
UCLA-CSD-TR050040

- 1 -

Optimal Search Performance in Unstructured Peer-to-

Peer Networks With Clustered Demands

Saurabh Tewari, Leonard Kleinrock

Computer Science Department

University of California at Los Angeles

Los Angeles, CA 90095, U.S.A.

{stewari,lk}@cs.ucla.edu

Abstract—This paper derives the optimal search time and the

optimal search cost that can be achieved in unstructured peer-to-

peer networks when the demand pattern exhibits clustering (i.e.

file popularities vary from region to region in the network).

Previous work in this area had assumed a uniform distribution of

file replicas throughout the network with an implicit or explicit

assumption of uniform file popularity distribution whereas in

reality, there is clear evidence of clustering in file popularity

patterns. In this paper, we provide mechanisms for modeling

clustering in file popularity distributions and the consequent non-

uniform distribution of file replicas. We provide results for the

search time in such networks for both random walk and flooding

search mechanisms. The potential performance benefit that the

clustering in demand patterns affords is captured by our results.

Interestingly, the performance gains are shown to be independent

of whether the search network topology reflects the clustering in

file popularity. We also provide the relation between the query-

processing load and the number of replicas of each file for the

clustered demands case showing that flooding searches may have

lower query-processing load than random walk searches in the

clustered demands case.

Keywords- Flooding, Peer-to-Peer Networks, Random Walk,

Optimal Search Time, Optimal Search Cost, Clustered Demands

I. INTRODUCTION

Peer-to-peer networks are loosely organized networks of
autonomous entities (user nodes or “peers”) which make their
resources available to other peers. Since each new peer brings
additional resources, these networks are fully scalable provided
that the resources one offers can be found by the peers who
need those resources. Thus, finding the desired resource is a
critical issue in peer-to-peer networks. Keeping a centralized
index of the resources each peer is offering is an approach that
has scalability issues and a single point of failure.
Alternatively, a direct approach for finding the desired resource
is to have the peer wanting a resource to query other nodes to
find a node that has that resource. Since a node cannot
realistically keep the addresses of all other peers, an overlay
network is constructed where each node keeps addresses of a
few other peers (called its neighbors) through whom it reaches
the rest of the peers. Peer-to-peer networks following this
approach are referred to as unstructured peer-to-peer networks
to distinguish them from structured networks [7, 9] which map
each unique resource to a particular node in the network, an

approach that can be more efficient but whose lack of
flexibility introduces other issues [6]. In this paper we focus on
unstructured peer-to-peer networks and address two major
concerns in these networks: the time to find a peer who is
offering a particular resource (the search time), and the amount
of additional traffic introduced in the network in the process of
locating the peer that is offering that resource (the search cost).
The reference example is of peer-to-peer file sharing networks
and we refer to resources as files throughout the rest of the
paper.

As is typical in the related literature [10], we approximate
the search time for a file in the network by the average number
of hops it takes for a query to reach a node that has that file,
and use average search time, i.e., the average time it takes to
find a peer that is sharing the desired file, as our first metric for
search performance. Our second metric is the search cost. Since
a search for a file is done via peers sending query messages to
other peers, the number of query messages each peer processes
equals the additional traffic introduced in the network by a
query. Therefore, we approximate the search cost by the query-
processing load, i.e., the average number of nodes that are
queried per file request. One expects that if many peers are
sharing a file, in any reasonable search method, the search time
and the search cost for the file will be smaller than if very few
peers were sharing that file. In the extreme case, if all nodes
could store all files, no search would be required. Since each
peer has finite storage space, a system designer seeks to get the
optimum search performance possible given the per-node
storage constraint. The optimal average search time, the
optimal query-processing load and the file replica distribution
(number of replicas of each file as a function of that file’s
popularity) at the respective optima have been derived in [10,
11] under the assumption of a uniform distribution of the file
replicas. However, measurements on deployed peer-to-peer file
sharing networks show a significant amount of clustering in
interests [5], i.e., the popularity of a set of files in
(geographical) regions differs from region to region. Further,
more replicas of a file are found in those regions where that file
is more popular.

The main contributions of this paper are given in Sections
3-7. In Section 3, we present a peer-to-peer network model that
allows for incorporating clustering in demand and file replica
distribution. The search time for a random walk search in this

UCLA-CSD-TR050040

- 2 -

network model is derived in Section 4 while Section 5 derives
the analogous results for the flooding search. In Section 6, we
derive the query-processing load expressions for random walk
and flooding searches. The optimal search time and the optimal
search cost expressions are derived in Section 7. Based on our
observations in Section 5, in Section 8, we extend the results
for flooding search time beyond the specific mode of demand
clustering allowed by our network model described in Section
3 to incorporate any arbitrary demand clustering. Section 9
discusses certain properties of the optimal search time and the
optimal search cost. Related work, including the results in [10,
11], is discussed in Section 2 and our conclusions are given in
Section 10.

II. BACKGROUND AND RELATED WORK

Flooding and random walking are the two main alternatives
in how the search is conducted over the search network when
no information is available about which nodes may have the
file. In flooding, the node that wants the file sends a query to
all its neighbors and they, in turn, forward the query to all their
neighbors (except the one which sent the query) until a copy of
the file is found. In random walking, the query is sent to one
randomly selected neighbor and if that neighbor does not have
the file, it forwards the query to one of its neighbors (selected
randomly) other than the neighbor that sent it the query.

When nodes are similar in capacities and file interests (i.e.
when files and file popularities are uniformly distributed), the
Erdos-Renyi random graph [1] is a good topology model

1
 for

the overlay search network. The optimal search performance
under the constraint of finite per-node storage is covered well
by [3, 10, 11] with the assumption of uniform distribution of
file replicas. Reference [3] gives the search time for a file as a
function of number of replicas of the file when the search
method is a random walk. Say there are ni copies of file i in the
network and a total of M nodes in the network. If these ni
copies are uniformly distributed in the network (at most one
copy to a node), a randomly selected node has a probability
ni/M of having the file. Thus, random walking for file i is a
sequence of Bernoulli trials with ni/M as the probability of
success. Hence, for random walk search, the (average) search

time for file i, τiR, and the (average) number of nodes queried
per search for file i, QiR, is M/ni. Reference [11] provides
analogous results for flooding and before going on to compare
flooding and random walking and showing the advantage of a
controlled flooding search over a random walk search. It gives
the flooding search time under the uniform distribution

assumption to be τiF(ni) = logd(M/ni) where τiF is the (average)
search time for file i with flooding, d is the average degree (i.e.
the average number of neighbors of each node) of the search
network with ni and M as defined earlier. Intuitively one can
interpret this result as follows. A search for file i needs to query
M/ni nodes on average to find the file (i.e. the (average) number
of nodes queried per flooding search for file i, QiF, is still M/ni).
Since a random walk queries one additional node per hop, it
takes M/ni rounds to find the file while flooding can query that
many nodes in logd(M/ni) hops because it queries exponentially

1 When node capacities are very skewed, a power-law random graph is a

topology choice which distributes the query-processing load unevenly among

the peers but yields faster search methods [2, 8].

more nodes with each additional hop
2
.

We summarize these results in Table 2. Table 1 gives the
notation used in the paper. In this paper, we seek to obtain
results analogous to those in Table 2 when the file replica
distribution and the demand patterns are not uniform. Since
each link is equiprobable in an Erdos-Renyi random graph, it is
not suited for modeling clustering in file interests and we
develop a network model that incorporates clustering in file
interests as well as the network topology in the next section.

