
Shape Representation based on Integral Kernels:
Application to Image Matching and Segmentation

Byung-Woo Hong1 Emmanuel Prados1 Luminita Vese2

Stefano Soatto1

Computer Science Department1, Mathematics Department2

UCLA CSD Technical Report]TR050044

Abstract

This paper presents a shape representation and a variational framework for
the construction of diffeomorphisms that establish “meaningful” correspondences
between images, in that they preserve the local geometry of singularities such as
region boundaries. At the same time, the shape representation allows enforcing
local shape priors in determining such region boundaries. Our representation is
based on a kernel descriptor that characterizes local shape. This shape descriptor is
robust to noise and forms a scale-space in which an appropriate scale can be chosen
depending on the size of features of interest in the scene. In order to preserve local
shape during the matching procedure, we introduce a novel constraint to traditional
energy-based approach to estimate diffeomorphic deformations, and such energy
is minimized in a variational framework.

1 Introduction

Enforcing prior knowledge on the shape of structures of interest is a common way to
facilitate bottom-up segmentation, for instance in the detection of anatomical structures
in medical images. Typically one exploits hand-segmented samples to design a density
in some space where shape is represented, and such a density is used to bias the seg-
mentation process towards shapes yielding a high posterior. This enables overcoming
problems such as low contrast, occlusions, illumination variations and other unmod-
eled phenomena (collectively labeled as “noise”) that would make purely bottom-up
segmentation unsuccessful. While many researchers have been after a “universal” the-
ory of shape, including the determination of an appropriate space, endowed with a
metric and probabilistic structure, that would enable reasoning on shape in a solid an-
alytical framework, such a theory does not exist to date. Furthermore, how “similar”
two shapes are, and what portion of one shape corresponds to what portion of another,
are highly dependent on the application, and a “meaningful correspondence” in one
domain may be completely wrong in another [39, 26, 38, 12]. So, rather than seeking
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to work in generality, we concentrate on a representation of shape and the resulting
matching algorithms that enable successful image matching and segmentation in the
presence of prior knowledge, encoded in a rough “template” [14].
In broad terms, shape is a geometric attribute of the image domain, for instance the lo-
cus of singularities of certain operators applied to the image (e.g. the maxima, minima,
or zero-crossings of the Laplacian [22]). In some cases such locus is a set of isolated
“landmark” points, and the ensuing shape spaces are simply the quotient of their posi-
tions modulo the affine group, or other finite-dimensional group [16, 19, 2, 25, 7]. This
is far too restrictive for our goals, since we want to deal with data that do not exhibit
obvious isolated landmarks, and we want to consider as equivalent objects that are re-
lated by more complex transformations that affine, say a deforming hand, including
ones with missing fingers. At the other hand of the spectrum, deformable templates
[14, 6] consider the orbit of a given geometric object under the set of all possible dif-
feomorphisms, which are organized into a group that reaches every point in the space
(i.e. it acts transitively). This means that a human seen through her silhouette is the
same as an ice-cream. In order to achieve a balance so that objects that would be rea-
sonably considered equivalent in the domain of application of interest, we must restrict
the set of allowable deformations. We choose to do so by asking such deformations to
preserve the local structureof the template and target shape. This means that portions
of a shape that have, locally, a certain geometric description (e.g. curvature), tend to
match portions with similar local structure. However, we want to avoid computing cur-
vature or other differential operator on potentially noisy data. Also, we want to avoid
performingshape analysis, i.e. extracting the semantic (graph) structure of “parts” of
a given shape, which is a computationally intensive and delicate process [41, 18, 11].1

To this end, we introduce alocal shape featureto describe the local structure of a
shape, using integral kernels that enjoy significant robustness to noise and naturally
form a scale-space. From our local shape feature we design ashape representation
that seamlessly encompasses local and global shape information. Our representation
fits well with existing variational techniques for shape matching and segmentation: We
introduce a new “local shape preserving” constraint on the set of matching diffeomor-
phisms that can be simply added to their energy functional.
We have suggested that our representation facilitates establishing “meaningful” cor-
respondence. Naturally, “meaningful” is a tautology, since any shape matching algo-
rithm achieves meaningful correspondence, where meaningful is defined by the chosen
matching score. What we mean here is that points are matched based on the local shape
structure, as measured by the local shape feature. We have no ambition of universality,
we just wish to improve the results of matching and segmentation in medical images,
as we illustrate with experiments on real and synthetic data. We have implemented
gradient-based registration and segmentation schemes incorporating our “local shape
preservation” constraints.
The strengths of our method are that (1) it yields matching that preserves local shape,
without performing shape analysis to break down objects into parts, and (2) it can be
used to incorporate prior knowledge for various high-level visual tasks by enforcing

