
Inference of User-Defined Type Qualifiers and Qualifier Rules

Brian Chin Shane Markstrum Todd Millstein Jens Palsberg

UCLA Computer Science Department

Technical Report CSD-TR-050041
October 2005

This technical report is a companion to our ESOP 2006 paper of the same name [1]. The first
section provides details on our approach to qualifier inference, and the second section provides
details on our approach to rule inference. This technical report focuses on the formal details that
are missing from the ESOP paper for space reasons; refer to that paper for motivation, examples,
etc.

1 Qualifier Inference

The original Clarity system supports qualifier checking: all variables must be explicitly annotated
with their qualifiers. In this section, we show how to support qualifier inference in the presence
of user-defined qualifier rules. We formalize qualifier inference for a simply-typed lambda calculus
with references and user-defined qualifiers, as defined by the following grammar:

e ::= c | e1 + e2 | x | λx : τ.e | e1 e2 | ref e | e1 := e2 |!e | assert(e, q)
τ ::= int | τ1 → τ2 | ref τ

Let Q be the set {q1, . . . , qn} of user-defined qualifiers in a program. Sets of qualifiers from
Q form a natural lattice, with partial order ⊇, least-upper-bound function ∩, and greatest-lower-
bound function ∪. We denote elements of this lattice by metavariable l; qualified types are ranged
over by metavariable ρ and are defined as follows:

ρ ::= l φ φ ::= int | ρ1 → ρ2 | ref ρ

We present both a type system and a constraint system for qualifier inference and prove their
equivalence, and we describe an algorithm for solving the generated constraints. We assume the
bound variables in expressions are annotated with unqualified types τ . It is possible to combine
qualifier inference with type inference, but separating them simplifies the presentation.

1.1 Formal Qualifier Rules

Figure 1 shows a sample user-defined type qualifier for nonzero integers in Clarity. We formalize
the case rules as defining two kinds of relations. First, some case clauses have the effect of declaring
a specificity relation between qualifiers. We formalize these rules as defining axioms for a relation
of the form q1 . q2. For example, the second case clause in Figure 1 would be represented by the
axiom pos . nonzero. We use .∗ to denote the reflexive, transitive closure of the user-defined .

relation, and we require .∗ to be a partial order.

1

qualifier nonzero(int Expr E)

case E of

decl int Const C:

C, where C != 0

| decl int Expr E1:

E1, where pos(E1)

| decl int Expr E1, E2:

E1 * E2,

where nonzero(E1) && nonzero(E2)

restrict

decl int Expr E1, E2:

E1 / E2, where nonzero(E2)

invariant value(E) != 0

Figure 1: A user-defined type qualifiers for nonzero integers.

The other kind of case clause uses a pattern to match on a constructor (e.g., +), and the clause
determines the qualifier of the entire expression based on the qualifiers of the immediate subex-
pressions. We formalize these rules as defining relations of the form R

q
p, where q is a qualifier and

p represents one of the constructors in our formal language, ranging over integer constants and the
symbols +, λ, and ref. The arity of each relation R

q
p is the number of immediate subexpressions

of the constructor represented by p, and the domain of each argument to the relation is Q. Each
case clause is formalized through axioms for these relations. For example, the third case clause
in Figure 1 would be represented by the axiom Rnonzero

∗ (nonzero, nonzero) (if our formal language
contained multiplication). The first case clause in that figure would be formalized through the
(conceptually infinite) set of axioms Rnonzero

1 (), Rnonzero

2 (), etc. For simplicity of presentation, we
assume that each subexpression is required to satisfy only a single qualifier. In fact, our implemen-
tation allows each subexpression to be constrained to satisfy a set of qualifiers, and it would be
straightforward to update our formalism to support this ability.

Finally, we formalize the restrict rules with an expression of the form assert(e, q), which
requires the type system to ensure that the top-level qualifier on expression e’s type includes
qualifier q. For example, the restrict rule in Figure 1 is modeled by replacing each denominator
expression e in a program with assert(e, nonzero). The assert expression can also be used to
model explicit qualifier annotations in programs.

1.2 The Type System

1.3 A Type System for Qualifier Inference

We assume we are given an expression e along with a set A of axioms representing the user-defined
qualifier rules, as described above. The qualifier type system is presented in Figure 3, and the
axioms in A are implicitly considered to augment this formal system. As usual, metavariable Γ
ranges over type environments, which map variables to qualified types. The rule for assert(e, q)
infers a qualified type for e and then checks that q is in the top-level qualifier of this type. The
strip function used in the rule for lambdas removes all qualifiers from a qualified type ρ, producing

2

ρ ≤ ρ′

l1 ⊇ l2

l1int ≤ l2int
S-Int

l1 ⊇ l2 ρ ≤ ρ′ ρ′ ≤ ρ

l1 ref ρ ≤ l2 ref ρ′
S-Ref

l1 ⊇ l2 ρ2 ≤ ρ1 ρ′1 ≤ ρ′2

l1(ρ1 → ρ′1) ≤ l2(ρ2 → ρ′2)
S-Fun

Figure 2: Subtyping rules.

Γ ` e : ρ

l = {q | Rq′

c () ∧ q′ .∗ q}

Γ ` c : l int
T-Int

Γ ` e1 : l1 int Γ ` e2 : l2 int

l = {q | R
q′

+(q1, q2) ∧ q1 ∈ l1 ∧ q2 ∈ l2 ∧ q′ .∗ q}

Γ ` e1 + e2 : l int
T-Plus

Γ(x) = ρ

Γ ` x : ρ
T-Var

strip(ρ1) = τ1 Γ, x : ρ1 ` e : ρ2 ρ2 = l2 φ2

l = {q | R
q′

λ (q2) ∧ q2 ∈ l2 ∧ q′ .∗ q}

Γ ` λx : τ1.e : l(ρ1 → ρ2)
T-Fun

Γ ` e1 : l(ρ2 → ρ) Γ ` e2 : ρ2

Γ ` e1 e2 : ρ
T-App

Γ ` e : ρ ρ = l0 φ0

l = {q | R
q′

ref
(q0) ∧ q0 ∈ l0 ∧ q′ .∗ q}

Γ ` ref e : l ref ρ
T-Ref

Γ ` e1 : l ref ρ Γ ` e2 : ρ

Γ ` e1 := e2 : ρ
T-Assgn

Γ ` e : l ref ρ

Γ `!e : ρ
T-Deref

Γ ` e : ρ ρ = l φ q ∈ l

Γ ` assert(e, q) : ρ
T-Assert

Γ ` e : ρ′ ρ′ ≤ ρ

Γ ` e : ρ
T-Sub

Figure 3: Qualifier inference rules.

3

an unqualified type τ , and is defined as follows:

strip(l int) = int

strip(l ref ρ) = ref strip(ρ)
strip(l (ρ1 → ρ2)) = strip(ρ1) → strip(ρ2)

The main novelty in the type system is the consultation of the axioms in A to produce the top-
level qualifiers for constructor expressions. For example, consider the first rule in Figure 3, which
infers the qualifiers for an integer constant c using a set comprehension notation. The resulting

set l includes all qualifiers q′ such that the R
q′

c () relation holds (according to the axioms in A), as
well as all qualifiers q that are “less specific” than such a q ′ as defined by the .∗ relation. In this
way, the rule finds all possible qualifiers that can be proven to hold given the user-defined case

clauses. The subsumption rule at the end of the figure can then be used to forget some of these
qualifiers, via the subtyping rules in Figure 2. The inference of top-level qualifiers is similar for the
other constructors, except that consultation of the R relation makes use of the top-level qualifiers
inferred for the immediate subexpressions.

1.4 The Constraint System

In this subsection we describe a constraint-based algorithm for qualifier inference.

1.4.1 Constraints and Solutions

The key novelty in our constraint system is the use of a specialized form of conditional constraints

to represent the effects of user-defined qualifier rules. The metavariable α represents qualifier

variables, and we generate constraints according to the following syntax:

C ::= α ⊇ α | q ∈ α | q ∈ α ⇒
∨

(
∧

q ∈ α)

Given a set C of constraints, let S be a mapping from the qualifier variables in C to sets of qualifiers.
We say that S is a solution to C if S satisfies all constraints in C. Given two solutions S and S ′ to C,
we say that S � S ′ if for all qualifier variables α in the domain of S and S ′, we have S(α) ⊇ S ′(α).
Then a solution S to C is a least solution to C if for all other solutions S ′ to C, it is the case that
S � S′. The following theorem shows that unique least solutions always exist.

Theorem 1.1. If a set C of constraints of the form C has a solution, then it has a least solution.
Proof By Lemma 1.1, C has a least solution, and by Lemma 1.2 this least solution is unique.

