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Abstract—This paper derives the optimal search time and the 

optimal search cost that can be achieved in unstructured peer-to-

peer networks when the demand pattern exhibits clustering (i.e. 

file popularities vary from region to region in the network). 

Previous work in this area had assumed a uniform distribution of 

file replicas throughout the network with an implicit or explicit 

assumption of uniform file popularity distribution whereas in 

reality, there is clear evidence of clustering in file popularity 

patterns. In this paper, we provide mechanisms for modeling 

clustering in file popularity distributions and the consequent non-

uniform distribution of file replicas. We provide results for the 

search time in such networks for both random walk and flooding 

search mechanisms. The potential performance benefit that the 

clustering in demand patterns affords is captured by our results. 

Interestingly, the performance gains are shown to be independent 

of whether the search network topology reflects the clustering in 

file popularity. We also provide the relation between the query-

processing load and the number of replicas of each file for the 

clustered demands case showing that flooding searches may have 

lower query-processing load than random walk searches in the 

clustered demands case. 

Keywords- Flooding, Peer-to-Peer Networks, Random Walk, 

Optimal Search Time, Optimal Search Cost, Clustered Demands 

I.  INTRODUCTION 

Peer-to-peer networks are loosely organized networks of 
autonomous entities (user nodes or “peers”) which make their 
resources available to other peers. Since each new peer brings 
additional resources, these networks are fully scalable provided 
that the resources one offers can be found by the peers who 
need those resources. Thus, finding the desired resource is a 
critical issue in peer-to-peer networks. Keeping a centralized 
index of the resources each peer is offering is an approach that 
has scalability issues and a single point of failure. 
Alternatively, a direct approach for finding the desired resource 
is to have the peer wanting a resource to query other nodes to 
find a node that has that resource. Since a node cannot 
realistically keep the addresses of all other peers, an overlay 
network is constructed where each node keeps addresses of a 
few other peers (called its neighbors) through whom it reaches 
the rest of the peers. Peer-to-peer networks following this 
approach are referred to as unstructured peer-to-peer networks 
to distinguish them from structured networks [7, 9] which map 
each unique resource to a particular node in the network, an 

approach that can be more efficient but whose lack of 
flexibility introduces other issues [6]. In this paper we focus on 
unstructured peer-to-peer networks and address two major 
concerns in these networks: the time to find a peer who is 
offering a particular resource (the search time), and the amount 
of additional traffic introduced in the network in the process of 
locating the peer that is offering that resource (the search cost). 
The reference example is of peer-to-peer file sharing networks 
and we refer to resources as files throughout the rest of the 
paper.  

As is typical in the related literature [10], we approximate 
the search time for a file in the network by the average number 
of hops it takes for a query to reach a node that has that file, 
and use average search time, i.e., the average time it takes to 
find a peer that is sharing the desired file, as our first metric for 
search performance. Our second metric is the search cost. Since 
a search for a file is done via peers sending query messages to 
other peers, the number of query messages each peer processes 
equals the additional traffic introduced in the network by a 
query. Therefore, we approximate the search cost by the query-
processing load, i.e., the average number of nodes that are 
queried per file request. One expects that if many peers are 
sharing a file, in any reasonable search method, the search time 
and the search cost for the file will be smaller than if very few 
peers were sharing that file. In the extreme case, if all nodes 
could store all files, no search would be required. Since each 
peer has finite storage space, a system designer seeks to get the 
optimum search performance possible given the per-node 
storage constraint. The optimal average search time, the 
optimal query-processing load and the file replica distribution 
(number of replicas of each file as a function of that file’s 
popularity) at the respective optima have been derived in [10, 
11] under the assumption of a uniform distribution of the file 
replicas. However, measurements on deployed peer-to-peer file 
sharing networks show a significant amount of clustering in 
interests [5], i.e., the popularity of a set of files in 
(geographical) regions differs from region to region. Further, 
more replicas of a file are found in those regions where that file 
is more popular.  

The main contributions of this paper are given in Sections 
3-7. In Section 3, we present a peer-to-peer network model that 
allows for incorporating clustering in demand and file replica 
distribution. The search time for a random walk search in this 
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network model is derived in Section 4 while Section 5 derives 
the analogous results for the flooding search. In Section 6, we 
derive the query-processing load expressions for random walk 
and flooding searches. The optimal search time and the optimal 
search cost expressions are derived in Section 7. Based on our 
observations in Section 5, in Section 8, we extend the results 
for flooding search time beyond the specific mode of demand 
clustering allowed by our network model described in Section 
3 to incorporate any arbitrary demand clustering. Section 9 
discusses certain properties of the optimal search time and the 
optimal search cost. Related work, including the results in [10, 
11], is discussed in Section 2 and our conclusions are given in 
Section 10.  

II. BACKGROUND AND RELATED WORK  

Flooding and random walking are the two main alternatives 
in how the search is conducted over the search network when 
no information is available about which nodes may have the 
file. In flooding, the node that wants the file sends a query to 
all its neighbors and they, in turn, forward the query to all their 
neighbors (except the one which sent the query) until a copy of 
the file is found. In random walking, the query is sent to one 
randomly selected neighbor and if that neighbor does not have 
the file, it forwards the query to one of its neighbors (selected 
randomly) other than the neighbor that sent it the query. 

When nodes are similar in capacities and file interests (i.e. 
when files and file popularities are uniformly distributed), the 
Erdos-Renyi random graph [1] is a good topology model

1
 for 

the overlay search network. The optimal search performance 
under the constraint of finite per-node storage is covered well 
by [3, 10, 11] with the assumption of uniform distribution of 
file replicas. Reference [3] gives the search time for a file as a 
function of number of replicas of the file when the search 
method is a random walk. Say there are ni copies of file i in the 
network and a total of M nodes in the network. If these ni 
copies are uniformly distributed in the network (at most one 
copy to a node), a randomly selected node has a probability 
ni/M of having the file. Thus, random walking for file i is a 
sequence of Bernoulli trials with ni/M as the probability of 
success. Hence, for random walk search, the (average) search 

time for file i, τiR, and the (average) number of nodes queried 
per search for file i, QiR, is M/ni. Reference [11] provides 
analogous results for flooding and before going on to compare 
flooding and random walking and showing the advantage of a 
controlled flooding search over a random walk search. It gives 
the flooding search time under the uniform distribution 

assumption to be τiF(ni) = logd(M/ni) where τiF is the (average) 
search time for file i with flooding, d is the average degree (i.e. 
the average number of neighbors of each node) of the search 
network with ni and M as defined earlier. Intuitively one can 
interpret this result as follows. A search for file i needs to query 
M/ni nodes on average to find the file (i.e. the (average) number 
of nodes queried per flooding search for file i, QiF, is still M/ni). 
Since a random walk queries one additional node per hop, it 
takes M/ni rounds to find the file while flooding can query that 
many nodes in logd(M/ni) hops because it queries exponentially 

                                                           
1 When node capacities are very skewed, a power-law random graph is a 

topology choice which distributes the query-processing load unevenly among 

the peers but yields faster search methods [2, 8]. 

more nodes with each additional hop
2
.   

We summarize these results in Table 2. Table 1 gives the 
notation used in the paper. In this paper, we seek to obtain 
results analogous to those in Table 2 when the file replica 
distribution and the demand patterns are not uniform. Since 
each link is equiprobable in an Erdos-Renyi random graph, it is 
not suited for modeling clustering in file interests and we 
develop a network model that incorporates clustering in file 
interests as well as the network topology in the next section.  

