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Abstract

We introduce the first embedding of graphs of low bandwidth into `1, with distortion depending only
upon the bandwidth. We extend this result to a new graph parameter called tree-bandwidth, which is
very similar to (but more restrictive than) treewidth. Our results make use of a new technique that we
call iterative embedding, in which we define coordinates for a small number of points at a time.
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1 Introduction

Our main result is a technique for embedding graph metrics into `1, with distortion depending only upon the
bandwidth of the original graph. A graph has bandwidth k if there exists some ordering of the vertices such
that any two vertices with an edge between them are at most k apart in the ordering. While this ordering
could be viewed as an embedding into one-dimensional `1 with bounded expansion (any two vertices con-
nected by an edge must be close in the ordering), the contraction of such an embedding is unbounded (there
may be two vertices which are close in the ordering but not in the original metric). Obtaining an embedding
with bounded distortion (in terms of both expansion and contraction) turns out to be non-trivial.

In fact, our results can be extended to a new graph parameter which we call tree-bandwidth. We observe
that metrics based on trees are easy to embed into `1 isometrically, despite the fact that even a binary tree can
have large bandwidth. The tree-bandwidth parameter is a natural extension of bandwidth, where vertices are
placed along a tree instead of being ordered linearly. We prove that the shortest path metric of an unweighted
graph can be embedded into `1 with distortion depending only upon the tree-bandwidth of the graph (thus
independent of the number of vertices).

We achieve these results by introducing a novel technique for iterative embedding of graph metrics into
`1. The idea is to partition the graph into small sets and embed each set separately. The coordinates of
each specific point are determined when the set containing that point is embedded. Two embeddings will
be computed for each set of points. One is generated via some local embedding technique, and maintains
accurate distances between the members of the same set. The other embedding copies a set of “parent”
points; the goal is to maintain small distances between points and their parents. These two sets of coordinates
will be carefully combined to generate the final coordinates for the new set of points. We then proceed to
the next set in the ordering.

For ease of exposition we use a very simple local embedding technique in this paper. However, we
have also proven a more general result in which we show that with iterative embedding, any reasonable
local embedding technique suffices for embedding into `1 with distortion dependent only upon the tree-
bandwidth (proof omitted). This leaves open the possibility that the dependence on the tree-bandwidth
could be improved with a different local embedding technique.

The motivation for our work is a conjecture (stated by Gupta et al [8] and others) that excluded-minor
graph families can be embedded into `1 with distortion dependent only upon the set of excluded minors. This
is one of the major conjectures in metric embedding, and several previous results have proved special cases.
A particularly interesting case is graphs of bounded treewidth. These “tree-like” graphs have substantial
history in computer science theory (see for example Bodlaender [2]), and also appear frequently in modeling
computer networks. Bandwidth-k graphs do not form a minor closed family. However, given that they are
a well studied subclass of the treewidth-k graphs, studying them is a natural step towards studying the `1

distortion of minor-closed families. Our definition of tree-bandwidth generalizes bandwidth, and bears close
resemblance to the treewidth definition. In fact, low tree-bandwidth implies low treewidth. However, we
conjecture that there exist families of graphs with low treewidth but unbounded tree-bandwidth.

We note that at each step, our embedding technique requires the existence of a previously embedded
“parent” set such that each point of the new set is close to one of the parents, but no point in the new set
is close to any other previously embedded set. This property implies the existence of a hierarchy of small
node separators (small sets of nodes which partition the graph), which is exactly the requirement for a graph
of low treewidth. However, we also need each point to be close to some member of the parent set, which
motivates our definition of the tree-bandwidth parameter.
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1.1 Related Work

A great deal of recent work has concentrated on achieving tight distortion bounds for `1 embedding of
restricted classes of metrics. For general metrics with n points, the result of Bourgain[4] showed that
embedding into `1 with O(log n) distortion is possible. A matching lower bound (using expander graphs)
was introduced by LLR [10]. It has been conjectured by Gupta, et al. [8], and Indyk [9] that the shortest-
path metrics of planar graphs can be embedded into `1 with constant distortion. Gupta, et al. [8] also
conjecture that excluded-minor graph families can be embedded into `1 with distortion that depends only on
the excluded minors. In particular, this would mean that for any k the family of treewidth-k graphs could
be embedded with distortion f(k) independent of the number of nodes in the graph1. Such results would be
the best possible for very general and natural classes of graphs.