�

Lemma 1.1. If a set C of constraints of the form C has a solution, then it has a least solution.
Proof Let S1, . . . , Sn be the set of solutions to C. We build a mapping S0 as follows: for each
qualifier variable α mentioned in C, we define S0(α) =

⋃
1≤i≤n Si(α). Then by definition of � we

have S0 � Si for each 1 ≤ i ≤ n. Then S0 is a least solution if we can show that it is indeed a
solution. Therefore, we must show that S0 satisfies each constraint in C. We do a case analysis on
the form of this constraint:

• Case α1 ⊇ α2. Since each Si is a solution, we have that Si(α1) ⊇ Si(α2), for each 1 ≤ i ≤ n.
Then

⋃
1≤i≤n Si(α1) ⊇

⋃
1≤i≤n Si(α2), so S0 satisfies the constraint.

• Case q ∈ α. Since each Si is a solution, we have that q ∈ Si(α), for each 1 ≤ i ≤ n. Then
q ∈

⋃
1≤i≤n Si(α), so S0 satisfies the constraint.

4

• Case q ∈ α ⇒
∨

1≤j≤m(
∧

1≤k≤pj
qjk ∈ αjk). Since each Si is a solution, we have that each Si

satisfies this constraint. We consider two subcases:

– For all 1 ≤ i ≤ n, we have q 6∈ Si(α). Then also q 6∈
⋃

1≤i≤n Si(α), so q 6∈ S0(α).
Therefore, S0 satisfies the constraint vacuously.

– There exists some 1 ≤ i ≤ n such that q ∈ Si(α). Since Si is a solution, it satisfies the
constraint. Therefore, since Si satisfies the left-hand side of the constraint, it must also
satisfy the right-hand side. Therefore there exists some 1 ≤ j ≤ m such that for all
1 ≤ k ≤ pj we have qjk ∈ Si(αjk). Then also qjk ∈

⋃
1≤i≤n Si(αjk). Therefore we have

that there exists some 1 ≤ j ≤ m such that for all 1 ≤ k ≤ pj we have qjk ∈ S0(αjk).
Therefore S0 satisfies the right-hand side of the constraint, and hence it satisfies the
whole constraint.

�

Lemma 1.2. A set C of constraints of the form C has at most one unique solution.
Proof Suppose not, so C has two distinct least solutions S and S ′. Then we have both S � S ′

and vice versa, so by the definition of � we have that for all qualifier variables α in the domain of
S and S′, we have S(α) ⊇ S ′(α) and S′(α) ⊇ S(α). Then S = S ′, so we have a contradiction.

�

1.4.2 Constraint Generation

We formalize constraint generation by a judgment of the form κ ` e : δ | C. Here C is a set of
constraints in the form C, and the metavariable δ represents qualified types whose qualifiers are all
qualifier variables:

δ ::= α ϕ ϕ ::= int | δ1 → δ2 | ref δ

The metavariable κ denotes type environments that map program variables to qualified types of
the form δ.

The inference rules defining this judgment are shown in Figure 5. The embed function adds
fresh qualifier variables to an unqualified type τ in order to turn it into a qualified type δ; it is
defined as follows:

embed (int) = α int α fresh
embed(ref τ) = α ref embed(τ) α fresh

embed(τ1 → τ2) = α(embed (τ1) → embed(τ2)) α fresh

We also adapt the strip function described earlier to work over qualified types of the form δ:

strip(α int) = int

strip(α ref ρ) = ref strip(ρ)
strip(α (ρ1 → ρ2)) = strip(ρ1) → strip(ρ2)

Finally, we define a function refresh for generating fresh qualifier variables for a qualified type:

refresh(ρ) = embed(strip(ρ))
refresh(δ) = embed(strip(δ))

To keep the constraint generation purely syntax-directed, subsumption is “built in” to each
rule: the refresh function is used to create a fresh qualified type δ, which is constrained by a
subtype constraint of the form δ′ v δ. Subtype constraints are also generated for applications and

5

α1int v α2int ≡ {α1 ⊇ α2}
α1ref δ1 v α2ref δ2 ≡ {α1 ⊇ α2} ∪ δ1 v δ2 ∪ δ2 v δ1

α1(δ1 → δ′1) v α2(δ2 → δ′2) ≡ {α1 ⊇ α2} ∪ δ2 v δ1 ∪ δ′1 v δ′2

Figure 4: Converting type constraints into set constraints.

α′ fresh δ′ = α′ int δ = refresh(δ′)

κ ` c : δ | δ′ v δ ∪ {Cq
c (α′) | q ∈ Q}

C-Int

κ ` e1 : α1 int | C1 κ ` e2 : α2 int | C2

α′ fresh δ′ = α′ int δ = refresh(δ′)

κ ` e1 + e2 : δ |
C1 ∪ C2 ∪ δ′ v δ ∪ {Cq

+(α1, α2, α
′) | q ∈ Q}

C-Plus

κ(x) = δ′ δ = refresh(δ′)

κ ` x : δ | δ′ v δ
C-Var

κ, x : δ1 ` e : δ2 | C δ1 = embed(τ1) δ2 = α2 ϕ2

α′ fresh δ′ = α′(δ1 → δ2) δ = refresh(δ′)

κ ` λx : τ1.e : δ | C ∪ δ′ v δ ∪ {Cq
λ(α2, α

′) | q ∈ Q}
C-Fun

κ ` e1 : α(δ2 → δ′) | C1 κ ` e2 : δ′2 | C2

δ = refresh(δ′)

κ ` e1 e2 : δ |
C1 ∪ C2 ∪ δ′2 v δ2 ∪ δ′ v δ

C-App
κ ` e : δ0 | C δ0 = α0 ϕ0

α′ fresh δ′ = α′ ref δ0 δ = refresh(δ′)

κ ` ref e : δ | C ∪ δ′ v δ ∪ {Cq
ref

(α0, α
′) | q ∈ Q}

C-Ref

κ ` e1 : α ref δ′ | C1 κ ` e2 : δ′′ | C2

δ = refresh(δ′)

κ ` e1 := e2 : δ |
C1 ∪ C2 ∪ δ′′ v δ′ ∪ δ′ v δ

C-Assgn
κ ` e : α ref δ′ | C

δ = refresh(δ′)

κ `!e : δ | C ∪ δ′ v δ
C-Deref

κ ` e : δ′ | C δ′ = α ϕ

δ = refresh(δ′)

κ ` assert(e, q) : δ |
C ∪ {q ∈ α} ∪ δ′ v δ

C-Assert

Figure 5: Constraint generation rules for qualifier inference.

assignments, as usual. We treat a subtype constraint as a shorthand for a set of qualifier-variable
constraints, as shown in Figure 4.

Each rule for an expression with top-level constructor p produces one conditional constraint
per qualifier q in Q, denoted C

q
p . Informally, the constraint C

q
p inverts the user-defined qualifier

rules, indicating all the possible ways to prove that an expression with constructor p can be given
qualifier q according to the axioms in A. For example, both the second and third case clauses in
Figure 1 can be used to prove that a product a*b has the qualifier nonzero, so our implementation
of constraint generation in Clarity produces the following conditional constraint:

nonzero ∈ αa∗b ⇒ ((nonzero ∈ αa ∧ nonzero ∈ αb) ∨ (pos ∈ αa∗b))

More formally, let zip(Rq
p(q1, . . . , qm), α1, . . . , αm) denote the constraint q1 ∈ α1∧ . . .∧qm ∈ αm.

Let {a1, . . . , au} be all the axioms in A for the relation R
q
p, and let {q1, . . . , qv} = {q′ ∈ Q | q′ . q}.

6

Then C
q
p(α1, . . . , αm, α′) is the following conditional constraint1:

q ∈ α′ ⇒ (
∨

1≤i≤u

zip(ai, α1, . . . , αm) ∨
∨

1≤i≤v

qi ∈ α′)

1.5 Equivalence of Qualifier Checking and Qualifier Inference

We lift a solution S to a set of constraints to map qualified types δ to qualified types ρ:

S(α int) = S(α) int
S(α ref δ) = S(α) ref S(δ)

S(α(δ1 → δ2)) = S(α)(S(δ1) → S(δ2))

Our equivalence result is then expressed as follows:

Corollary 1.1. ∅ ` e : ρ if and only if ∅ ` e : δ | C and there exists a solution S to C such that
S(δ) = ρ.
Proof Follows from the Theorems 1.2 and 1.3 below.

�

We lift refresh to type environments Γ, producing a type environment κ, as follows:
refresh(x1 : ρ1, . . . , xn : ρn) = x1 : refresh(ρ1), . . . , xn : refresh(ρn)

Theorem 1.2. If Γ ` e : ρ and κ = refresh(Γ), then there exist δ and C such that κ ` e : δ | C,
and there exists a solution S to C such that S(δ) = ρ.
Proof We prove the theorem by induction on the derivation of Γ ` e : ρ.