1It should be mentioned that efficient and robust techniques to match point-wise representations of shape
exist, e.g. [1], but they do not easily fit in a segmentation framework since they are supported on zero-
measure sets.
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local correspondence in global shape matching and segmentation.

2 Shape Representation Using Integral Kernels

In this work we restrict the analysis to closed planar regions and their boundaries, al-
though some of the concepts carry to higher dimension. These regions can be described
by a binary imageχ, modulo a suitable class of (continuous and invertible) image do-
main transformations. It is the characterization of such domain transformations that
determines theshape space, which we address in this section.

2.1 Integral Kernels as Local Shape Features

In general, the termfeatureFσ indicates any image statistic. In particular,local features
are functions of the image defined on a compact subset of its domain, including “soft”
versions where the “effective subset” is determined by a kernel:

Fσ(χ, x) = Kσ ∗ χ (x),

where the kernelKσ can be, for instance, a Gaussian

Kσ(x) =
1

σ
√

2π
e
− |x|

2

2σ2 .

Applied to a binary image, the value ofFσ computed at a boundary point depends on
its curvature at that point [24, 33]. In fact,Fσ entails a regularized notion of curvature
in a scale-space even where the boundary is not differentiable. In this sense, we callFσ

a local shape featureand observe that it is robust to “noise” (lack of differentiability)
of the boundary. As defined in the feature function, a scale is associated with feature
of interest and various levels of features can be characterized in a feature scale-space
with varying scales. Note that, despite the fact that local features entail “blurring”
with a kernel, the geometrical shape attributes are precisely preserved in the shape
representation which will be discussed in the following section.3.

2.2 Shape Representation

While featuresare any statistics of the image, not necessarily sufficient ones, arepre-
sentationis a bijective function of the data and can be used to retrieve it, possibly up
to a class of transformations (i.e. it contains the “same information”). Examples of
direct representations of shape include parameterized curves describing the boundary,
which are not intrinsic and present obvious problems. An alternative approach consists
of representing shapes by maps, i.e. functions defined onR2 ontoR. Such representa-
tions, of which the Level Set framework [29, 23] is a prototype, are simpler to handle
and better adapted to segmentation. For example, the binary image itself is a represen-
tation. Another celebrated choice is the signed distance from the contour of the shape.
Its computation is based on its characterization as the unique viscosity solutionφ of
the partial differential equation (PDE)|∇φ(x)| = 1 verifying φ(x) = 0, ∀x ∈ Γ,
φ(x) < 0, for all x inside ofΓ, φ(x) > 0, for all x outside ofΓ, whereΓ is the
boundary of the shape. These two representations (binary image and signed distance
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function) have been used successfully for registration and segmentation [31, 32, 9, 5].
Nevertheless, these two representations suffer from the lack of characterization with
respect to local geometry of the shape when dealing withdeformable shape priorsfor
segmentation. In order to compensate for such weakness we introduce a new represen-
tation that can handle at the same time local geometric features and global boundary
information:

Rσ(χ)(x) = χ(x) (Kσ ∗ (1− χ))(x)

+ (1− χ)(x) (Kσ ∗ χ)(x).

