
UNIVERSITY OF CALIFORNIA

Los Angeles

Transparent Fault-Tolerant Network Services Using Off-the-Shelf Components

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Computer Science

by

Navid Aghdaie

2005

 Copyright by

Navid Aghdaie

2005

To my parents and sister.

iii

Table of Contents

Chapter One - Introduction ... 1

1.1. Network Services .. 3

1.2. Service Availability and Reliability ... 7

1.3. Client-Transparent Fault-Tolerance ... 9

1.4. Organization of this Work .. 12

Chapter Two - Related Work .. 14

2.1. Availability Solutions ... 15

2.1.1. DNS Based Load Balancing .. 15

2.1.2. Centralized Routers and Directors ... 16

2.1.3. Application-Level Redirect .. 19

2.2. Availability and Reliability Solutions .. 20

2.2.1. Client-Aware Solutions .. 21

2.2.2. Client-Transparent Server Fault Tolerance 25

2.3. Replicated Back-end Servers .. 31

2.4. Fault-Tolerant Video Conferencing .. 32

2.5. Summary ... 34

Chapter Three - Constructing Client-Transparent Reliable

Network Services .. 36

3.1. Requirements for Adding Client-Transparent Fault Tolerance to

Network Service ... 36

iv

3.2. Fault Model and Assumptions .. 38

3.3. Service State ... 40

3.3.1. Service Identity .. 40

3.3.2. Connection State .. 41

3.3.3. Application State .. 42

3.4. Approaches for State Preservation ... 44

3.4.1. Active Replication ... 44

3.4.2. Message Logging ... 45

3.4.3. Checkpointing .. 46

3.5. Techniques for Handling Non-determinism 47

3.6. Error Detection ... 48

3.7. Service Failover .. 50

3.8. Restoration of Fault-Tolerant Service After Failover 51

3.9. Summary ... 52

Chapter Four - CoRAL: A Transparent Fault-Tolerant Web

Service ... 55

4.1. Assumptions ... 56

4.2. System Architecture ... 57

4.4. Implementation ... 61

4.4.1. A Proxy-Based User-Level Implementation 63

4.4.2. An Implementation Based on Kernel-Level and Web Server

Modifications .. 69

4.4.2.1. Kernel Modifications .. 71

v

4.4.2.2. Modifications to the Server Application 74

4.4.2.2.1. Worker Processes 74

4.4.2.2.2. Mux/Demux Processes 76

4.4.3. Converting Process Crashes to Host Crashes 78

4.4.4. Failover .. 80

4.4.5. Restoration of Fault-Tolerant Service After Failover 83

4.5. Optimizations .. 85

4.5.1. Dual-Role Server Hosts ... 86

4.5.2. Efficient Handling of Static, Deterministic Content 88

4.6. Performance Evaluation ... 91

4.6.1. Experiment Setup ... 92

4.6.2. Failure-Free Performance .. 94

4.6.2.1. Application Reply Types and System Behavior

... 95

4.6.2.2. Dynamically Generated Replies 96

4.6.2.2.1. Latency Overhead with Dynamic Replies

.. 98

4.6.2.2.2. Processing Overhead with Dynamic

Replies .. 98

4.6.2.2.3. Throughput with Dynamic Replies 101

4.6.2.2.4. Evaluation of the Dual-Role Servers

Optimization ... 103

4.6.2.3. Replies Based on Static Content 104

vi

4.6.2.3.1. Latency Overhead for Static Content

... 105

4.6.2.3.2. Throughput with Static Content 106

4.6.2.3.3. Processing Overhead with Static Content

.. 109

4.6.2.3.4. Optimization for Deterministic or Static

Content ... 110

4.6.3. Service Failover and Recovery .. 114

4.6.4. Implementation Comparison: User-Level versus Kernel

Support .. 119

4.6.5. Impact of Processor and Network Speed on System

Performance .. 124

4.6.5.1. Latency ... 125

4.6.5.2. Throughput ... 126

4.6.6. Performance Under Overload .. 126

4.7. Fault Tolerance Validation Using Fault Injection 129

4.7.1. Register Fault Injections .. 131

4.7.2. Memory Fault Injection ... 133

4.8. Summary ... 135

Chapter Five - Transparent Fault-Tolerant Video Conferencing

... 137

5.1. Introduction to Off-the-Shelf Video Conferencing 138

5.2. Adding Fault Tolerance to a Video Conferencing Server 139

vii

5.2.1. Unreliable Communication .. 141

5.2.2. Application State and Non-determinism 145

5.3. Performance Evaluation ... 146

5.3.1. Processing Overhead .. 147