Since Okamura and Seymour [11] showed that outerplanar graphs can be embedded isometrically into
`1, there has been significant progress towards resolving several special cases of the aforementioned con-
jecture. Gupta, et al. [8] showed that treewidth-2 graphs can be embedded into `1 with constant distortion.
Chekuri, et al. [5] then followed this by proving that k-outerplanar graphs can be embedded into `1 with
constant distortion.

Rao [13] proved that any minor excluded family can be embedded into `1 with distortion O(
√

log n).
This is the strongest general result for minor-excluded families. Rabinovich [12] introduced the idea of
average distortion and showed that any minor excluded family can be embedded into `1 with constant
average distortion.

Graphs of low treewidth have been the subject of a great deal of study. For a survey of definitions
and results on graphs of bounded treewidth, see Bodlaender [2]. More restrictive graph parameters include
domino treewidth [3] and bandwidth [6], [7].

2 Definitions and Preliminaries

Given two metric spaces (G, ν) and (H,µ) and an embedding Φ : G→ H , we say that the distortion of the
embedding is ‖Φ‖ · ‖Φ−1‖ where

‖Φ‖ = max
x,y∈G

µ(Φ(x),Φ(y))
ν(x, y)

,

‖Φ−1‖ = max
x,y∈G

ν(x, y)
µ(Φ(x),Φ(y))

Parameter ‖Φ‖ will be called the expansion of the embedding and parameter ‖Φ−1‖ is called the con-
traction.

We will define bandwidth and then present our definition of the generalization tree-bandwidth.

Definition 2.1. Given graph G = (V,E) and linear ordering f : V → {1, 2, ..., |V |} the bandwidth of f is
max{|f(v)− f(w)||(v, w) ∈ E}. The bandwidth of G is the minimum bandwidth over all linear orderings
f .

Definition 2.2. Given a graph G = (V,E), we say that it has tree-bandwidth k if there is a rooted tree
T = (I, F ) and a collection of sets {Si ⊂ V |i ∈ I} such that:

1. ∀i, |Si| ≤ k

1 There is a lower bound of Ω(log k) arising from expander graphs.
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2. V =
⋃

Si

3. the Si are disjoint

4. ∀(u, v) ∈ E, u and v lie in the same set Si or u ∈ Si and v ∈ Sj and (i, j) ∈ F .

5. if c has parent p in T , then ∀v ∈ Sc,∃u ∈ Sp such that d(u, v) ≤ k.

We claimed that tree-bandwidth was a generalization of bandwidth. Intuitively, we can divide a graph
of low bandwidth into sets of size k (the first k points in the ordering, the next k points in the ordering, and
so forth). We then connect these sets into a path. This gives us all the properties required for tree-bandwidth
except for the fifth property – there may be some node which is not close to any node which appeared
prior to it in the linear ordering. We can fix this problem by defining a new linear ordering of comparable
bandwidth:

Lemma 2.3. Any graph G = (V,E) with bandwidth b has tree-bandwidth at most 2b.

Proof. By Lemma A.1 we can find a linear ordering g : V → [1, n] such that:

1. ∀i, Gi = {v : g(v) ≤ i} is connected

2. k = bandwidth(g) ≤ 2b

Once such a linear ordering g is found, we proceed by defining sets Si = Gik −G(i−1)k each of which
consists of k consecutive nodes in the linear ordering. We connect these into a path. The required properties
for tree-bandwidth k ≤ 2b immediately follow.

We will now define treewidth and show the close relationship between the definitions of treewidth and
tree-bandwidth.

Definition 2.4. (i) Given a connected graph G = (V,E), a DFS-tree is a rooted spanning subtree T =
(V, F ⊂ E) such that for each edge (u, v) ∈ E, v is an ancestor of u or u is an ancestor of v in T .

(ii) The value of DFS-tree T is the maximum over all v ∈ V of the number of ancestors that are adjacent
to v or a descendent of v.

(iii) The edge stretch of DFS-tree T is the the maximum over all v, w ∈ V of the distance d(v, w) where
w is an ancestor of v and w is adjacent to v or a descendent of v.

We use the following definition of treewidth due to T. Kloks and related in a paper of Bodlaender [2]:

Definition 2.5. Given a connected graph G = (V,E), the treewidth of G is the minimum value of a DFS-tree
of a supergraph G′ = (V,E′) of G where E ⊂ E′.

The following proposition follows immediately from the definition of tree-bandwidth:

Proposition 2.6. Given a connected graph G = (V,E), the tree-bandwidth of G is the minimum edge
stretch of a DFS-tree of G.

