
Featherweight JPred

Christopher Frost and Todd Millstein

Computer Science Department

University of California, Los Angeles

{frost,todd}@cs.ucla.edu}

Technical Report CSD-TR-050038
October 2005

This document defines an extension to Featherweight Java (FJ) [4] that formalizes our approach
to modularly typesafe interface dispatch in JPred [5]. To this end, we augment FJ to include
interfaces, and we allow methods to have JPred-style when clauses. To make it easier to find all the
methods in the same “method family,” the syntax groups all methods of the same name in each
class as a single declaration. The order of each method implementation is still irrelevant.

1 Syntax

TD ::= class C extends C implements I {T f; K M}
| interface I extends I {MH}

K ::= C(T f) {super(f); this.f = f;}
M ::= T m(T x) when P {return t;}

MH ::= T m(T x);

P,Q,R ::= true | x@T | ¬P | P∧P | P∨P
S,T,U ::= C | I

t ::= x | t.f | t.m(t) | new C(t) | (T) t

v ::= new C(v)

Figure 1: The syntax of FJPred.

Figure 1 gives the syntax of FJPred. It augments FJ to have interfaces and to support method
predicates. For uniformity, all methods have a predicate; a method with the predicate true has the
same semantics as a regular Java method. Predicates include type tests on formals and conjunctions,
disjunctions, and negations of such tests. JPred supports several other kinds of predicates, including
type tests on fields and linear arithmetic, but these constructs do not interact in interesting ways
with interface dispatch, which is the focus of our formalization.

Technically, to be a legal Java program any class that implements some interface must make
the implementations of the associated methods public. We assume that all methods are implicitly
declared public in FJPred.

We have analogous notational conventions and sanity conditions to those in FJ, namely:

• The metavariables C, D, and E range over class names, I and J over interface names, f and g

over field names, m and n method names, x and y over parameter names, s and t over term
names, u and v over value names.

1

• We assume that this is a special variable name that is never used as the name of an argument
to a method.

• We use the D shorthand as a sequence of elements from domain D, using the appropriate
separator for each domain. We sometimes treat a sequence as a set. The empty sequence is
denoted •.

We also extend this shorthand as in Featherweight Java to larger syntactic fragments (e.g., T
f). A new shorthand of this form is T m(T x) when P {return t;}, which abbreviates the
following method declaration:

T m(T1 x1, · · · Tn xn)

when P1 {return t1;}
· · ·
when Pm {return tm;}

• We assume that a class’s fields have distinct names from one another and from inherited
fields. We also assume that the methods declared in a class or interface have distinct names
from one another (but not necessarily from inherited methods). Finally, we assume that a
method’s formal names are distinct.

• A type table TT is a mapping from type (class or interface) names to their declarations. We
sometimes consider a type table as a sequence of pairs, denoted (T,TD). A program is a pair
of a type table and a term. The rules assume a fixed global type table TT ; it is sometimes
shadowed by an explicit type table in the context of a few judgments.

• Every type table TT is assumed to satisfy a few conditions. First, TT (C) = class C . . .

for every C ∈ dom(TT) and TT (I) = interface I . . . for every I ∈ dom(TT). Second,
Object 6∈ dom(TT). Third, every type name except Object that appears anywhere in TT is
in dom(TT). Finally, there are no nontrivial cycles in the subtyping relation induced by TT ;
this relation is defined next.

2 Subtyping

The subtyping relation among types is standard and is defined by the following rules:

TT ` T1<:T2

TT ` T<:T (S-Ref)

TT ` T1<:T3 TT ` T3<:T2

TT ` T1<:T2

(S-Trans)

TT (C) = class C extends D . . .

TT ` C<:D
(S-CExt)

TT (C) = class C extends D implements I . . .

TT ` C<:Ii

(S-CImp)

TT (I) = interface I extends I . . .

TT ` I<:Ii

(S-IExt)

2

3 Evaluating and Reasoning About Predicates

These rules formalize the evaluation of predicates, and they also formalize the ways in which
the automatic theorem prover statically reasons about predicates. The first judgment below is
straightforward and represents predicate evaluation. As usual, a type environment Γ is a mapping
from variables to types, written x:T.

TT ; Γ |= P

TT ; Γ |= true (P-True)

x:D ∈ Γ TT ` D<:T

TT ; Γ |= x@T
(P-Spec)

TT ; Γ 6|= P

TT ; Γ |= ¬P
(P-Not)

TT ; Γ |= P1 TT ; Γ |= P2

TT ; Γ |= P1∧P2

(P-And)

TT ; Γ |= P1

TT ; Γ |= P1∨P2

(P-Or1)

TT ; Γ |= P2

TT ; Γ |= P1∨P2

(P-Or2)

It is beyond the scope of this formalization, and would be quite difficult, to formally model
the ways in which an automatic theorem prover manipulates predicates in order to prove them
valid. Instead, we formalize the consequence of such manipulation by providing a formal notion of
predicate validity. This is represented by the judgment x |= P, defined below.

The function restrict(TT, P) is used in the formalization of validity and is defined below. It
creates a type table that only includes types mentioned in P and supertypes of these types. In the
JPred implementation, it is only these types that the theorem prover is given axioms about. If the
predicate is proven given only these axioms, the consequence is that the predicate will evaluate to
true in any program that includes these types, for any possible actual arguments. That property
is formalized in the rule below by the quantification over all TT ′ and all D.

An important point about the use of restrict is that it makes the predicate reasoning modular:
the theorem prover is only given information about types that are mentioned in the given predicate
or are depended upon by such types. In particular, the theorem prover does not have access to
all subtypes of a particular type mentioned in the predicate. And more to the point, the theorem
prover therefore must always assume that a pair of interfaces (or one interface and one class) could
have a common subtype. As a result, the notion of validity is stronger than it otherwise would be,
applying to all possible programs that include the accessible types, rather than just the program
TT .

x |= P

3

for all TT ′ ⊇ restrict(TT, P),
for all D ⊆ dom(TT ′) of the same length as x,

TT ′; x:D |= P

x |= P
(Valid)

restrict(TT, P) = TT ′

neededTypes(P) = T

restrict(TT, P) = (T,TT(T))
(Restrict)

Below we use a form of comprehension to simplify rules. The notation [A | condition] denotes a
sequence of all elements A such that the associated condition holds.

neededTypes(P) = T

neededTypes(true) = •

T = [T | TT ` S<:T]

neededTypes(x@S) = T

neededTypes(¬P) = neededTypes(P)

neededTypes(P1) = S neededTypes(P2) = T

neededTypes(P1∧P2) = S,T

neededTypes(P1) = S neededTypes(P2) = T

neededTypes(P1∨P2) = S,T

4 Dynamic Semantics

The evaluation rules are identical to those of FJ, except that they user our slightly modified
syntax (e.g., the use of types instead of classes) and they use predicate dispatch for the invocation
semantics.

t1 −→ t2

fields(C) = T f

(new C(v)).fi −→ vi

(E-ProjNew)

u = new D(. . .) mbody(m, C, D) = (x, t0)

(new C(v)).m(u) −→ [x 7→ u, this 7→ new C(v)]t0

(E-InvkNew)

TT ` C<:T

(T)(new C(v)) −→ new C(v)
(E-CastNew)

t1 −→ t2

t1.f −→ t2.f
(E-Field)

4

t1 −→ t2

t1.m(t) −→ t2.m(t)
(E-Invk-Recv)

t1 −→ t2

v.m(v,t1,s) −→ v.m(v,t2,s)
(E-Invk-Arg)

t1 −→ t2

new C(v,t1,s) −→ new C(v,t2,s)
(E-New-Arg)

t1 −→ t2

(T)t1 −→ (T)t2

(E-Cast)

These rules rely on the following auxiliary rules, which are again similar to those of FJ except for
the addition of predicate dispatch (via the mbody function). In the rule defining the overridesIfAp-

plicable function, P1

.
=P2 holds if the two predicates refer to the same textual predicate declaration

from the program. The notation P1≺xP2 denotes that P1�xP2 and P2 6�xP1.
The rules implement the semantics analogous to so-called “encapsulated” multimethods [2, 1].