TABLE I.  NOTATION USED 

M Number of nodes 

L Number of clusters 

N Number of unique files 

K Per-node storage size (in number of files) 

d Average degree of the search overlay topology 

q 
Probability of any given pair of inter-cluster nodes having a 

direct link 

ni Number of replicas of file i in the entire network 

nia Number of replicas of file i in the “high-density” cluster 

nib Number of replicas of file i in a “low-density” cluster 

λi Request rate of file i per node (averaged over the network) 

λia Request rate of file i per node in the “high-density” cluster 

λιb Request rate of file i per node in a “low-density” cluster 

λ = 
1

N

ii
λ

=∑  

τix Average search time for file i with search method x a 

Qix Query-processing load for file i with search method x a 

τixa 
Average search time for file i from the high-density cluster 

with search method x a 

Qixa 
Query-processing load for file i from the high-density 

cluster with search method x a 

τixb 
Average search time for file i from a low-density cluster 

with search method x a 

Qixb 
Query-processing load for file i from a low-density cluster 

with search method x a 

τx
opt Optimal average search time with search method x a 

Qx
opt Optimal query-processing load with search method x a 

Qx
τopt 

Query-processing load with the replica distribution that 

minimizes the average search time with search method x a 
a For flooding search: x=F,  For random walk search: x=R  e.g. τiFb=Average search time for file i from a 

low-density cluster with flooding search 

 

 

 

 

                                                           
2 Since a node does not forward a query twice, the exponential growth 

assumption is optimistic. Thus, (1) slightly underestimates the actual search 

time. In [11], we provide simulation plots for the average search distance for 

different topologies as well as an analytical proof for (1) when M→∞ and ni/M 

is small. Our work in [11] indicates that (1) is an approximate expression for 

the search time which captures the dependence of search time on the number 

of replicas very well while underestimating the search time by a small amount. 
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TABLE II.  RESULTS FOR UNIFORM DISTRIBUTION OF REPLICAS ([11]) 

Replica 

Distribution 
Equation 

τiF(ni) = logd(M/ni)                                           (1) Valid for 

arbitrary 

replica 

distributions 
QiF(ni) = QiR(ni) = τiR(ni) = M/ni                       (2) 

1
log logopt

F

N i i
d di

K
λ λ

τ
λ λ=

= − −∑                      (3) 

ni ∝ λi 
QF

τopt =
N

K
                                                       (4) 

ni ∝ √λi QF
opt = QR

opt = τR
opt = 

2

1
( )

N

ii

K

λ

λ
=∑

               (5) 

III. A PEER-TO-PEER NETWORK MODEL FOR CLUSTERED 

DEMANDS 

Let us assume that our peer-to-peer network has M nodes 
and that these M nodes are clustered in, say, L clusters. For 
ease of discussion, we make the following assumptions. Each 
cluster is of the same size (thus, each cluster has M/L nodes). 
There are only two levels of popularity of each file and there is 
only one cluster in which a file is more popular. Thus, for all 

files i = 1 to N, file i has request rate λia per node in one cluster 

and λib per node in each of the remaining L-1 clusters where λia 

> λib and Mλi =  
L

M
λia + (L-1)

M

L
λib. where λi is the average  

node request rate for file i across the entire network. Let us 
further assume that the ni replicas of file i are split as nia 
replicas in the cluster where the file is more popular and nib 
replicas in each of the remaining clusters where nia>nib, ni= 
nia+(L-1)nib and nia<M/L. One may then say that the cluster 
where file i is more popular has a higher density of file i 
replicas whereas a cluster where the file is not as popular has a 
lower density. Since clustering has already been accounted for, 
we assume that within each cluster the files are uniformly 
distributed over all the nodes in that cluster.  

One possible model for the search network is to assume that 
the clusters are totally disconnected (i.e. there are no inter-
cluster links) and within each cluster, the network follows the 
Erdos-Renyi random graph topology. For this model of 
clustering, the search time and the query-processing load 
expressions can be obtained from the analogous expressions for 
the uniform distribution case in Table 2 with (1) and (2) 
yielding (6), (7) and (8), (9) respectively as shown in Table 3. 
Comparing (6)-(9) to (1), (2) we see that perfect clustering 
reduces the random walk search time and the query-processing 
load for both flooding and random walk by a factor of L while 
the flooding search time decreases by logdL. Fig. 1, where we 

TABLE III.  SEARCH PERFORMANCE WITH DISCONNECTED CLUSTERS 

Derived 

from 
Equation 

τiFa(nia, nib) = logd(M/niaL)                                                      (6) 
(1) 

τiFb(nia, nib) = logd(M/nibL)                                                      (7) 

QiFa(nia, nib) = QiRa(nia, nib) = τiRa(nia, nib) = M/niaL                (8) 
(2) 

QiFb(nia, nib) = QiRb(nia, nib) = τiRb(nia, nib) = M/nibL                (9) 
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Figure 1.  Search Time with Perfect Clustering (25,000 node network, 5 

equal-sized clusters, Average Degree 5) 

compare simulation results with (6), shows that (6) captures the 
effect of the number of replicas very well (since (6) is based on 
(2), the slight underestimation by (6) is expected). 

While assuming disconnected clusters makes for an easy 
first-order analysis, actual peer-to-peer networks do not 
typically have such fully disconnected clusters. There is 
evidence of strong clustering but inter-cluster links do exist in 
real networks so neither an Erdos-Renyi random graph over the 
entire network nor the fully disconnected clusters model is an 
appropriate topology. A topology model that gives us a 
continuum of topologies with the Erdos-Renyi random graph at 
one extreme and the fully disconnected clusters at the other 
extreme is the following random graph variant. Consider a 
network in which the probability of  including  an  intra-cluster 
link  is p and  the probability of including an inter-cluster link 
is q and the average per-node degree is d as before i.e. 
assuming L clusters of equal sizes, the nodes are partitioned 
into L clusters and the probability that any given pair of intra-
cluster nodes is connected is p and the probability that any 
given pair of inter-cluster nodes is connected is q. Thus, each 
node has an average of (M/L)p links to nodes within its cluster 
and (M-M/L)q links to nodes outside its cluster. Hence, the 

average degree d = (M−M/L)q + (M/L)p and if one were to 
hold the average degree constant, defining one of p or q defines 
the other. Varying q provides a continuum of topologies from 
the completely disjoint clusters (q=0) to the Erdos-Renyi 
random graph (p=q). A flooding search in these topologies 
expands to d other nodes (in the higher-density or a lower-
density cluster) in the next hop independent of whether the 
search process is at a node in the higher-density cluster or a 
lower-density cluster. Thus, the average number of nodes 

queried per search expands exponentially and the d
τ
 expression 

for the number of nodes queried given the average search 

distance of τ  [11] still holds. 

In subsequent sections we derive the search performance 
expressions similar to those listed in Table 2 for this network. 

IV. RANDOM WALK SEARCH IN NETWORKS WITH 

CLUSTERING 

In the case of no clustering and the case of disconnected 
clusters we discussed so far, a search only queried nodes of the 
“same type” (i.e. all the nodes queried by the search had the 
same probability of having the desired file). However, this is  
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Figure 2.  Random walk in the modified random graph for the non-uniform 

file distribution case  

not the case in the clustered peer-to-peer network as the 
existence of inter-cluster links implies that a query can get 
forwarded to a node in a different cluster where the probability 
of a node having the file may be different. Thus, in our model, 
when a query is forwarded, the event of interest is whether it 
goes to a node in the high-density cluster or to a node in one of 
the low-density clusters. Among the d outgoing links at each 
node, the probability that a link is an inter-cluster link is q(M-
M/L)/d. Therefore, for a query at a node in the higher-density 
cluster, the probability of one query path “escaping” to a lower- 
density cluster is c = q(M-M/L)/d.   In contrast, when the query 
is at a node in the lower-density cluster, the probability of 
escaping to the higher density cluster is e = q(M/L)/d as there 
are only M/L nodes that are of interest for this event. For ease 
of discussion, throughout the rest of the paper, we refer to the 
nodes within the higher-density cluster as “good” nodes, and 
the nodes in the lower-density clusters as “bad” nodes.  