5.3.2. Failover Latency .. 149

5.3.3. Impact of Heartbeat Rate and UDP Configuration Choice

... 151

5.3.4. TCP Replication and Application Synchronization 152

5.4. Fault Tolerance Validation Using Fault Injection 153

5.5. Summary ... 156

Chapter Six - Summary and Conclusions ... 157

Bibliography .. 160

viii

List of Figures

1.1 Typical Organization of Network Service Elements 4

1.2 Three-tier Web Service Architecture ... 5

1.3 Multi-tier Service Architecture .. 6

4.1 Message paths for a standard and a replicated server 58

4.2 CoRAL duplex system structure .. 66

4.3 CoRAL implementation with kernel and web server modules 70

4.4 Server module structure ... 75

4.5 CoRAL Failover .. 81

4.6 CPU cycles used for processing dynamic requests 87

4.7 Average latency for dynamic replies ... 97

4.8 Used CPU cycles for dynamic replies ... 99

4.9 System throughput for dynamic replies ... 101

4.10 Peak system throughput with dual-role optimization 104

4.11 Average latency for static replies .. 105

4.12 System throughput with static replies .. 108

4.13 CPU cycle overhead: full duplex versus optimization for static

content .. 110

4.14 Reply latency with static and sync-static optimizations 112

4.15 Latency distribution ... 112

4.16 Peak system throughput with static and sync-static optimizations

ix

... 114

4.17 System throughput during a fault .. 115

4.18 System unavailability due to a fault .. 116

4.19 Comparison of client measured request times for user-level

implementation ... 120

4.20 Breakdown of duplex mode request times .. 121

4.21 Duplex mode response times for different HTTP message sizes

... 122

4.22 Standard server response times for different HTTP message sizes

... 122

4.23 Latency on Fast Hosts .. 125

4.24 Throughput on Fast Hosts .. 127

4.25 Performance degradation due to overload ... 128

5.1 Video Conferencing with a Multi-Conferencing Unit 138

5.2 Direct UDP Communication Between Client and Primary 142

5.3 UDP communication Using IP Multicast or A Multicast Node

... 144

5.4 CPU Cycle Overhead ... 148

5.5 Video Conferencing Failover Interruption Time 150

5.6 CPU Overhead for Different UDP Configuration 151

x

List of Tables

4.1 Recovery from server failures ... 61

4.2 Recovery from communication errors ... 62

4.3 Breakdown of used CPU cycles .. 109

4.4 Breakdown of failover latency .. 117

4.5 Breakdown of server integration latency ... 118

4.6 Average and median request times for user-level implementation

... 120

4.7 Breakdown of average and median response times for duplex mode

.. 121

4.8 Average and median request times for different HTTP message

sizes .. 123

4.9 Comparison of user-level and kernel implementations 124

4.10 CoRAL Register Fault Injection .. 132

4.11 CoRAL Memory Fault Injection ... 134

5.1 Video Conferencing Register Fault Injection 154

xi

ACKNOWLEDGMENTS

I would not have reached my goals without the help and support of many people.

I wish to express my gratitude to all of them.

I would like to especially thank my advisor, Professor Yuval Tamir. His vast

knowledge and dedication to research helped me greatly in improving the quality of

my research, presentations, and writing skills. I know my career will benefit greatly

from the knowledge that I have gained from him. I am grateful for him guiding me

through the correct path.

I enjoyed the discussions and group meetings with my colleagues at the UCLA

Concurrent System Lab, Ming Li, Israel Hsu, Wenchao Yang, Edward Young, Daniel

Goldberg, Yiguo Wu, Michael Le, Donald Lam, Benjamin Liao, Kahmyong Moon,

and Yoshio Turner. I would like to thank them for their camaraderie. Their work has

greatly benefited my research and knowledge. I would also like to thank Verra

Morgan for her help and administrative support at the Computer Science

Department’s Graduate Student Affairs Office.