Namely, all methods in a class are considered to be more specific than inherited methods from
superclasses. Another popular semantics is the so-called “symmetric” style [3], in which the receiver
dispatch is not treated specially from the rest of the predicate. It would be a minor change of the
rules to use this semantics, and it would not affect any of our results.

fields(C) = T f

fields(Object) = • (F-Obj)

TT (C) = class C extends D implements I {T f; K M}
fields(D) = S g

fields(C) = S g, T f
(F-Cls)

mbody(m,C,D) = (x,t)

TT (C) = class C extends E implements I {T f; K M}
S m(S x) when P {return t;} ∈ M

TT ; x:D |= Pi overridesIfApplicable(Pi, P, x, D)

mbody(m, C, D) = (x, ti)
(MBody1)

TT (C) = class C extends E implements I {T f; K M}
S m(S x) when P {return t;} ∈ M

there is no Pi such that TT ; x:D |= Pi

mbody(m, C, D) = mbody(m, E, D)
(MBody2)

TT (C) = class C extends E implements I {T f; K M}
m is not defined in M

mbody(m, C, D) = mbody(m, E, D)
(MBody3)

overridesIfApplicable(P1,P2,x,C)

5

P1 6
.
=P2 and TT ; x:D |= P2 implies P1≺xP2

overridesIfApplicable(P1, P2, x, D)
(OverApp)

P1 �x P2

We use P1⇒P2 to denote the predicate ¬P1∨P2.

x |= P1⇒P2

P1 �x P2

(MoreSpecific)

5 Static Semantics

The rules for the static semantics make use of the fields auxiliary function defined for the dynamic
semantics above.

The rules for typechecking terms are identical to those of FJ except for the slight update in
syntax.

Γ ` t : T

x:T ∈ Γ

Γ ` x : T
(T-Var)

Γ ` t : C fields(C) = T f

Γ ` t.fi : Ti

(T-Field)

Γ ` t0 : T0 mtype(m, T0) = T→T

Γ ` t : S TT ` S<:T

Γ ` t0.m(t) : T
(T-Invk)

fields(C) = T f Γ ` t : S TT ` S<:T

Γ ` new C(t) : C
(T-New)

Γ ` t : S TT ` S<:T

Γ ` (T)t : T
(T-UCast)

Γ ` t : S TT ` T<:S T 6= S

Γ ` (T)t : T
(T-DCast)

Γ ` t : S TT ` S6<:T TT ` T6<:S
stupid warning

Γ ` (T)t : T
(T-SCast)

These rules rely on the following auxiliary rules for mtype, which extend the rules used in FJ to
allow for getting the type of a method from an interface. Note that the rules allow a method’s type
to be nondeterministically found by looking in any superinterface of an interface. Other rules will
ensure that all these interfaces agree on the type of each method name that they have in common.
Note also that we need not search the superinterfaces of a class, since other rules will guarantee
that the class declares or inherits at least one implementation of the method.

6

mtype(m,T0) = T→T

TT (C) = class C extends D implements I {T f; K M}
S m(S x) when P {return t;} ∈ M

mtype(m, C) = S→S
(MType-C1)

TT (C) = class C extends D implements I {T f; K M}
m is not defined in M mtype(m, D) = S→S

mtype(m, C) = S→S
(MType-C2)

TT (I) = interface I extends I {MH}
S m(S x); ∈ MH

mtype(m, I) = S→S
(MType-I1)

TT (I) = interface I extends I {MH}
m is not defined in MH mtype(m, Ii) = S→S

mtype(m, I) = S→S
(MType-I2)

Next we have rules for typechecking predicates. These rules ensure that only variables in scope
(i.e., the method’s formal parameters) are referred to.

x ` P OK

x ` true OK (P-True)

x ∈ x

x ` x@S OK
(P-Test)

x ` P OK

x ` ¬P OK
(P-Not)

x ` P1 OK x ` P2 OK

x ` P1∧P2 OK
(P-And)

x ` P1 OK x ` P2 OK

x ` P1∨P2 OK
(P-Or)

Next we have rules for typechecking methods. These rules augment the rule for typechecking
methods in FJ to typecheck predicates and to ensure that a class’s methods have the same type
signatures as those of the same name that it inherits from interfaces.

Notice that we typecheck the body of a method using the declared static types of the formals.
It would be safe to sometimes narrow these types based on the type tests in the method’s predicate.
The full JPred language does so, but we have elided it for simplicity.

M OK in C

7

x ` P OK x:T,this:C ` t : S TT ` S<:T
unambiguous(P1, P, x, P) · · · unambiguous(Pn, P, x, P)

T m(T x) when P {return t;} OK in C
(T-Meth)

The rules for typechecking methods rely on the following rule, which implements pairwise am-
biguity checking of methods. The notation

∨
P denotes the disjunction of all predicates in P. We

define
∨

• as the predicate ¬true. The rule first ensures that the two given predicates are not
equivalent unless they are the same textual predicate. Finally, the rule requires that whenever
both predicates are satisfied, then at least one predicate that is more specific than both of them is
also satisfied.

There are two common cases of this last requirement that are worth noting. First, if P1 is
strictly more specific than P2, then P1 is always satisfied whenever both are, so the methods are
unambiguous (and similarly for the symmetric case). Second, if P1 and P2 are disjoint, meaning
that they cannot be simultaneously true, then the requirement holds vacuously.

unambiguous(P1, P2, x, P)

P1 �x P2 and P2 �x P1 implies P1

.
= P2

Q = [P | P ∈ P and P �x P1 and P �x P2]
x |= (P1∧P2)⇒

∨
Q

unambiguous(P1, P2, x, P)
(Unamb)

Finally we present the rules for typechecking classes and interfaces. The rule for classes is as
in FJ, with the addition of exhaustiveness checking for all methods that should be implemented or
inherited by the class.

TD OK

K = C(S g, T f) {super(g); this.f = f;}
fields(D) = S g M OK in C

allMethodNames(C) = m

override(m, C) exhaustive(m, C)

class C extends D implements I {T f; K M} OK
(T-Class)

allMethodNames(I) = m override(m, I)

interface I extends I {MH} OK
(T-Int)

These rules find all method names in a given class and all supertypes.

allMethodNames(T) = m

TT (C) = class C extends D implements I {T f; K M}
mname(M) = m allMethodNames(D) = m0

allMethodNames(I1) = m1 · · · allMethodNames(In) = mn

allMethodNames(C) = m, m0, m1, . . . , mn

(MNames-Cls)

TT (I) = interface I extends I {MH}
mname(MH) = m

allMethodNames(I1) = m1 · · · allMethodNames(In) = mn

allMethodNames(I) = m, m1, . . . , mn

(MNames-Int)

8

override(m,T)

TT (C) = class C extends D implements I {T f; K M}
mtype(m, C) = S→S mformals(m, C) = x

override(m, D, S→S, x) override(m, I, S→S)

override(m, C)
(Over-Cls)

