid
AR models (this is inspired by a wealth or results available in the literature), and introduce a distance between parameter
distributions. This distance is not computable efficiently, so we had to resort to an approximation, which nonetheless showed
good performances in our experiments.

Our results are restricted to stationary (quasi-periodic) gaits. Ideally we would like to recognize transient actions, but
doing so in a principled manner is beyond our means at the moment, so we prefer to concentrate on a simpler problem. We
also assume, somewhat optimistically, that temporal statistics are extracted for us from images. This does not mean that we
under-appreciate the difficulty in detecting, localizing, and tracking humans in video, on the contrary. The models we propose
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Figure 5. Discrepancy measure between models learned from the gait dataset. (a) shows the Euclidean distance between maximum likeli-
hood estimates of autoregressive model parameters. (b) displays the approximated Wasserstein distance between posterior distributions of
the parameters of hybrid autoregressive models. We can see that the simple autoregressive models are not discriminative enough to capture
the character of the motion class. It appears that the limping and walking gait are not successfully discriminated. This is not surprising:
since it is hard to limp on a running treadmill, the dynamics of the two gaits, as we see in figure 3, are very close.

can be used to support these tasks, eventually, and our inference techniques relies on a model that is inferrable from images.
This is not, therefore, a paper in graphics, since it seeks models with discriminative power, not with generative power. We do
not assume that forces or higher-order temporal statistics are available, which would be the case if we were analyzing data
for graphics or biomechanics.
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