Thus, treewidth and tree-bandwidth appear to be related in much the same way that cutwidth and band-
width are related. (see [2] for instance)

In fact, treewidth is more general than tree-bandwidth:

Lemma 2.7. Any graph with tree-bandwidth k has treewidth at most 2k.
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3 Algorithm

Given a graph G of tree-bandwidth k, it must have a tree-bandwidth-k decomposition (T, {Xi}). We will
embed the sets Xi one set at a time according to a DFS ordering of T . When set Xi is embedded, all
members of that set will be assigned values for each coordinate. Note that once a point is embedded, its
coordinates will never change - all subsequently defined coordinates will be assigned value zero for these
points. Note that when new coordinates are introduced, these are considered to be coordinates that were
never used at any previous point in the algorithm.

For each set we will obtain two embeddings: one derived by extending the embedding of the parent of
Xi in T and one local embedding using a simple deterministic embedding technique. We prove the existence
of a method for combining these two embeddings to provide an acceptable embedding of the set Xi.

At stage i, our algorithm will compute a weight for each partition S of Xi. We would like these weights
to look like wM (S) - the distance between the closest pair of points separated by S. The embedded dis-
tance between two points x, y in Xi will be the sum of weights over partitions separating x from y. The
weights suggested above will guarantee no contraction and bounded expansion within Xi. We can transform
weighted partitions into coordinates by introducing wM (S) coordinates for each partition S, such that the
coordinate has value 1 for each x ∈ S and value −1 for each x ∈ Xi − S.

This approach will create entirely new coordinates for each point. Since points in Xi are supposed to
be close to points in Xp(i), this can create large distortion between sets. Instead of introducing all new
coordinates, we would like to “reuse” existing coordinates by forcing points in Xi to take on values similar
to those taken on by points in Xp(i).

To reuse existing coordinates we will choose a “parent” in Xp(i) for each point x ∈ Xi and identify x
with its parent p(x). The critical observation here is that each point in Xi is within distance k of some point
in Xp(i). Therefore, the partition weights (and hence distances) established by these coordinates are good
approximations of the target values we would like to assign.

More precisely, for each point x ∈ Xi there is at least one closest point in Xp(i). Choose an arbitrary
such point to be the parent of x. After identifying points in this way, each parent coordinate induces a
partition S on Xi between points whose parents have values 1 and −1 in that coordinate. We can define
wP (S) to be the number of parent coordinates inducing partition S. If |wP (S) − wM (S)| is always small
then the independent local weightings agree and we get a good global embedding.

Unfortunately, there are cases in which wP (S) − wM (S) can be large. However, we can successfully
combine the two metrics by using the following weighting: wF (S) = max(wM (S), wP (S)− µ). The key
property of this weighting is that we do not activate too many new coordinates (since wP (S) not much less
than wF (S)) nor do we deactivate too many existing coordinates (wP (S) not much more than wF (S)). In
addition, we can show that wF (S) does not contract nor greatly expand distances between points of Xi.

3.1 MIN-SEPARATOR Embedding

We can prove that any reasonable local embedding technique suffices to obtain O(f(k)) distortion. How-
ever, that proof is quite involved and is omitted from this abstract. Instead, for ease of exposition, we will
employ a simple local embedding technique which we call a MIN-SEPARATOR embedding and which is
described below. The MIN-SEPARATOR embedding returns similar embeddings for independently embed-
ded metrics with similar distances. This is a very useful property and greatly simplifies our overall algorithm
and analysis2.

2It is conceivable that a different local embedding technique might result in a better dependence on k.
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MIN-SEPARATOR embedding: Given metric (G, d), we assign a weight for each of the distinct parti-
tions of G. To each partition S we assign weight wM(G)(S) = d(S, G − S) = min{d(x, y)|x ∈ S, y ∈
G− S}. Note that when the source metric is clear we will denote these weights as wM (S). We then trans-
form these weighted partitions into coordinates by introducing wM (S) coordinates for each partition S such
that the coordinate has value 1 for each x ∈ S and value −1 for each x ∈ G − S. The distances in this
embedding become dM(G)(x, y) =

∑
S∈2G:x∈S,y∈G−S

wM(G)(S) =
∑

S∈2G:x∈S,y∈G−S

d(S, G− S)

Lemma 3.1. The MIN-SEPARATOR embedding does not contract distances and does not expand distances
by more than 2k.