Fig. 1 provides a schematic illustration of our shape representation. Our shape rep-
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Figure 1: Schematic illustration for the calculation of the shape representation based
on an integral (disk) kernel.
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Figure 2:Comparison of the shape representation for a bow-tie shape. (image size is
300× 444)
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Figure 3: Comparison of shape representations for (left) a noisy bow-tie. (middle)
Directions of normal vectors to the integral kernel representation using a Gaussian
kernel (σ = 30). (right) Directions of normal vectors to the signed distance function.
(image size is300× 444).

resentation is roughly given by the area of the intersection between the kernel and the
inside or outside of the shape. For any point along the boundary (e.g.x1) and inside
the shape (e.g.x3), the value of the shape representation is given by the area of the
intersection between the kernel and the outside of the shape. For any point outside of
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the shape (e.g.x2), the value of the shape representation is given by the area of the
intersection between the kernel and the inside of the shape. Fig.2-b) shows the values
of our shape representation for a bow-tie. Fig.2-c) shows the signed distance function
for comparison. Our shape representation enjoys of several desirable properties: It is
robust to “noise” : Fig. 3 shows that our shape representation is insensitive to lack
of differentiability of the contour, unlike curvature or the normal vectors to the signed
distance function. This is due to the fact that regularization is implicit in our repre-
sentation. Our representation“propagates” shape information inside and outside the
boundary since its value, unlike that of a binary image, depends on the local geometry.
Our shape representation isfast and easy to compute. It is just a convolution. The
gradients of the energy can also be derived easily due to the convenient properties of
the Gaussian kernel. Naturally, any kernel other than Gaussian can be used instead, and
our choice is dictated by mathematical convenience. Note also that, inside the shape,
our representation is the solution of the heat equation with initial dataχ

∂u

∂σ
= 4xu, u(x, 0) = χ(x).

This establishes a connection with the work of Gorelick et al. [13] which propose
representing shapes as the solution of a Poisson equation. Unlike [13] and other work
based on the signed distance function, we do not solve any PDE for designing our
representation.

3 Shape Matching

Establishing correspondence between shapes is an important problem in many areas of
science and engineering, from neuroscience to entomology. It also plays a role in im-
age segmentation, where we want to enforce prior knowledge on the shape of structures
of interest in the image. For instance, in detecting brain structures from tomographic
images prior knowledge is often crucial as the raw signal often does not exhibit distinc-
tive enough signatures to allow detection in a purely bottom-up fashion. Unfortunately,
a universal theory of shape, including the definition of an appropriate shape space with
the right metric structure that captures the intuitive notion of similarity, is elusive. Here
we are interested in exploiting our representation of shape to enable matching, regis-
tration and segmentation while preserving thelocal shape structure of a “template,”
which encodes a rough form of prior information.
While shape priors for segmentation have been studied before [21, 40, 20, 30, 9], they
have concentrated on a global representation. This is not well suited for objects like
the brain that exhibit a significant variability in certain structures (hence the density
derived from samples would be “flat,” or uninformative), while displaying significant
consistency in other structures. Furthermore, we are interested in establishingcorre-
spondencebetween the shape template and the target image in the process, in a way
that preserves the local “structure” of the template. This has also been studied before,
but most previous studies requireshape analysis, that is the organization of a given
structure into “parts” [17, 43], a process that often relies on extracting delicate struc-
tures such as the medial axis or skeleton from the images. Correspondence is then
based on discrete (graph) structures. We are interested in a simple approach that, while
having no ambition to elucidate the semantic structure of shapes, would nevertheless
put regions with similar local shape into correspondence.
We exploit the kernel representation derived in the previous section by integrating it
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into standard energy functionals used for segmentation, to measure the energy of the
diffeomorphism to match a given template. In this framework, shape similarity is mea-
sured via the shape kernel, bringing regions with similar local shape features into corre-
spondence. Given two shapesS1, S2 defined in the domainΩ, matching is determined
by a diffeomorphismh : Ω → R2 assigning to each pointx in Ω a displacement vector
h(x) ∈ R2 minimizing an error criterion between the feature ofS1 and the warped
feature ofS2 under the diffeomorphismh as used in [27, 15]. The energy functional
Eshape(h; S1, S2) for S1 andS2 is defined by:

Eshape(h; S1, S2) = Edata(h; S1, S2) + α Ereg(h),

whereEdata measures the “dissimilarity” between corresponding features andEreg

measures the “irregularity” ofh; α is a constant coefficient to be tuned as part of
the design process. The well-posedness of this energy functional is discussed in [15].
The dissimilarity betweenS1 andS2 is defined in terms of their featuresRσ1(S1) and
Rσ2(S2):

Edata(h; S1, S2) =

∫

Ω

|Rσ1(S1)(x)− Rσ2(S2)(h(x))|2dx.