I was lucky to have gained some industry experience during this process. I

learned a great deal about industry and the Web during my time at LiquidMarket /

NBCi. I would like to especially thank Dr. Francois Rouaix who served as a great

mentor, Gauthier Groult who gave me the opportunity, and my friends and colleagues

in the Research and Development Group who helped me expand my practical

knowledge.

My family and friends have been instrumental in my success. I thank my

cousins, aunts, uncles, and grandparents (some now in absence), who have all been

xii

very supportive throughout the years. I also thank my college friends and roommates

who made my time at UCLA so enjoyable and provided me with some much needed

distractions. The same goes to my friends from high school who have always

believed in me.

Finally, I would like to thank those closest to me. My parents and sister Negin,

for their unconditional love, support, and encouragement, my new brother-in-law

Greg, and my Sara, whose strong support and smiles helped me get to the finish line.

xiii

VITA

1976 Born in Glasgow, Scotland

1997 B.S. (Hon) Computer Science and Engineering
University of California, Los Angeles
Los Angeles, CA

1998-1999 Teaching Assistant
University of California, Los Angeles
Los Angeles, CA

1999 M.S. Computer Science
University of California, Los Angeles
Los Angeles, CA

1999-2001 Software Engineer
LiquidMarket Inc. / NBC Internet
Los Angeles, CA

PUBLICATIONS AND PRESENTATIONS

1. N. Aghdaie and Y. Tamir, ‘‘Efficient Client-Transparent Fault Tolerance for
Video Conferencing,’’ Proceedings of the 3rd IASTED International Conference
on Communications and Computer Networks, Marina del Rey, CA (October
2005).

2. N. Aghdaie and Y. Tamir, ‘‘Fast Transparent Failover for Reliable Web Ser-
vice,’’ Proceedings of the 15th IASTED International Conference on Parallel
and Distributed Computing and Systems, Marina del Rey, CA, pp. 757-762
(November 2003).

3. N. Aghdaie and Y. Tamir, ‘‘Performance Optimizations for Transparent Fault-
Tolerant Web Service,’’ Proceedings of 2003 IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing, Victoria, BC, Canada,

xiv

pp. 29-32 (August 2003).

4. N. Aghdaie and Y. Tamir, ‘‘Implementation and Evaluation of Transparent
Fault-Tolerant Web Service with Kernel-Level Support,’’ Proceedings of the The
11th International Conference on Computer Communications and Networks,
Miami, Florida, pp. 63-68 (October 2002).

5. N. Aghdaie and Y. Tamir, ‘‘Client-Transparent Fault-Tolerant Web Service,’’
Proceedings of the 20th IEEE International Performance, Computing, and Com-
munications Conference, Phoenix, Arizona, pp. 209-216 (April 2001).

xv

ABSTRACT OF THE DISSERTATION

Transparent Fault-Tolerant Network Services Using Off-the-Shelf Components

by

Navid Aghdaie

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2005

Professor Yuval Tamir, Chair

The growth of the Internet has led to the development of critical network

services where erroneous processing or outages are unacceptable. The availability

and reliability of services such as online banking, stock trading, reservation

processing, and online shopping, have become increasingly important as their

popularity grows. Downtime and failures lead to unsatisfied customers and translate

directly into lost revenue for the service providers.

Fault-tolerance techniques use redundant components and/or redundant

processing to ensure continued correct operation despite component failures. Most

existing fault-tolerance solutions for network services do not provide fault-tolerance

for active connections at failure time, expect servers to be deterministic, or require

changes to the clients. These limitations are unacceptable for many current and future

network service applications. We propose a methodology for providing fault-

tolerance without the limitations mentioned above. Our solution, based on a standby

backup approach, is transparent to the clients and requires minimal changes to the

server OS and application.

We have used our methodology to add fault-tolerance features to two popular

xvi

types of network services — web service and video conferencing. Off-the-shelf

hardware and software components were used as the basis for both implementations.