• Case T-Int: Then e = c and ρ = l int and l = {q | R
q′

c () ∧ q′ .∗ q}. By C-Int we have
κ ` e : δ | C, where α′ fresh and δ′ = α′ int and δ = refresh(δ′) and C = δ′ v δ ∪ {Cq

c (α′) |
q ∈ Q}. By Lemma 1.3 there is a mapping S ′ such that S ′(δ) = δ′. Let S0 = {α′ 7→ l}, and
let S = S0 ∪ (S0 ◦ S′). Then S(δ) = ρ, so it remains to show that S is a solution to C. By
definition of S we have S(δ′) = S(δ), so by Lemmas 1.4 and 1.6 S satisfies δ ′ v δ. Therefore
this case is proven if we can show that S satisfies C

q
c (α′) for each q ∈ Q. There are several

cases:

– R
q
c() ∈ A: Then one disjunct of the right-hand side of C

q
c (α′) is true, so S satisfies

C
q
c (α′).

– q ∈ l but R
q
c() 6∈ A: By definition of l there is some q ′ such that R

q′

c () and q′ .∗ q. Since
R

q
c() 6∈ A, we know that q′ 6= q. Then by definition of .∗ there must exist some q′′ 6= q

such that q′ .∗ q′′ and q′′ . q. Therefore by definition of l we have q ′′ ∈ l. By definition
of C

q
c (α′), one disjunct of the right-hand side is q ′′ ∈ α′. Since q′′ ∈ l, S satisfies this

disjunct and hence S satisfies the entire constraint.

– q 6∈ l. Then the left-hand side of C
q
c (α′) is falsified by S, so the entire constraint is

vacuously satisfied by S.

• Case T-Plus: Then e = e1 + e2 and ρ = l int and Γ ` e1 : l1 int and Γ ` e2 : l2 int and

l = {q | R
q′

+(q1, q2) ∧ q1 ∈ l1 ∧ q2 ∈ l2 ∧ q′ .∗ q}. By induction, we have κ ` e1 : δ1 | C1 and a
solution S1 to C1 such that S1(δ1) = l1 int. Similarly by induction we have κ ` e2 : δ2 | C2

and a solution S2 to C2 such that S2(δ2) = l2 int. Therefore δ1 has the form α1 int and
δ2 has the form α2 int. Then by C-Plus we have κ ` e1 + e2 : δ | C, where α′ fresh and

1The empty conjunction is equivalent to true; the empty disjunction is equivalent to false.

7

δ′ = α′ int and δ = refresh(δ′) and C = C1 ∪ C2 ∪ δ′ v δ ∪ {Cq
+(α1, α2, α

′) | q ∈ Q}.
By Lemma 1.3 there is a mapping S ′ such that S ′(δ) = δ′. Let S0 = {α′ 7→ l}, and let
S = S1 ∪ S2 ∪ S0 ∪ (S0 ◦ S′). Then S(δ) = ρ, so it remains to show that S is a solution to
C. Since S1 and S2 are respectively solutions to C1 and C2, S is also a solution to C1 and
C2. By definition of S we have S(δ′) = S(δ), so by Lemmas 1.4 and 1.6 S satisfies δ ′ v δ.
Therefore this case is proven if we can show that S satisfies C

q
+(α1, α2, α

′) for each q ∈ Q.
There are several cases:

– R
q
+(q1, q2) ∈ A, where q1 ∈ l1 and q2 ∈ l2: Then one disjunct of the right-hand side of

C
q
+(α1, α2, α

′) is q1 ∈ α1 ∧ q2 ∈ α2. Since q1 ∈ l1 and q2 ∈ l2, this disjunct is satisfied by
S, so S satisfies C

q
+(α1, α2, α

′).

– q ∈ l but there is no q1 ∈ l1 and q2 ∈ l2 such that R
q
+(q1, q2) ∈ A: By definition of l

there is some q′ such that R
q′

+(q′1, q
′
2) and q′ .∗ q, where q′1 ∈ l1 and q′2 ∈ l2. Therefore

q′ 6= q. Then by definition of .∗ there must exist some q′′ 6= q such that q′ .∗ q′′ and
q′′ . q. Therefore by definition of l we have q ′′ ∈ l. By definition of C

q
+(α1, α2, α

′), one
disjunct of the right-hand side is q ′′ ∈ α′. Since q′′ ∈ l, S satisfies this disjunct and hence
S satisfies the entire constraint.

– q 6∈ l. Then the left-hand side of C
q
+(α1, α2, α

′) is falsified by S, so the entire constraint
is vacuously satisfied by S.

• Case T-Var: Then e = x and Γ(x) = ρ. Since κ = refresh(Γ), there is some δ ′ such that of
κ(x) = δ′. Therefore by C-Var we have κ ` x : δ | δ ′ v δ and δ = refresh(δ′). By Lemma 1.3
there is a mapping S ′ such that S ′(δ) = δ′, and there is a mapping S0 such that S0(δ

′) = ρ.
Let S = S0 ∪ (S0 ◦ S′). Then S(δ) = ρ, so it remains to show that S is a solution to δ ′ v δ.
By definition of S we have S(δ′) = S(δ), so by Lemmas 1.4 and 1.6 S satisfies δ ′ v δ.

• Case T-Fun: Then e = λx : τ1.e2 and ρ = l(ρ1 → ρ2) and Γ, x : ρ1 ` e2 : ρ2 and strip(ρ1) = τ1

and ρ2 = l2 φ2 and l = {q | R
q′

λ (q2) ∧ q2 ∈ l2 ∧ q′ .∗ q}. Let δ1 = embed(τ1). Then
δ1 = refresh(ρ1). Therefore by induction, we have κ, x : δ1 ` e2 : δ2 | C2 and there exists
a solution S2 to C2 such that S2(δ2) = ρ2. Let δ2 = α2 ϕ2. Then by C-Fun we have
κ ` λx : τ1.e2 : δ | C, where α′ fresh and δ′ = α′(δ1 → δ2) and δ = refresh(δ′) and
C = C2 ∪ δ′ v δ ∪ {Cq

λ(α2, α
′) | q ∈ Q}. By Lemma 1.3 there is a mapping S ′ such

that S′(δ) = δ′ and a mapping S1 such that S1(δ1) = ρ1. Let S′′ = {α′ 7→ l}, and let
S = S2 ∪ S1 ∪ S′′ ∪ ((S2 ∪ S1 ∪ S′′) ◦ S′). Then S(δ) = ρ, so it remains to show that S is a
solution to C. Since S2 is a solution to C2, so is S. By definition of S we have S(δ ′) = S(δ),
so by Lemmas 1.4 and 1.6 S satisfies δ′ v δ. Therefore this case is proven if we can show that
S satisfies C

q
λ(α2, α

′) for each q ∈ Q. There are several cases:

– R
q
λ(q2) ∈ A, where q2 ∈ l2: Then one disjunct of the right-hand side of C

q
λ(α2, α

′) is
q2 ∈ α2. Since q2 ∈ l2, this disjunct is satisfied by S, so S satisfies C

q
λ(α2, α

′).

– q ∈ l but there is no q2 ∈ l2 such that R
q
λ(q2) ∈ A: By definition of l there is some q ′

such that R
q′

λ (q′2) and q′ .∗ q, where q′2 ∈ l2. Therefore q′ 6= q. Then by definition of .∗

there must exist some q′′ 6= q such that q′ .∗ q′′ and q′′ .q. Therefore by definition of l we
have q′′ ∈ l. By definition of C

q
λ(α2, α

′), one disjunct of the right-hand side is q ′′ ∈ α′.
Since q′′ ∈ l, S satisfies this disjunct and hence S satisfies the entire constraint.

– q 6∈ l. Then the left-hand side of C
q
λ(α2, α

′) is falsified by S, so the entire constraint is
vacuously satisfied by S.

8

• Case T-App: Then e = e1 e2 and Γ ` e1 : l(ρ2 → ρ) and Γ ` e2 : ρ2. By induction
κ ` e1 : δ1 | C1 and there is a solution S1 to C1 such that S1(δ1) = l(ρ2 → ρ). Therefore,
δ1 has the form α(δ2 → δ′). Similarly by induction κ ` e2 : δ′2 | C2 and there is a solution
S2 to C2 such that S2(δ

′
2) = ρ2. Therefore by C-App we have κ ` e1 e2 : δ | C, where

δ = refresh(δ′) and C = C1 ∪C2 ∪ δ′2 v δ2 ∪ δ′ v δ. By Lemma 1.3 there is a mapping S ′ such
that S′(δ) = δ′. Let S = S1 ∪ S2 ∪ (S1 ◦ S′). Then S(δ) = ρ, so it remains to show that S is
a solution to C. Since S1 and S2 are respectively solutions to C1 and C2, also S is a solution
to C1 and C2. Further, by definition of S we have S(δ ′2) = S(δ2), so by Lemmas 1.4 and 1.6
S satisfies δ′2 v δ2. Similarly, by definition of S we have S(δ ′) = S(δ), so by Lemmas 1.4 and
1.6 S satisfies δ′ v δ.