TT (I) = interface I extends I {MH}
mtype(m, I) = S→S override(m, I, S→S)

override(m, I)
(Over-Int)

The above rules rely on the following rule, which is analogous to the one from FJ but additionally
requires method implementations to have the same formal parameter names as the method imple-
mentations they override. The condition simplifies the rules for exhaustiveness checking. Interface
methods are not required to obey this condition, so they have a separate rule defined subsequently.

override(m, C, T→T0, x)

mtype(m, C) = S→S0 implies S = T and S0 = T0

mformals(m, C) = y implies x = y

override(m, C, T→T0, x)
(T-OverCls)

override(m, I, T→T0)

mtype(m, I) = S→S0 implies S = T and S0 = T0

override(m, I, T→T0)
(T-OverInt)

mformals(m,T) = x

TT (C) = class C extends D implements I {T f; K M}
S m(S x) when P {return t;} ∈ M

mformals(m, C) = x
(MFormals1)

TT (C) = class C extends D implements I {T f; K M}
m is not defined in M mformals(m, D) = x

mformals(m, C) = x
(MFormals2)

exhaustive(m,C)

A method implementation is exhaustive if the disjunction of all predicates is valid.

mpreds(m, C) = P mformals(m, C) = x x |=
∨
P

exhaustive(m, C)
(T-Exhaust)

mpreds(m,C) = P

9

This judgment is used to collect up all the predicates in implementations of a given method.

mpreds(m, Object) = • (MPreds1)

TT (C) = class C extends D implements I {T f; K M}
S m(S x) when P {return t;} ∈ M

mpreds(m, D) = Q

mpreds(m, C) = P,Q
(MPreds2)

mname(M) = m

mname(T m(T x)· · ·) = m (MName-Cls)

mname(MH) = m

mname(T m(T x);) = m (MName-Int)

6 Type Soundness

We prove type soundness in the standard “progress and preservation” style. Preservation is pretty
much standard; progress must reason about exhaustiveness and ambiguity checking in order to
show that method lookup always succeeds at run time.

Analogous with FJ, we assume that TD OK holds for each type declaration TD in the range of
TT .

6.1 Type Preservation

Lemma 6.1 If TT ` T<:C, then T is a class.
Proof By induction on the depth of the derivation of TT ` T<:C. Case analysis of the last rule in
the derivation.

• Case S-Ref: Then T = C and the result follows.

• Case S-Trans: Then TT ` T<:T0 and TT ` T0<:C. By induction T0 is a class, and by induc-
tion again so is T.

• Case S-CExt: Then we are given that T is a class.

• Case S-CImp: Then C is an interface, contradicting our initial assumption.

• Case S-IExt: Then C is an interface, contradicting our initial assumption.

�

Lemma 6.2 If TT ` D<:C and fields(C) = T f, then fields(C) ⊆ fields(D).
Proof By induction on the depth of the derivation of TT ` D<:C. Case analysis of the last rule in
the derivation.

• Case S-Ref: Then D = C and the result follows.

10

• Case S-Trans: Then TT ` D<:T and TT ` T<:C. By Lemma 6.1 we have that T is some class
E. Then by induction we have fields(C) ⊆ fields(E), and by induction again we have fields(E)
⊆ fields(D). Then by transitivity of ⊆ the result follows.

• Case S-CExt: Then TT (D) = class D extends C implements I {S g; ...}. By F-Cls

we have fields(D) = T f, S g, so the result follows.

• Case S-CImp: Then C is an interface, contradicting our initial assumption.

• Case S-IExt: Then C is an interface, contradicting our initial assumption.

�

Lemma 6.3 If mtype(m,T) = S→S and allMethodNames(T) = m, then m ∈ m.
Proof By induction on the depth of the derivation of mtype(m,T) = S→S. Case analysis of the last
rule in the derivation.

• Case MType-C1. Then T is a class C and TT (C) =
class C extends D implements I {T f; K M} and S m(S x) when P {return t;}
∈ M. Since allMethodNames(T) = m, by MNames-Cls we have mname(M) ⊆ m, and by
MName-Cls that means m ∈ m.

• Case MType-C2. Then T is a class C and TT (C) =
class C extends D implements I {T f; K M} and mtype(m,D) = S→S. By T-Class

we have that allMethodNames(D) = m0, so by induction we have m ∈ m0. Then by
MNames-Cls also m ∈ m.

• Case MType-I1. Then T is an interface I and TT (I) = interface I extends I {MH} and
S m(S x); ∈ MH. Since allMethodNames(T) = m, by MNames-Int we have mname(MH) ⊆ m,
and by MName-Int that means m ∈ m.

• Case MType-I2. Then T is an interface I and TT (I) = interface I extends I {MH} and
mtype(m,Ii) = S→S. By T-Int we have that allMethodNames(Ii) = m0, so by induction we
have m ∈ m0. Then by MNames-Int also m ∈ m.

�

Lemma 6.4 If TT ` S′<:S and mtype(m,S) = T→T, then mtype(m,S′) = T→T.
Proof By induction on the depth of the derivation of TT ` S′<:S. Case analysis of the last rule
in the derivation.

• Case S-Ref: Then S′ = S and the result follows.

• Case S-Trans: Then TT ` S′<:S0 and TT ` S0<:S. By induction we have mtype(m,S0) =
T→T, and by induction again we have mtype(m,S′) = T→T.

• Case S-CExt: Then S′ is a class C and S is a class D and TT (C) = class C extends D

implements I {· · ·}. By T-Class we have allMethodNames(C) = m and allMethodNames(D)
= m0. Then by Lemma 6.3 we have m ∈ m0, and by MNames-Cls also m ∈ m. Then
by T-Class we have override(m,C), so by Over-Cls we have mtype(m, C) = S→S0 and
override(m, D, S→S0, x). Finally, by T-OverCls we have that T = S and T = S0, so the
result follows.

11

• Case S-CImp: Then S′ is a class C and S is an interface Ii and TT (C) = class C extends D

implements I {· · ·}. By T-Class we have allMethodNames(C) = m, and by T-Int we have
allMethodNames(Ii) = m0. Then by Lemma 6.3 we have m ∈ m0, and by MNames-Cls also m

∈ m. Then by T-Class we have override(m,C), so by Over-Cls we have mtype(m, C) = S→S0

and override(m, Ii, S→S0). Finally, by T-OverInt we have that T = S and T = S0, so the
result follows.

• Case S-IExt: Then S′ is an interface I and S is an interface Ii and TT (I) =
interface I extends implements I {· · ·}. By T-Int we have allMethodNames(I) = m and
allMethodNames(Ii) = m0. Then by Lemma 6.3 we have m ∈ m0, and by MNames-Int also
m ∈ m. Then by T-Int we have override(m,I), so by Over-Int we have mtype(m, I) = S→S0

and override(m, Ii, S→S0). Finally, by T-OverInt we have that T = S and T = S0, so the
result follows.

�

Lemma 6.5 (Substitution) If Γ,x:T ` t : T and Γ ` s : S and TT ` S<:T, then Γ ` [x 7→ s]t : S
for some TT ` S<:T.
Proof By induction on the depth of the derivation of Γ,x:T ` t : T. Case analysis of the last rule
in the derivation.

• Case T-Var: Then t has the form x and x:T ∈ Γ,x:T. If x 6∈ x then we have x:T ∈ Γ, so
by T-Var we have Γ ` x : T. Since x 6∈ x, we have [x 7→ s]x = x, and by S-Ref we know
TT ` T<:T, so the result follows. On the other hand, if x ∈ x then x has the form xi and T =
Ti and [x 7→ s]x = si. We’re given that Γ ` si : Si and TT ` Si<:Ti, so the result follows.