Modifications to the OS network stack using Linux kernel modules provide fault-

tolerance at the connection level. At the application level, modifications to the web

server and multi-conferencing unit, respectively, provide application-level

synchronization and allow handling of non-deterministic server behavior. The

associated issues, challenges, and tradeoffs of our methodology are presented in this

work. The evaluation of our prototype implementations shows that client-transparent

fault-tolerance can be achieved with relatively low overheads.

xvii

Chapter One

Introduction

The increase in accessibility of the Internet to the masses and recent

advancements in technologies such as broadband and wireless communication has

led to the development of a growing number of network applications and services.

Online banking, stock market transactions, airline reservation processing, retail

shopping, tax payments, and text messaging are just a few examples of services

now available over the Web. These services are becoming increasingly popular

and adapted into our culture and everyday lives. As the growth and adaptability of

these services continues to accelerate, users will become increasingly dependent

and expect online services to be reliable and always available. Hence, an increase

in the availability and reliability of a service will translate directly into increased

customer satisfaction and profits for the service provider.

This expected trend of increased demand for highly available and reliable

network services is consistent with the history of other ‘‘utilities’’ such as

telephony systems. At first, users are ecstatic to gain access to the service.

Failures and downtimes are mere inconveniences to be dealt with. As the

technology matures however, the users expectation of reliability grows. Hence,

large efforts were placed into making the telephony systems more reliable [Keis64,

Ketc65]. The same can be expected from network services. Users are already

becoming intolerant of outages and errors once common at the Web’s infancy. In

order to meet these increased expectations, extensive use of fault tolerance will be

required. Since the competition is often so easily accessible — only a click away

1

— it can be argued that the motivation for building highly reliable network services

is in fact greater than other ‘‘utilities.’’

High availability and reliability has been the focus of a significant amount of

research and has led to development of some products. However, there are several

drawbacks that are prevalent in much of the existing solutions. Many

solutions [Ande96, Andr96, Dias96, Cisc99a, Cisc99b, Inte00, RND 1, Aver00,

Best98] focus on increasing only the availability of a service and not its reliability.

Redundancy is used to provide service to new clients that arrive after a fault.

However, the service state for active clients is not preserved and is lost if a fault

occurs.

Existing solutions that do increase reliability and recover active connections

often require changes to the clients [Snoe01, Frol00]. Because of the large number

of already deployed clients without reliability features (e.g, web browsers), and the

general tendency for the clients to be generic and not under the control of the

service provider, it is beneficial for reliability solutions to be client-transparent.

No client knowledge regarding replication or reliability features should be

required.

In this work, we present a methodology for increasing the reliability of

network services in a manner that is transparent to clients. We demonstrate the

reliability enhancement of two prototype off-the-shelf applications based on our

methodology and investigate the associated trade offs involved when building such

systems.

2

1.1. Network Services

Network services are potentially composed of many different elements which

can be organized in several alternative ways. The architecture of the service

influences the way fault-tolerance and reliability features for the service are

implemented. Hence, it is important to begin with a high level understanding of

widely adopted architectures commonly used by network service providers.

In its simplest form a network service uses the client-server paradigm. The

client is the user of the service, and the server provides the requested service. The

communication between the two typically uses a request-reply protocol. A user

establishes a connection to a server and sends a request. The server receives the

request, processes it, generates an appropriate reply, and sends the reply back to the

client.

For Internet services, client devices are diverse (e.g., PCs, mobile phones,

etc.) and typically operate independently of the service. The client application is

also usually developed independently of the service, and tends to be general

purpose applications that can access many different services. At this time, the most

common client application used to access network services is a web browser.

Servers receive client requests, process them, and generate replies. Hence,

most of the processing and data storage required by the service occur on the server.

The server is typically controlled by the service provider and a single server may

simultaneously provide service for many clients.

Although a wide variety of communication protocols are possible, the

predominant protocols used on the Internet are TCP/IP and HTTP. TCP provides

reliable transmission of messages using mechanisms such as sequencing and

3

retransmission. HTTP is a one-to-one request-reply protocol which requires

reliable transmission, hence, it is typically implemented on top of TCP.