Fig. 2a shows a Markov chain model for the random walk 
on our modified random graph with a non-uniform file 
distribution prior to finding the file: state G represents the 
random walk being at a “good” node and state B represents the 
random walk being at a “bad” node. The random walk 
transitions between state G and state B until it finds the file. 
The probability of finding the file when the system transitions 
to state G (i.e. at a good node) is a = niaL/M, and the 
probability of finding the file when the system transitions to 
state B (i.e. at a bad node) is b = nibL /M. Since we need to 
determine the average number of steps until the file is found for 
the random walk search time, we transform our Markov chain 
in Fig. 2a to that in Fig. 2b. The state NG denotes the event that 
the search visits a good node but does not find the file and the 
state NB denotes the event that the search visits a bad node but 
does not find the file. State F is an absorbing state denoting the 
event that the file is found independent of whether the previous 
node is good or bad. Thus, the average first passage time from 
state NG to state F is the search time for a random walk search 

initiated by a good node, τiRa, and the average first passage time 
from state NB to state F is the search time for a random walk 

search initiated by a bad node, τiRa. 

The relevant equations [4], therefore, are:   

 τiRa = 1+ (1-c)(1-a)τiRa + c(1-b)τiRb  

 τiRb = 1+ e(1-a)τiRa + (1-e)(1-b)τiRb  

Therefore: 

τiRa =
( )(1 )

(1 ) (1 )

c e b b

ab cb a ae b

+ − +
+ − + −

= 1]
)()1(

)(
[ −

++−−
−

−
ececb

bac
a    

 τiRb=
( )(1 )

(1 ) (1 )

c e a a

ab cb a ae b

+ − +
+ − + −

= 1]
)()1(

)(
[ −

++−−
−

+
ececa

bae
b   

Substituting the values for a, b, c and e, we get the 
following theorem:  

Theorem 1. The (average) search time for a random walk 
search in the clustered peer-to-peer network defined in Section 
3 is:   

 τiRa (nia, nib) = 1
]

))(/(

))(1(
[

−

+−

−−
−

MqMqdMLn

nnLq

M

Ln

ib

ibiaia     (10) 

if the search is initiated at a node in the high-density cluster, 
and is:   

 τiRb(nia, nib) = 1
]

)(/(

)(
[

−

+−

−
+

MqMqdMLn

nnq

M

Ln

ia

ibiaib  (11) 

if the search is initiated at a node in the low-density cluster.   g 

Comparing (10) and (11) with (8) and (9) respectively, we 
see that the search time for a query initiated by a good node 
increases if cross-cluster links are present but if a bad node 
initiated the query, the search time decreases. As expected, if 
there were no cross-cluster links (i.e. q=0), (10) and (11) revert 
to (8) and (9) respectively. Further, in the uniform distribution 
case, nia = nib = ni/L and (10) and (11) revert to (2) as expected.   

V. FLOODING SEARCH IN NETWORKS WITH CLUSTERING 

Unlike the case of no clustering where we found in Section 
2 that the flooding search time is the logarithm of the random 
walk search time, in networks with clustering the mapping 
between flooding and random walk is not straightforward. 
Clustering implies more intra-cluster links than inter-cluster 
links. Therefore, if a query gets to a good node, it is more likely 
to have come from a good node than a bad node i.e. P(G|G) > 
P(G|B) or 1-c > e. Similarly, a query getting to a bad node is 
more likely to have come from a bad node than from a good 
node i.e. P(B|B) > P(B|G) or 1-e > c. Thus, searching from a 
good node, flooding is likely to see more good nodes than a 
random walk upon querying the same number of nodes

3
, and 

searching from a bad node, flooding is likely to see more bad 

                                                           
3 For example, say, the average degree is 3 and let us compare the average 

number of good nodes among the next 3 nodes queried by a good node. The 

average number of good nodes with flooding, nF = 3(1−c)3 + 2[3(1−c)2c] + 

[3c2(1−c)].  The average number of good nodes with random walk, nR = 

3(1−c)3 + 2[2ce(1−c)+c(1−c)2] + [(1−c)c(1−e)+c(1−e)e+c2e]. Thus, nF − nR = 

4[(1−c)2c− ce(1−c)] + [3c2(1−c)− (1-c)c(1−e)− c(1−e)e−c2e] = c(c2–

4c+3+2ce–4e+e2) = c[(1−c)2+2(1-c)(1−e)+(1-e)2−1]=c[(2–c–e)2–1]=c(1–c–

e)(3–c–e) > 0 since 1−c > e. 



UCLA-CSD-TR050040 

- 5 - 

nodes than a random walk upon querying the same number of 
nodes

4
. Thus, a flooding search initiated by a good node is 

likely to query more good nodes in logdN steps than a random 
walk search would in N steps starting at the same node. Hence,   

 τiFa(nia, nib) < logd[τiRa(nia, nib)] (12) 

Similarly, a flooding search initiated by a bad node will query 
more bad nodes in logdN steps than a random walk search will 
in N steps starting at the same node and hence   

 τiFb(nia, nib) > logd[τiRb(nia, nib)] (13) 

Thus, in networks with clustering, the random walk search 
times only provide us with bounds

5
 on one side for the flooding 

search times. These bounds, however, are useful since getting 
an exact expression for the average search time is very 
difficult. The best we can do is to bound the search time on the 
other side as well.  

Let us first attempt to obtain a lower bound on the flooding 
search time for a search initiated at a good node. The difficulty 
in getting an exact expression is that at hop distance > 1, the 
query could be at bad nodes as well as good nodes and 
computing the relative distribution of these nodes is hard. Since 
we want a lower bound, a crude approach is to ignore all the 
“bad” possibilities and assume that even after hop distance > 1, 
the nodes that are forwarding the queries are all good nodes. 

With this assumption, at any hop distance ≥ 1, when a node 
queries one of its neighbors, the probability that the file is 
found is P(F|NG).  Hence, the search time for a flooding search 

from a good node is no better than −logd[P(F|NG)] = 

logd[(1−c)a+cb] = −logd[a–c(a-b)]. Thus
6
,    

 τiFa(nia, nib) > −
( 1)( )

log [ ]ia ia ib
d

n L q L n n

M d

− −
−  (14) 

We can use the same approach to find an upper bound for 

τiFb, the search time for a flooding search initiated at a bad 
node. We can ignore all the “good” possibilities and assume 
that even after hop distance > 1, the nodes forwarding the 
queries are all bad nodes. With this assumption, at any hop 

distance ≥ 0, when a node queries one of its neighbors, the 
probability that the file is found is P(F|NB). Hence, the search 

                                                           
4 Using the example of average degree 3 again, we compare the average 

number of bad nodes among the next 3 nodes queried by a bad node. The 

average number of bad nodes with flooding, nF = 3(1−e)3 + 2[3(1−e)2e] + 

[3e2(1−e)].  The average number of bad nodes with random walk, nR = 

3(1−e)3 + 2[2ce(1−e)+e(1−e)2] + [(1−c)e(1−e)+c(1−c)e+e2c]. Thus, nF − nR = 

e(1–c–e)(3–c–e) > 0 since 1−e > c.   
5 The bounds presented in this section are approximate bounds as the 

underlying analytical approach (Section 2) underestimates the search time by 

a small amount (see Fig. 1). Thus, the actual search times should lie within the 

given bounds plus a small offset. 
6 Since the probability of finding the file at hop distance 0 is P(F) whereas 

the expression −logd[P(F|NG)] assumes P(F|NG) to be the probability at all 

hop distances including 0, a correction factor of  −[1−P(F)]/[1−P(F|NG)]  is 

required. Since this correction factor is negligible when the probability that 

the querying node itself has the file is small, we omit this from (14). A similar 

correction factor applies in the case of a flooding search from a “bad” node 

but its magnitude is even smaller and hence we omit it from (15) as well. 