• Case T-Field: Then t has the form s.fi and T has the form Ui and Γ,x:T ` s : C and
fields(C) = U f. By induction we have Γ ` [x 7→ s]s : C0 and TT ` C0<:C. By Lemma 6.2
we have fields(C) ⊆ fields(C0), so by T-Field also Γ ` [x 7→ s]s.fi : Ti, and by S-Ref we
have TT ` Ti<:Ti.

• Case T-Invk: Then t has the form t0.m(t) and Γ,x:T ` t0 : T0 and mtype(m,T0) = U→T

and Γ,x:T ` t : U0 and TT ` U0<:U. By induction we have Γ ` [x 7→ s]t0 : T′0 and
TT ` T′0<:T0. By Lemma 6.4 we have mtype(m,T′0) = U→T. Also by induction we have
Γ ` [x 7→ s]t : U′0 and TT ` U′0<:U0. Then by S-Trans we have TT ` U′0<:U. So by T-Invk

we have Γ ` [x 7→ s]t0.m(t) : T, and by S-Ref we have TT ` T<:T.

• Case T-New: Then t has the form new C(t) and T = C and fields(C) = U f and Γ,x:T ` t : U0

and TT ` U0<:U. By induction we have Γ ` [x 7→ s]t : U′0 and TT ` U′0<:U0. Then by
S-Trans we have TT ` U′0<:U. So by T-New we have Γ ` [x 7→ s]new C(t) : C, and by
S-Ref we have TT ` C<:C.

• Case T-UCast: Then t has the form (T)t0 and Γ,x:T ` t0 : T0 and TT ` T0<:T. By
induction we have Γ ` [x 7→ s]t0 : T′0 and TT ` T′0<:T0. By S-Trans also TT ` T′0<:T, so
by T-UCast we have Γ ` [x 7→ s](T)t0 : T. Finally, by S-Ref we have TT ` T<:T.

• Case T-DCast: Then t has the form (T)t0 and Γ,x:T ` t0 : T0 and TT ` T<:T0 and T 6=
T0. By induction we have Γ ` [x 7→ s]t0 : T′0 and TT ` T′0<:T0. If TT ` T′0<:T, then by
T-UCast we have Γ ` [x 7→ s](T)t0 : T. Otherwise if TT ` T<:T′0, then by T-DCast we
have Γ ` [x 7→ s](T)t0 : T. Otherwise we have TT ` T′0 6<:T and TT ` T6<:T′0, so by T-SCast

we have Γ ` [x 7→ s](T)t0 : T and a stupid warning is generated. Finally, by S-Ref we
have TT ` T<:T.

12

• Case T-SCast: Then t has the form (T)t0 and Γ,x:T ` t0 : T0 and TT ` T0 6<:T and
TT ` T6<:T0. By induction we have Γ ` [x 7→ s]t0 : T′0 and TT ` T′0<:T0. If TT ` T′0<:T,
then by T-UCast we have Γ ` [x 7→ s](T)t0 : T. Otherwise if TT ` T<:T′0, then by
S-Trans we have TT ` T<:T0, which contradicts the fact that TT ` T6<:T0, so it is not possible
that TT ` T<:T′0. Otherwise we have TT ` T′0 6<:T and TT ` T6<:T′0, so by T-SCast we have
Γ ` [x 7→ s](T)t0 : T. Finally, by S-Ref we have TT ` T<:T.

�

Lemma 6.6 (Weakening) If Γ ` t : T and x 6∈ dom(Γ), then Γ,x:S ` t : T.
Proof By induction on the depth of the derivation of Γ ` t : T. Case analysis of the last rule in
the derivation.

• Case T-Var: Then t has the form y and y:T ∈ Γ. Since x 6∈ dom(Γ), we have that x 6= y, so
also y:T ∈ Γ,x:S. Therefore by T-Var we have Γ,x:S ` y : T.

• Case T-Field: Then t has the form s.fi and T has the form Ti and Γ ` s : C and fields(C)
= T f. By induction we have Γ,x:S ` s : C, so by T-Field also Γ,x:S ` s.fi : Ti.

• Case T-Invk: Then t has the form t0.m(t) and Γ ` t0 : T0 and mtype(m,T0) = T→T and
Γ ` t : S and TT ` S<:T. By induction we have Γ,x:S ` t0 : T0 and Γ,x:S ` t : S, so by
T-Invk also Γ,x:S ` t0.m(t) : T.

• Case T-New: Then t has the form new C(t) and T = C and fields(C) = T f and Γ ` t : S and
TT ` S<:T. By induction we have Γ,x:S ` t : S, so by T-New also Γ,x:S ` new C(t) : C.

• Case T-UCast: Then t has the form (T)t0 and Γ ` t0 : T0 and TT ` T0<:T. By induction
we have Γ,x:S ` t0 : T0, so by T-UCast also Γ,x:S ` (T)t0 : T.

• Case T-DCast: Then t has the form (T)t0 and Γ ` t0 : T0 and TT ` T<:T0 and T 6= T0. By
induction we have Γ,x:S ` t0 : T0, so by T-DCast also Γ,x:S ` (T)t0 : T.

• Case T-SCast: Then t has the form (T)t0 and Γ ` t0 : T0 and TT ` T0 6<:T and TT ` T6<:T0

and a stupid warning is generated. By induction we have Γ,x:S ` t0 : T0, so by T-SCast

also Γ,x:S ` (T)t0 : T.

�

Lemma 6.7 If mbody(m,C,D) = (x, t) then there exist T and T such that mtype(m,C) = T→T.
Proof By induction on the depth of the derivation of mbody(m,C,D) = (x, t). Case analysis of the
last rule in the derivation.

• Case MBody1: Then TT (C) = class C extends E implements I {S f; K M} and
U m(U x) when P {return t;} ∈ M, and the result follows by MType-C1.

• Case MBody2: Then TT (C) = class C extends E implements I {S f; K M} and
U m(U x) when P {return t;} ∈ M, and the result follows by MType-C1.

• Case MBody3: Then TT (C) = class C extends E implements I {S f; K M} and m is
not defined in M and mbody(m,C,D) = mbody(m,E,D). By induction there exist T and T such
that mtype(m,E) = T→T, and the result follows by MType-C2.

�

13

Lemma 6.8 If mbody(m,C,D) = (x, t) and mtype(m,C) = T→T, then there exists a class D and a
type S such that TT ` C<:D and TT ` S<:T and x:T,this:D ` t : S.
Proof By induction on the depth of the derivation of mbody(m,C,D) = (x, t). Case analysis of the
last rule in the derivation.

• Case MBody1: Then t = ti and TT (C) = class C extends E implements I {S f; K M}
and U m(U x) when P {return t;} ∈ M. Since mtype(m,C) = T→T, by MType-C1 we have
that U = T and U = T. By T-Class we have M OK in C, so by T-Meth we have x:T,this:C `
t : S and TT ` S<:T. Finally, by S-Ref we have TT ` C<:C.

• Case MBody2: Then TT (C) = class C extends E implements I {S f; K M} and
U m(U x) when P {return t;} ∈ M and mbody(m,C,D) = mbody(m,E,D). Since mtype(m,C)
= T→T, by MType-C1 we have that U = T and U = T. By Lemma 6.7 there exist T0 and T0

such that mtype(m,E) = T0→T0. By S-CExt we have TT ` C<:E, so by Lemma 6.4 we have
T0 = T and T0 = T. Therefore, by induction there exists a class D and a type S such that
TT ` E<:D and TT ` S<:T and x:T,this:D ` t : S. By S-Trans we have TT ` C<:D, so the
result follows.