Internet

Client Client Client

Router / Load-Balancer

Server Server Server Server Server

Server Room

Figure 1.1: Typical Organization of Network Service Elements

For most services, a single server host does not contain sufficient resources

(e.g., CPU cycles, memory, etc.) to provide service for a large number of clients.

Alternate resources (i.e., server hosts) must be added to the service by the service

provider in order to achieve the desired service throughput. These server-side

4

resources must be organized in a scalable architecture with key factors being high

performance, low cost, and ease of maintainability.

Figure 1.1 shows a common architecture for network services. A pool of

independent server replicas is maintained by the service provider in a single

location, commonly referred to as a ‘‘server room’’. Each server is a replica in the

sense that it can provide the same service. Distributed storage or data replication

schemes are used to ensure that each server replica can access the same identical

data. Load-balancing techniques are typically used to distribute the client requests

amongst server replicas. Hence, the server pool will be capable of handling a

greater number of client requests, increasing the service’s throughput and

availability.

Client Web Server Back-end

Request Request

ReplyReply

Figure 1.2: Three-tier Web Service Architecture

Network services are often implemented as multiple tiers of servers

(Figure 1.2). For example, Web services are typically provided using a three-tier

architecture, consisting of: clients, front-end servers, and back-end server. The

division of a service into these components increases the ease of maintainability by

allowing for the independent and modular development of the service sub-systems:

clients for handling user interaction, front-end servers for request routing and

application protocol implementation, and the back-end servers for providing stable

storage and transaction processing.

5

Router / Load-Balancer

ClientClientClient

Internet

Proxy

Front-end Server

Application Server Database

Figure 1.3: Multi-tier Service Architecture

The three-tier model can be extended into an n-tier architecture (Figure 1.3)

where additional service elements compose new tiers of service. For example,

proxies may be used to add new functionality such as content caching [Wess99],

improved request routing, or service content adaptation for specific client

devices [Schi01]. Another common example is the use of a front-end server as a

workload distributor. Tasks associated with a single client request are identified by

the front-end server and distributed among multiple back-end servers. The

6

processing of the tasks can take place in parallel, increasing the system

performance and scalability. The results from the back-end servers are then passed

back to the front-end server, which combines them in a presentable format and

sends a single reply to the client.

1.2. Service Availability and Reliability

Service users often desire high availability, i.e., readiness for correct service,

and high reliability, i.e., continuity of correct service [Aviz04]. The failure of

service components can result in a service outage and in turn a reduction in the

overall service availability and reliability. The causes of service failures can be

divided into three types: network faults, client faults, and server faults.

1.2.1. Network Faults

Network faults encompass link and network element failures. A router may

fail or a wire may be cut. There has been extensive research on network reliability

and many fault-tolerance solutions are available. For example, redundant paths are

typically built in the networks to tolerate link failures. The network elements are

typically stateless and fault-tolerant protocols and recovery procedures have been

developed. In addition, end-to-end reliability protocols such as TCP are commonly

used to tolerate intermittent faults.

7

1.2.2. Client Faults

Client faults involve the failure of the user devices that are used to connect to

the network service, or operator errors. Since these devices are typically

maintained by the users and are not under the control of the service providers, we

do not cover them. Building reliable client devices and applications and handling

operator errors are important issues, but are beyond the scope of our research.

1.2.3. Server Faults

The focus of this work is the transparent handling and recovery from server

faults. A server may fail due to the failure of one of its key components such as

memory, hard-drive, or power supply. Server faults may also occur due to a ‘‘site

failure’’ where the entire server hosting location fails, for example due to a power

failure or terrorist attack. Geographical replication solutions [Shen00] are required

to handle this type of failure. Our work focuses on recovering from faults that

occur within a ‘‘server room.’’ We assume faults to be isolated to a single server

host and use replication techniques with servers on the same subnet. Most of the

existing techniques used for handling server faults do not provide fault tolerance

for requests being processed at the time of server failure or they require

deterministic servers. These limitations are unacceptable for many current and

future applications of the network services.