TABLE I. NOTATION USED

M Number of nodes

L Number of clusters

N Number of unique files

K Per-node storage size (in number of files)

d Average degree of the search overlay topology

q
Probability of any given pair of inter-cluster nodes having a

direct link

ni Number of replicas of file i in the entire network

nia Number of replicas of file i in the “high-density” cluster

nib Number of replicas of file i in a “low-density” cluster

λi Request rate of file i per node (averaged over the network)

λia Request rate of file i per node in the “high-density” cluster

λιb Request rate of file i per node in a “low-density” cluster

λ =
1

N

ii
λ

=∑

τix Average search time for file i with search method x a

Qix Query-processing load for file i with search method x a

τixa
Average search time for file i from the high-density cluster

with search method x a

Qixa
Query-processing load for file i from the high-density

cluster with search method x a

τixb
Average search time for file i from a low-density cluster

with search method x a

Qixb
Query-processing load for file i from a low-density cluster

with search method x a

τx
opt Optimal average search time with search method x a

Qx
opt Optimal query-processing load with search method x a

Qx
τopt

Query-processing load with the replica distribution that

minimizes the average search time with search method x a
a For flooding search: x=F, For random walk search: x=R e.g. τiFb=Average search time for file i from a

low-density cluster with flooding search

2 Since a node does not forward a query twice, the exponential growth

assumption is optimistic. Thus, (1) slightly underestimates the actual search

time. In [11], we provide simulation plots for the average search distance for

different topologies as well as an analytical proof for (1) when M→∞ and ni/M

is small. Our work in [11] indicates that (1) is an approximate expression for

the search time which captures the dependence of search time on the number

of replicas very well while underestimating the search time by a small amount.

UCLA-CSD-TR050040

- 3 -

TABLE II. RESULTS FOR UNIFORM DISTRIBUTION OF REPLICAS ([11])

Replica

Distribution
Equation

τiF(ni) = logd(M/ni) (1) Valid for

arbitrary

replica

distributions
QiF(ni) = QiR(ni) = τiR(ni) = M/ni (2)

1
log logopt

F

N i i
d di

K
λ λ

τ
λ λ=

= − −∑ (3)

ni ∝ λi
QF

τopt =
N

K
 (4)

ni ∝ √λi QF
opt = QR

opt = τR
opt =

2

1
()

N

ii

K

λ

λ
=∑

 (5)

III. A PEER-TO-PEER NETWORK MODEL FOR CLUSTERED

DEMANDS

Let us assume that our peer-to-peer network has M nodes
and that these M nodes are clustered in, say, L clusters. For
ease of discussion, we make the following assumptions. Each
cluster is of the same size (thus, each cluster has M/L nodes).
There are only two levels of popularity of each file and there is
only one cluster in which a file is more popular. Thus, for all

files i = 1 to N, file i has request rate λia per node in one cluster

and λib per node in each of the remaining L-1 clusters where λia

> λib and Mλi =
L

M
λia + (L-1)

M

L
λib. where λi is the average

node request rate for file i across the entire network. Let us
further assume that the ni replicas of file i are split as nia
replicas in the cluster where the file is more popular and nib
replicas in each of the remaining clusters where nia>nib, ni=
nia+(L-1)nib and nia<M/L. One may then say that the cluster
where file i is more popular has a higher density of file i
replicas whereas a cluster where the file is not as popular has a
lower density. Since clustering has already been accounted for,
we assume that within each cluster the files are uniformly
distributed over all the nodes in that cluster.

One possible model for the search network is to assume that
the clusters are totally disconnected (i.e. there are no inter-
cluster links) and within each cluster, the network follows the
Erdos-Renyi random graph topology. For this model of
clustering, the search time and the query-processing load
expressions can be obtained from the analogous expressions for
the uniform distribution case in Table 2 with (1) and (2)
yielding (6), (7) and (8), (9) respectively as shown in Table 3.
Comparing (6)-(9) to (1), (2) we see that perfect clustering
reduces the random walk search time and the query-processing
load for both flooding and random walk by a factor of L while
the flooding search time decreases by logdL. Fig. 1, where we

TABLE III. SEARCH PERFORMANCE WITH DISCONNECTED CLUSTERS

Derived

from
Equation

τiFa(nia, nib) = logd(M/niaL) (6)
(1)

τiFb(nia, nib) = logd(M/nibL) (7)

QiFa(nia, nib) = QiRa(nia, nib) = τiRa(nia, nib) = M/niaL (8)
(2)

QiFb(nia, nib) = QiRb(nia, nib) = τiRb(nia, nib) = M/nibL (9)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 500 1000 1500 2000 2500

Number of Copies in the Cluster

A
v
e

ra
g

e
 H

o
p

 D
is

ta
n

c
e

Simulation

Analytical

Figure 1. Search Time with Perfect Clustering (25,000 node network, 5

equal-sized clusters, Average Degree 5)

compare simulation results with (6), shows that (6) captures the
effect of the number of replicas very well (since (6) is based on
(2), the slight underestimation by (6) is expected).

While assuming disconnected clusters makes for an easy
first-order analysis, actual peer-to-peer networks do not
typically have such fully disconnected clusters. There is
evidence of strong clustering but inter-cluster links do exist in
real networks so neither an Erdos-Renyi random graph over the
entire network nor the fully disconnected clusters model is an
appropriate topology. A topology model that gives us a
continuum of topologies with the Erdos-Renyi random graph at
one extreme and the fully disconnected clusters at the other
extreme is the following random graph variant. Consider a
network in which the probability of including an intra-cluster
link is p and the probability of including an inter-cluster link
is q and the average per-node degree is d as before i.e.
assuming L clusters of equal sizes, the nodes are partitioned
into L clusters and the probability that any given pair of intra-
cluster nodes is connected is p and the probability that any
given pair of inter-cluster nodes is connected is q. Thus, each
node has an average of (M/L)p links to nodes within its cluster
and (M-M/L)q links to nodes outside its cluster. Hence, the

average degree d = (M−M/L)q + (M/L)p and if one were to
hold the average degree constant, defining one of p or q defines
the other. Varying q provides a continuum of topologies from
the completely disjoint clusters (q=0) to the Erdos-Renyi
random graph (p=q). A flooding search in these topologies
expands to d other nodes (in the higher-density or a lower-
density cluster) in the next hop independent of whether the
search process is at a node in the higher-density cluster or a
lower-density cluster. Thus, the average number of nodes

queried per search expands exponentially and the d
τ
 expression

for the number of nodes queried given the average search

distance of τ [11] still holds.

In subsequent sections we derive the search performance
expressions similar to those listed in Table 2 for this network.

IV. RANDOM WALK SEARCH IN NETWORKS WITH

CLUSTERING

In the case of no clustering and the case of disconnected
clusters we discussed so far, a search only queried nodes of the
“same type” (i.e. all the nodes queried by the search had the
same probability of having the desired file). However, this is

UCLA-CSD-TR050040

- 4 -

G
P(find)=a

e

1−c

c

1−eB
P(find)=b

N G

e(1-a)

c(1-b)

(1−e)(1-b)NB(1−c)(1-a)

F

(1−c)a+cb (1−e)b+ea

(a)

(b)

1

Figure 2. Random walk in the modified random graph for the non-uniform

file distribution case

not the case in the clustered peer-to-peer network as the
existence of inter-cluster links implies that a query can get
forwarded to a node in a different cluster where the probability
of a node having the file may be different. Thus, in our model,
when a query is forwarded, the event of interest is whether it
goes to a node in the high-density cluster or to a node in one of
the low-density clusters. Among the d outgoing links at each
node, the probability that a link is an inter-cluster link is q(M-
M/L)/d. Therefore, for a query at a node in the higher-density
cluster, the probability of one query path “escaping” to a lower-
density cluster is c = q(M-M/L)/d. In contrast, when the query
is at a node in the lower-density cluster, the probability of
escaping to the higher density cluster is e = q(M/L)/d as there
are only M/L nodes that are of interest for this event. For ease
of discussion, throughout the rest of the paper, we refer to the
nodes within the higher-density cluster as “good” nodes, and
the nodes in the lower-density clusters as “bad” nodes.