• Case MBody3: Then TT (C) = class C extends E implements I {S f; K M} and m is
not defined in M and mbody(m,C,D) = mbody(m,E,D). Since mtype(m,C) = T→T, by MType-C2

we have that mtype(m,E) = T→T as well. Therefore, by induction there exists a class D and a
type S such that TT ` E<:D and TT ` S<:T and x:T,this:D ` t : S. By S-Trans we have
TT ` C<:D, so the result follows.

�

Theorem 6.1 (Subject Reduction) If Γ ` t : T and t −→ s, then there exists some type S such
that Γ ` s : S and TT ` S<:T.
Proof By induction on the depth of the derivation of t −→ s. Case analysis of the last rule in
the derivation.

• Case E-ProjNew: Then t has the form (new C(v)).fi and s has the form vi and fields(C) =
T f. Since Γ ` t : T, by T-Field and T-New we have that Γ ` new C(v) : C and Γ ` vi : Si

and TT ` Si<:Ti and T = Ti, so the result follows.

• Case E-InvkNew: Then t has the form new C(v).m(u) and s has the form
[x 7→ u,this 7→ new C(v)]t0 and u = new D(. . .) and mbody(m,C,D) = (x, t0). Since
Γ ` t : T, by T-Invk we have Γ ` new C(v) : S′ and mtype(m,S′) = T→T and Γ ` u : S
and TT ` S<:T. By T-New we have that S′ = C. Therefore by Lemma 6.8 there exists a
class D and a type U such that TT ` C<:D and TT ` U<:T and x:T,this:D ` t0 : U. Then
by Lemma 6.5 we have that • ` [x 7→ u,this 7→ new C(v)]t0 : S, where TT ` S<:U. Then
by Lemma 6.6 also Γ ` [x 7→ u,this 7→ new C(v)]t0 : S. Finally, by S-Trans we have
TT ` S<:T.

• Case E-CastNew: Then t has the form (T0)(new C(v)) and s has the form new C(v)

and TT ` C<:T0. There are three subcases, depending on the last rule in the derivation of
Γ ` t : T.

– Case T-UCast: Then Γ ` new C(v) : S0 and TT ` S0<:T0 and T = T0.

14

– Case T-DCast: Then Γ ` new C(v) : S0 and TT ` T0<:S0 and T0 6= S0 and T = T0. Then
by T-New we have that S0 = C, but then TT ` T0<:C and T0 6= C, which contradicts the
fact that TT ` C<:T0 (by the assumption that the subtyping relation has no nontrivial
cycles). Therefore, T-DCast cannot be the last rule used in the derivation.

– Case T-SCast: Then Γ ` new C(v) : S0 and TT ` S0 6<:T0 and TT ` T0 6<:S0 and T = T0.
Then by T-New we have that S0 = C, but then TT ` C6<:T0, which contradicts the fact
that TT ` C<:T0. Therefore, T-SCast cannot be the last rule used in the derivation.

• Case E-Field: Then t has the form t1.f and s has the form t2.f and t1 −→ t2. Since
Γ ` t : T, by T-Field we have that f has the form fi and T has the form Ti and Γ ` t1 : C
and fields(C) = T f. By induction, there exists some type T0 such that Γ ` t2 : T0 and
TT ` T0<:C. Then by Lemma 6.1 T0 is some class D, and by Lemma 6.2 we have fields(C) ⊆
fields(D). Then by T-Field we have Γ ` t2.f : T and by S-Ref we have TT ` T<:T.

• Case E-Invk-Recv: Then t has the form s1.m(t) and s has the form s2.m(t) and s1 −→ s2.
Since Γ ` t : T, by T-Invk we have Γ ` s1 : S′ and mtype(m,S′) = T→T and Γ ` t : S and
TT ` S<:T. By induction we have Γ ` s2 : S′′ and TT ` S′′<:S′. Then by Lemma 6.4 we
have mtype(m,S′′) = T→T. Then by T-Invk we have Γ ` s2.m(t) : T and by S-Ref we have
TT ` T<:T.

• Case E-Invk-Arg: Then t has the form v.m(v,s1,s0) and s has the form v.m(v,s2,s0)

and s1 −→ s2. Since Γ ` t : T, by T-Invk we have Γ ` v : S′ and mtype(m,S′) = T→T and
v,s1,s0 = t and Γ ` t : S and TT ` S<:T. Assume that s1 is the ith element of t. By
induction we have that Γ ` s2 : S′i and TT ` S′i<:Si. Then by S-Trans also TT ` S′i<:Ti, so
by T-Invk we have Γ ` v.m(v,s2,s0) : T and by S-Ref we have TT ` T<:T.

• Case E-New-Arg: Then t has the form new C(v,s1,s0) and s has the form new C(v,s2,s0)

and s1 −→ s2. Since Γ ` t : T, by T-New we have fields(C) = T f and v,s1,s0 = t and
Γ ` t : S and TT ` S<:T and T = C. Assume that s1 is the ith element of t. By induction we
have that Γ ` s2 : S′i and TT ` S′i<:Si. Then by S-Trans also TT ` S′i<:Ti, so by T-New we
have Γ ` new C(v,s2,s0) : C and by S-Ref we have TT ` C<:C.

• Case E-Cast: Then t has the form (T0)s1 and s has the form (T0)s2 s1 −→ s2. There are
three subcases, depending on the last rule in the derivation of Γ ` t : T.

– Case T-UCast: Then Γ ` s1 : S0 and TT ` S0<:T0 and T = T0. By induction we have
Γ ` s2 : S′0 and TT ` S′0<:S0. Then by S-Trans also TT ` S′0<:T0, so by T-UCast we
have Γ ` (T0)s2 : T0 and by S-Ref we have TT ` T0<:T0.

– Case T-DCast: Then Γ ` s1 : S0 and TT ` T0<:S0 and T0 6= S0 and and T = T0. By
induction we have Γ ` s2 : S′0 and TT ` S′0<:S0. If TT ` S′0<:T0 then by T-UCast

we have Γ ` (T0)s2 : T0. Otherwise, if TT ` T0<:S
′

0 then by T-DCast we have Γ `
(T0)s2 : T0. Otherwise we have TT ` S′0 6<:T0 and TT ` T0 6<:S

′

0, so by T-SCast we have
Γ ` (T0)s2 : T0 along with the generation of a stupid warning. Finally, by S-Ref we
have TT ` T0<:T0.

– Case T-SCast: Then Γ ` s1 : S0 and TT ` S0 6<:T0 and TT ` T0 6<:S0 and a stupid

warning is generated and T = T0. By induction we have Γ ` s2 : S′0 and TT ` S′0<:S0.
If TT ` S′0<:T0 then by T-UCast we have Γ ` (T0)s2 : T0. Otherwise, if TT ` T0<:S

′

0

then by S-Trans also TT ` T0<:S0, contradicting the fact that TT ` T0 6<:S0, so it is
not possible that TT ` T0<:S

′

0. Otherwise we have TT ` S′0 6<:T0 and TT ` T0 6<:S
′

0, so by
T-SCast we have Γ ` (T0)s2 : T0. Finally, by S-Ref we have TT ` T0<:T0.