time for a flooding search from a bad node is no worse than 

−logd[P(F|NB)] = −logd[(1−e)b+ea] = −logd[b+e(a-b)]. Thus,    

 τiFb(nia, nib) < −
( )

log [ ]ib ia ib
d

n L q n n

M d

−
+  (15) 

Combining (12, 13, 14, 15), we get the following theorem:  

Theorem 2. The search time for a flooding search in the 
clustered peer-to-peer network defined in Section 3 is 
approximately

5,6
 bounded by     

 −
( 1)( )

log [ ]ia ia ib
d

n L q L n n

M d

− −
−    <   τiFa(nia, nib)  

 <   −logd

( 1)( )
[ ]

( / )( )

ia ia ib

ib

n L q L n n

M n L M d Mq Mq

− −
−

− +
 (16) 

if the search is initiated at a node in the high-density cluster, 
and is approximately

5,6
 bounded by    

 −logd

( )
[ ]

( / )( )

ib ia ib

ia

n L q n n

M n L M d Mq Mq

−
+

− +
   <   τiFb(nia, nib)   

 <   −
( )

log [ ]ib ia ib
d

n L q n n

M d

−
+  (17) 

if the search is initiated at a node in the low-density cluster.  g 

 

Comparing (16) and (17) to (6) and (7) respectively, we see 
that the presence of cross-cluster links increases the search time 
for a query initiated by a good node and decreases the average 
search time for a query initiated by a bad node. Since the lower 
and upper bounds differ only in the denominator of the term 
incorporating the effect of clustering, the bounds will be tight 
unless (1-x)(d-Mq) is large where x=nibL/M for (16) and 
x=niaL/M for (17) or, in other words, when nib or nia are very 
small or q is small (in which case (14) and (15) provide a good 
approximation). We also see that the bounds become equal in 3 

cases: when q=0, when nia= nib, and when d−Mq=0. q=0 
implies the clusters are disjoint so we revert to (6) and (7) as 
expected. The other two cases have important implications. 
When, nia= nib = ni/L (i.e. the file distribution is uniform) both 
bounds again become equal to (1). However, (1) was under the 
assumption of an Erdos-Renyi random graph search network 
whereas our network can have an arbitrary degree of clustering. 
In the d=Mq case also, the bounds become equal and we revert 
to (1) even though our file distribution has clustering but the 
search network is an Erdos-Renyi graph as assumed for (1).  

In Fig. 3 we compare the bounds in (16) and (17) to 
simulation results under varying degrees of clustering in inter-
cluster link probability and the ratio of replica density in the 
high-density cluster to that in the low-density cluster. As 
expected we find that the bounds are tight under moderate 
clustering (Fig. 3a) and as clustering becomes stronger (Fig. 
3b,c) the bounds start to separate but the search time gets closer 
to (14) and (15). Thus, in either case we have a good estimation 
of the average search time. We also note that the search time 
slightly exceeds the approximate upper bound is as expected

5
. 
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(a) 70% links intra-cluster, Replicas-in-low density  

  cluster = 0.1*Replicas-in-high-density-cluster 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 70% links intra-cluster, Replicas-in-low density  

    cluster = 0.01*Replicas-in-high-density-cluster 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) 90% links intra-cluster, Replicas-in-low density  
    cluster = 0.01*Replicas-in-high-density-cluster

Figure 3.  Flooding Search Time Simulation vs. Bounds (25,000 node network, 5 equal-sized clusters, Average Degree 5, Varying Degree of Clustering) 

Based on the simulation results in Fig. 3, we conclude that 
(14) and (15) are a reasonable approximation for the flooding 
search time in the network model for clustered demands 
described in Section 3. Therefore, throughout the rest of the 
paper, we use  

τiFa(nia, nib)  ~ −
( 1)( )

log [ ]ia ia ib
d

n L q L n n

M d

− −
−  

τiFb(nia, nib) ~ −
( )

log [ ]ib ia ib
d

n L q n n

M d

−
+  

for our analysis. Given that these expressions are reasonable 

approximations, we utilize the intuition behind these to extend 

our results to unstructured peer-to-peer networks with 

arbitrary demand clustering pattern (but with the same 

clustering in network topology clustering) in Section 8. 

VI. QUERY-PROCESSING LOAD WITH CLUSTERED DEMANDS 

As discussed earlier, for the network model described in 
Section 3, the query-processing load in the network can be 

estimated by d
τ
 when the average search distance is τ. Hence, 

using the results in Section 5, we obtain: 

Theorem 3: The query-processing load for a flooding search 
in the clustered peer-to-peer network defined in Section 3 is  

 QiFa(nia, nib) ∼
1( 1)( )

[ ]ia ia ib
n L q L n n

M d

−− −
−           (18) 

for searches initiated in the high-density cluster, and is  

 QiFb(nia, nib) ∼
1( )

[ ]ib ia ib
n L q n n

M d

−−
+           (19) 

for searches initiated in a low-density cluster.         g 

Notice that unlike the uniform distribution case, the query-
processing load for the flooding search and the random walk 
search are different now. In fact, we can show that: 

Corollary 1: For the clustered peer-to-peer network defined in 
Section 3, (a) From the high-density cluster, a flooding search 
has a lower query-processing load than a random walk search 
whereas (b) From a low-density cluster, a flooding search has a 
higher query-processing load than a random walk search i.e. for 
searches for file i,  

QiRa(nia, nib) > QiFa(nia, nib)  

QiRb(nia, nib) < QiFb(nia, nib) 

Proof: 

Let a = niaL/M, b = nibL/M, c = q(nia−nib)/d, e = Mq/d. Then 

QiFa = [a–c(L−1)]
−1

, QiRa = [a–c(L−1)/[b(1−e)+e]]
 −1

 and  QiFb = 

[b+c]
−1

, QiRb = [b+c(L−1)/[a(1−e)+e]]
 −1

. Since a < 1, b < 1 and 

1−e > 0, we get b(1−e)+e < 1 and a(1−e)+e < 1. b(1−e)+e < 1 

⇒  c(L−1)/[b(1−e)+e] > c(L−1) ⇒ a–c(L−1)/[b(1−e)+e] < a–

c(L−1) ⇒ QiRa(nia, nib) > QiFa(nia, nib). Similarly, a(1−e)+e < 1 

⇒  c/[a(1−e)+e] > c ⇒ b+c/[a(1−e)+e] > b+c ⇒ QiRb(nia, nib) < 
QiFb(nia, nib).               g 
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We observe that, while the request rate in the high-density 

cluster, λia, should be larger than the request rate in a low-

density cluster, λib, it is not clear whether, for arbitrary replica 
distributions, the lower query-processing load offered by a 
flooding search in the high-density cluster offsets the higher 
query-processing load incurred by the flooding search in the 
low-density cluster after weighting the query-processing costs 

by λia and λib respectively with λia > λib.  