• Case T-Ref: Then e = ref e0 and ρ = l ref ρ0 and Γ ` e0 : ρ0 and ρ0 = l0 φ0 and

l = {q | R
q′

ref
(q0)∧q0 ∈ l0∧q′ .∗ q}. By induction, we have κ ` e0 : δ0 | C0 and a solution S0 to

C0 such that S0(δ0) = ρ0. Let δ0 = α0 ϕ0. Then by C-Ref we have κ ` ref e : δ | C, where
α′ fresh and δ′ = α′ ref δ0 and δ = refresh(δ′) and C = C0 ∪ δ′ v δ ∪ {Cq

ref
(α0, α

′) | q ∈ Q}.
By Lemma 1.3 there is a mapping S ′ such that S ′(δ) = δ′. Let S1 = {α′ 7→ l}, and let
S = S0 ∪ S1 ∪ ((S0 ∪ S1) ◦ S′). Then S(δ) = ρ, so it remains to show that S is a solution
to C. Since S0 is a solution to C0, so is S. By definition of S we have S(δ ′) = S(δ), so by
Lemmas 1.4 and 1.6 S satisfies δ′ v δ. Therefore this case is proven if we can show that S

satisfies C
q
ref

(α0, α
′) for each q ∈ Q. There are several cases:

– R
q
ref

(q0) ∈ A, where q0 ∈ l0: Then one disjunct of the right-hand side of C
q
ref

(α0, α
′) is

q0 ∈ α0. Since q0 ∈ l0, this disjunct is satisfied by S, so S satisfies C
q
ref

(α0, α
′).

– q ∈ l but there is no q0 ∈ l0 such that R
q
ref

(q0) ∈ A: By definition of l there is some q ′

such that R
q′

ref
(q′0) and q′ .∗ q, where q′0 ∈ l0. Therefore q′ 6= q. Then by definition of .∗

there must exist some q′′ 6= q such that q′ .∗ q′′ and q′′ .q. Therefore by definition of l we
have q′′ ∈ l. By definition of C

q
ref

(α0, α
′), one disjunct of the right-hand side is q ′′ ∈ α′.

Since q′′ ∈ l, S satisfies this disjunct and hence S satisfies the entire constraint.

– q 6∈ l. Then the left-hand side of C
q
ref

(α0, α
′) is falsified by S, so the entire constraint is

vacuously satisfied by S.

• Case T-Assgn: Then e = e1 := e2 and Γ ` e1 : l ref ρ and Γ ` e2 : ρ. By induction
κ ` e1 : δ1 | C1 and there is a solution S1 to C1 such that S1(δ1) = l ref ρ. Therefore, δ1

has the form α ref δ′. Similarly by induction κ ` e2 : δ2 | C2 and there is a solution S2

to C2 such that S2(δ
′′) = ρ. Therefore by C-Assgn we have κ ` e1 := e2 : δ | C, where

δ = refresh(δ′) and C = C1 ∪C2 ∪ δ′′ v δ′ ∪ δ′ v δ. By Lemma 1.3 there is a mapping S ′ such
that S′(δ) = δ′. Let S = S1 ∪ S2 ∪ (S1 ◦ S′). Then S(δ) = ρ, so it remains to show that S is
a solution to C. Since S1 and S2 are respectively solutions to C1 and C2, also S is a solution
to C1 and C2. Further, by definition of S we have S(δ ′′) = S(δ′), so by Lemmas 1.4 and 1.6
S satisfies δ′′ v δ′. Similarly, by definition of S we have S(δ ′) = S(δ), so by Lemmas 1.4 and
1.6 S satisfies δ′ v δ.

• Case T-Deref: Then e =!e0 and Γ ` e0 : l ref ρ. Therefore by induction we have κ ` e0 : δ0 |
C0 and a solution S0 to C0 such that S0(δ0) = l ref (ρ). Therefore δ0 has the form α0ref (δ′).
Then by C-Deref we have κ `!e0 : δ | C, where δ = refresh(δ′) and C = C0 ∪ δ′ v δ. By
Lemma 1.3 there is a mapping S ′ such that S ′(δ) = δ′. Let let S = S0 ∪ (S0 ◦ S′). Then
S(δ) = ρ, so it remains to show that S is a solution to C. Since S0 is a solution to C0, so is
S. Further, by definition of S we have S(δ ′) = S(δ), so by Lemmas 1.4 and 1.6 S satisfies
δ′ v δ.

9

• Case T-Assert: Then e = assert(e0, q) and Γ ` e0 : ρ and ρ = l φ and q ∈ l. Therefore
by induction we have κ ` e0 : δ′ | C0 and a solution S0 to C0 such that S0(δ

′) = ρ. Let
δ′ = αϕ. Then by C-Assert we have κ ` assert(e0, q) : δ | C, where δ = refresh(δ′) and
C = C0 ∪ {q ∈ α} ∪ δ′ v δ. By Lemma 1.3 there is a mapping S ′ such that S ′(δ) = δ′. Let
let S = S0 ∪ (S0 ◦ S′). Then S(δ) = ρ, so it remains to show that S is a solution to C. Since
S0 is a solution to C0, so is S. Further, since q ∈ l, by definition of S we have that S satisfies
q ∈ α. Finally, by definition of S we have S(δ ′) = S(δ), so by Lemmas 1.4 and 1.6 S satisfies
δ′ v δ.

• Case T-Sub: Then Γ ` e : ρ′ and ρ′ ≤ ρ. By induction we have κ ` e : δ | C and there is a
solution S ′ to C such that S ′(δ) = ρ′. Consider the last inference rule used in the derivation of
κ ` e : δ | C. By inspection of the rules, we see that there is some δ ′ such that δ = refresh(δ′),
and the only constraint in C that mentions qualifier variables in δ is the constraint δ ′ v δ.
Since S′ is a solution to C, S ′ satisfies δ′ v δ, so by Lemma 1.6 we have S ′(δ′) ≤ S′(δ). Since
S′(δ) = ρ′, this means S ′(δ′) ≤ ρ′, and since ρ′ ≤ ρ, by Lemma 1.5 also S ′(δ′) ≤ ρ.

Let S′′ = S′ − {α 7→ l | α ∈ δ}. By Lemma 1.3 there is a mapping S0 such that S0(δ) = δ′.
Then (S′′ ◦ S0)(δ) = ρ′, so by Lemma 1.7 there is a mapping S1 such that S1(δ) = ρ. Let
S = S′′ ∪ S1. Since δ′ v δ is the only constraint in C mentioning qualifier variables in δ,
by definition of S ′′ we have that S ′′ satisfies all constraints in C − δ′ v δ, so S does as well.
Also by definition of S we have S(δ′) = S′(δ′) and S(δ) = ρ. Therefore, since S ′(δ′) ≤ ρ, by
Lemma 1.6 we have that S satisfies δ′ v δ.

�

Theorem 1.3. If κ ` e : δ | C and S is a solution to C, then S(κ) ` e : S(δ).
Proof By induction on the derivation of κ ` e : δ | C.

• Case C-Int: Then e = c and α′ fresh and δ′ = α′ int and δ = refresh(δ′) and C = δ′ v
δ ∪ {Cq

c (α′) | q ∈ Q}. Since S is a solution to C, by Lemma 1.6 we have S(δ ′) ≤ S(δ).
Therefore by T-Sub, this case is proven if we can prove S(κ) ` c : S(δ ′). By T-Int we have

S(κ) ` c : l int, where l = {q | R
q′

c () ∧ q′ .∗ q}. By T-Sub, we have shown S(κ) ` c : S(δ ′)
if we can prove that l int ≤ S(δ′). This fact in turn follows by S-Int if we can show that
l ⊇ S(α′).

Consider some q ∈ S(α′). We will show that q ∈ l. We prove this by complete induction
on the number of qualifiers q′ such that q′ .∗ q. We have two subcases. First, suppose that
R

q
c() ∈ A. Then since .∗ is reflexive we have q .∗ q, so we have that q ∈ l by the definition

of l. Second, suppose that R
q
c() 6∈ A. Since C

q
c (α′) is in C, we have that S satisfies C

q
c (α′).

Since q ∈ S(α′), S satisfies the left-hand side of C
q
c (α′), so S must also satisfy the right-hand

side. Therefore by the definition of C
q
c (α′), there is some q0 such that q0 . q and q0 ∈ S(α′).

Then by induction q0 ∈ l, so there is some q′′ such that R
q′′

c () ∈ A and q′′ .∗ q0. Then also
q′′ .∗ q, so by the definition of l also q ∈ l.

• Case C-Plus: Then e = e1 +e2 and κ ` e1 : α1 int | C1 and κ ` e2 : α2 int | C2 and α′ fresh
and δ′ = α′ int and δ = refresh(δ′) and C = C1 ∪ C2 ∪ δ′ v δ ∪ {Cq

+(α1, α2, α
′) | q ∈ Q}.