15

�

6.2 Progress

Definition 6.1 We say that a class C covers D for m via (P,P,x) if the following conditions hold:

1. TT (C) = class C · · · {· · · M}

2. S m(S x) when P {· · ·} ∈ M

3. P ∈ P

4. TT ; x:D |= P

Lemma 6.9 TT ⊇ restrict(TT, P)
Proof By Restrict restrict(TT, P) has the form (T,TT(T)), so the result follows.

�

Lemma 6.10 If TT ; x:D |=
∨
P then there is some P ∈ P such that TT ; x:D |= P.

Proof By induction on the length of P.

• Case the length of P is 0. Then P = •, so by definition
∨
P is ¬true. Since TT ; x:D |=

∨
P,

by P-Not we have TT ; x:D 6|= true. But by P-True also TT ; x:D |= true, so we have a
contradiction. Therefore, the length of P cannot be 0.

• Case the length of P is 1. Then P is some predicate P, and also
∨
P is P. Since TT ; x:D |=

∨
P,

we have TT ; x:D |= P, so the result follows.

• Case the length of P is some integer d > 1. Then P can be expressed as Q,Q where Q is non-
empty, and

∨
P can be expressed as Q ∨

∨
Q. Since TT ; x:D |=

∨
P, by P-Or1 and P-Or2

we have that either TT ; x:D |= Q or TT ; x:D |=
∨
Q. If the former, then the result follows

with P = Q. If the latter, then by induction there is some P ∈ Q such that TT ; x:D |= P. Then
also P ∈ P, so the result follows.

�

Lemma 6.11 If mpreds(m,C) = Q and P ∈ Q, then there exists a class D such that TT ` C<:D and
TT (D) = class D · · · {· · · M} and S m(S y) when P {· · ·} ∈ M and P ∈ P.
Proof By induction on the depth of the derivation of mpreds(m,C) = Q. Case analysis of the last
rule used in the derivation.

• Case MPreds1. Then Q = •, contradicting the fact that P ∈ Q, so MPreds1 cannot be the
last rule in the derivation.

• Case MPreds2. Then Q = Q1,Q2. Since P ∈ Q, there are two subcases.

– Case P ∈ Q1. By MPreds2 we have TT (C) = class C · · · {· · · M} and
S m(S y) when Q1 {· · ·} ∈ M. Finally, by S-Ref we have TT ` C<:C. Therefore the
result follows.

– Case P ∈ Q2. By MPreds2 we have TT (C) = class C extends E · · · {· · ·} and
mpreds(m,E) = Q2. By induction there exists a class D such that TT ` E<:D and TT (D)
= class D · · · {· · · M} and S m(S y) when P {· · ·} ∈ M and P ∈ P. Since TT (C) =
class C extends E · · · {· · ·}, by S-CExt we have TT ` C<:E. Then by S-Trans also
TT ` C<:D, so the result follows.

16

�

Lemma 6.12 If mformals(m,C) = x and allMethodNames(C) = m, then m ∈ m.
Proof By induction on the depth of the derivation of mformals(m,C) = x. Case analysis of the last
rule in the derivation.

• Case MFormals1. Then TT (C) = class C extends D implements I {T f; K M} and
S m(S x) when P {return t;} ∈ M. Since allMethodNames(C) = m, by MNames-Cls we
have mname(M) ⊆ m, and by MName-Cls that means m ∈ m.

• Case MFormals2. Then TT (C) = class C extends D implements I {T f; K M} and
mformals(m,D) = x. By T-Class we have that allMethodNames(D) = m0, so by induction we
have m ∈ m0. Then by MNames-Cls also m ∈ m.

�

Lemma 6.13 If TT ` C<:D and mformals(m,D) = x, then mformals(m,C) = x.
Proof By induction on the depth of the derivation of TT ` C<:D. Case analysis of the last rule in
the derivation.

• Case S-Ref. Then C = D, so the result follows.

• Case S-Trans. Then TT ` C<:T and TT ` T<:D. Then by Lemma 6.1 T is some class C′.
Then by induction we have mformals(m,C′) = x, and by induction again we have mformals(m,C)
= x.

• Case S-CExt. Then TT (C) = class C extends D implements I {T f; K M}. Since
mformals(m,D) = x, if m is not defined in M then by M-Formals2 also mformals(m,C) = x, so
the result follows. Otherwise m is defined in M, so by M-Formals1 there exists some y such
that mformals(m,C) = y. By T-Class we have allMethodNames(C) = m, so by Lemma 6.12
we have m ∈ m. Then also by T-Class we have override(m,C), so by Over-Cls we have
override(m, D, S→S, y). Finally, by T-OverCls we have that x = y, so the result follows.

�

Lemma 6.14 If mtype(m,C) = T→T, then there exists x of the same length as T such that
mformals(m,C) = x.
Proof By induction on the depth of the derivation of mtype(m,C) = T→T. Case analysis of the last
rule in the derivation.

• Case MType-C1. Then TT (C) = class C extends D implements I {T f; K M} and
S m(S x) when P {return t;} ∈ M. Then the result follows by MFormals1.

• Case MType-C2. Then TT (C) = class C extends D implements I {T f; K M} and m is
not defined in M and mtype(m,D) = T→T. By induction there exists x of the same length as T
such that mformals(m,D) = x, and the result follows by MFormals2.

�

Lemma 6.15 (Exhaustiveness) If mtype(m,C) = T→T and mformals(m,C) = x and D has the same
length as x and D ⊆ dom(TT), then there exist D, P, and P such that TT ` C<:D and D covers D for
m via (P,P,x).

17

Proof Since mtype(m,C) = T→T, by MType-C1 and MType-C2 we have that C ∈ dom(TT).
Then by T-Class we have allMethodNames(C) = m and exhaustive(m,C). By Lemma 6.3 we have
m ∈ m, so by T-Exhaust we have mpreds(m,C) = Q and x |=

∨
Q. By Lemma 6.9 we know

TT ⊇ restrict(TT,
∨
Q), and we are given that D ⊆ dom(TT), so by Valid we have TT ; x:D |=

∨
Q.

Then by Lemma 6.10 there is some P ∈ Q such that TT ; x:D |= P. Then by Lemma 6.11 there exists
a class D such that TT ` C<:D and TT (D) = class D · · · {· · · M} and S m(S y) when P {· · ·} ∈
M and P ∈ P. Then by MFormals1 we have mformals(m,D) = y, and by Lemma 6.13 we have x =
y. Finally, by Definition 6.1 we have shown that D covers D for m via (P,P,x).

�

Lemma 6.16 TT ′; Γ |= P ⇒ P

Proof By definition of ⇒ we must prove that TT ′; Γ |= ¬P ∨ P. We have two subcases.

• Case TT ′; Γ |= P. Then the result follows by P-Or2.

• Case TT ′; Γ 6|= P. Then by P-Not also TT ′; Γ |= ¬P, and the result follows by P-Or1.

�

Lemma 6.17 If TT ′; Γ |= P ⇒ Q and TT ′; Γ |= Q ⇒ R, then TT ′; Γ |= P ⇒ R.
Proof By definition of ⇒ we have TT ′; Γ |= ¬P ∨ Q and TT ′; Γ |= ¬Q ∨ R, and we must prove that
TT ′; Γ |= ¬P ∨ R. Since TT ′; Γ |= ¬P ∨ Q, by P-Or1 and P-Or2 we have two subcases.

• Case TT ′; Γ |= ¬P. Then by P-Or1 also TT ′; Γ |= ¬P ∨ R.

• Case TT ′; Γ |= Q. Since TT ′; Γ |= ¬Q ∨ R, by P-Or1 and P-Or2 we have two subcases.

– Case TT ′; Γ |= ¬Q. Then by P-Not also TT ′; Γ 6|= Q, so we have a contradiction.