8

1.3. Client-Transparent Fault-Tolerance

The main contributions of this work are a design methodology for adding

client-transparent fault-tolerance to off-the-shelf implementations of network

services, and the evaluation and validation of prototype implementations based on

this methodology. Fault tolerance requires the ability to use alternate resources if

some of the resources being used fail. This is achieved by having replicated

(redundant) resources. The alternate resources must have a copy of up-to-date state

so that they can continue to provide correct service. As discussed in Chapter 4, the

basic approach used in this work is based on a combination of two well known

techniques: active replication and warm standby sparing. With active replication

(hot standby sparing) all processing is done by multiple replicas so that a spare

(backup) replica has up to date state and can take over processing with minimal

interruption. With warm standby sparing, the spare (backup) is active but does not

perform all the processing of the primary replica. Instead, the state of the backup is

kept nearly up to date using state updates from the primary. Neither of these

approaches is new and the ideas behind them have been used in fault tolerance

solutions for many decades [Keis64, Toy78]. The challenge is in applying these

techniques to the emerging network services field.

The main challenges for employing replication for network services

(discussed in more detail throughout this dissertation) include:

Client Transparency — Since clients may be developed independently of the

service or be already widely deployed (e.g., web browser or mobile phone), it is

essential to minimize any requirements from the clients. Standard clients without

any knowledge regarding replication or reliability features should be able to

9

communicate to and use the service using standard protocols such as TCP.

Furthermore, server failures should not cause any active client connections to fail.

At worst, the client should experience a minimal interruption to the service.

Handling of Non-Determinism — Simple replication requires the processing of

requests to be deterministic, i.e., processing of identical inputs to the system must

result in the production of identical output. While this condition typically holds for

most requests, in many practical systems it does not always hold. For example, the

service application may return the time of day or may use a random number

generator to determine the order of items on a list that it returns. Thus, the

processing of the same request on a different host or at a later time will not always

result in the generation of an identical reply. If this is possible, the service is non-

deterministic. In order to use replication with practical applications, sources of

non-determinism must be identified and the non-deterministic state changes on the

replicas must be synchronized.

Reusability — Given the complexity of the implementations of many servers, it is

advantageous if a solution can be used with existing off-the-shelf server

implementations with minimal changes.

Efficiency — A fault tolerance solution should minimize overhead during fault-

free operation and have minimal interruption time during failover and recovery

from faults. For example, duplication typically incurs an overhead of at least

100%. However, identification of critical state and replication of only those key

components can result in duplication overhead of less than 100% (as shown in

Section 4.6 and Chapter 5). Implementation choices, such as which aspects of the

scheme are implemented inside the kernel versus at user-level, can also have a

10

large impact on the efficiency of the replication solution.

We have employed our methodology in two specific examples of network

services: a web service based on the multi-tier architecture discussed above, and a

monolithic centralized video conferencing server. Web services are transaction

based. Communication takes place over reliable protocols (e.g. TCP) and it is

expected that every request will receive a reply. Hence, it is imperative for the

fault tolerance solution to not lose any information and insure that every request

receives a correct reply in spite of a fault.

Video conferencing is typically implemented using a centralized conferencing

server. The server routes and adapts the media received from each client to other

clients participating in the conference. Without fault tolerance features, the failure

of the conferencing server will result in the loss of communication between all

conference participants. The reliability requirements for video conferencing and in

general multimedia services contain both similarities and differences from those of

a web service. In both cases critical state must be preserved (via replication) to

allow for seamless recovery from failures. The difference is that multimedia

services typically contain a combination of reliable and unreliable communication.

As discussed further in Chapter 5, reliable channels (e.g. TCP) are used for control,

while unreliable streams (e.g. UDP) are used for the media. Hence, some

unreliability in communication is inherently allowed and loss of some information

(i.e., media) due to a fault is acceptable. The goal for the reliability solution is to

minimize the loss and thus reduce the interruption time noticed by the client.

11

1.4. Organization of this Work

The rest of this dissertation is organized as follows. We begin by presenting

existing availability and reliability solutions for network services and related

research work in Chapter 2. We discuss solutions aimed purely at increasing

availability, client-aware solutions, which unlike our work, have the drawback of

requiring changes to clients, and advancements in client-transparent server fault-

tolerance which have occurred concurrent to our work.