Fig. 2a shows a Markov chain model for the random walk
on our modified random graph with a non-uniform file
distribution prior to finding the file: state G represents the
random walk being at a “good” node and state B represents the
random walk being at a “bad” node. The random walk
transitions between state G and state B until it finds the file.
The probability of finding the file when the system transitions
to state G (i.e. at a good node) is a = niaL/M, and the
probability of finding the file when the system transitions to
state B (i.e. at a bad node) is b = nibL /M. Since we need to
determine the average number of steps until the file is found for
the random walk search time, we transform our Markov chain
in Fig. 2a to that in Fig. 2b. The state NG denotes the event that
the search visits a good node but does not find the file and the
state NB denotes the event that the search visits a bad node but
does not find the file. State F is an absorbing state denoting the
event that the file is found independent of whether the previous
node is good or bad. Thus, the average first passage time from
state NG to state F is the search time for a random walk search

initiated by a good node, τiRa, and the average first passage time
from state NB to state F is the search time for a random walk

search initiated by a bad node, τiRa.

The relevant equations [4], therefore, are:

 τiRa = 1+ (1-c)(1-a)τiRa + c(1-b)τiRb

 τiRb = 1+ e(1-a)τiRa + (1-e)(1-b)τiRb

Therefore:

τiRa =
()(1)

(1) (1)

c e b b

ab cb a ae b

+ − +
+ − + −

= 1]
)()1(

)(
[−

++−−
−

−
ececb

bac
a

 τiRb=
()(1)

(1) (1)

c e a a

ab cb a ae b

+ − +
+ − + −

= 1]
)()1(

)(
[−

++−−
−

+
ececa

bae
b

Substituting the values for a, b, c and e, we get the
following theorem:

Theorem 1. The (average) search time for a random walk
search in the clustered peer-to-peer network defined in Section
3 is:

 τiRa (nia, nib) = 1
]

))(/(

))(1(
[

−

+−

−−
−

MqMqdMLn

nnLq

M

Ln

ib

ibiaia (10)

if the search is initiated at a node in the high-density cluster,
and is:

 τiRb(nia, nib) = 1
]

)(/(

)(
[

−

+−

−
+

MqMqdMLn

nnq

M

Ln

ia

ibiaib (11)

if the search is initiated at a node in the low-density cluster. g

Comparing (10) and (11) with (8) and (9) respectively, we
see that the search time for a query initiated by a good node
increases if cross-cluster links are present but if a bad node
initiated the query, the search time decreases. As expected, if
there were no cross-cluster links (i.e. q=0), (10) and (11) revert
to (8) and (9) respectively. Further, in the uniform distribution
case, nia = nib = ni/L and (10) and (11) revert to (2) as expected.

V. FLOODING SEARCH IN NETWORKS WITH CLUSTERING

Unlike the case of no clustering where we found in Section
2 that the flooding search time is the logarithm of the random
walk search time, in networks with clustering the mapping
between flooding and random walk is not straightforward.
Clustering implies more intra-cluster links than inter-cluster
links. Therefore, if a query gets to a good node, it is more likely
to have come from a good node than a bad node i.e. P(G|G) >
P(G|B) or 1-c > e. Similarly, a query getting to a bad node is
more likely to have come from a bad node than from a good
node i.e. P(B|B) > P(B|G) or 1-e > c. Thus, searching from a
good node, flooding is likely to see more good nodes than a
random walk upon querying the same number of nodes

3
, and

searching from a bad node, flooding is likely to see more bad

3 For example, say, the average degree is 3 and let us compare the average

number of good nodes among the next 3 nodes queried by a good node. The

average number of good nodes with flooding, nF = 3(1−c)3 + 2[3(1−c)2c] +

[3c2(1−c)]. The average number of good nodes with random walk, nR =

3(1−c)3 + 2[2ce(1−c)+c(1−c)2] + [(1−c)c(1−e)+c(1−e)e+c2e]. Thus, nF − nR =

4[(1−c)2c− ce(1−c)] + [3c2(1−c)− (1-c)c(1−e)− c(1−e)e−c2e] = c(c2–

4c+3+2ce–4e+e2) = c[(1−c)2+2(1-c)(1−e)+(1-e)2−1]=c[(2–c–e)2–1]=c(1–c–

e)(3–c–e) > 0 since 1−c > e.

UCLA-CSD-TR050040

- 5 -

nodes than a random walk upon querying the same number of
nodes

4
. Thus, a flooding search initiated by a good node is

likely to query more good nodes in logdN steps than a random
walk search would in N steps starting at the same node. Hence,

 τiFa(nia, nib) < logd[τiRa(nia, nib)] (12)

Similarly, a flooding search initiated by a bad node will query
more bad nodes in logdN steps than a random walk search will
in N steps starting at the same node and hence

 τiFb(nia, nib) > logd[τiRb(nia, nib)] (13)

Thus, in networks with clustering, the random walk search
times only provide us with bounds

5
 on one side for the flooding

search times. These bounds, however, are useful since getting
an exact expression for the average search time is very
difficult. The best we can do is to bound the search time on the
other side as well.

Let us first attempt to obtain a lower bound on the flooding
search time for a search initiated at a good node. The difficulty
in getting an exact expression is that at hop distance > 1, the
query could be at bad nodes as well as good nodes and
computing the relative distribution of these nodes is hard. Since
we want a lower bound, a crude approach is to ignore all the
“bad” possibilities and assume that even after hop distance > 1,
the nodes that are forwarding the queries are all good nodes.

With this assumption, at any hop distance ≥ 1, when a node
queries one of its neighbors, the probability that the file is
found is P(F|NG). Hence, the search time for a flooding search

from a good node is no better than −logd[P(F|NG)] =

logd[(1−c)a+cb] = −logd[a–c(a-b)]. Thus
6
,

 τiFa(nia, nib) > −
(1)()

log []ia ia ib
d

n L q L n n

M d

− −
− (14)

We can use the same approach to find an upper bound for

τiFb, the search time for a flooding search initiated at a bad
node. We can ignore all the “good” possibilities and assume
that even after hop distance > 1, the nodes forwarding the
queries are all bad nodes. With this assumption, at any hop

distance ≥ 0, when a node queries one of its neighbors, the
probability that the file is found is P(F|NB). Hence, the search

4 Using the example of average degree 3 again, we compare the average

number of bad nodes among the next 3 nodes queried by a bad node. The

average number of bad nodes with flooding, nF = 3(1−e)3 + 2[3(1−e)2e] +

[3e2(1−e)]. The average number of bad nodes with random walk, nR =

3(1−e)3 + 2[2ce(1−e)+e(1−e)2] + [(1−c)e(1−e)+c(1−c)e+e2c]. Thus, nF − nR =

e(1–c–e)(3–c–e) > 0 since 1−e > c.
5 The bounds presented in this section are approximate bounds as the

underlying analytical approach (Section 2) underestimates the search time by

a small amount (see Fig. 1). Thus, the actual search times should lie within the

given bounds plus a small offset.
6 Since the probability of finding the file at hop distance 0 is P(F) whereas

the expression −logd[P(F|NG)] assumes P(F|NG) to be the probability at all

hop distances including 0, a correction factor of −[1−P(F)]/[1−P(F|NG)] is

required. Since this correction factor is negligible when the probability that

the querying node itself has the file is small, we omit this from (14). A similar

correction factor applies in the case of a flooding search from a “bad” node

but its magnitude is even smaller and hence we omit it from (15) as well.

time for a flooding search from a bad node is no worse than

−logd[P(F|NB)] = −logd[(1−e)b+ea] = −logd[b+e(a-b)]. Thus,

 τiFb(nia, nib) < −
()

log []ib ia ib
d

n L q n n

M d

−
+ (15)

Combining (12, 13, 14, 15), we get the following theorem:

Theorem 2. The search time for a flooding search in the
clustered peer-to-peer network defined in Section 3 is
approximately

5,6
 bounded by

 −
(1)()

log []ia ia ib
d

n L q L n n

M d

− −
− < τiFa(nia, nib)

 < −logd

(1)()
[]