Since S is a solution to C, S is also a solution to C1 and C2, so by induction we have
S(κ) ` e1 : S(α1) int and S(κ) ` e2 : S(α2) int. Also since S is a solution to C, by
Lemma 1.6 we have S(δ′) ≤ S(δ). Therefore by T-Sub, this case is proven if we can prove

S(κ) ` e1 + e2 : S(δ′). By T-Plus we have S(κ) ` e1 + e2 : l int, where l = {q | R
q′

+(q1, q2)∧

10

q1 ∈ S(α1) ∧ q2 ∈ S(α2)∧ q′ .∗ q}. By T-Sub, we have shown S(κ) ` e1 + e2 : S(δ′) if we can
prove that l int ≤ S(δ′). This fact in turn follows by S-Int if we can show that l ⊇ S(α′).

Consider some q ∈ S(α′). We will show that q ∈ l. We prove this by complete induction
on the number of qualifiers q′ such that q′ .∗ q. We have two subcases. First, suppose that
R

q
+(q1, q2) ∈ A, for some q1 ∈ S(α1) and q2 ∈ S(α2). Then since .∗ is reflexive we have q .∗ q,

so we have that q ∈ l by the definition of l. Second, suppose that there is no q1 ∈ S(α1) and
q2 ∈ S(α2) such that R

q
+(q1, q2) ∈ A. Since C

q
+(α1, α2, α

′) is in C, we have that S satisfies
C

q
+(α1, α2, α

′). Since q ∈ S(α′), S satisfies the left-hand side of C
q
+(α1, α2, α

′), so S must
also satisfy the right-hand side. Therefore by the definition of C

q
+(α1, α2, α

′), there is some q0

such that q0 . q and q0 ∈ S(α′). Then by induction q0 ∈ l, so there is some q′′ and q′1 ∈ S(α1)

and q′2 ∈ S(α2) such that R
q′′

+ (q′1, q
′
2) ∈ A and q′′ .∗ q0. Then also q′′ .∗ q, so by the definition

of l also q ∈ l.

• Case C-Var: Then e = x and κ(x) = δ′ and δ = refresh(δ′) and C = δ′ v δ. Since S is a
solution to C, by Lemma 1.6 we have S(δ ′) ≤ S(δ). Therefore by T-Sub, this case is proven
if we can prove S(κ) ` x : S(δ′). Since κ(x) = δ′, also S(κ)(x) = S(δ′), so the result follows
by T-Var.

• Case C-Fun: Then e = λx : τ1.e2 and κ, x : δ1 ` e2 : δ2 | C2 and δ1 = embed(τ1) and
δ2 = α2 ϕ2 and α′ fresh and δ′ = α′(δ1 → δ2) and δ = refresh(δ′) and C = C2 ∪ δ′ v
δ ∪ {Cq

λ(α2, α
′) | q ∈ Q}. Since S is a solution to C, S is also a solution to C2, so by

induction we have S(κ, x : δ1) ` e2 : S(δ2). Also since S is a solution to C, by Lemma 1.6
we have S(δ′) ≤ S(δ). Therefore by T-Sub, this case is proven if we can prove S(κ) `
λx : τ1.e2 : S(δ′). Since δ1 = embed(τ1), by Lemma 1.8 we have strip(δ1) = τ1, so also
strip(S(δ1)) = τ1. Therefore by T-Fun we have S(κ) ` λx : τ1.e2 : l(S(δ1) → S(δ2)), where

l = {q | R
q′

λ (q2) ∧ q2 ∈ S(α2) ∧ q′ .∗ q}. By T-Sub, we have shown S(κ) ` λx : τ1.e2 : S(δ′)
if we can prove that l(S(δ1) → S(δ2)) ≤ S(δ′). This fact in turn follows by S-Fun if we can
show that l ⊇ S(α′) and S(δ1) ≤ S(δ1) and S(δ2) ≤ S(δ2). The last two obligations follow
from Lemma 1.4, so it remains to show that l ⊇ S(α′).

Consider some q ∈ S(α′). We will show that q ∈ l. We prove this by complete induction
on the number of qualifiers q′ such that q′ .∗ q. We have two subcases. First, suppose that
R

q
λ(q2) ∈ A, for some q2 ∈ S(α2). Then since .∗ is reflexive we have q .∗ q, so we have that

q ∈ l by the definition of l. Second, suppose that there is no q2 ∈ S(α2) such that R
q
λ(q2) ∈ A.

Since C
q
λ(α2, α

′) is in C, we have that S satisfies C
q
λ(α2, α

′). Since q ∈ S(α′), S satisfies
the left-hand side of C

q
λ(α2, α

′), so S must also satisfy the right-hand side. Therefore by the
definition of C

q
λ(α2, α

′), there is some q0 such that q0 . q and q0 ∈ S(α′). Then by induction

q0 ∈ l, so there is some q′′ and q′2 ∈ S(α2) such that R
q′′

+ (q′2) ∈ A and q′′ .∗ q0. Then also
q′′ .∗ q, so by the definition of l also q ∈ l.

• Case C-App: Then e = e1 e2 and κ ` e1 : α(δ2 → δ′) | C1 and κ ` e2 : δ′2 | C2 and
δ = refresh(δ′) and C = C1 ∪ C2 ∪ δ′2 v δ2 ∪ δ′ v δ. Since S is a solution to C, S is
also a solution to C1 and C2, so by induction we have S(κ) ` e1 : S(α(δ2 → δ′)) and
S(κ) ` e2 : S(δ′2). Also since S is a solution to C, by Lemma 1.6 we have S(δ ′2) ≤ S(δ2) and
S(δ′) ≤ S(δ). Therefore by T-Sub, this case is proven if we can prove S(κ) ` e1 e2 : S(δ′).
Since S(κ) ` e2 : S(δ′2) and S(δ′2) ≤ S(δ2), by T-Sub we have S(κ) ` e2 : S(δ2), so the result
follows by T-App.

• Case C-Ref: Then e = ref e0 and κ ` e0 : δ0 | C0 and δ0 = α0 ϕ0 and α′ fresh and
δ′ = α′ ref δ0 and δ = refresh(δ′) and C = C0 ∪ δ′ v δ ∪ {Cq

ref
(α0, α

′) | q ∈ Q}. Since S is a

11

solution to C, S is also a solution to C0, so by induction we have S(κ) ` e0 : S(δ0). Also since
S is a solution to C, by Lemma 1.6 we have S(δ ′) ≤ S(δ). Therefore by T-Sub, this case is
proven if we can prove S(κ) ` ref e0 : S(δ′). By T-Ref we have S(κ) ` ref e0 : l ref S(δ0),

where l = {q | R
q′

ref
(q0)∧q0 ∈ S(α0)∧∧q′.∗q}. By T-Sub, we have shown S(κ) ` ref e0 : S(δ′)

if we can prove that l ref S(δ0) ≤ S(δ′). This fact in turn follows by S-Ref if we can show
that l ⊇ S(α′) and S(δ0) ≤ S(δ0). The latter obligation follows by Lemma 1.4, so it remains
to show that l ⊇ S(α′).

Consider some q ∈ S(α′). We will show that q ∈ l. We prove this by complete induction
on the number of qualifiers q′ such that q′ .∗ q. We have two subcases. First, suppose that
R

q
ref

(q0) ∈ A, for some q0 ∈ S(α0). Then since .∗ is reflexive we have q .∗ q, so we have that
q ∈ l by the definition of l. Second, suppose that there is no q0 ∈ S(α0) such that R

q
ref

(q0) ∈ A.
Since C

q
ref

(α0, α
′) is in C, we have that S satisfies C

q
ref

(α0, α
′). Since q ∈ S(α′), S satisfies

the left-hand side of C
q
ref

(α0, α
′), so S must also satisfy the right-hand side. Therefore by the

definition of C
q
ref

(α0, α
′), there is some q0 such that q0 . q and q0 ∈ S(α′). Then by induction

q0 ∈ l, so there is some q′′ and q′0 ∈ S(α0) such that R
q′′

ref
(q′0) ∈ A and q′′ .∗ q0. Then also

q′′ .∗ q, so by the definition of l also q ∈ l.

• Case C-Assgn: Then e = e1 := e2 and κ ` e1 : α ref δ′ | C1 and κ ` e2 : δ′′ | C2

and δ = refresh(δ′) and C = C1 ∪ C2 ∪ δ′′ v δ′ ∪ δ′ v δ. Since S is a solution to C,
S is also a solution to C1 and C2, so by induction we have S(κ) ` e1 : S(α ref δ′) and
S(κ) ` e2 : S(δ′′). Also since S is a solution to C, by Lemma 1.6 we have S(δ ′′) ≤ S(δ′) and
S(δ′) ≤ S(δ). Therefore by T-Sub, this case is proven if we can prove S(κ) ` e1 e2 : S(δ′).
Since S(κ) ` e2 : S(δ′′) and S(δ′′) ≤ S(δ′), by T-Sub we have S(κ) ` e2 : S(δ′), so the result
follows by T-Assgn.

• Case C-Deref: Then e =!e0 and κ ` e0 : α ref δ′ | C0 and δ = refresh(δ′) and C =
C0 ∪ δ′ v δ. Since S is a solution to C, S is also a solution of C0, so by induction we have
S(κ) ` e0 : S(α ref δ′). Also since S is a solution to C, by Lemma 1.6 we have S(δ ′) ≤ S(δ).
Therefore by T-Sub, this case is proven if we can prove S(κ) `!e0 : S(δ′). The result follows
by T-Deref.