Chapter 3 presents our design methodology for adding client-transparent

fault-tolerance to off-the-shelf implementations of network services. We identify

several key characteristics of network services that should be taken into account in

designing fault tolerance schemes for these services. We show how to develop a

fault tolerance scheme as a composition of mechanisms that target or take

advantage of these characteristics, and discuss the associated issues and tradeoffs.

We have demonstrated our approach through proof-of-concept

implementations and their evaluation. Chapter 4 presents CoRAL, a client-

transparent fault-tolerant web service developed based on our design methodology.

CoRAL (Connection Replication, Application-level Logging) actively replicates

the communication connection state and uses application-level logging to preserve

user-level messages. CoRAL does not require any changes to the clients and can

handle non-deterministically generated server replies. We have measured the

performance overhead during fault-free operation (in terms of latency, throughput,

and processing cycles) and the recovery time from failures. In addition, fault

injection experiments were used to validate our fault tolerance scheme. The

design, implementation based on Linux and Apache, and performance

12

measurements and optimizations are discussed.

Chapter 5 discusses the use of our methodology for increasing the reliability

of a video conferencing server. Fault tolerance features are added to an off-the-

shelf implementation of video conferencing based on Linux and a H.323 multi-

conferencing unit application. Our implementation combines kernel modules with

small changes to the server application to efficiently preserve both the reliable

connections used for control messages and unreliable connections used for media

transfer. While the scheme is based on replication, the associated overhead is

negligible since the backup does not process the media streams. We present the

performance overhead during fault-free operation and impact of server failures on

the service provided to the clients.

13

Chapter Two

Related Work

This chapter presents previous research work and existing products related to

the increasing of availability and reliability of network services. Early work in this

area focused on increasing only the availability of services. Replications protocols

for stateless elements [Li98, Knig98] (e.g., routers) and load balancers [Aver00,

Cisc99b, Inte00] are examples.

Recent research in the area has focused on increased reliability and correct

handling of every client connection and request, as is the goal with our work.

Some solutions are client-aware and require changes to the client OS [Snoe01] or

application [Zand02]. Other research, conducted concurrently with our work,

include similar high-level requirements as our work and use client-transparent

approaches to increase service availability.

In the rest of this chapter we look at the related work, discuss the differences

in approaches, and present the advantages and drawbacks of each solution.

Section 2.1 presents standard techniques used for increasing the availability of

network services. Section 2.2 presents solutions that increase both the availability

and reliability of network services. It includes discussion of solutions that are

client-aware (requiring changes to the clients) and client-transparent fault tolerance

solutions which share our goals. Section 2.3 discusses solutions that increase the

reliability of only some elements (i.e. backend servers) of a service. Finally,

Section 2.4 concludes the Chapter by looking at fault-tolerance solutions designed

specifically for video conferencing applications.

14

2.1. Availability Solutions

In this section we describe solutions which increase the availability of

network services. The goal of this class of solutions is to ensure that in the event of

a server failure, future client requests are routed to and serviced by an alternate

server. These solutions do not have a requirement to correctly process every client

request. Hence, some client requests may be lost or not processed if a server fails.

Presented in the rest of this section are several techniques that can be used to

increase service availability. These techniques differ in the mechanisms used to

route requests to different servers.

2.1.1. DNS Based Load Balancing

The DNS mechanism used to map host names to IP addresses can be used to

route new requests to working servers. A client is typically aware of the host name

where its request is to be sent. This host name must first be resolved to an IP

address via DNS, before the client can actually send the TCP/IP packets containing

the request. It is possible for the DNS system to increase the availability of the

system by detecting faulty servers and not returning their addresses in response to

DNS queries.

If the service is composed of a pool of server replicas, Round Robin

DNS [Bris95, Katz94] can be used to increase availability by changing the host

name to IP address mapping depending on the state of the system. In standard

operation, Round Robin DNS replies with the IP address of a different replica for

each request, in a round robin fashion. As a result, client requests are load

balanced amongst the replicas. When a server failure is detected, the advertised

15

host name is no longer mapped to the IP address of the failed server host. As a

result, new client DNS requests arriving after a failure will not be given the IP

address of failed servers.