(/)()

ia ia ib

ib

n L q L n n

M n L M d Mq Mq

− −
−

− +
 (16)

if the search is initiated at a node in the high-density cluster,
and is approximately

5,6
 bounded by

 −logd

()
[]

(/)()

ib ia ib

ia

n L q n n

M n L M d Mq Mq

−
+

− +
 < τiFb(nia, nib)

 < −
()

log []ib ia ib
d

n L q n n

M d

−
+ (17)

if the search is initiated at a node in the low-density cluster. g

Comparing (16) and (17) to (6) and (7) respectively, we see
that the presence of cross-cluster links increases the search time
for a query initiated by a good node and decreases the average
search time for a query initiated by a bad node. Since the lower
and upper bounds differ only in the denominator of the term
incorporating the effect of clustering, the bounds will be tight
unless (1-x)(d-Mq) is large where x=nibL/M for (16) and
x=niaL/M for (17) or, in other words, when nib or nia are very
small or q is small (in which case (14) and (15) provide a good
approximation). We also see that the bounds become equal in 3

cases: when q=0, when nia= nib, and when d−Mq=0. q=0
implies the clusters are disjoint so we revert to (6) and (7) as
expected. The other two cases have important implications.
When, nia= nib = ni/L (i.e. the file distribution is uniform) both
bounds again become equal to (1). However, (1) was under the
assumption of an Erdos-Renyi random graph search network
whereas our network can have an arbitrary degree of clustering.
In the d=Mq case also, the bounds become equal and we revert
to (1) even though our file distribution has clustering but the
search network is an Erdos-Renyi graph as assumed for (1).

In Fig. 3 we compare the bounds in (16) and (17) to
simulation results under varying degrees of clustering in inter-
cluster link probability and the ratio of replica density in the
high-density cluster to that in the low-density cluster. As
expected we find that the bounds are tight under moderate
clustering (Fig. 3a) and as clustering becomes stronger (Fig.
3b,c) the bounds start to separate but the search time gets closer
to (14) and (15). Thus, in either case we have a good estimation
of the average search time. We also note that the search time
slightly exceeds the approximate upper bound is as expected

5
.

UCLA-CSD-TR050040

- 6 -

(a) 70% links intra-cluster, Replicas-in-low density

 cluster = 0.1*Replicas-in-high-density-cluster

(b) 70% links intra-cluster, Replicas-in-low density

 cluster = 0.01*Replicas-in-high-density-cluster

(c) 90% links intra-cluster, Replicas-in-low density
 cluster = 0.01*Replicas-in-high-density-cluster

Figure 3. Flooding Search Time Simulation vs. Bounds (25,000 node network, 5 equal-sized clusters, Average Degree 5, Varying Degree of Clustering)

Based on the simulation results in Fig. 3, we conclude that
(14) and (15) are a reasonable approximation for the flooding
search time in the network model for clustered demands
described in Section 3. Therefore, throughout the rest of the
paper, we use

τiFa(nia, nib) ~ −
(1)()

log []ia ia ib
d

n L q L n n

M d

− −
−

τiFb(nia, nib) ~ −
()

log []ib ia ib
d

n L q n n

M d

−
+

for our analysis. Given that these expressions are reasonable

approximations, we utilize the intuition behind these to extend

our results to unstructured peer-to-peer networks with

arbitrary demand clustering pattern (but with the same

clustering in network topology clustering) in Section 8.

VI. QUERY-PROCESSING LOAD WITH CLUSTERED DEMANDS

As discussed earlier, for the network model described in
Section 3, the query-processing load in the network can be

estimated by d
τ
 when the average search distance is τ. Hence,

using the results in Section 5, we obtain:

Theorem 3: The query-processing load for a flooding search
in the clustered peer-to-peer network defined in Section 3 is

 QiFa(nia, nib) ∼
1(1)()

[]ia ia ib
n L q L n n

M d

−− −
− (18)

for searches initiated in the high-density cluster, and is

 QiFb(nia, nib) ∼
1()

[]ib ia ib
n L q n n

M d

−−
+ (19)

for searches initiated in a low-density cluster. g

Notice that unlike the uniform distribution case, the query-
processing load for the flooding search and the random walk
search are different now. In fact, we can show that:

Corollary 1: For the clustered peer-to-peer network defined in
Section 3, (a) From the high-density cluster, a flooding search
has a lower query-processing load than a random walk search
whereas (b) From a low-density cluster, a flooding search has a
higher query-processing load than a random walk search i.e. for
searches for file i,

QiRa(nia, nib) > QiFa(nia, nib)

QiRb(nia, nib) < QiFb(nia, nib)

Proof:

Let a = niaL/M, b = nibL/M, c = q(nia−nib)/d, e = Mq/d. Then

QiFa = [a–c(L−1)]
−1

, QiRa = [a–c(L−1)/[b(1−e)+e]]
 −1

 and QiFb =

[b+c]
−1

, QiRb = [b+c(L−1)/[a(1−e)+e]]
 −1

. Since a < 1, b < 1 and

1−e > 0, we get b(1−e)+e < 1 and a(1−e)+e < 1. b(1−e)+e < 1

⇒ c(L−1)/[b(1−e)+e] > c(L−1) ⇒ a–c(L−1)/[b(1−e)+e] < a–

c(L−1) ⇒ QiRa(nia, nib) > QiFa(nia, nib). Similarly, a(1−e)+e < 1

⇒ c/[a(1−e)+e] > c ⇒ b+c/[a(1−e)+e] > b+c ⇒ QiRb(nia, nib) <
QiFb(nia, nib). g

b-1. Search time from "good" node

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

Number of replicas in high-density cluster

A
v
e

ra
g

e
 H

o
p

 D
is

ta
n

c
e

Lower Bound

Upper Bound

Simulation

b-2. Search time from "bad" node

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

Number of replicas in high-density cluster

A
v
e

ra
g

e
 H

o
p

 D
is

ta
n

c
e

Lower Bound

Upper Bound

Simulation

a-1. Search time from "good" node

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

Number of replicas in high-density cluster

A
v
e

ra
g

e
 H

o
p

 D
is

ta
n

c
e

Lower Bound

Upper Bound

Simulation

a-2. Search time from "bad" node

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

Number of replicas in high-density cluster

A
v
e

ra
g

e
 H

o
p

 D
is

ta
n

c
e

Lower Bound

Upper Bound

Simulation

c-1. Search time from "good" node

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

Number of replicas in good cluster

A
v
e

ra
g

e
 H

o
p

 D
is

ta
n

c
e

Lower Bound

Upper Bound

Simulation

c-2. Search time from "bad" node

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

Number of replicas in high-density cluster

A
v
e

ra
g

e
 H

o
p

 D
is

ta
n

c
e

Lower Bound

Upper Bound

Simulation

UCLA-CSD-TR050040

- 7 -

We observe that, while the request rate in the high-density

cluster, λia, should be larger than the request rate in a low-

density cluster, λib, it is not clear whether, for arbitrary replica
distributions, the lower query-processing load offered by a
flooding search in the high-density cluster offsets the higher
query-processing load incurred by the flooding search in the
low-density cluster after weighting the query-processing costs

by λia and λib respectively with λia > λib.

Corollary 1 also suggests that, for arbitrary replica
distributions, it may be better to use flooding searches in the
high-density cluster and random walk searches in the low-
density clusters (at the cost of significantly larger search times
for searches from the low-density clusters). A simple search
algorithm could specify using flooding for a short hop-limit
(which would allow completion of flooding searches from the
high-density cluster) and then switching to some other
approach (e.g. using a structured network as [13] suggests) to
limit the query-processing cost for searches from the low-
density cluster.

VII. SEARCH PERFORMANCE OPTIMIZATION

The optimal average search time τx
opt

 and the optimal

query-processing load Qx
opt

 over all file requests in the entire

network are:

 τx
opt

 =
1

1 1
(1)

N
ia ib

ixa ixb

i L L

λ λ
τ τ

λ λ=

 + −
∑ (20)

 Qx
opt

 =
1

1 1
(1)

N
ia ib

ixa ixb

i

Q Q
L L

λ λ
λ λ=

 + −
∑ (21)

where x=F for flooding search and =R for random walk search.