Corollary 1 also suggests that, for arbitrary replica 
distributions, it may be better to use flooding searches in the 
high-density cluster and random walk searches in the low-
density clusters (at the cost of significantly larger search times 
for searches from the low-density clusters). A simple search 
algorithm could specify using flooding for a short hop-limit 
(which would allow completion of flooding searches from the 
high-density cluster) and then switching to some other 
approach (e.g. using a structured network as [13] suggests) to 
limit the query-processing cost for searches from the low-
density cluster.  

VII. SEARCH PERFORMANCE OPTIMIZATION 

The optimal average search time τx
opt

 and the optimal 

query-processing load Qx
opt

 over all file requests in the entire 

network are: 

 τx
opt

 =
1

1 1
(1 )

N
ia ib

ixa ixb

i L L

λ λ
τ τ

λ λ=

 + −  
∑  (20) 

 Qx
opt

 =
1

1 1
(1 )

N
ia ib

ixa ixb

i

Q Q
L L

λ λ
λ λ=

 + −  
∑   (21) 

where x=F for flooding search and =R for random walk search.  

For the case of disconnected clusters, where (6)-(9) are the 
relevant expressions, the same steps as in [15] can be followed 
for the search performance optimization to yield the optimal 
results summarized in Table 4.  

TABLE IV.  OPTIMAL SEARCH PERFORMANCE: DISCONNECTED CLUSTERS 

Optimal 

Replica 

Distribution 

Equationa 

τF
opt=

1 1

1 1
log 1 log log

N N
ib ib ib ib

d d d

i i

K
L L

λ λ λ λ
λ λ λ λ= =

 − − − − 
 

∑ ∑    (22) 
{nia ∝ λia , 

  nib ∝ λib} 
QF

τopt =
N

K
                                                                        (23) 

{nia ∝ √λia ,  

  nib ∝ √λib} 
QF

opt=QR
opt=τR

opt=

2

1

1 1 1
1

N

ia ib

iK L L
λ λ

λ =

   + −   
   

∑      (24) 

a As in [16], we still have the constraints that nia ≥ 1, nib ≥ 1, nia ≤ M/L, nib ≤ M/L and, hence, (22), (23) 

hold if L/KM ≤ λia/λ  ≤ L/K and L/KM ≤ λib/λ  ≤ L/K ∀i (see [15] for conditions under which (24) holds). 

The optimization procedure in the general clustering case is 
the same as in [15] but the solution is harder to obtain. We 
summarize the optimization results for flooding search in 
Theorems 5 and 6. The results for random walk search 
optimization are not provided. 

A. Average Search Time Optimization for Flooding Search 

The Lagrangian for the average search time optimization is 

H = 
1

( 1)( )1
log ( )

N
ia ia ia ib

d

i

n L q L n n

L M d

λ
λ=

− −− −
∑ + 

1

( )1
(1 ) log ( ) ( [ ( 1) ] )

N
ib ib ia ib

d ia ib

i

n L q n n
n L n KM

L M d

λ
γ

λ =

− − + + + − −
∑  

Differentiating w.r.t nia and nib respectively, we obtain: 

( 1) 1
[ ] (1 )

1
[ ] 0

( 1)( ) ( )ln

ia
ib

ia ia ib ib ia ib

L q L q

L M d L d
n L q L n n n L q n nd

M d M d

λ
λ

γ
λ

−
− −

− + + =
− − −

− +
 

( 1) 1
(1 )( )

1
[ ] ( 1) 0

( 1)( ) ( )ln

ia
ib

ia ia ib ib ia ib

q L L q

L d L M d L
n L q L n n n L q n nd

M d M d

λ
λ

γ
λ

−
− −

− + + − =
− − −

− +

 

These equations are satisfied
7
 by  

 niaL/M − q(L−1)(nia−nib)/d = kλia (25) 

 nibL/M + q(nia−nib)/d =  kλib  (26) 

where k is a constant whose value is to be determined. Thus, at 

the optimal replica distribution, λi = λia/L+(1−1/L)λib= [nia/M 

−  q(1−1/L)(nia−nib)/d + (L−1)nib/M + q(1−1/L)(nia−nib)/d]/k = 

[(L−1)nib+nia]/Mk = ni/Mk, i.e. ni ∝ λi. 
1 1

N N

i i

i i

KM n Mk λ
= =

= =∑ ∑  

= Mλk ⇒ k=K/λ. The following theorem summarizes these 

results.  

Theorem 5: The average search time for a flooding search in 

the clustered peer-to-peer network defined in Section 3 is 

minimized when  

 nia= [ ( )] [ ( )]
ia i

KM d Mq L d Mqλ λ λ− −  (27) 

 nib= [ ( )] [ ( )]
ib i

KM d Mq L d Mqλ λ λ− −   (28) 

if L/KM ≤ λia/λ ≤ L/K and L/KM ≤ λib/λ ≤ L/K ∀i, and at the 

replica distribution defined by these equations, 

 ni =  Kλi/λ   

 τF
opt 

 =
1

1 1
[ log ( ) (1 ) log ( )] log

N
ia ia ib ib

d d d

i

K
L L

λ λ λ λ
λ λ λ λ=

− + − −∑     

  QF
τopt

  = Ν/Κ    

i.e. the optimal average search time is independent of q (the 
level of clustering in search network topology) while the query-
processing load when the average search time is minimized is 
independent of the skew in file popularity and the level of 
clustering in both the search network and the file popularity. g 

                                                           
7
   1 1 1 1

[ (1 )] (1 ) ln
q q

d
k M d L dk L

γλ− − + − =  

1 1 1
(1 ) (1 )[ ] ( 1) ln

q L q
L d

dk L k L M d
γ λ− + − − = −  
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B. Query-Processing Load Optimization for Flooding Search 

The Lagrangian for the query-processing load optimization 

is  H = 1

1

( 1)( )1
[ ]

N
ia ia ia ib

i

n L q L n n

L M d

λ
λ

−

=

− − −
∑  

1

1

( )1
(1 ) [ ] ( [ ( 1) ] )

N
ib ib ia ib

ia ib

i

n L q n n
n L n KM

L M d

λ
γ

λ
−

=

− + − + + + − −
∑  

Differentiating w.r.t nia and nib respectively, we obtain: 

2 2

( 1) 1
[ ] (1 )

0
( 1)( ) ( )

[ ] [ ]

ia ib

ia ia ib ib ia ib

L q L q

L M d L d
n L q L n n n L q n n

M d M d

λ λ
λ λ γ

−
− − − −

+ + =
− − −

− +
 

2 2

( 1) 1
(1 )( )

( 1) 0
( 1)( ) ( )

[ ] [ ]

ia ib

ia ia ib ib ia ib

q L L q

L d L M d L
n L q L n n n L q n n

M d M d

λ λ
λ λ γ

−
− − − −

+ + − =
− − −

− +
 

Comparing these equations to those yielding (25) and (26), we 

can see that these equations will be satisfied by  

 '/ ( 1)( ) /
ia ia ib ia

n L M q L n n d k λ− − − =    (29) 

 '/ ( ) /
ib ia ib ib

n L M q n n d k λ+ − =       (30) 

where k
’
 is a constant whose value is to be determined. Thus, 

at the optimal replica distribution,  ni = nia+(L−1)nib = (M/L) 

(niaL/M−q(L−1)(nia−nib)/d + (L−1)[nibL/M+q(L−1)(nia−nib)/d]) 

= (k
’
M/L)[√λia+(L−1)√λib]. Using ni= (k

’
M/L)(√λia+(L−1)√λib) 

in 
1

N

ii
n KM

=
=∑ , we get k

’
 =

1

1 1
[ (1 ) ]

N

ia ib

i

K
L L

λ λ
=

+ −∑  

yielding the following theorem.  