This entails a choice ofσ that can be performed to select the native scale of features
that we want to match on the two shapes. Alternatively, comparison can be performed
on the entire scale-space ofσ1 andσ2 thus allowing hierarchical comparison of shapes
across scales from coarse to fine. The feature of each shape is associated with a scale
and the dissimilarity is measured up to that scale. The regularization termEreg is
defined by the linear elasticity [8] given by:

Ereg(h) =
1

2

∫

Ω

{
λ(div h)2 + 2µ

n∑
i,j=1

(εij(h))2
}

dx,

whereλ, µ > 0 are the Laḿe coefficients of the material,

div h = (h1)x1 + (h2)x2 , εij(h) =
1

2

(
(hi)xj + (hj)xi

)
.

This regularization term is designed to penalize variations of the functionh and favor
smoothness. The optimal correspondences given byh∗ are obtained as:

h∗ = arg min
h

Eshape(h).

The energy minimization is performed in a variational framework using a gradient
descent method. The Euler-Lagrange equation corresponding to the energyEshape

yields the gradient direction forh:

∂h

∂t
= −∂Eshape

∂h
= −∂Edata

∂h
− α

∂Ereg

∂h
,

∂Edata

∂h
= (Rσ1(S1)− Rσ2(S2)(h))·

(
∇S2(Kσ2 ∗ (2S2 − 1)) + (2S2 − 1)(Kσ2 ∗ ∇S2)

)
(h)
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∂Ereg

∂h
= −

(
µ4h + (λ + µ)∇(div h)

)

Given one scale (e.g.σ2), the other scale (e.g.σ1) is also optimized in the process of
matching and the gradient can be easily derived. Shape matching results for the case
of the bow-tie are shown in Fig.4 where target shape is shown to be perfectly matched
with the deformed source shape. The robustness of our representation is demonstrated
in Figure4 (second row) where the deformed bow-tie to the noisy bow-tie is matched
exactly except noise using a certain scale that is above the feature of noise presented in
the noisy bow-tie and below the feature of its global geometry.

Figure 4: Shape matching results for the deformed bow-tie. [First row] (left) De-
formed bow-tie (target); (middle) deformed bow-tie superimposed to the original bow-
tie (source); (right) overlap of the warped source and the target after the matching.
[Second row] (left) Deformed “noisy” bow-tie (target); (middle) deformed noisy bow-
tie superimposed on the original bow-tie (source); (right) overlap of the warped source
and the target after the matching. [Third row] Displacement vector field representing
the diffeomorphism for the matching between (left) deformed bow-tie (right) deformed
noisy bow-tie and the original bow-tie. [Fourth row] Dense correspondences along the
boundary obtained by the matching between shapes (left) deformed (right) deformed
with noise. In the experiments,σ1 = σ2 = 7 for the deformed shape andσ1 = σ2 = 14
for the noisy deformed shape, andα = 0.005, µ = 1, λ = 0 are used and image size is
192× 256.

In order to illustrate what we mean by “meaningful” correspondence, in Figs.5-6
we show the correspondence for shapes that have distinct “parts.” Ideally we want our
algorithm to put them into correspondence, but without conducting a semantic analysis
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Figure 5: Matching results of rectangles with moving spikes. [First row] (left) Rect-
angle with a spike on the middle; (middle) rectangle with a spike moved to the right;
(right) overlap of the two shapes. [Second row] Correspondences along the boundary
based on (left) the Gaussian kernel representation; (right) the binary representation.
[Third row] Displacement vector field formed by the optimal diffeomorphism based
on (left) the Gaussian kernel representation; (right) the binary representation. [Fourth
row] Dense correspondences along the boundary obtained by the optimal diffeomor-
phism based on (left) the Gaussian kernel representation and (right) the binary repre-
sentation. In the experiments,σ1 = σ2 = 7, α = 0.0005, µ = 1, λ = 0 are used and
image size is128× 160.