For the case of disconnected clusters, where (6)-(9) are the
relevant expressions, the same steps as in [15] can be followed
for the search performance optimization to yield the optimal
results summarized in Table 4.

TABLE IV. OPTIMAL SEARCH PERFORMANCE: DISCONNECTED CLUSTERS

Optimal

Replica

Distribution

Equationa

τF
opt=

1 1

1 1
log 1 log log

N N
ib ib ib ib

d d d

i i

K
L L

λ λ λ λ
λ λ λ λ= =

 − − − −

∑ ∑ (22)
{nia ∝ λia ,

 nib ∝ λib}
QF

τopt =
N

K
 (23)

{nia ∝ √λia ,

 nib ∝ √λib}
QF

opt=QR
opt=τR

opt=

2

1

1 1 1
1

N

ia ib

iK L L
λ λ

λ =

 + −

∑ (24)

a As in [16], we still have the constraints that nia ≥ 1, nib ≥ 1, nia ≤ M/L, nib ≤ M/L and, hence, (22), (23)

hold if L/KM ≤ λia/λ ≤ L/K and L/KM ≤ λib/λ ≤ L/K ∀i (see [15] for conditions under which (24) holds).

The optimization procedure in the general clustering case is
the same as in [15] but the solution is harder to obtain. We
summarize the optimization results for flooding search in
Theorems 5 and 6. The results for random walk search
optimization are not provided.

A. Average Search Time Optimization for Flooding Search

The Lagrangian for the average search time optimization is

H =
1

(1)()1
log ()

N
ia ia ia ib

d

i

n L q L n n

L M d

λ
λ=

− −− −
∑ +

1

()1
(1) log () ([(1)])

N
ib ib ia ib

d ia ib

i

n L q n n
n L n KM

L M d

λ
γ

λ =

− − + + + − −
∑

Differentiating w.r.t nia and nib respectively, we obtain:

(1) 1
[] (1)

1
[] 0

(1)() ()ln

ia
ib

ia ia ib ib ia ib

L q L q

L M d L d
n L q L n n n L q n nd

M d M d

λ
λ

γ
λ

−
− −

− + + =
− − −

− +

(1) 1
(1)()

1
[] (1) 0

(1)() ()ln

ia
ib

ia ia ib ib ia ib

q L L q

L d L M d L
n L q L n n n L q n nd

M d M d

λ
λ

γ
λ

−
− −

− + + − =
− − −

− +

These equations are satisfied
7
 by

 niaL/M − q(L−1)(nia−nib)/d = kλia (25)

 nibL/M + q(nia−nib)/d = kλib (26)

where k is a constant whose value is to be determined. Thus, at

the optimal replica distribution, λi = λia/L+(1−1/L)λib= [nia/M

− q(1−1/L)(nia−nib)/d + (L−1)nib/M + q(1−1/L)(nia−nib)/d]/k =

[(L−1)nib+nia]/Mk = ni/Mk, i.e. ni ∝ λi.
1 1

N N

i i

i i

KM n Mk λ
= =

= =∑ ∑

= Mλk ⇒ k=K/λ. The following theorem summarizes these

results.

Theorem 5: The average search time for a flooding search in

the clustered peer-to-peer network defined in Section 3 is

minimized when

 nia= [()] [()]
ia i

KM d Mq L d Mqλ λ λ− − (27)

 nib= [()] [()]
ib i

KM d Mq L d Mqλ λ λ− − (28)

if L/KM ≤ λia/λ ≤ L/K and L/KM ≤ λib/λ ≤ L/K ∀i, and at the

replica distribution defined by these equations,

 ni = Kλi/λ

 τF
opt

 =
1

1 1
[log () (1) log ()] log

N
ia ia ib ib

d d d

i

K
L L

λ λ λ λ
λ λ λ λ=

− + − −∑

 QF
τopt

 = Ν/Κ

i.e. the optimal average search time is independent of q (the
level of clustering in search network topology) while the query-
processing load when the average search time is minimized is
independent of the skew in file popularity and the level of
clustering in both the search network and the file popularity. g

7
 1 1 1 1

[(1)] (1) ln
q q

d
k M d L dk L

γλ− − + − =

1 1 1
(1) (1)[] (1) ln

q L q
L d

dk L k L M d
γ λ− + − − = −

UCLA-CSD-TR050040

- 8 -

B. Query-Processing Load Optimization for Flooding Search

The Lagrangian for the query-processing load optimization

is H = 1

1

(1)()1
[]

N
ia ia ia ib

i

n L q L n n

L M d

λ
λ

−

=

− − −
∑

1

1

()1
(1) [] ([(1)])

N
ib ib ia ib

ia ib

i

n L q n n
n L n KM

L M d

λ
γ

λ
−

=

− + − + + + − −
∑

Differentiating w.r.t nia and nib respectively, we obtain:

2 2

(1) 1
[] (1)

0
(1)() ()

[] []

ia ib

ia ia ib ib ia ib

L q L q

L M d L d
n L q L n n n L q n n

M d M d

λ λ
λ λ γ

−
− − − −

+ + =
− − −

− +

2 2

(1) 1
(1)()

(1) 0
(1)() ()

[] []

ia ib

ia ia ib ib ia ib

q L L q

L d L M d L
n L q L n n n L q n n

M d M d

λ λ
λ λ γ

−
− − − −

+ + − =
− − −

− +

Comparing these equations to those yielding (25) and (26), we

can see that these equations will be satisfied by

 '/ (1)() /
ia ia ib ia

n L M q L n n d k λ− − − = (29)

 '/ () /
ib ia ib ib

n L M q n n d k λ+ − = (30)

where k
’
 is a constant whose value is to be determined. Thus,

at the optimal replica distribution, ni = nia+(L−1)nib = (M/L)

(niaL/M−q(L−1)(nia−nib)/d + (L−1)[nibL/M+q(L−1)(nia−nib)/d])

= (k
’
M/L)[√λia+(L−1)√λib]. Using ni= (k

’
M/L)(√λia+(L−1)√λib)

in
1

N

ii
n KM

=
=∑ , we get k

’
 =

1

1 1
[(1)]

N

ia ib

i

K
L L

λ λ
=

+ −∑

yielding the following theorem.

Theorem 6: The query-processing load for a flooding search

in the clustered peer-to-peer network defined in Section 3 is

minimized when

1

() (1)

() [(1)]

ia ib

ia N

ia ib

i

dL Mq Mq L
n KM

L d Mq L

λ λ

λ λ
=

− − −
=

− + −∑
 (31)

1

[(1)]

() [(1)]

ib ia

ib N

ia ib

i

dL Mq L Mq
n KM

L d Mq L

λ λ

λ λ
=

− − −
=

− + −∑
 (32)

assuming λia and λib are such that 1 ≤ nia ≤ M/L, 1 ≤ nib ≤ M/L

∀i in these equations, and at this replica distribution

QF
opt

 =
2

1

1 1 1
[(1)]

N
ia ib

iK L L

λ λ
λ λ=

+ −

∑

i.e. the optimal query-processing load is independent of q (the
level of clustering in search network topology). g

As noted in the theorems, the optimal search performance is
independent of the level of clustering in search network
topology. Thus, the results for the optimal search performance
provided in Table 4 for disconnected clusters hold for the

general clustered demands network model except for the file
replica distributions needed for the optimal search performance
which are now defined by (27) and (28) for the optimal average
search time i.e. (22) and (23) and by (31) and (32) for the
optimal query-processing load i.e. (24).