Theorem 6: The query-processing load for a flooding search 

in the clustered peer-to-peer network defined in Section 3 is 

minimized when  

 

1

( ) ( 1)

( ) [ ( 1) ]

ia ib

ia N

ia ib

i

dL Mq Mq L
n KM

L d Mq L

λ λ

λ λ
=

− − −
=

− + −∑
 (31) 

 

1

[ ( 1)]

( ) [ ( 1) ]

ib ia

ib N

ia ib

i

dL Mq L Mq
n KM

L d Mq L

λ λ

λ λ
=

− − −
=

− + −∑
 (32) 

assuming λia and λib are such that 1 ≤ nia ≤ M/L, 1 ≤ nib ≤ M/L 

∀i in these equations, and at this replica distribution 

QF
opt

  = 
2

1

1 1 1
[ (1 ) ]

N
ia ib

iK L L

λ λ
λ λ=

 
+ −  

 
∑  

i.e. the optimal query-processing load is independent of q (the 
level of clustering in search network topology).          g 

As noted in the theorems, the optimal search performance is 
independent of the level of clustering in search network 
topology. Thus, the results for the optimal search performance 
provided in Table 4 for disconnected clusters hold for the 

general clustered demands network model except for the file 
replica distributions needed for the optimal search performance 
which are now defined by (27) and (28) for the optimal average 
search time i.e. (22) and (23) and by (31) and (32) for the 
optimal query-processing load i.e. (24).  

C. Interpretation of Optimal Search Performance Results 

We find it very interesting that the optimal search 
performance does not depend on the underlying search network 
topology. In fact, it is rather intriguing that the optimal average 
search time expression for the uniform distribution case seems 
to be related to the entropy in the file request probabilities  

{λi/λ}, and that the only change in the optimal average search 
time expression in the case of clustered demands is that the 
entropy now includes the spatial distribution of file requests 

(λia/L is the probability that file i is requested by a node in the 

high-density cluster and (1−1/L)λib is the probability that file i 
is requested by a node in a low-density cluster). Similarly, the 
optimal query-processing load also changed only in that the 
expression includes the spatial distribution of file requests in 
clustered demands case. 

Another interesting observation in comparing (25), (26) and 
(29), (30) to [14, 15] is that while the expressions for the 
optimal replica distribution are complex in the case of clustered 
demands, we still have the invariant from the uniform 
distribution case that the probability of finding the file over a 
random outgoing link from a node is proportional to the file 
request rate at that node when optimizing the average search 
time and is proportional to the square-root of the file request 
rate at that node when optimizing the query-processing load. 
We summarize this result in the following theorem.   

Theorem 7: For flooding search in the clustered peer-to-peer 
network defined in Section 3, we have the following invariants 
independent of the level of clustering in demands and the level 
of clustering in the search network topology 

1) The average search time τ is minimized when πij ∝ λij, and  

2) The query-processing load Q is minimized when πij ∝ √λij  

where πij is the probability of finding file i over a random 

outgoing link from a node in cluster j and λij is the per-node 
request rate for file i in cluster j.             g 

To evaluate the potential benefits of clustering in demands 
over the uniform distribution case, we plot the interesting part

8
 

of (22) and (24) in Figs. 4 and 5 respectively for a peer-to-peer 
network of 100 files with zipf-distributed request rates and 10 
equal-sized clusters. Perfect clustering is defined as the case 
when the entire demand for a file is from its own cluster i.e. 

λib=0 and λia= Lλi. Figs. 4 and 5 clearly demonstrate the 
potential advantage of clustering. The advantage in search 
performance afforded by perfect clustering can be summarized 
in the following theorem. 

 

                                                           
8 To eliminate the dependence on d and K, in Figs. 1 and 2, we plot τopt’ = 

1

1 1
[ ln( ) (1 ) ln( )]

N
ia ia ib ib

i L L

λ λ λ λ
λ λ λ λ=

− + −∑  and Qopt’ = 

2

1

1 1
[ (1 ) ]

N
ia ib

i L L

λ λ
λ λ=

 
+ −  

 
∑  

instead of (22) and (24) respectively. 
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Figure 4.  Benefit of Clustered Demands: Optimal Search Time 
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Figure 5.  Benefit of Clustered Demands: Optimal Query-Processing Load 

Theorem 8: When the entire demand for a file is from its own 

cluster i.e. λib=0 and λia= Lλi, the optimal average search time 

τF
opt

 decreases by logdL and the optimal query-processing load 
QF

opt
 decreases by a factor of L, the number of clusters. 

Proof: 

Substituting λib=0 and λia=Lλi in (22) and (24), we get τF
opt 

=
1

log ( ) log log
N

i i
d d d

i

K L
λ λ
λ λ=

− − −∑ and QF
opt

 =
2

1

1 N

i

i

K
L

λ λ
=

 
 
 
∑ . 

The theorem follows on comparing these to (3), (5).           g  

Finally, we note that the penalty over the optimal query-
processing load incurred upon optimizing the average search 
time increases in the case of clustered demands. For example, 

for the peer-to-peer network shown in Fig. 5, QF
τopt

 = 100 
independent of the fraction of traffic inside the cluster while 
QF

opt
 ~50 in the uniform distribution case but goes down to 

~8.5 when 99% of the file requests are from inside the cluster. 

All of the above discussion assumes that the optimal replica 

distribution can be achieved. In the uniform distribution case, 

LRU storage management gave near-optimal replica 

distribution [11] but for the clustered demands case, as we can 

see in (27) and (28) for the optimal average search time and 

(31) and (32) for the optimal query-processing load, the 

desired replica distribution depends on the degree of clustering 

in the underlying search network topology. However, rather 

than being a hindrance, this dependence of the optimal replica 

distribution on the underlying search network topology offers 

us a very powerful tool to achieve the optimal search 

performance. In a preliminary study, we were able to achieve 

the optimal query-processing performance with LRU storage 

management algorithm by tuning the underlying search 

network topology. This suggests that it may be possible to 

achieve the optimal replica distribution with any local storage 

management algorithm by appropriately tuning the underlying 

topology. If this approach of tuning the search network 

topology to reach the optimal replica distribution works in 

most cases, we may be able to obtain the optimal download 

performance [12] (by using an LRU-like approach that 

populates file replicas in near-linear proportionality to the file 

request rates) and, at the same time, obtain the optimal query-

processing load as well by tuning the underlying search 

network topology appropriately.  

VIII. FLOODING SEARCH IN THE GENERAL CASE 

In this section, we extend our results on flooding search 

performance to peer-to-peer networks that have more complex 

demand clustering patterns than allowed by our network 

model of Section 3. Specifically, unlike the network model 

introduced in Section 3, we will no longer assume the clusters 

to be equal-sized nor will the demand pattern be restricted to a 

two-tier demand model (where only one cluster had a different 

request rate for a file than the rest of the network). We will 

remove the restriction that the link probabilities be the same 

from a node to all the nodes in the network that are not in its 

own cluster (i.e. we will allow a cluster to have more links to 

one cluster than to another). In our search network topology, 

each node still has d neighbors on average. We define the 

following notation for our discussion in this section. 