• Case C-Assert: Then e = assert(e0, q) and κ ` e0 : δ′ | C0 and δ′ = α ϕ and δ = refresh(δ′)
and C = C0 ∪ {q ∈ α} ∪ δ′ v δ. Since S is a solution to C, S is also a solution of C0, so by
induction we have S(κ) ` e0 : S(δ′). Also since S is a solution to C, by Lemma 1.6 we have
S(δ′) ≤ S(δ). Therefore by T-Sub, this case is proven if we can prove S(κ) ` assert(e0, q) :
S(δ′). Since S is a solution to C, we have q ∈ S(α), so the result follows by T-Assert.

�

Lemma 1.3. (a) If δ = refresh(δ′) then there is a mapping S from the qualifier variables in δ to
the qualifier variables in δ′ such that S(δ) = δ′. (b) If δ = refresh(ρ) then there is a mapping S

from the qualifier variables in δ to the qualifier variables in ρ such that S(δ) = ρ.

Lemma 1.4. ρ ≤ ρ

Lemma 1.5. If ρ1 ≤ ρ2 and ρ2 ≤ ρ3, then ρ1 ≤ ρ3.

Lemma 1.6. S(δ′) ≤ S(δ) if and only if S satisfies δ′ v δ.

Lemma 1.7. If δ = refresh(δ′) and S′(δ) = ρ′ and ρ′ ≤ ρ, then there exists a mapping S such that
S(δ) = ρ.

Lemma 1.8. If δ = embed(τ), then strip(δ) = τ .

12

2 Rule Inference

A naive approach to rule inference is to generate each candidate rule and use the qualifier validator
to remove all candidates that do not respect the intended invariant. However, since qualifier
validation is relatively expensive, requiring usage of decision procedures, and since there are an
exponential number of candidates in the number of qualifiers, it is desirable to minimize the number
of candidates that need to be explicitly considered.2 To efficiently search the space of candidate
rules, we define a partial order � that formalizes the situation when one candidate subsumes
another.

The most precise partial ordering on case clauses is logical implication. For example, the third
case clause in Figure 1 corresponds to the following formula, obtained by replacing qualifiers with
their invariants:

value(E1) 6= 0 ∧ value(E2) 6= 0 ⇒ value(E1 ∗ E2) 6= 0

The above clause subsumes a clause that requires both E1 and E2 to be pos instead of nonzero,
since the above formula logically implies the formula associated with the new clause. Unfortunately,
precisely computing this partial order requires an exponential number of calls to decision procedures
to reason about logical implication, which is exactly what we are trying to avoid.

Instead, our approach is to use logical implication to define a partial ordering on individual
qualifiers, but to then lift this partial ordering to case clauses in a purely syntactic way. Therefore,
we need only make a quadratic number of calls to the decision procedures in order to compute the
partial order. This approximation of the “true” partial ordering is still guaranteed to completely
exhaust the space of candidates, but it is now possible to produce qualifier rules that are redundant.
The rest of this section formalizes our partial order and describes the rule inference algorithm.

2.1 The Partial Order

We assume the set Q contains every qualifier in this system. Every qualifier q ∈ Q has a semantic
predicate defined as q(·) : X → {T, F}, where X is a set of opaque values. For any two qualifiers
q1, q2 ∈ Q, we assume that there exists some value x such that q1(x) 6⇔ q2(x). Thus no two qualifiers
have the same semantic predicate.

Definition 2.1. The Q-relation �Q is defined as follows:

q1 �Q q2
∆
= ∀x.q1(x) ⇒ q2(x)

Theorem 2.1. The Q-relation �Q is transitive, reflexive, and antisymmetric
Proof Since �Q is based on implication, it shares the transitive, reflexive, and antisymmetric
properties of implication since by definition no two distinct qualifiers have the same semantic
meaning.

�

Definition 2.2. We define the set S = P(Q) of qualsets. For any qualset s ∈ S, s(·) : X → {T, F}
is its semantic meaning which is defined as follows:

s(x)
∆
= ∀q ∈ s.q(x)

2Conceptually, there are an infinite number of candidates, due to constants. We handle constants through a simple
heuristic that works well in practice. For each qualifier, we only consider a single candidate rule (possibly) containing
constants, which is derived from the qualifier’s invariant by replacing all references to value(E) with a metavariable
ranging over constants.

13

Definition 2.3. �S is a binary relation on qualsets such that, for any qualsets s1 and s2

s1 �S s2
∆
= ∀q2 ∈ s2.∃q1 ∈ s1.q1 �Q q2

Theorem 2.2. For all s1, s2 ∈ S

s1 �S s2 ⇒ ∀x.(s1(x) ⇒ s2(x))

Proof

We will prove this by contradiction. To be false, s1(x) must hold while s2(x) must not. This
means that there is at least one qualifier a ∈ s2 for which a(x) is false. By the definition of �S ,
there exists some qualifier b ∈ s1 such that b �Q a. By the definition of �Q, this means that
∀x.b(x) ⇒ a(x). Since a(x) is false, b(x) must also be false by contrapositive. But since s1(x) holds
in the above assumption, it means that every qualifier expression including b(x) must hold. This
is a contradiction, thus the theorem holds.

�

This approach of using �Q as the basis for the partial order on qualsets has some limitations.
For example, consider qualifiers q1, q2, q3 ∈ Q such that q2 6⇒ q1 and q3 6⇒ q1, but q2 ∧ q3 ⇒ q1.
Since our partial ordering of qualifiers only deals with pairwise implications, and not grouped
implications as in the example, it is not the case that {q2, q3} �S {q1}. We could modify the �S

relation to directly check implication of qualsets, but then we would need to do exponential work to
find all implication sets. Our technique of only doing pairwise comparisons keeps the initial work
to O(|Q|2) implication queries while simultaneously getting most of the true redundancies.

Theorem 2.3. The S-relation is reflexive and transitive.
Proof

Take any qualset s ∈ S. For every qualifier q ∈ s, there exists some q ′ ∈ s such that q′ �Q q,
namely q′ = q. This must be true due to reflexivity of �Q. This is precisely the definition of �S ,
thus s �S s, and thus �S is reflexive.

Take any qualsets s1, s2, s3 ∈ S such that s1 �S s2 and s2 �S s3. Take any qualifier q ∈ s3. By
the definition of �S, there exists some q′ ∈ s2 such that q′ �Q q. By the same logic, there exists
some q′′ ∈ s1 such that q′′ �Q q′. By the transitivity of �Q, q′′ �Q q. Since there is such a q′′ ∈ s1

for every q ∈ s3, then by the definition of �S , s1 �S s3. Thus �S is transitive.
�

Definition 2.4. A set s is pairwise Q-unrelated if:

∀x, y ∈ s.(x = y) ∨ ¬(x �Q y)

The set of qualsets SQ̄ ⊂ S contains exactly those qualsets that are pairwise Q-unrelated.
In plain English, every pair of qualifiers in a qualset are unrelated.

Lemma 2.1. Given two qualifiers a and b such that a �Q b, then a(x) ∧ b(x) ⇔ a(x).
Proof

This can be proved through simple boolean manipulation. From the definition of a �Q b,
we know that ∀x.a(x) ⇒ b(x). We have as a tautology that a(x) ⇒ a(x). Since we also have
a(x) ⇒ b(x), a(x) ⇒ a(x) ∧ b(x). In addition, since adding constraints to an implication does not
change the truth of the implication, we also have that a(x) ∧ b(x) ⇒ a(x). This gives us both the
if and only if statements of a(x) ∧ b(x) ⇔ a(x), and thus the statement must hold.

�

14

Theorem 2.4. [Qualset Pairwise Q-unrelated Cannonical Form]
For every qualset s which is not pairwise Q-unrelated, there exists some qualset s ′ which is

pairwise Q-unrelated, and such that ∀x.s(x) ⇔ s′(x).
Proof

By lemma 2.1, for any two related qualifiers a and b, a(x) ∧ b(x) ⇔ a(x). Take any qualset s

which is not Q-unrelated. Since s is not Q-unrelated, there exists some pair of qualifiers a, b ∈ s

such that a �Q b. In the expansion of s(x), we get the statement a(x) ∧ b(x) ∧ · · · . Since ∧ is
commutative, the position of a(x) and b(x) in the expression is irrelevant. By the lemma, this
is equivalent to a(x) ∧ · · · , omitting b(x) entirely. This statement has the same meaning as the
original, and can be derived by the qualset s′ = s−b. Since b is no longer in s, the prior related pair
no longer exists. If there still remains a related pair in s′, the same procedure can be applied, still
preserving the meaning. This can be applied until there are no more such unrelated pairs. Since
the semantic meaning is preserved, this final Q-unrelated set is equivalent to the original. Since
this can be done for every non-Q-unrelated set, the set of Q-related sets is semantically equivalent
to the set of all qualsets.