Proof. First we show that MIN-SEPARATOR does not contract distances. The proof is by induction on the
number of points in the metric (G, d).

1. Assume |G| = 2

Thus, dM(G)(x, y) = d(x, y) since there is only one partition and it has weight d(x, y).

2. Assume |G| = j + 1

G must contain a point z such that x 6= z 6= y. Let B = G − {z}. |B| = j so by the induction
hypothesis dM(B)(x, y) ≥ d(x, y).

dM(B)(x, y) =
∑

K∈2B :x∈K,y∈B−K

d(K, B −K)

≤
∑

K∈2B :x∈K,y∈B−K

d(K ∪ {z}, B −K) + d(K, (B −K) ∪ {z})

≤
∑

K∈2B :x∈K,y∈B−K

d(K ∪ {z}, G− (K ∪ {z})) + d(K, G−K)

≤
∑

K∈2A:x∈K,y∈G−K

d(K, G−K)

= dM(G)(x, y)

We now show that MIN-SEPARATOR does not expand distances by more than 2k. For each partition
S which separates x, y, wM(G)(S) ≤ d(x, y) and since there are < 2k partitions which separate x, y,
dM(G)(x, y) ≤ 2kd(x, y).

3.2 Combining the Local Embeddings

The algorithm EMBED-BAND relies on three critical properties of the tree-bandwidth decompostion:

1. Each node in Xi is within distance k of a node in the parent of Xi.

2. The nodes of Xi are not adjacent to any previously embedded nodes except those in the parent of Xi.

3. The number of points in Xi is at most k.
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Figure 1: Embedding a Cycle

The first property enables us to prove that

wP (S)− µ ≤ wF (S) ≤ wP (S) + 2k (1)

This is key in bounding the distortion between sets, since it indicates that we never introduce or ”zero-out”
too many coordinates for any partition S of Xi.

The second property means that we don’t need to bound expansion between too many pairs of points.
As long as we can prove that distances between points in Xi and Xp(i) don’t expand too much, the triangle
inequality will allow us to bound expansion between all pairs of points.

The third property allows us to bound the distortion of the local embedding (MIN-SEPARATOR) as
well as to bound the total number of coordinates introduced or zeroed out, since there are only 2k partitions
of set Xi with k points.

3.3 Example: Embedding a Cycle

It is instructive to observe what happens when embedding a cycle (see figure 1). It is clear that the first
two points in the cycle (X1) can be embedded acceptably. As we embed subsequent sets we embed the
descendents of these two points. Because the pairs of points in consecutive sets diverge, each new point
inherits the values of all of the coordinates of its parent. Additionally, new coordinates are added to separate
the pairs of points. The union of these coordinates is enough to establish the distances between these pairs
of points as they diverge.

After embedding half the points in the cycle, the pairs of points in subsequent sets begin to converge.
Whenever the distance induced by the parent points exceeds the target distance of the current points (rep-
resented by the MIN-SEPARATOR distance), we set the values of µ coordinates establishing that distance
to zero for the new points. Because points in consecutive sets are within distance k of their parents, the
distances between consecutive pairs of points cannot decrease by more than 2k per step. Thus, zeroing µ
coordinates at each step is more than sufficient to compensate for the decreasing distances.
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Input: Assume G = (V,H) has tree-bandwidth decomposition (T = (I, F ), {Xi|i ∈ I}). Let p(i) be the
parent of i ∈ T . Assume that p(i) appears before i in the ordering of the nodes of I . X1 is the root of T .

1. µ← 4k2k

2. for each of the 2k−1 − 1 non-trivial partitions S of X1:

(a) wM (S)← min{d(x, y)|x ∈ S, y ∈ X1 − S}
(b) define wM (S) new coordinates

(c) for each new coordinate c set:
xc ← 1 if x ∈ S,
xc ← −1 if x ∈ X1 − S

3. FOR i← 2 TO |I|

(a) for each x ∈ Xi, let p(x) be the parent of x (closest node to x) in Xp(i).
(By identifying nodes x with their parents p(x), each existing coordinate induces a partition on
the points of Xi.)