τik :  average search time for file k from node i 

Qik:  query-processing load incurred in a search for file k  

from node i 

λik :  request rate for file k at node i  

qij  :  probability that a random outgoing link from node i 

goes to node j 

πik  : probability of finding file k over a random outgoing 

link from node i 

pjk :  probability that node j has file k  

The network has a number of distinct clusters to which 

various nodes belong depending on their demand patterns and 

topology. Thus, if node j belongs to, say, cluster j which has Cj 

nodes and njk replicas of file k, then pjk = njk/Cjk. As before, we 

have M nodes and N files in the network. Using these 

notations, we obtain the total request rate in the network  

 
1 1

N M

ikk i
M λ λ

= =
=∑ ∑  (33) 

Since each node has a total storage capacity of K files, we 

get the storage capacity constraint  

 
1

N

jkk
p K

=
≤∑  (34) 



UCLA-CSD-TR050040 

- 10 - 

The metrics of interest are 

 τ = 
1 1

N M ik

ikk i M

λ
τ

λ= =∑ ∑  (35) 

and  

 Q =
1 1

N M ik

ikk i
Q

M

λ
λ= =∑ ∑  (36) 

We know from (14), (15) in Section 5 and the results in 

[10, 11] for the uniform distribution case that τij = −logd(πij) 

where πij is the probability of finding file j over a random 

outgoing link from node i. Since, in our case πij = 
1

M

ij jk

j

q p
=
∑ we 

obtain 

  τik = −logd(
1

M

ij jk

j

q p
=
∑ ) (37) 

Since our search network still expands as d
τ
 in τ hops we 

obtain  

  Qik =

1

1

M

ij jk

j

q p

−

=

 
 
 
∑  (38) 

Substituting (37) in (35) and (38) in (36), we obtain  

 τ = 
1 1

1

1
log

M
N M ik

d ij jkk i
j

q p
M

λ
λ= =

=

 
−  

 
∑ ∑ ∑  (39) 

 Q =

1

1 1
1

1 M
N M ik

ij jkk i
j

q p
M

λ
λ

−

= =
=

 
 
 

∑ ∑ ∑  (40) 

Applying constraint (34), we get the Lagrangian for 

minimizing the average search distance as   

H = ( ) ( )1 1 1 1
log

N M M Nik

d ij jk jkk i j k
q p p K

M

λ
γ

λ= = = =
− + −∑ ∑ ∑ ∑  

Differentiating w.r.t. pjk, we get the set of following L 

equations ∀k  

1

1

1
0

ln

M ik ij

Mi

ij jkj

q

M d q p

λ
γ

λ =

=

− + =∑
∑

    ∀i 

One can easily verify that the above set of equations will 

be satisfied by  

 
1

M

ij jk

j

q p
=
∑ = βλik   ∀i, ∀k (41) 

where β  is a constant whose value we determine next.  

Since populating more files always improves search 

performance, all peer caches will be full at the optima i.e. the 

inequality in (34) will be an equality (see [11] for further 

discussion on this). Therefore, we obtain   

 
1 1

M N

jkj k
MK p

= =
=∑ ∑  (42) 

From (41), we obtain 

 
1 1 1 1 1

N M M N M

ij jk ik

k i j k i

q p Mβ λ β λ
= = = = =

= =∑∑∑ ∑∑   

From (33), the r.h.s equals βMλ. Rearranging the order of 

summation on the l.h.s., we have  

 
1 1 1 1 1 1 1 1 1 1

( )
N M M N M M N M M N

ij jk ij jk jk jk

k i j k j i k j j k

q p q p p p MK
= = = = = = = = = =

= = = =∑∑∑ ∑∑ ∑ ∑∑ ∑∑   

with the last step following from (42). Therefore, β  = K/λ.  

Substituting the value of β  in (41) and substituting (41) in 

(39), we get  

 τF
opt = 

1 1

1
log log

N M ik ik

d dk i
K

M

λ λ
λ λ= =

− −∑ ∑  (43) 

Further, with β = K/λ in (41), we can substitute (41) in (40) 

to obtain  

 QF
τopt  =

N

K
 (44) 

The following theorem summarizes these results.  

Theorem 9: The average search time for flooding search is 

minimized when  the probability of finding file i over a 

random outgoing link from a node j, πij, is proportional to λij, 

the request rate for file i at node j, i.e. 

πij ∝ λij  

and the minimum average search time is  

  τF
opt = 

1 1

1
log log

N M ik ik

d dk i
K

M

λ λ
λ λ= =

− −∑ ∑   

and the query-processing load when the average search time is 

minimized is 

  QF
τopt  =

N

K
  

i.e. the optimal average search time is independent of any 

clustering in the search network topology and the query-

processing load when the average search time is minimized is 

independent of the skew in file popularity and the level of 

clustering in both the search network and the file popularity. g 

Instead of minimizing the average search time, let us now 

minimize the query-processing load. When we minimize the 

query-processing load with constraint (34), the Lagrangian is   

H = ( ) ( )
1

1 1 1 1

N M M Nik

ij jk jkk i j k
q p p K

M

λ
γ

λ

−

= = = =
+ −∑ ∑ ∑ ∑  

Differentiating w.r.t. pjk, we get the set of following L 

equations ∀k 

( )21

1

1
0

M ik ij

i M

ij jkj

q

M
q p

λ
γ

λ =

=

− + =∑
∑

    ∀i 
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One can easily verify that the above set of equations will 

be satisfied by  

 
1

'
M

ij jk ik

j

q p β λ
=

=∑   ∀i, ∀k (44) 

where β'  is a constant whose value we determine next. As 

before, we have 

 
1 1 1 1 1

'
N M M N M

ij jk ik

k i j k i

MK q p β λ
= = = = =

= =∑∑∑ ∑∑   

Substituting the value of β'  from the above equation in (44) 
and substituting the result in (40), we get   

 QF
opt =

2

1 1

1 1N M
ik

k jK M

λ
λ= =

 
  
 
∑∑  (45) 

The following theorem summarizes these results.  

Theorem 10: The query-processing load for flooding search is 

minimized when  the probability of finding file i over a 

random outgoing link from a node j, πij, is proportional to the 

square-root of λij, the request rate for file i at node j, i.e. 

πij ∝ √λij  

and the minimum query-processing load is 

 QF
opt  =

2

1 1

1 1N M
ik

k jK M

λ
λ= =

 
  
 
∑∑   

i.e. the optimal query-processing load is independent of any 

clustering in search network topology. The average search 

time at the optimal query-processing load is  

τF
Qopt  =

1 1

1
log log

2

N M ik ik

d dk i
K

M

λ λ
λ λ= =

− −∑ ∑  

  
1 1

1
log

N M
ik

d

k j M

λ
λ= =

 
+   

 
∑∑  (39) 

                       g 

Thus, we find that the invariants noted in Theorem 7 hold 
in the general demand and topology clustering case as well. 
Further, the optimal average search time is still related to the 
entropy in file request probabilities at each node and the 
optimal query-processing load is still related to the square of 
the sum of the square-roots of the file request probabilities at 
each node times the probability of that node being selected to 
make the request. We discuss these results in next section.  

IX. ENTROPY AND NEFFECTIVE 

Comparing (3), (22) and (43), we notice that the minimum 

average search time in a flooding search depends on the 

entropy in file request probabilities at each node and the per-

node storage size. Specifically, the entropy on which the 

minimum average search time seems to depend is the entropy 

in which a file is requested across the entire network. In other 

words, if the entire network is considered an information 

source, the entropy term we see refers to the uncertainty 

regarding which node will make the next request and which 

file it will  request). If we (an external observer) knew which 

file will be requested by whom next, we (the external 

observer) can place the file at exactly the right location and the 

search time will be 0. Our lack of information prevents us 

from placing the files in such a manner. However, suppose we 

knew that a particular group of nodes requests only a certain 

set of files, then we would place those files in or near that 

group of nodes thereby reducing the search time for those files 

(and, hence, the average search time) substantially. Thus, it is 

understandable that the minimum average search time is 

related to the entropy (the uncertainty) as to which node will 

request which file next. We also note that an increase in the 

per-node storage size causes a decrease in the search time. 