�

Theorem 2.5. The S-relation �S is antisymmetric over all pairwise Q-unrelated sets.
Proof

The property of antisymmetry holds that S1 �S S2 ∧ S2 �S S1 ⇒ S1 = S2. We will prove this
by contradiction.

Assume that for two pairwise Q-unrelated sets S1 and S2 that S1 �S S2, S2 �S S1, and S1 6= S2.
Since the sets are not equal, there exists some qualifier q ∈ S1 such that q 6∈ S2 or q ∈ S2 and
q 6∈ S1. Since the premise is symmetrical for S1 and S2 we can assume the former case without loss
of generality.

By the definition of the S-relation, the following must hold:

∀y ∈ S1.∃x ∈ S2.x �Q y (1)

∀y ∈ S2.∃x ∈ S1.x �Q y (2)

By the first equation, there must exist some qualifier a ∈ S2 such that a �Q q. We can see
that a 6= q because q 6∈ S2. By the second equation, there must be some qualifier b ∈ S1 such that
b �Q a. The qualifier b 6= q because if b = q then we would then have q �Q a and a �Q q where
a 6= q, which would violate the antisymmetry of �Q. By the transitivity of �Q, b �Q q. However,
both b and q are in S1. Since b 6= q, this violates the pairwise Q-unrelated property of S1, and thus
we have a contradiction.

�

Definition 2.5. We define Mk = Sk
Q̄

as k-nary tuples of pairwise Q-unrelated qualsets. Given

m = (m1,m2, . . . ,mk) ∈ Mk, m(·) : Xk → {T, F} is its semantic meaning which is defined as
follows:

m(x1, . . . , xk)
∆
= ∀i ∈ {1, . . . , k}.(πim)(xi)

Definition 2.6. �M is a binary relation over Mk for arbitrary k such that, for any k-nary tuples
of qualsets m and n

m �M n
∆
= ∀i ∈ {1, . . . , k}.πim �S πin

15

Theorem 2.6. For all m,n ∈ Mk,

m �M n ⇒ ∀x1, x2, . . . , xk.(m(x1, x2, . . . , xk) ⇒ n(x1, x2, . . . , xk))

Proof

In order to be false, m(x1, x2, . . . , xk) must be true while n(x1, x2, . . . , xk) must be false. For
this to be true, there must be some i such that πin(xi) is false, and πim(xi) is true. Thus πim(xi) 6⇒
πin(xi). But the definition of �M holds that ∀x.πim(xi) ⇒ πin(xi), which is a contradiction.

�

Theorem 2.7. The relation �M is reflexive, transitive, and antisymmetric.
Proof

Consider any multiset m. m �M m is the equivalent of m1 �S m1 ∧m2 �S m2 · · · , which must
follow due to the reflexivity of �S .

Given sets m, n, and p, say that m �M n and n �M p. By the definition of �M , this is the
same as m1 �S n1 ∧ · · · ∧ n1 �S p1 ∧ · · · . Since for any i ≤ k, there will be the two statements
mi �S ni and ni �S pi, it follows that mi �S pi by transitivity of �S. Since this is true for every
i, it follows that m �M p by the definition of �M . Thus �M is transitive.

Assume that there exist m,n ∈ Mk such that m 6= n, m �M n and n �M m. This means there
must be some i ∈ [1, k] such that mi 6= ni. By the definition of �M , it must be true that mi �S ni

and ni �S mi. This contradicts the antisymmetry of �S. Thus �M must be antisymmetric.
�

Next we define the notion of candidate qualifier rules:

Definition 2.7. A candidate c can be considered to be a triple containing the constructor p used
as the pattern; a k-tuple of qualsets, one per subexpression of p, representing the clause’s condition;
and the qualifier q that the clause is defined for. We denote the set of candidates as C.

Definition 2.8. We define the relation �C on candidates as follows:

(p1,m1, q1) �C (p2,m2, q2)
∆
= p1 = p2 ∧ m2 �M m1 ∧ q1 �Q q2

Theorem 2.8. The relation �C is reflexive, transitive, and anti-symmetric.
Proof

For the purposes of this proof, we define c1, c2, and c3 to be candidates in C, where c1 =
(m1, p1, t2), c2 = (m2, p2, t2), and c3 = (m3, p3, t3).

The statement c1 �C c1 is equivalent to the statement m1 �M m1 ∧ p1 = p1 ∧ t1 �Q t1. The
substatement m1 �M m1 must be true by the reflexive property of �M . p1 = p2 is true by the
reflexivity of equality. The substatement t1 �Q t1 is also true by the reflexive property of �Q.
Thus the conjunction of these substatements is also true, thus the statement c1 �C c1 is true, thus
�C is reflexive.

Assume that c1 �C c2 and c2 �C c3. From these relations, we know that m2 �M m1 and
m3 �M m2. By the transitivity of �M , we know that m3 �M m1. Similarly we know that
p1 = p2 and p2 = p3. By the transitivity of equality, we know that p1 = p3. Finally, we know that
t1 �Q t2 and t2 �Q t3. By the transitivity of �Q, we know that t1 �Q t3. Altogether, we have
m3 �M m1 ∧ p1 = p3 ∧ t1 �Q t3, which is equivalent to c1 �C c3. Thus �C is transitive.

We prove the antisymmetric property of �C by contradiction. Assume that c1 �C c2 and
c2 �C c1 and c1 6= c2. The last term implies that either m1 6= m2, p1 6= p2, or t1 6= t2. If m1 6= m2,
then that combined with the fact that m1 �M m2 and m2 �M m1 would create a contradiction.
Similarly, if t1 6= t2, then the combination of that with t1 �Q t2 and t2 �Q t1 would also create a

16

contradiction. If p1 6= p2, then that contradicts with p1 = p2. Thus if c1 �C c2 and c2 �C c1, then
c1 = c2. Thus �C is antisymmetric.

�

Finally, we formalize the notion of candidate validation. For this formalization, we model a
constructor p as a function. For example, the + constructor would be represented as a function
that takes two values and returns their sum.

Definition 2.9. A candidate (p,m, q) ∈ (Xk → X) × Mk × Q is valid if the following formula is
logically valid:

∀x1, x2, . . . , xk ∈ X.m(x1, x2, . . . , xk) ⇒ q(p(x1, x2, . . . , xk))

The following theorem formalizes the fact that our partial order is sensible: if candidate c1

subsumes c2 according to our partial order and c1 is valid, then so is c2.

Theorem 2.9. Given any two candidates c1, c2 ∈ C, the following holds:

c1 �C c2 ⇒ (c1 is valid ⇒ c2 is valid)

Proof

Assume that c1 �C c2, where c1 = (p1,m1, q1), and c2 = (p2,m2, q2). By definition, m2 �M m1,
p1 = p2, and q1 �Q q2. Assume that c1 is valid. Thus ∀x1, . . . , xk ∈ X.m1(x1, . . . , xk) ⇒
q1(p1(x1, . . . , xk)). Since m2 �M m1, by theorem 2.6 this means that ∀x1, . . . , xk ∈ X.m2(x1, . . . , xk) ⇒
m1(x1, . . . , xk). We also know that p1 = p2. We will simply use p to refer to this function. Similarly,
q1 �Q q2 implies that ∀x ∈ X.q1(x) ⇒ q2(x). Specifically, this is true when x = p(x1, . . . , xk). Thus
∀x1, . . . , xk ∈ X.q1(p(x1, . . . , xk)) ⇒ q2(p(x1, . . . , xk)). In summary, we have the fact that

∀x1, . . . , xk ∈ X.m2(x1, . . . , xk) ⇒ m1(x1, . . . , xk) ⇒ q1(p(x1, . . . , xk)) ⇒ q2(p(x1, . . . , xk))

By the transitive property of implication, this gives us

∀x1, . . . , xk ∈ X.m2(x1, . . . , xk) ⇒ q2(p(x1, . . . , xk))

which is precisely the necessary statement to show that c2 is valid.
�

2.2 The Algorithm

To generate all the valid rules that are not redundant, we need a way to enumerate candidates
in topological order according to the �C relation. Therefore, by its definition, for each target
qualifier �Q, which should be enumerated in topological order, we need to enumerate k-nary tuples
of qualsets in reverse topological order. To do so, we first illustrate how to map a qualifier, qualset,
and k-nary tuple of qualsets to integers, such that this mapping creates a total ordering that
is consistent with a topological sort. We will then describe how to use this total ordering in a
procedure for generating the valid candidate rules.

We start with the set of qualifiers Q. We make an arbitrary reverse topological sort of Q by the
partial ordering �Q by making |Q|2 queries to decision procedures. We will number the qualifiers
q0, q1, . . . , q|Q|−1.

17

Definition 2.10. The function fQ : Q → N is defined as follows:

fQ(qi)
∆
= 2i

where i is the qualifier’s index in the above ordering.