C. Interpretation of Optimal Search Performance Results

We find it very interesting that the optimal search
performance does not depend on the underlying search network
topology. In fact, it is rather intriguing that the optimal average
search time expression for the uniform distribution case seems
to be related to the entropy in the file request probabilities

{λi/λ}, and that the only change in the optimal average search
time expression in the case of clustered demands is that the
entropy now includes the spatial distribution of file requests

(λia/L is the probability that file i is requested by a node in the

high-density cluster and (1−1/L)λib is the probability that file i
is requested by a node in a low-density cluster). Similarly, the
optimal query-processing load also changed only in that the
expression includes the spatial distribution of file requests in
clustered demands case.

Another interesting observation in comparing (25), (26) and
(29), (30) to [14, 15] is that while the expressions for the
optimal replica distribution are complex in the case of clustered
demands, we still have the invariant from the uniform
distribution case that the probability of finding the file over a
random outgoing link from a node is proportional to the file
request rate at that node when optimizing the average search
time and is proportional to the square-root of the file request
rate at that node when optimizing the query-processing load.
We summarize this result in the following theorem.

Theorem 7: For flooding search in the clustered peer-to-peer
network defined in Section 3, we have the following invariants
independent of the level of clustering in demands and the level
of clustering in the search network topology

1) The average search time τ is minimized when πij ∝ λij, and

2) The query-processing load Q is minimized when πij ∝ √λij

where πij is the probability of finding file i over a random

outgoing link from a node in cluster j and λij is the per-node
request rate for file i in cluster j. g

To evaluate the potential benefits of clustering in demands
over the uniform distribution case, we plot the interesting part

8

of (22) and (24) in Figs. 4 and 5 respectively for a peer-to-peer
network of 100 files with zipf-distributed request rates and 10
equal-sized clusters. Perfect clustering is defined as the case
when the entire demand for a file is from its own cluster i.e.

λib=0 and λia= Lλi. Figs. 4 and 5 clearly demonstrate the
potential advantage of clustering. The advantage in search
performance afforded by perfect clustering can be summarized
in the following theorem.

8 To eliminate the dependence on d and K, in Figs. 1 and 2, we plot τopt’ =

1

1 1
[ln() (1) ln()]

N
ia ia ib ib

i L L

λ λ λ λ
λ λ λ λ=

− + −∑ and Qopt’ =

2

1

1 1
[(1)]

N
ia ib

i L L

λ λ
λ λ=

+ −

∑

instead of (22) and (24) respectively.

UCLA-CSD-TR050040

- 9 -

1

1.5

2

2.5

3

3.5

4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
% Traffic Inside Cluster

O
p
ti
m

a
l
A

v
g
 S

e
a
rc

h
 T

im
e
' Uniform distribution case

Perfect Clustering Case

Figure 4. Benefit of Clustered Demands: Optimal Search Time

0

10

20

30

40

50

60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

% Traffic Inside Cluster

O
p
ti
m

a
l
Q

u
e
ry

-P
ro

c
e
s
s
in

g
 L

o
a
d
'

Uniform Distribution Case

Perfect Clustering Case

Figure 5. Benefit of Clustered Demands: Optimal Query-Processing Load

Theorem 8: When the entire demand for a file is from its own

cluster i.e. λib=0 and λia= Lλi, the optimal average search time

τF
opt

 decreases by logdL and the optimal query-processing load
QF

opt
 decreases by a factor of L, the number of clusters.

Proof:

Substituting λib=0 and λia=Lλi in (22) and (24), we get τF
opt

=
1

log () log log
N

i i
d d d

i

K L
λ λ
λ λ=

− − −∑ and QF
opt

 =
2

1

1 N

i

i

K
L

λ λ
=

∑ .

The theorem follows on comparing these to (3), (5). g

Finally, we note that the penalty over the optimal query-
processing load incurred upon optimizing the average search
time increases in the case of clustered demands. For example,

for the peer-to-peer network shown in Fig. 5, QF
τopt

 = 100
independent of the fraction of traffic inside the cluster while
QF

opt
 ~50 in the uniform distribution case but goes down to

~8.5 when 99% of the file requests are from inside the cluster.

All of the above discussion assumes that the optimal replica

distribution can be achieved. In the uniform distribution case,

LRU storage management gave near-optimal replica

distribution [11] but for the clustered demands case, as we can

see in (27) and (28) for the optimal average search time and

(31) and (32) for the optimal query-processing load, the

desired replica distribution depends on the degree of clustering

in the underlying search network topology. However, rather

than being a hindrance, this dependence of the optimal replica

distribution on the underlying search network topology offers

us a very powerful tool to achieve the optimal search

performance. In a preliminary study, we were able to achieve

the optimal query-processing performance with LRU storage

management algorithm by tuning the underlying search

network topology. This suggests that it may be possible to

achieve the optimal replica distribution with any local storage

management algorithm by appropriately tuning the underlying

topology. If this approach of tuning the search network

topology to reach the optimal replica distribution works in

most cases, we may be able to obtain the optimal download

performance [12] (by using an LRU-like approach that

populates file replicas in near-linear proportionality to the file

request rates) and, at the same time, obtain the optimal query-

processing load as well by tuning the underlying search

network topology appropriately.

VIII. FLOODING SEARCH IN THE GENERAL CASE

In this section, we extend our results on flooding search

performance to peer-to-peer networks that have more complex

demand clustering patterns than allowed by our network

model of Section 3. Specifically, unlike the network model

introduced in Section 3, we will no longer assume the clusters

to be equal-sized nor will the demand pattern be restricted to a

two-tier demand model (where only one cluster had a different

request rate for a file than the rest of the network). We will

remove the restriction that the link probabilities be the same

from a node to all the nodes in the network that are not in its

own cluster (i.e. we will allow a cluster to have more links to

one cluster than to another). In our search network topology,

each node still has d neighbors on average. We define the

following notation for our discussion in this section.

τik : average search time for file k from node i

Qik: query-processing load incurred in a search for file k

from node i

λik : request rate for file k at node i

qij : probability that a random outgoing link from node i

goes to node j

πik : probability of finding file k over a random outgoing

link from node i

pjk : probability that node j has file k

The network has a number of distinct clusters to which

various nodes belong depending on their demand patterns and

topology. Thus, if node j belongs to, say, cluster j which has Cj

nodes and njk replicas of file k, then pjk = njk/Cjk. As before, we

have M nodes and N files in the network. Using these

notations, we obtain the total request rate in the network

1 1

N M

ikk i
M λ λ

= =
=∑ ∑ (33)

Since each node has a total storage capacity of K files, we

get the storage capacity constraint

1

N

jkk
p K

=
≤∑ (34)

UCLA-CSD-TR050040

- 10 -

The metrics of interest are

 τ =
1 1

N M ik

ikk i M

λ
τ

λ= =∑ ∑ (35)

and

 Q =
1 1

N M ik

ikk i
Q

M

λ
λ= =∑ ∑ (36)

We know from (14), (15) in Section 5 and the results in

[10, 11] for the uniform distribution case that τij = −logd(πij)

where πij is the probability of finding file j over a random

outgoing link from node i. Since, in our case πij =
1

M

ij jk

j

q p
=
∑ we

obtain

 τik = −logd(
1

M

ij jk

j

q p
=
∑) (37)

Since our search network still expands as d
τ
 in τ hops we

obtain

 Qik =

1

1

M

ij jk

j

q p

−

=

∑ (38)

Substituting (37) in (35) and (38) in (36), we obtain

 τ =
1 1

1

1
log

M
N M ik

d ij jkk i
j

q p
M

λ
λ= =

=

−

∑ ∑ ∑ (39)

 Q =

1

1 1
1

1 M
N M ik

ij jkk i
j

q p
M

λ
λ

−

= =
=

∑ ∑ ∑ (40)

Applying constraint (34), we get the Lagrangian for

minimizing the average search distance as

H = () ()1 1 1 1
log

N M M Nik

d ij jk jkk i j k
q p p K

M

λ
γ

λ= = = =
− + −∑ ∑ ∑ ∑

Differentiating w.r.t. pjk, we get the set of following L

equations ∀k

1

1

1
0

ln

M ik ij

Mi

ij jkj

q

M d q p

λ
γ

λ =

=

− + =∑
∑

 ∀i

One can easily verify that the above set of equations will

be satisfied by

1

M

ij jk

j

q p
=
∑ = βλik ∀i, ∀k (41)

where β is a constant whose value we determine next.