(b) for each of the 2k−1 − 1 non-trivial partitions S of Xi:

i. wM (S)← min{d(x, y)|x ∈ S, y ∈ Xi − S}
ii. wP (S)← # of existing coordinates which induce S via Xp(i)

iii. wF (S)← max(wM (S), wP (S)− µ)
iv. if wF (S) > wP (S) then:

A. for all the wP (S) coordinates that induce partition S set xc ← p(x)c for all x ∈ Xi

B. define wF (S)− wP (S) new coordinates
C. for each new coordinate c set:

xc ← 1 if x ∈ S,
xc ← −1 if x ∈ Xi − S
(xc ← 0 for all previously embedded points)

v. If wF (S) ≤ wP (S) then:

A. for wP (S)−wF (S) of the coordinates that induce partition S set xc ← 0 for all x ∈ Xi

B. for the wF (S) remaining coordinates that induce partition S set xc ← p(x)c for all
x ∈ Xi

(c) xc ← p(x)c for all coordinates c which do not partition Xi

(d) define an additional β = 2 · 2kµ coordinates and set xc ← 1 for all x ∈ Xi

4. NEXT i

Figure 2: Algorithm EMBED-BAND

7



It might appear that zeroing µ coordinates at each step would contract distances between points and their
ancestors, but recall that we also define β new coordinates at each step to separate the current points from
all previously embedded points and prevent such contractions.

4 Analysis

We now prove the central result of the paper:

Theorem 4.1. Algorithm EMBED-BAND embeds tree-bandwidth-k graphs into `1 with distortion ≤ 2β =
4 · 2kµ = 16k · 22k.

Proof. The theorem follows immediately from the following lemmas.

Lemma 4.2. The distances between points embedded simultaneously are not contracted.

Proof. We show that if x, y are in the same tree node Xi, then the distance dE(x, y) is at least as large as
the distance dM(Xi)(x, y) returned by MIN-SEPARATOR.

dE(x, y) =
∑

K∈2Xi :x∈K,y∈Xi−K

wF (K)

≥
∑

K∈2Xi :x∈K,y∈Xi−K

wM (K)

= dM(Xi)(x, y)
≥ d(x, y) (by Lemma 3.1)

Lemma 4.3. The distances between points embedded simultaneously are expanded by at most a factor of 2k

Proof. Recall that for each partition S of Xi, we compute three weights: a local weight, a ”parent” weight,
and the final weight which we use to embed the current tree node.

wM (S) = min{d(x, y)|x ∈ S, y ∈ Xi − S}
wP (S) = # of existing coordinates that induce S via Xp(i)

wF (S) = max(wM (S), wP (S)− µ)

Note that by the triangle equality, d(x, y) ≤ d(p(x), p(y))+2k for all x, y. Thus, ∀S, wM (S) ≤ wP (S)+2k.
We will now bound dE(x,y)

d(x,y) :

1. Assume that for all partitions S that separate x and y, wF (S) = wM (S).

Then

dE(x, y) =
∑

S∈2Xi :x∈S,y∈S̄

wF (S) =
∑

S∈2Xi :x∈S,y∈S̄

wM (S) ≤ 2kd(x, y).
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2. Otherwise, there is at least one partition S separating x and y such that wF (S) = wP (S)− µ.

Thus,

dE(x, y) =
∑

S∈2Xi :x∈S,y∈S̄

wF (S)

=
∑

S:x∈S,y∈S̄,wM (S)<wP (S)−µ

(wP (S)− µ) +
∑

S:x∈S,y∈S̄,wM (S)≥wP (S)−µ

wM (S)

≤
∑

S:x∈S,y∈S̄,wM (S)<wP (S)−µ

(wP (S)− µ) +
∑

S:x∈S,y∈S̄,wM (S)≥wP (S)−µ

(wP (S) + 2k)

≤
∑

S:x∈S,y∈S̄

wP (S)− µ + 2k2k

≤ dE(p(x), p(y))− µ + 2k2k

≤ 2kd(p(x), p(y))− µ + 2k2k

≤ 2k(d(x, y) + 2k)− µ + 2k2k

= 2kd(x, y)

Lemma 4.4. The distances between points in different sets are expanded by at most 2β = 4 · 2kµ where
µ = 4k2k.

Proof. Consider x ∈ Xi and y ∈ Xj . Xi and Xj are connected by a unique path Q in T . Assume WLOG
that Xp(i) is in Q. Our proof will be by induction on the length of Q.