of each shape. For instance, in the case of a rectangle with a spike, even though there
is no “right or wrong” way to move the spike (the spike could disappear from the left
figure and reappear slightly displaced on the right; or, the spike could simply translate
to the right between the two figures), we would like the tip of the spike in one figure
to correspond to the tip of the spike in the other. For the case of a human figure, we
would like the tip of various limbs to correspond in the two figures. Our representation
of shape enables this behavior, since it encodes a local scale-space of curvature (the
local shape feature) and attempts to match regions with local features to each other.
This can be seen qualitatively in Figs.5-6.
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Figure 6:Matching results of human body with different hand and leg positions. Three
scalesσ = 12, 10, 7 are used in a coarse-to-fine manner andα = 0.0005, µ = 1, λ = 0.
Image size is128× 160. The shape representation used enables different “parts” to be
put in correspondence, without performing explicit shape analysis.

4 Non-rigid Template-based Segmentation

In this section we are interested in exploiting the shape representation devised in pre-
vious sections to perform bottom-up segmentation under the guidance of a “template.”
Such a template can be a model shape that is the result of aggregate training data (e.g.
a “shape average”) or simply a shape obtained through expert knowledge, e.g. by hand.
In this sense we think of the template as a shape prior, since it will eventually bias the
segmentation towards the given template. Note that this approach is not in contrast
with other segmentation techniques based on shape priors, where the entire density is
learned, for instance [20, 10]: We encode prior knowledge in a simple template, which
makes sense only if the prior is unimodal, and refer the reader to more complex algo-
rithms when it is not.2

Our goal is not different from other schemes to include shape priors in segmentation:
we want to improve the performance over a purely bottom-up approach. However, in
addition to introducing bias in the energy, we also want to establish correspondence
between the template and the target shape, so that the ensuing warping is “meaning-
ful” in the sense that we discussed in the introduction. To this end we introduce “local
shape preserving diffeomorphisms” and show that they yield improved correspondence
and segmentation due to the “shape meaningful” restriction of the allowable space of
the template leading to a more compact solution space of the segmentation. From the
computational standpoint we work within the level set framework using the Mumford-
Shah functional as proposed in [28, 3, 40]. For the segmentation, we use the Chan-Vese
energy model [3]:

Ecv(φ; I) =

∫

Ω

|I(x)− c1|2H(φ(x))dx

+

∫

Ω

|I(x)− c2|2(1−H(φ(x)))dx + µ

∫

Ω

δ(φ(x))|∇φ(x)|dx.

whereI is image to segment,H is a Heaviside function,δ is a delta function and
c1, c2 are constant. In order to impose prior shape information, the energyEcv is
complemented by a shape energyEshape as follows:

Eseg(φ; I, T ) = Ecv(φ; I) + β Eshape(h, H(φ), T ).

2Although if a density in the space of shapes is multi-modal, why not further break down the domain and
assign an “object” to each mode?
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whereT is the shape prior (template) andEshape is our shape matching energy. The
combination of segmentation energy with shape energy has been used with various
function spaces in which the transformationh stays [36, 4, 10, 5, 34, 35, 31].

4.1 Feature Preserving Diffeomorphism

In this section we discuss the regularization imposed on the diffeomorphisms. Note
that for practical purposes we first perform global registration by restrictingh to be
affine [37] before activating the full diffeomorphism to deal with deformations. The
shape energyEshape incorporated into the segmentation energy penalizes local devi-
ations of the target shape from the template. However, unless properly restricted, a
general diffeomorphism does not preserve the local shape of the template, and leads
instead to a perfect matching to the target regardless of its shape (provided that it is in
the same diffeomorphic equivalence class). Our goal, on the other hand, is to preserve
correspondence of local shape during the entire evolution of the diffeomorphism from
the template to the target shape. In the shape energy, restriction of the shape space
under the diffeomorphism is usually addressed by generic regularizers, such as linear
elasticity, that does not preserve local shape. Therefore, we propose an additional reg-
ularization term designed to preserve local shape during global deformation. Let us
denote byT (x) = T (h(x)) the deformed template.

Ediff(h; T ) =

∫

Ω

[
Rσ(T (.))(x)− Rσ(T (.))(h(x))

]2
dx.