Since populating more files always improves search

performance, all peer caches will be full at the optima i.e. the

inequality in (34) will be an equality (see [11] for further

discussion on this). Therefore, we obtain

1 1

M N

jkj k
MK p

= =
=∑ ∑ (42)

From (41), we obtain

1 1 1 1 1

N M M N M

ij jk ik

k i j k i

q p Mβ λ β λ
= = = = =

= =∑∑∑ ∑∑

From (33), the r.h.s equals βMλ. Rearranging the order of

summation on the l.h.s., we have

1 1 1 1 1 1 1 1 1 1

()
N M M N M M N M M N

ij jk ij jk jk jk

k i j k j i k j j k

q p q p p p MK
= = = = = = = = = =

= = = =∑∑∑ ∑∑ ∑ ∑∑ ∑∑

with the last step following from (42). Therefore, β = K/λ.

Substituting the value of β in (41) and substituting (41) in

(39), we get

 τF
opt =

1 1

1
log log

N M ik ik

d dk i
K

M

λ λ
λ λ= =

− −∑ ∑ (43)

Further, with β = K/λ in (41), we can substitute (41) in (40)

to obtain

 QF
τopt =

N

K
 (44)

The following theorem summarizes these results.

Theorem 9: The average search time for flooding search is

minimized when the probability of finding file i over a

random outgoing link from a node j, πij, is proportional to λij,

the request rate for file i at node j, i.e.

πij ∝ λij

and the minimum average search time is

 τF
opt =

1 1

1
log log

N M ik ik

d dk i
K

M

λ λ
λ λ= =

− −∑ ∑

and the query-processing load when the average search time is

minimized is

 QF
τopt =

N

K

i.e. the optimal average search time is independent of any

clustering in the search network topology and the query-

processing load when the average search time is minimized is

independent of the skew in file popularity and the level of

clustering in both the search network and the file popularity. g

Instead of minimizing the average search time, let us now

minimize the query-processing load. When we minimize the

query-processing load with constraint (34), the Lagrangian is

H = () ()
1

1 1 1 1

N M M Nik

ij jk jkk i j k
q p p K

M

λ
γ

λ

−

= = = =
+ −∑ ∑ ∑ ∑

Differentiating w.r.t. pjk, we get the set of following L

equations ∀k

()21

1

1
0

M ik ij

i M

ij jkj

q

M
q p

λ
γ

λ =

=

− + =∑
∑

 ∀i

UCLA-CSD-TR050040

- 11 -

One can easily verify that the above set of equations will

be satisfied by

1

'
M

ij jk ik

j

q p β λ
=

=∑ ∀i, ∀k (44)

where β' is a constant whose value we determine next. As

before, we have

1 1 1 1 1

'
N M M N M

ij jk ik

k i j k i

MK q p β λ
= = = = =

= =∑∑∑ ∑∑

Substituting the value of β' from the above equation in (44)
and substituting the result in (40), we get

 QF
opt =

2

1 1

1 1N M
ik

k jK M

λ
λ= =

∑∑ (45)

The following theorem summarizes these results.

Theorem 10: The query-processing load for flooding search is

minimized when the probability of finding file i over a

random outgoing link from a node j, πij, is proportional to the

square-root of λij, the request rate for file i at node j, i.e.

πij ∝ √λij

and the minimum query-processing load is

 QF
opt =

2

1 1

1 1N M
ik

k jK M

λ
λ= =

∑∑

i.e. the optimal query-processing load is independent of any

clustering in search network topology. The average search

time at the optimal query-processing load is

τF
Qopt =

1 1

1
log log

2

N M ik ik

d dk i
K

M

λ λ
λ λ= =

− −∑ ∑

1 1

1
log

N M
ik

d

k j M

λ
λ= =

+

∑∑ (39)

 g

Thus, we find that the invariants noted in Theorem 7 hold
in the general demand and topology clustering case as well.
Further, the optimal average search time is still related to the
entropy in file request probabilities at each node and the
optimal query-processing load is still related to the square of
the sum of the square-roots of the file request probabilities at
each node times the probability of that node being selected to
make the request. We discuss these results in next section.

IX. ENTROPY AND NEFFECTIVE

Comparing (3), (22) and (43), we notice that the minimum

average search time in a flooding search depends on the

entropy in file request probabilities at each node and the per-

node storage size. Specifically, the entropy on which the

minimum average search time seems to depend is the entropy

in which a file is requested across the entire network. In other

words, if the entire network is considered an information

source, the entropy term we see refers to the uncertainty

regarding which node will make the next request and which

file it will request). If we (an external observer) knew which

file will be requested by whom next, we (the external

observer) can place the file at exactly the right location and the

search time will be 0. Our lack of information prevents us

from placing the files in such a manner. However, suppose we

knew that a particular group of nodes requests only a certain

set of files, then we would place those files in or near that

group of nodes thereby reducing the search time for those files

(and, hence, the average search time) substantially. Thus, it is

understandable that the minimum average search time is

related to the entropy (the uncertainty) as to which node will

request which file next. We also note that an increase in the

per-node storage size causes a decrease in the search time.

Recall that in our just concluded discussion on the relation of

entropy, we said that we can “place” the file(s) that are likely

to be requested near the nodes likely to request that file. We

can place a file only if storage space is available. In the

extreme case where the per-node storage size is large enough

to place all the files at all the nodes, the search time would be

0. In general, that is unlikely to be the case but, clearly, if

more storage space is available, more of the files likely to be

requested, can be placed near the peers that will request them.

If the available storage space is small but there is little

uncertainty regarding who will request which files, an

effective placement can be made (e.g. if each node requests

only two files and the per-node storage capacity is two, the

search time will be 0). In contrast, if the storage space is not

too large and we have very little information regarding who

will request what, the placement will not be able to reduce the

average search time as much (e.g. if the per-node storage

capacity is, say, 5 files but a node can request any of the 1000

files, then file placement will not help much).

 Recall that the search time for a file is defined as the

number of hops taken to find the file. As noted in [10], since

flooding expands to all possible paths with every additional

step, the search time for a file from a node is the shortest

distance to a replica of the file from that node. From the

perspective of a querying node, flooding is a breadth-first

search over a tree of newly queried nodes at each hop. If one

were to specify the path from the querying node in this tree

(i.e. the sequence of branches to be taken at each step) to the

nearest replica of the queried file, the path length will be equal

to shortest hop distance to the nearest replica of the file. With

this analogy of flooding tree and path length to the nearest

replica, we can readily see similarities to many other

seemingly unrelated problems in computer science where the

entropy expression appears.

Optimal coding is the best known of these problems. Recall

from [16] that the optimum codeword length for a given

symbol is the self-information of that symbol. The classical

representation of coding is a coding tree where symbols are

the leaf nodes in the tree and the code for a symbol is the path

from the root to the symbol on the coding tree. Thus, the

average path length in the coding tree is the average code

UCLA-CSD-TR050040

- 12 -

word length (just as it is for the average search time in our

case). There are differences, however, e.g. the symbols are leaf

nodes in a coding tree and each symbol appears only once in

the coding tree while, in our case, each file can be stored at

multiple nodes and the files can be stored at non-leaf nodes.

Some other places where the entropy expression shows up

are: (i) the average number of steps to find a key (i.e. the

average depth to which one has to go to find a key in the

search tree) in the optimal binary balanced search tree [17],

and (ii) as the lower bound on the minimum number of

comparisons needed to sort a set of keys (where multiple items

in the set may have the same value) [18] where the entropy is

on the frequency of occurrence of different keys in the entire

set. To the best of our knowledge, no precise discussion of the

relevance of entropy to these problems exists in the literature.