1. Assume length(Q) = 1 (i.e. y ∈ Xj = Xp(i)).

Let p(x) ∈ Xp(i) be the parent of x. This implies that d(y, x) ≥ d(p(x), x) for all y ∈ Xp(i). Thus,

dE(y, x) ≤ dE(y, p(x)) + dE(p(x), x)
≤ 2kd(y, p(x)) + dE(p(x), x)
≤ 2k(d(y, x) + d(x, p(x))) + dE(p(x), x)
≤ 2 · 2kd(y, x) + dE(p(x), x)

≤ 2 · 2kd(y, x) +
∑

S:x∈S,y∈Xi−S

|wF (S)− wP (S)|+ β

≤ 2 · 2kd(y, x) + 2kµ + β

≤ 2βd(y, x)

2. Assume length(Q) = t

There must be a point z ∈ Xp(i) such that z lies on a shortest path between x and y in G. By the
induction hypothesis, dE(x, z) ≤ 2βd(x, z) and dE(z, y) ≤ 2βd(z, y). Thus, dE(x, y) ≤ dE(x, z) +
dE(z, y) ≤ 2βd(x, z) + 2βd(z, y) = 2βd(x, y) since z is on the shortest path between x and y.
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Lemma 4.5. The distances between points in different sets are not contracted.

Proof. Consider x ∈ Xi and y ∈ Xj . Xi and Xj are connected by a unique path Q in T . Assume WLOG
that Xp(i) is in path Q. x has a closest ancestor z in Xj which is at distance dE(z, y) from y. Consider the
path from z to x that lies in Q. Intuitively, we activate at least β coordinates at each step and deactivate at
most 2kµ, so distances increase as ≈ (β − 2kµ)|Q|. So

dE(x, y) ≥ max((dE(z, y)− 2kµ|Q|), 0) + β|Q|
≥ dE(z, y)− 2kµ|Q|+ β|Q|
≥ d(z, y)− 2kµ|Q|+ β|Q|
≥ d(x, y)− 2k|Q| − 2kµ|Q|+ β|Q|
= d(x, y) + (β − 2k − 2kµ)|Q|
≥ d(x, y)

5 Further Work

Our results suggest four paths for future investigation. First, it is possible that by utilizing a carefully chosen
local embedding technique along with the iterative embedding method the dependence of the distortion on
the tree-bandwidth could be improved. The only lower bound is Ω(log k) from expander graphs.

Second, our technique depends on the tree-bandwidth decomposition of a graph. The hardness of com-
puting the tree-bandwidth of a graph is not known.

Third, we would like to determine whether other interesting graph classes can be embedded into bounded
tree-bandwidth graphs with low distortion. Bounded tree-bandwidth graphs include all trees; thus they
do not necessarily have bounded cutwidth, pathwidth, or domino treewidth. It remains an open question
whether bounded cutwidth implies bounded tree-bandwidth.

Finally, we would like to enhance the technique by eliminating the requirement that every point in a tree
node be close to a node in the“parent” tree node. Removing this requirement would allow us to embed all
graphs of bounded domino treewidth, and simple transformations to reduce the degree of a graph (without
greatly changing the metric) would enable us to resolve the bounded treewidth embedding conjecture.
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A Appendix

Lemma A.1. Assume we are given graph G = (V,E) such that |V | = n and linear ordering f : V → [1, n]
of bandwidth b. Then there is another linear ordering g : V → [1, n] such that:

1. ∀i, Gi = {v : g(v) ≤ i} is connected

2. k = bandwidth(g) ≤ 2b

Proof. Our construction is similar to that of Lemma 3.3 in Badoiu et al. [1]. We claim that the following
algorithm gives the desired linear ordering:

1. FOR i = 1 to n

2. If {v1, v2, ..., vi} does not form a connected component then let m be the smallest index such that vm

is connected to {v1, v2, ..., vi−1} by an edge and insert vm before vi in the ordering.

3. NEXT i

Claim A.2. No edge is stretched twice.

Proof. Consider edge (vm, vj) at step i.
Assume j < i. Then the edge was contracted not stretched. Edge (vm, vj) will not be altered thereafter

since steps after step i will not affect the first i indices.
Assume j ≥ i. If i ≤ t < j then inserting vt before vj will not affect edge (vm, vj). If t > j, then

vt will not be inserted before vj since at any step r > i, vj will be connected to {v1, ..., vr−1} and thus t
cannot be the minimal index such that vt is connected to {v1, ..., vr−1}.

Thus, no edge is stretched twice.

Claim A.3. No edge is stretched by more than an additive factor of b.

Proof. At step i, because the bandwidth of f is b, m ≤ i− 1 + b. Thus, if vm is inserted all edges (vm, vj)
are stretched by at most b− 1. Edges not attached to vm are not stretched.

This completes the proof.
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