=

∫

Ω

[ Rσ(T ◦ h(.))(x)− Rσ(T (.))(h(x)) ]2 dx

This energy penalizes a large deformation of the template in terms of the local shape
feature. Its gradient is given by:

∂Ediff

∂h
= [ Rσ2(T ◦ h(.))(x)− Rσ2(T (.))(h(x)) ]

(∇T (h(x)){Kσ2 ∗ (1− 2T (h(x)))} )

+∇T (h(x)){Kσ2 ∗ [ Rσ2(T ◦ h(.))(x)− Rσ2(T (.))(h(x)) ]

(1− 2T (h(x)))}

The CV global segmentation model, as it was proposed originally, has the advantages
of detecting interior contours, and other contours away from the main front can appear.
Moreover, the shape and the topology during the evolution rapidly changes, and at a
faster speed than in the classical snakes or gradient based local models. However, in
our application of segmentation with shape prior, we would like to keep some of the
advantages of the CV model (speed, robustness, simplicity), but we would also like to
preserve, as much as possible, the topology of the initial contour (the template) and to
stay close to the shape prior during the time evolution.
The segmentation is obtained by minimizing the energyEseg which consists ofEcv,
Eshape, andEdiff . The Euler-Lagrange equations yield the gradient direction and the
following PDE:

∂φ

∂t
= −∂Eseg

∂φ
= −

(
∂Ecv

∂φ
+ β

∂Eshape

∂φ
+ γ

∂Ediff

∂φ

)
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∂Ecv

∂φ
= δ(φ)

[
(I − c1)

2 − (I − c2)
2 − µ div

( ∇φ

|∇φ|
)]

∂Eshape

∂φ
= δ(φ)

[(
Rσ1(H(φ))− Rσ2(T )(h)

)
·

(
Kσ1 ∗ (1− 2H(φ))

)

+ Kσ1 ∗
(
(Rσ1(H(φ))− Rσ2(I)(h))(1− 2H(φ))

)]

Note that∂Ediff/∂φ = 0 which means the energyEdiff only affects the shape match-
ing process.
The final energyEseg(φ, h) = Ecv + βEshape + γEdiff has to be minimized with
respect to the unknownsφ andh. We perform this using the so-called alternating min-
imization. First we write down the coupled system of PDE’s:

∂φ

∂t
= −∂Eseg(φ, h)

∂φ
(1)

∂h

∂t
= −∂Eseg(φ, h)

∂h
. (2)

We start att = 0 with φ0 andh0. If φn andhn have been previously estimated, for
n ≥ 0, then we updateφn+1 andhn+1 in the following way: we computeφn+1 using
(1) with h = hn and we computehn+1 using (2) with φ = φn, and we repeat. It
is possible to show that the energyEseg(φ(·, t), h(·, t)) decreases in time, ifφ andh
satisfy (1)-(2).
In Figure7, the segmentation results are presented usingEcv (third column),Ecv +

Figure 7:Segmentation results of a partially occluded hand [Top row] and corpus cal-
losum [Bottom row]. (first column) Image with an object to be segmented. (second)
Shape prior superimposed on the image. (third) SegmentationEcv without using a
shape prior. (fourth) Segmentation with a shape prior introducing additionalEshape

energy. (fifth) Segmentation with a shape prior introducing bothEshape andEdiff en-
ergy.

βEshape (fourth column) andEcv + βEshape + γEdiff (fifth column) where the results
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with all three terms show significant improvement. This is due to the further restriction
of the allowable shape space of the template in the minimization of the segmentation,
which helps to avoid local attraction basins following the geodesic of the allowable
template shape space. In order to appreciate the difference between the behavior of
the different models, we have used the same parameters and initial conditions in all
experiments. Due to the additional constraint to the diffeomorphism byEdiff , the speed
of segmentation is improved and convergence to local minima less frequent.