– Case TT ′; Γ |= R. Then by P-Or2 also TT ′; Γ |= ¬P ∨ R.

�

Lemma 6.18 If P�xQ and Q�xR, then P�xR.
Proof By MoreSpecific we have x |= P⇒Q and x |= Q⇒R. Then by Valid we have that for all
TT ′ ⊇ restrict(TT, P), for all D ⊆ dom(TT ′) of the same length as x, TT ′; x:D |= P⇒Q. Similarly,
for all TT ′ ⊇ restrict(TT, P), for all D ⊆ dom(TT ′) of the same length as x, TT ′; x:D |= Q⇒R.
Consider some TT ′ ⊇ restrict(TT, P) and D ⊆ dom(TT ′) of the same length as x. So we have
TT ′; x:D |= P⇒Q and TT ′; x:D |= Q⇒R. Then by Lemma 6.17 also TT ′; x:D |= P⇒R. Therefore
we have shown that for all TT ′ ⊇ restrict(TT, P), for all D ⊆ dom(TT ′) of the same length as x,
TT ′; x:D |= P⇒R, so by Valid we have x |= P⇒R. Finally, the result follows by MoreSpecific.

�

Lemma 6.19 (Unambiguity) If D ⊆ dom(TT) and D covers D for m via (P,P,x) then there exists Q
∈ P such that TT ; x:D |= Q and overridesIfApplicable(Q,P,x,D).
Proof By Definition 6.1 we have TT (D) = class D · · · {· · · M} and S m(S x) when P {· · ·} ∈ M

and P ∈ P and TT ; x:D |= P. We prove this lemma by induction on the number of predicates P ′ ∈
P such that TT ; x:D |= P′ and P6≺xP

′.

• Case there are zero such predicates. By Lemma 6.16 we have TT ′; Γ |= P ⇒ P for all TT ′

and Γ. Then by Valid we have x |= P ⇒ P, so by MoreSpecific also P�xP. Therefore by
definition of ≺ also P6≺xP. Since TT ; x:D |= P, we have found a Q, namely P itself, such that
TT ; x:D |= Q and P6≺xQ. Therefore we have a contradiction.

18

• Case there is one such predicate. As shown above P is such a predicate, so it must be
the only one. Therefore, for each other predicate P′ ∈ P, it must be the case that either
TT ; x:D 6|= P′ or P≺xP

′. Therefore by OverApp we have overridesIfApplicable(P,P′,x,D).
Since P

.
=P, by OverApp also overridesIfApplicable(P,P,x,D). So we have shown that

overridesIfApplicable(P,P,x,D). Therefore the result follows with P = Q.

• Case there are i > 1 such predicates. Then there exists a predicate R such that R6
.
=P and TT ;

x:D |= R and P6≺xR. By definition of ≺ we have that either P6�xR or R�xP, so there are a few
subcases.

– Case P�xR and R�xP. By T-Class and T-Meth we have unambiguous(P,R,x,P). There-
fore by Unamb we have P

.
=R. We saw above that R6

.
=P, so we have a contradiction.

– Case P6�xR. By T-Class and T-Meth we have unambiguous(P,R,x,P). Therefore by
Unamb we have Q = [Q | Q ∈ P and Q �x P and Q �x R] and x |= (P∧R)⇒

∨
Q. By

Lemma 6.9 we have TT ⊇ restrict(TT, P), so by Valid we have TT ; x:D |= (P∧R)⇒
∨
Q.

By the definition of ⇒ we have TT ; x:D |= ¬(P∧R)∨
∨
Q. By P-Or1 and P-Or2 this

means that either TT ; x:D |= ¬(P∧R) or TT ; x:D |=
∨
Q. If the former, then by P-Not

we have TT ; x:D 6|= P∧R, and by P-And this means that either TT ; x:D 6|= P or TT ;
x:D 6|= R. But we’ve already shown that TT ; x:D |= P and TT ; x:D |= R, so we have a
contradiction.

Therefore, it must be the case that TT ; x:D |=
∨
Q, and by Lemma 6.10 there is some

P0 ∈ Q such that TT ; x:D |= P0. By Definition 6.1 we have D covers D for m via (P0,P,x),
so the result follows by induction if we can show that the number j of predicates P ′ ∈ P

such that TT ; x:D |= P′ and P0 6≺xP
′ is smaller than i. First we show that j ≤ i. Consider

some P′ ∈ P such that TT ; x:D |= P′ and P0 6≺xP
′. Then we will show that also P6≺xP

′.
Suppose not, so P≺xP

′. Therefore P�xP
′ and P′ 6�xP. Since P0 ∈ Q, we have P0�xP, and

since P�xP
′, by Lemma 6.18 we have P0�xP

′. Also, since P0�xP and P′ 6�xP then we
have P′ 6�xP0 (since if P′�xP0 then by Lemma 6.18 also P′≺xP, which is a contradiction).
Therefore we have P0�xP

′ and P′ 6�xP0, so P0≺xP
′, and we have a contradiction.

As shown above, every predicate of the appropriate form for P0 is also of the appropriate
form for P. To end the proof, we show that converse does not hold. We saw earlier that
TT ; x:D |= P, and as argued in the first case of the proof, we have P6≺xP. Therefore, P
is one of the predicates of the appropriate form for P. We’re done if we can show that
P0≺xP, since this means that P is not one of the predicates of the appropriate form for P0.
Since P ∈ Q, we have P0�xP and P0�xR. We assumed above that P 6�xR, so also P6�xP0

(since if P�xP0 then by Lemma 6.18 also P≺xR, which is a contradiction). Therefore we
have shown that P0�xP and P6�xP0, so P0≺xP.

�

Lemma 6.20 If C ∈ dom(TT) and TT ` C<:D and D ⊆ dom(TT) and D covers D for m via (P,P,x),
then there exists t such that mbody(m,C,D) = (x, t).
Proof We prove this lemma by induction on the number of classes E such that TT ` C<:E and
TT ` E<:D.

• Case there are zero such classes. By S-Ref we have TT ` C<:C, and we are given TT ` C<:D,
so C is such a class and we have a contradiction.

• Case there is one such class. Since by S-Ref we have TT ` C<:C and TT ` D<:D, and since
we are given TT ` C<:D, we know that both C and D are such classes. Therefore it must be

19

the case that C = D. Since D covers D for m via (P,P,x), by Definition 6.1 we have TT (C) =
class C · · · {· · · M} and S m(S x) when P {· · ·} ∈ M and P ∈ P and TT ; x:D |= P. Also,
by Lemma 6.19 there exists Q ∈ P such that TT ; x:D |= Q and overridesIfApplicable(Q,P,x,D).
Then the result follows by MBody1.

• Case there are i > 1 such classes. Then there is some E such that E 6= C and TT ` C<:E and
TT ` E<:D. Therefore also C 6= D, or else we would have a nontrivial cycle in the subtyping
relation. There are two subcases.

– Case there exist P0 and P0 such that C covers D for m via (P0,P0,x). Then by Definition 6.1
we have TT (C) = class C · · · {· · · M} and S m(S x) when P0 {· · ·} ∈ M and P0 ∈ P0

and TT ; x:D |= P0. Also, by Lemma 6.19 there exists Q ∈ P0 such that TT ; x:D |= Q

and overridesIfApplicable(Q,P0,x,D). Then the result follows by MBody1.