Recall that in our just concluded discussion on the relation of 

entropy, we said that we can “place” the file(s) that are likely 

to be requested near the nodes likely to request that file. We 

can place a file only if storage space is available. In the 

extreme case where the per-node storage size is large enough 

to place all the files at all the nodes, the search time would be 

0. In general, that is unlikely to be the case but, clearly, if 

more storage space is available, more of the files likely to be 

requested, can be placed near the peers that will request them. 

If the available storage space is small but there is little 

uncertainty regarding who will request which files, an 

effective placement can be made (e.g. if each node requests 

only two files and the per-node storage capacity is two, the 

search time will be 0). In contrast, if the storage space is not 

too large and we have very little information regarding who 

will request what, the placement will not be able to reduce the 

average search time as much (e.g. if the per-node storage 

capacity is, say, 5 files but a node can request any of the 1000 

files, then file placement will not help much).   

   Recall that the search time for a file is defined as the 

number of hops taken to find the file. As noted in [10], since 

flooding expands to all possible paths with every additional 

step, the search time for a file from a node is the shortest 

distance to a replica of the file from that node. From the 

perspective of a querying node, flooding is a breadth-first 

search over a tree of newly queried nodes at each hop. If one 

were to specify the path from the querying node in this tree 

(i.e. the sequence of branches to be taken at each step) to the 

nearest replica of the queried file, the path length will be equal 

to shortest hop distance to the nearest replica of the file. With 

this analogy of flooding tree and path length to the nearest 

replica, we can readily see similarities to many other 

seemingly unrelated problems in computer science where the 

entropy expression appears.  

Optimal coding is the best known of these problems. Recall 

from [16] that the optimum codeword length for a given 

symbol is the self-information of that symbol. The classical 

representation of coding is a coding tree where symbols are 

the leaf nodes in the tree and the code for a symbol is the path 

from the root to the symbol on the coding tree. Thus, the 

average path length in the coding tree is the average code 
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word length (just as it is for the average search time in our 

case). There are differences, however, e.g. the symbols are leaf 

nodes in a coding tree and each symbol appears only once in 

the coding tree while, in our case, each file can be stored at 

multiple nodes and the files can be stored at non-leaf nodes.  

Some other places where the entropy expression shows up 

are: (i) the average number of steps to find a key (i.e. the 

average depth to which one has to go to find a key in the 

search tree) in the optimal binary balanced search tree [17], 

and (ii) as the lower bound on the minimum number of 

comparisons needed to sort a set of keys (where multiple items 

in the set may have the same value) [18] where the entropy is 

on the frequency of occurrence of different keys in the entire 

set. To the best of our knowledge, no precise discussion of the 

relevance of entropy to these problems exists in the literature. 

Let us now investigate the optimal query-processing load 

expressions. Comparing (5), (24) and (45), we notice that the 

minimum query-processing load depends on the square of the 

sum of the square roots of the file request probabilities at each 

node and the per-node storage size. As discussed for the 

optimal average search time, we know that a larger cache size 

allows more files to be placed near the nodes requesting them 

which decreases the search time and, consequently, the query-

processing load as well. A larger skew in file request 

probabilities implies we have better information on who will 

request which file and so the placement of files will be more 

effective; hence, the search time and the query-processing load 

will be smaller. The square of the sum of the square roots of 

the file request probabilities at each node is another way (like 

entropy) of representing the skew in file request probabilities. 

The advantage of a higher skew in file request probabilities 

and the advantage of a larger cache size is reflected in the 

expression for Qopt.  

Notice that the worst-case file request probability 

distribution for query-processing load, Qopt, is when each node 

has the same request rate for each file. Qopt in this case is N/K 

where N is the number of files in the network and K is the 

number of files cache size in. In other words  

 Qopt =

2

1 1

1 1N M
ik

k j

N

K M K

λ
λ= =

 
≤  

 
∑∑   

Thus, we may interpret the square of the sum of the square 

roots of the file request probabilities at each node as the 

effective number of equal request rate files in the network 

(recall that a larger skew provides us more information 

allowing us to make a more effective placement of files as if 

there were fewer equal request rate files in the network). 

Therefore, we can write  

 Neffective =

2

1 1

1N M
ik

k j M

λ
λ= =

 
  
 
∑∑   

We note that this square of the sum of the square-roots 

expression has appeared earlier in [14, 15]. [15] introduced the 

novel approach that the benefit afforded by the skew in the 

source rates of each participant is represented by a (reduced) 

effective number of participants given by this square of the 

sum of the square roots expression. This approach allowed 

[15] to reduce a given number of skewed sources to a smaller 

number Neffective  of sources each of which had the same load. 

The power of this idea of having only Neffective  files (or users) is 

that we can now eliminate a dimension of variability (the file 

request rate distribution) from the problem and focus on the 

remaining parameters in the simulation/analysis. Reference 

[14] also found the square of the sum of the square roots 

expression in the optimum message delay expression. While 

[14] did not offer a notion of Neffective  at the time, we can see 

that in that problem (of allocating a fixed given capacity to 

different channels) also, the skew in traffic on each channel 

afforded improvement in the overall average delay
9
 and the 

square of the sum of the squares expression is the equivalent 

number, Neffective, of equal load channels.  

In summary, while entropy has a physical meaning 

(uncertainty), the square of the sum of square-roots expression 

is the effective number of distinct equal rate resource 

consumers in the system.   

X. CONCLUSION 

In this paper, we investigated the relationship between the 
number of replicas of a file in unstructured peer-to-peer 
networks and derived the search time and the search cost for 
that file and substantially expanded the existing knowledge on 
this topic. We provided a model to incorporate clustering in 
peer-to-peer network models so they better reflect real 
networks. We were able to find an exact expression for the 
random walk search time (and, hence, the search cost) in a 
peer-to-peer network with clustering. We were also able to find 
bounds on the flooding search time in these networks. Using 
these bounds, we extend the previously known results for 
flooding search time which assumed a uniform file distribution 
and an Erdos-Renyi random graph to when the file distribution 
is not uniform but the search network is an Erdos-Renyi 
random graph, and when the file distribution is uniform but the 
search network has clustering. We also found that, among these 
bounds, one side was a reasonable approximation for the 
flooding search time in the clustered demands case. Using these 
approximate expressions, we derive expressions for the search 
cost, the optimal search cost and the optimal search time in an 
unstructured peer-to-peer network when the demand exhibits 
clustering. The previous work in this area assumed uniformity 
in replica and demand distribution. Since real networks show 
clustering in demands, our results provide a more accurate 
estimate of the search performance achievable in unstructured 
peer-to-peer networks. Interestingly, we found that the gains in 
the optimal search performance afforded by clustering in 
demand patterns are independent of whether the search 
network topology matches the clustering in file popularity. The 
optimal replica distribution, however, does depend on 

                                                           
9 The best case scenario for that problem was to have all the traffic on one 

channel and allocate all the capacity to that channel. In that case, the higher 

capacity provides a lower service time while the utilization factor ρ remains 

the same. By the same argument, the worst-case scenario is for each channel 

to have equal load and, thus, equal capacity.   
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clustering in the search network topology. Since the replica 
distribution is driven by peer requests, we believe that tuning 
the search network topology to match the replica distribution 
generated by peer requests is more practical than matching the 
replica distribution to the topology. In our simulations, we were 
able to operate a peer-to-peer network at the optimal search 
cost by tuning the clustering in the search network topology 
depending the clustering in demands while using LRU cache 
management at each peer. In the process of deriving the 
optimal search performance results, we derived the relation 
between the query-processing load and the number of replicas 
of each file for the clustered demands case showing that 
flooding searches may have a lower query-processing load than 
random walk searches in the clustered demands case. 
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