5 Conclusions and Discussion

We have presented a local shape descriptor and a global shape representation that facil-
itates registration while matching points with similar local shape. The same represen-
tation is used to facilitate segmentation by biasing the evolution of a region towards a
template, including explicit correspondence between the two. In the matching process,
we have introduced a shape preserving diffeomorphism which restricts the allowable
shape space of the template so that the minimization of the segmentation can be im-
proved.
One issue that we have not discussed at length is the choice of scales in the kernels.
In our energy functional, the dissimilarity of shapes is measured by the difference be-
tween their corresponding shape feature values obtained by integral kernels of which
scale is linear to the size of the shape. This requires an optimization procedure for the
scale of the integral kernel. However, this can be avoided by employing a statistical
measure such as cross correlation as a dissimilarity measure between the feature values
as used in [15]. The technique we have introduced can be useful to improve segmenta-
tion in medical imaging, but also potentially for warping in computer graphics and for
tracking and motion estimation. A statistical measure of local variations of shape also
can be obtained by diffeomorphisms from the mean shape [42].

A Energy Minimization

A.1 Shape EnergyEshape: minimization with respect to h

We choose a test functioñh taking real values in the same space withh andε > 0. Let
us denoteF (ε) = Eshape(h+εh̃), F1(ε) = Edata(h+εh̃), andF2(ε) = Ereg(h+εh̃).
Then, we will imposeF ′(0) = 0 for any test functioñh. We begin by computingF ′1(ε):
(we use a common scaleσ)

F ′1(ε) =

∫

Ω

−
(
Rσ(S1)− Rσ(S2)(h + εh̃)

) ∂

∂ε
Rσ(S2)(h + εh̃)dx.

∂
∂ε

Rσ(S2)(h + εh̃) =
[
∇S2(·) · (Kσ ∗ (1− S2))(·)

− S2(·) · (Kσ ∗ ∇S2)(·)−∇S2(·) · (Kσ ∗ S2))(·)
+ S2(·) · (Kσ ∗ ∇S2))(·)

]
(h + εh̃).

By settingε = 0, we obtain:

F ′1(0) =
∫
Ω
−

(
Rσ(S1)− Rσ(S2)(h)

)
·
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[
∇S2 · (Kσ ∗ (1− S2))− S2 · (Kσ ∗ ∇S2)

−∇S2(·) · (Kσ ∗ S2)) + S2 · (Kσ ∗ ∇S2))
]
(h)dx.

For the computation ofF ′2(0), refer to [15].

A.2 Feature preserving EnergyEdiff : minimization with respect to
h

In the same way as the previous derivation,

F (ε)′ =

∫

Ω

G ·
[ ∂

∂ε
Rσ(T ◦ (h(·) + εh̃(·)))(x)

− ∂

∂ε
Rσ(T )(h(·) + εh̃(·)))(x)

]
dx.

G = Rσ(T ◦ (h(·) + εh̃(·)))(x)− Rσ(T )(h(·) + εh̃(·)))(x).

∂

∂ε
Rσ(T ◦ (h(·) + εh̃(·)))(x) = ∇T (h(·) + εh̃(·)))(x)·

{
Kσ ∗ (1− T (h(·) + εh̃(·))))

}
(x)h̃(x) + T (h(·) + εh̃(·)))(x)·

{
Kσ ∗ (−∇T (h(·) + εh̃(·))h̃(·))(x))

}
(x)−∇T (h(·) + εh̃(·)))(x)·

{
Kσ ∗ (T (h(·) + εh̃(·))))

}
(x)h̃(x) + (1− T (h(·) + εh̃(·)))(x))·

{
Kσ ∗ (∇T (h(·) + εh̃(·))h̃(·))(x))

}
(x)

∫

Ω

G(x)T (h(·) + εh̃(·))(x)
[
Kσ ∗ (−∇T (h(·) + εh̃(·))h̃(·))(x))

]
dx

=

∫

Ω

G(x)T (h(·) + εh̃(·))(x)

∫
Kσ(x− y)·

(−∇T (h(·) + εh̃(·))(y)h̃(·))(y))dydx

=

∫
−∇T (h(·) + εh̃(·))(y)h̃(·))(y)

∫
Kσ(y − x)·

(G(x)T (h(·) + εh̃(·))(x))dxdy

=

∫
−∇T (h(·) + εh̃(·))(y)h̃(·))(y)

[
Kσ(y)∗

(G(y)T (h(·) + εh̃(·))(y))
]
dy

The last step holds due to the symmetricity of the kernelKσ. For the derivation of the other
terms, it is similar to the steps above.
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