Definition 2.11. The function fS : S → N is defined as follows:

fS(s)
∆
=

∑

q∈s

fQ(q)

Lemma 2.2. For any two qualsets s, t ∈ SQ̄, if s ⊆ t then fS(s) ≤ fS(t)
Proof

Let u = t − s. The value fS(u) is either zero or greater than zero. Since s and u are disjoint,
then by the definition of fS, fS(t) = fS(s ∪ u) = fS(s) + fS(u). Since fS(u) ≥ 0, this means that
fS(s) ≤ fS(t).

�

Lemma 2.3. For any k ∈ Z+,
k−1∑

i=0

2i < 2k

Proof

We prove this by induction. For the base case of k = 1, we get that:

0∑

i=0

2i < 21 (3)

1 < 2 (4)

For the inductive case, we prove that given that the above holds for k, then it holds for k + 1.
By the inductive case we are given:

k−1∑

i=0

2i < 2k

k−1∑

i=0

2i + 2k < 2k + 2k

k∑

i=0

2i < 2k+1

This is the same form as k + 1, thus the statement must hold for all k ≥ 1.
�

Lemma 2.4. Given any qualifier q and any set of qualifiers s such that q 6∈ s ∧ ∀q ′ ∈ s.q �Q q′,
then fQ(q) > fS(s).
Proof

Say that q = qk. Due to the topological sort by �Q, we know that any qualifiers r such that
q �Q r must be in the set {q0, q2, . . . , qk−1}. This means that the set s must be a subset of the set
{q0, q1, . . . , qk−1}.

Let s′ = {q0, q1, . . . , qk−1}. By the definition of fS and fQ we get

18

fS(s′) =
∑

q∈s′

fQ(q)

=

k−1∑

i=0

fQ(qi)

=

k−1∑

i=0

2i

By the definition of fQ, we know that fQ(q) = 2k. By lemma 2.3, we have

k−1∑

i=0

2i < 2k

Thus fQ(q) > fS(s′). Since any valid s is a subset of s′, then fS(s′) ≥ fS(s) by lemma 2.2. By
transitivity, fQ(q) > fS(s) for all valid s.

�

Theorem 2.10. For any pairwise Q-unrelated qualsets s and t,

s �S t ⇒ fS(s) ≥ fS(t).

Proof

We define a relation R : s → P(t) with the following properties:

⋃

q∈s

R(q) = t

∀q1, q2 ∈ s.q1 = q2 ∨ R(q1) ∩ R(q2) = ∅

∀qs ∈ s.∀qt ∈ R(qs).qs �Q qt

Such a relation R can be created for any two qualsets s and t where s �S t by the following
procedure:

Start with the empty relation R where for every q ∈ s, R(s) = ∅. For every element qt ∈ t, find
an element qs ∈ s such that qs �Q qt (such an element must exist by the definition of �S). Create
a new relation R′ such that for all qualifiers which are not qs, R′(q) = R(q), and for the qualifier
qs, R′(qs) = R(qs) ∪ {qt}. Replace R with R′, and repeat for the next element of t. Since each
element of t is added into the range of R, the first statement must hold. Since each element of t is
added only once into the range of R, the second statement must hold. Since the method which we
generated the terms required that each element of t be put in the set relating to an element of s

which it relates to, the third statement holds.
We will prove that for every qs ∈ s that fQ(qs) ≥ fS(R(qs)). Since t is pairwise Q-unrelated, we

know that if qs ∈ R(qs), then {qs} = R(qs). If there were any other elements besides qs in R(qs),
then it would mean that t would contain two elements which are Q-related (namely qs and any
other qualifier in that set). Thus this must be true. This leaves us with two possibilities: Either
{qs} = R(qs) or qs 6∈ R(qs). In the former case, fQ(qs) = fS({qs}) = fS(R(qs)), and thus the two
are equal which is sufficient for the statement to hold. In the latter case, we know that qs 6∈ R(qs),

19

and that ∀q ∈ R(qs).qs �Q q. According to lemma 2.4, this means that fQ(qs) > fS(R(qs)). Thus
in either case, the statement holds.

From this proof we get a series of inequalities. We know by definition of fS that fS(s) =∑
q∈s fQ(q), which means that the sum of the left hand side of these inequalities is equivalent to

fS(s). We also know that fS(s1) + fS(s2) = fS(s1 ∪ s2) if s1 ∩ s2 = ∅. By the second condition on
R, this is precisely the case for the elements of the range of R. Since the union of all of the ranges
of R precisely equal t, then

∑
q∈s fS(R(q)) = fS(t). We just summed up the left and right sides of

a series of inequalities, such that the direction of the inequalities do not change. Thus the same
inequality must apply to the sum. Thus fS(s) ≥ fS(t).

�

Definition 2.12. The function fM : Mk → N is defined as follows:

fM (m)
∆
=

∑

s∈m

fS(s)

Theorem 2.11. For any two multisets m1 and m2,

m1 �M m2 ⇒ fM (m1) ≥ fM (m2).

Proof

For every pair of qualsets s1 ∈ m1 and s2 ∈ m2, it holds that s1 �S s2 by definition of �M .
By the previous theorem, fS(s1) ≥ fS(s2). Since this is true for every pair, summing up the values
from the function fS on each side should preserve the fact that

∑
s1∈m1

fS(s1) ≥
∑

s2∈m2
fS(s2).

Since this is the definition of fM , the theorem holds.
�

We now use these functions to enumerate candidates in topological order according to �C .
Consider generating all valid case rules for a single qualifier q. Further, fix a particular constructor
p to use in the rule’s pattern, and assume that this constructor has exactly one subexpression. Let
W be a worklist of pairs of the form (s, l) where s is a qualset and l is a list of qualifiers. Initialize
the set W to {(∅, [q1, q2, q3, . . .])}, where [q1, q2, q3, . . .] is an ordered list of all the qualifiers in
reverse topological order according to �Q. Using reverse topological order ensures we will generate
qualsets for use in a case rule from most-general to most-specific, which is necessary given the
contravariance in the definition of �. We also maintain a set T of valid case rules, initialized to ∅.

1. If W is empty, we are done and T contains all the valid non-redundant rules. Otherwise,
remove the tuple (s, l) from W such that for all other (s′, l′) ∈ W we have s 6�S s′. To do so
efficiently, we maintain the invariant that tuples in W are in sorted order according to fS.

2. If there is some candidate (p′, s′, q′) ∈ T such that (p′, s′, q′) �C (p, s, q) then (p, s, q) is
redundant, so we drop the tuple (s, l) and return to the previous step. Otherwise, we continue
to the next step.

3. We run our framework’s qualifier validator on (p, s, q). If (p, s, q) is valid, we add (p, s, q) to
T . If not, then we need to check less-specific candidates. For each q ∈ l, we add the pair
(s∪{q}, l′) to W , where l′ is the suffix of l after q. These pairs are placed appropriately in W

to maintain its sortedness, as described earlier; it is straightforward to compute fS(s ∪ {q})
incrementally from fS(s).

20

In the case when the constructor p has k > 1 subexpressions, we need to enumerate k-ary
multisets. To do so, the worklist W now contains k-tuples of pairs of the form (s, l) and is sorted
according to fM . When adding new elements to W , we apply the procedure described in Step
3 above to each component of the k-tuple individually, keeping all other components unchanged.
The only subtlety is that we want to avoid generating redundant tuples. For example, if q1 �Q q2,
then the tuple ({q2}, {q2}) could be a successor of both ({q1}, {q2}) and ({q2}, {q1}). To avoid this
duplication, we only augment a component of a k-tuple when generating new candidates for W in
Step 3 if it is either the component that was last augmented along this path of the search, or it is
to the right of that component. This rule ensures that once a component is augmented, the search
cannot “go back” and modify components to its left. In our example, ({q2}, {q2}) would not be
generated from ({q1}, {q2}) in Step 3, because the last component to have been augmented must
have been the second one (since all components begin with the empty set).

Finally we describe the full algorithm for candidate generation. We enumerate each qualifier
q in topological order according to �Q. For each such qualifier, we enumerate each constructor p

in any order and use the procedure described above to generate all the valid non-redundant rules
of the form (p, (s1, . . . , sk), q). The set T is initialized to ∅ at the beginning of this algorithm and
is augmented throughout the entire process. In this way, candidates shown to be valid for some
qualifier q can be used to find a later candidate for a target q ′ to be redundant. For example, a
rule allowing the sum of two pos expressions to be considered pos will be found to subsume a rule
allowing the sum of two pos expressions to be considered nonzero. When this algorithm completes,
the set T will contain all valid rules such that none is subsumed by any other valid rule according
to �. Finally, we augment T with rules that reflect the specificity relation among qualifiers, such as
the second case rule in Figure 1. These rules are derived directly from the computed �Q relation.

References

[1] Brian Chin, Shane Markstrum, Todd Millstein, and Jens Palsberg. Inference of user-defined
type qualifiers and qualifier rules. In Peter Sestoft, editor, Programming Languages and Systems,

ESOP 2006, Lecture Notes in Computer Science. Springer-Verlag, 2006.

21