– Case there does not exist P0 and P0 such that C covers D for m via (P0,P0,x). Since C ∈
dom(TT), we have that TT (C) = class C extends C0 · · · {· · · M}. Since C 6= D and
TT ` C<:D, it must be the case that TT ` C0<:D as well. Further, there are strictly
fewer than i classes E such that TT ` C0<:E and TT ` E<:D. Therefore by induction
there exists t such that mbody(m,C0,D) = (x, t). Since there does not exist P0 and P0

such that C covers D for m via (P0,P0,x), by Definition 6.1, there are several subcases.

∗ C 6∈ dom(TT). But we are given that C ∈ dom(TT), so we have a contradiction.

∗ TT (C) = class C extends C0 · · · {· · · M} but m is not defined in M. Then the
result follows by MBody3.

∗ TT (C) = class C extends C0 · · · {· · · M} and S m(S x) when P {· · ·} ∈ M, but
there is no Pi such that TT ; x:D |= Pi. Then the result follows by MBody2.

�

Theorem 6.2 (Progress) If • ` t : T, then either t is a value, t contains a subexpression of the
form (U)(new C(u)) where TT ` C6<:U, or there exists some term s such that t −→ s.
Proof By induction on the depth of the derivation of • ` t : T. Case analysis of the last rule in
the derivation.

• Case T-Var: Then t has the form x and x:T ∈ •, which is a contradiction. Therefore, T-Var

cannot be the last rule in the derivation.

• Case T-Field: Then t has the form t0.fi and T has the form Ti and • ` t0 : C0 and fields(C0)
= T f. By induction, there are three subcases.

– Case t0 is a value. Then t0 has the form new D0(v). Since • ` t0 : C0, by T-New D0 is
C0 and v has the same length as f. Then by E-ProjNew we have t0.fi −→ vi.

– Case t0 contains a subexpression of the form (U)(new C(u)) where TT ` C6<:U. Then
also t contains a subexpression of the form (U)(new C(u)) where TT ` C6<:U.

– Case there exists some term s0 such that t0 −→ s0. Then by E-Field we have t0.fi −→
s0.fi.

• Case T-Invk: Then t has the form t0.m(t) and • ` t0 : T0 and mtype(m,T0) = T→T and
• ` t : S and TT ` S<:T. By induction, there are three subcases.

– Case t0 is a value. Then t0 has the form new C0(v). Since • ` t0 : T0, by T-New T0 is
C0. By induction, there are three subcases.

20

∗ Case all terms in t are values. Then t has the form new D(. . .), and by the sanity
conditions we know that D ⊆ dom(TT). Since mtype(m,C0) = T→T, by Lemma 6.14
there exists x of the same length as T such that mformals(m,C0) = x. Therefore, x
also has the same length as D. Then by Lemma 6.15 there exist D, P, and P such
that TT ` C0<:D and D covers D for m via (P,P,x). Also since mtype(m,C0) = T→T, by
MType-C1 and MType-C2 we have C0 ∈ dom(TT). Then by Lemma 6.20 there
exists a term s0 such that mbody(m,C0,D) = (x, s0). Then by E-InvkNew we have
t0.m(t) −→ [x 7→ t, this 7→ new C0(v)]s0.

∗ Case some term in t contains a subexpression of the form (U)(new C(u)) where
TT ` C6<:U. Then also t contains a subexpression of the form (U)(new C(u)) where
TT ` C6<:U.

∗ Case no term in t contains a subexpression of the form (U)(new C(u)) where
TT ` C6<:U. Further, there is some ti ∈ t for which there exists a term si such
that ti −→ si. Further, all tj such that 1 ≤ j < i are values. Then by E-Invk-Arg

we have t0.m(t) −→ t0.m(t1,. . .,ti−1,si,ti+1,. . .,tn).

– Case t0 contains a subexpression of the form (U)(new C(u)) where TT ` C6<:U. Then
also t contains a subexpression of the form (U)(new C(u)) where TT ` C6<:U.

– Case there exists some term s0 such that t0 −→ s0. Then by E-Invk-Recv we have
t0.m(t) −→ s0.m(t).

• Case T-New: Then t has the form new C0(t) and T is C0 and fields(C0) = T f and • ` t : S
and TT ` S<:T. By induction, there are three subcases.

– Case all terms in t are values. Then also t is a value.

– Case some term in t contains a subexpression of the form (U)(new C(u)) where
TT ` C6<:U. Then also t contains a subexpression of the form (U)(new C(u)) where
TT ` C6<:U.

– Case no term in t contains a subexpression of the form (U)(new C(u)) where TT ` C6<:U.
Further, there is some ti ∈ t for which there exists a term si such that ti −→ si. Further,
all tj such that 1 ≤ j < i are values. Then by E-New-Arg we have new C0(t) −→
new C0(t1,. . .,ti−1,si,ti+1,. . .,tn).

• Case T-UCast: Then t has the form (T)t0 and • ` t0 : S and TT ` S<:T. By induction,
there are three subcases.

– Case t0 is a value. Then t0 has the form new C0(v) and by T-New S is C0. Then by
E-CastNew we have (T)t0 −→ t0.

– Case t0 contains a subexpression of the form (U)(new C(u)) where TT ` C6<:U. Then
also t contains a subexpression of the form (U)(new C(u)) where TT ` C6<:U.

– Case there exists some term s0 such that t0 −→ s0. Then by E-Cast we have (T)t0 −→
(T)s0.

• Case T-DCast: Then t has the form (T)t0 and • ` t0 : S and TT ` T<:S and T 6= S. By
induction, there are three subcases.

– Case t0 is a value. Then t0 has the form new C0(v) and by T-New S is C0. If TT ` C0<:T

then by E-CastNew we have (T)t0 −→ t0. Otherwise TT ` C0 6<:T, so t contains a
subexpression of the form (U)(new C(u)) where TT ` C6<:U.

21

– Case t0 contains a subexpression of the form (U)(new C(u)) where TT ` C6<:U. Then
also t contains a subexpression of the form (U)(new C(u)) where TT ` C6<:U.

– Case there exists some term s0 such that t0 −→ s0. Then by E-Cast we have (T)t0 −→
(T)s0.

• Case T-SCast: Then t has the form (T)t0 and • ` t0 : S and TT ` S6<:T and TT ` T 6<:S
and a stupid warning is generated. By induction, there are three subcases.

– Case t0 is a value. Then t0 has the form new C0(v) and by T-New S is C0. Then t

contains a subexpression of the form (U)(new C(u)) where TT ` C6<:U.

– Case t0 contains a subexpression of the form (U)(new C(u)) where TT ` C6<:U. Then
also t contains a subexpression of the form (U)(new C(u)) where TT ` C6<:U.

– Case there exists some term s0 such that t0 −→ s0. Then by E-Cast we have (T)t0 −→
(T)s0.

�

References

[1] K. Bruce, L. Cardelli, G. Castagna, T. H. O. Group, G. T. Leavens, and B. Pierce. On binary
methods. Theory and Practice of Object Systems, 1(3):217–238, 1995.

[2] G. Castagna. Covariance and contravariance: conflict without a cause. ACM Trans. Program.

Lang. Syst., 17(3):431–447, 1995.

[3] C. Chambers. Object-oriented multi-methods in Cecil. In O. L. Madsen, editor, Proceedings

ECOOP ’92, LNCS 615, pages 33–56. Springer-Verlag, June 1992.

[4] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal core calculus for Java
and GJ. ACM Transactions on Programming Languages and Systems, 23(3):396–450, May 2001.

[5] T. Millstein. Practical predicate dispatch. In OOPSLA 2004 Conference on Object-Oriented

Programming, Systems, Languages, and Applications, Oct. 2004.

22