Let us now investigate the optimal query-processing load

expressions. Comparing (5), (24) and (45), we notice that the

minimum query-processing load depends on the square of the

sum of the square roots of the file request probabilities at each

node and the per-node storage size. As discussed for the

optimal average search time, we know that a larger cache size

allows more files to be placed near the nodes requesting them

which decreases the search time and, consequently, the query-

processing load as well. A larger skew in file request

probabilities implies we have better information on who will

request which file and so the placement of files will be more

effective; hence, the search time and the query-processing load

will be smaller. The square of the sum of the square roots of

the file request probabilities at each node is another way (like

entropy) of representing the skew in file request probabilities.

The advantage of a higher skew in file request probabilities

and the advantage of a larger cache size is reflected in the

expression for Qopt.

Notice that the worst-case file request probability

distribution for query-processing load, Qopt, is when each node

has the same request rate for each file. Qopt in this case is N/K

where N is the number of files in the network and K is the

number of files cache size in. In other words

 Qopt =

2

1 1

1 1N M
ik

k j

N

K M K

λ
λ= =

≤

∑∑

Thus, we may interpret the square of the sum of the square

roots of the file request probabilities at each node as the

effective number of equal request rate files in the network

(recall that a larger skew provides us more information

allowing us to make a more effective placement of files as if

there were fewer equal request rate files in the network).

Therefore, we can write

 Neffective =

2

1 1

1N M
ik

k j M

λ
λ= =

∑∑

We note that this square of the sum of the square-roots

expression has appeared earlier in [14, 15]. [15] introduced the

novel approach that the benefit afforded by the skew in the

source rates of each participant is represented by a (reduced)

effective number of participants given by this square of the

sum of the square roots expression. This approach allowed

[15] to reduce a given number of skewed sources to a smaller

number Neffective of sources each of which had the same load.

The power of this idea of having only Neffective files (or users) is

that we can now eliminate a dimension of variability (the file

request rate distribution) from the problem and focus on the

remaining parameters in the simulation/analysis. Reference

[14] also found the square of the sum of the square roots

expression in the optimum message delay expression. While

[14] did not offer a notion of Neffective at the time, we can see

that in that problem (of allocating a fixed given capacity to

different channels) also, the skew in traffic on each channel

afforded improvement in the overall average delay
9
 and the

square of the sum of the squares expression is the equivalent

number, Neffective, of equal load channels.

In summary, while entropy has a physical meaning

(uncertainty), the square of the sum of square-roots expression

is the effective number of distinct equal rate resource

consumers in the system.

X. CONCLUSION

In this paper, we investigated the relationship between the
number of replicas of a file in unstructured peer-to-peer
networks and derived the search time and the search cost for
that file and substantially expanded the existing knowledge on
this topic. We provided a model to incorporate clustering in
peer-to-peer network models so they better reflect real
networks. We were able to find an exact expression for the
random walk search time (and, hence, the search cost) in a
peer-to-peer network with clustering. We were also able to find
bounds on the flooding search time in these networks. Using
these bounds, we extend the previously known results for
flooding search time which assumed a uniform file distribution
and an Erdos-Renyi random graph to when the file distribution
is not uniform but the search network is an Erdos-Renyi
random graph, and when the file distribution is uniform but the
search network has clustering. We also found that, among these
bounds, one side was a reasonable approximation for the
flooding search time in the clustered demands case. Using these
approximate expressions, we derive expressions for the search
cost, the optimal search cost and the optimal search time in an
unstructured peer-to-peer network when the demand exhibits
clustering. The previous work in this area assumed uniformity
in replica and demand distribution. Since real networks show
clustering in demands, our results provide a more accurate
estimate of the search performance achievable in unstructured
peer-to-peer networks. Interestingly, we found that the gains in
the optimal search performance afforded by clustering in
demand patterns are independent of whether the search
network topology matches the clustering in file popularity. The
optimal replica distribution, however, does depend on

9 The best case scenario for that problem was to have all the traffic on one

channel and allocate all the capacity to that channel. In that case, the higher

capacity provides a lower service time while the utilization factor ρ remains

the same. By the same argument, the worst-case scenario is for each channel

to have equal load and, thus, equal capacity.

UCLA-CSD-TR050040

- 13 -

clustering in the search network topology. Since the replica
distribution is driven by peer requests, we believe that tuning
the search network topology to match the replica distribution
generated by peer requests is more practical than matching the
replica distribution to the topology. In our simulations, we were
able to operate a peer-to-peer network at the optimal search
cost by tuning the clustering in the search network topology
depending the clustering in demands while using LRU cache
management at each peer. In the process of deriving the
optimal search performance results, we derived the relation
between the query-processing load and the number of replicas
of each file for the clustered demands case showing that
flooding searches may have a lower query-processing load than
random walk searches in the clustered demands case.

REFERENCES

[1] Bollobas. B, Random Graphs, Academic Press, London, 1985.

[2] Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N. and Shenker, S.
"Making Gnutella-like P2P Systems Scalable," in Proc. of ACM
SIGCOMM, August 2003.

[3] Cohen, E. and Shenker, S., "Replication Strategies in Unstructured Peer-
to-Peer Networks," in Proc. of ACM SIGCOMM, August 2002.

[4] Feller, W., An Introduction to Probability Theory and Its Applications,
Vol. 1, John Wiley & Sons, Inc., New York, 1950.

[5] Le Fessant, F., Handurukande, S., Kermarrec, A. M., Massouli, L.,
"Clustering in Peer-to-Peer File Sharing Workloads," in Proc. of IPTPS,
February 2004.

[6] Liben-Nowell, D., Balakrishnan, H, Karger, D., “Analysis of the
evolution of peer-to-peer systems,” in Proc. of PODC, July 2002.

[7] Rowstron, A. I. T., Druschel, P., "Pastry: Scalable, Decentralized Object
Location, And Routing For Large-Scale Peer-To-Peer Systems," in Proc.
of IFIP/ACM Middleware, November 2001.

[8] Sarshar, N., Oscar Boykin, P., Roychowdhury, V. P., "Percolation
Search in Power Law Networks: Making Unstructured Peer-To-Peer
Networks Scalable," in Proc. of IEEE Peer-to-Peer Computing,
September 2003.

[9] Stoica, I., Morris, R., Karger, D., Kaashoek, M., Balakrishnan, H.,
"Chord: A Scalable Peer-To-Peer Lookup Service For Internet
Applications," in Proc. of ACM SIGCOMM, August 2001.

[10] Tewari, S., Kleinrock, L. "Analysis of Search and Replication in
Unstructured Peer-to-Peer Networks," in Proc. of ACM SIGMETRICS,
June 2005.

[11] Tewari, S., Kleinrock, L. "Analysis of Search and Replication in
Unstructured Peer-to-Peer Networks," UCLA Computer Science Dept
Technical Report UCLA-CSD-TR050006, March 2005.

[12] Tewari, S., Kleinrock, L. "On Fairness, Optimal Download Performance
and Proportional Replication in Peer-to-Peer Networks," in Proc. of IFIP
Networking, May 2005.

[13] Loo, B. T., Huebsch, R., Stoica, I., and Hellerstein, J. ”The case for a
hybrid P2P search infrastructure,” in Proc. of IPTPS, 2004.

[14] Kleinrock, L., Communication Nets; Stochastic Message Flow and
Delay, McGraw-Hill Book Company, New York, 1964.

[15] Kleinrock, L., "Performance of Distributed Multi-Access Computer-
Communication Systems", in Proc. of IFIP Congress 77, August 1977.

[16] Weaver, W., Shannon C. E., The Mathematical Theory of
Communication, Urbana, Illinois: University of Illinois Press, 1949.

[17] Knuth, D. E., The Art of Computer Programming, Vol. 3: Sorting and
Searching, Reading, Massachusetts: Addison-Wesley, 1998.

[18] McIlroy, P., "Optimistic sorting and information theoretic complexity,"
in Proc. of the Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, Austin, 1993.