The DNS aliasing method [Bris95] is a similar alternative to Round Robin

DNS. Instead of the DNS system returning a different IP address each time, it

returns several IP addresses with each DNS query. All of the addresses correspond

to identical server replicas, and the client can choose to send its request to any of

the addresses. Similar to Round Robin DNS, increased availability can be

achieved by removing the IP address of faulty server hosts from the list of aliases.

Alternatively, the client can choose to retry its request to another one of the IP

addresses should its first try fail.

DNS schemes require the client to re-issue its service request if it does not

receive a reply for a request. In practice, clients may continue to see the old

mapping due to DNS caching at the clients and DNS servers. This reduces the

effectiveness of DNS schemes since it may take a long time for DNS caches to be

updated.

2.1.2. Centralized Routers and Directors

It is possible to get new requests to working servers by sending them first to

routers (or directors) that are aware of the state of the servers and forward requests

to working servers. Conceptually, centralized routers [Ande96, Cisc99a, Cisc99b,

Inte00] are similar to DNS based schemes. However, centralized routers are more

effective at increasing availability since every packet passes through the central

router and is subjected to the scheme. As mentioned previously, DNS schemes

16

have the drawback of having stale addresses (of failed servers) due to DNS caching

at the client or upstream DSN servers. This problem does not exist with

centralized routers since any decisions regarding failure detection or corrective

measures will be visible starting with the next arriving packet.

Centralized router implementations are typically based on TCP/IP packet

header rewriting. The service address is mapped to the router and clients send their

requests there. Hence, incoming packets from clients contain the router’s address

as the destination. Once the packets reach the router, the destination address is

changed to the address of the server that has been selected by the router. Also, the

packet source address is changed to be the router’s address, and the packet is

forwarded to the selected server. As a result, the server sees a packet as if the

router was the client. Therefore, the server uses the router’s address as the

destination in reply packets that it generates, and the reply packets are sent to the

router. The router maintains mapping tables of client and server addresses which

keeps track of corresponding client-router and router-server connections. Once

server reply packets reach the router, the mapping table is consulted and the

destination address is to the appropriate client’s address. The source address of the

packet is also changed to be the router’s address, so that to the client it appears as if

the router is the server and is sending it a reply. The router also checks the

mapping table for incoming client packets, and routes future packets from the same

client connection to the same server.

Centralized router and director schemes are typically used for load balancing

purposes. Hence, in addition to forwarding requests only to servers that are

operational, the router’s decision regarding server selection also typically includes

17

a load monitoring component. The loads of a pool of replica servers are monitored

by the router, and the client request is forwarded to the least loaded server. Other

selection algorithms such as those considering request locality (routing of identical

requests to the same server) are also used.

The central router is a single point of failure and a performance bottleneck

since all packets must travel through it. Distributed Packet Rewriting [Aver00,

Best98] is a distributed implementation of some of the functionality that is

achieved by centralized routers. It avoids having single entry point by allowing

each server to act as a router, and having servers send their outgoing messages

directly to clients. Some of the router logic is implemented in each of the replica

servers. Each client is aware of the address of only one of the replica servers in the

pool. The distribution of addresses to clients requires running a load-balancing

scheme such as Round Robin DNS on top. When a server receives a client request,

it decides whether to process it locally or route it to an alternate replica. As with

the centralized schemes, the decision can be based on the load as well as on which

of the server replicas are operational. The source address in outgoing server

packets will always contain the destination address used by the clients. Hence,

from the view point of the client requests are processed by a single server although

in actuality they may have been routed to an alternate.

18

2.1.3. Application-Level Redirect

With appropriate support in the application-level protocol, it is possible to

cause the client
���������

to redirect requests to working servers. For example, the HTTP

protocol [Bern96] contains a redirect directive that enables a server to direct the

client to try its request at an alternate location. A load balancing scheme can take

advantage of this feature by implementing a ‘‘redirector’’ node [Sury00]. Clients

initially are only aware of the redirector’s address. Hence, all client requests are

sent to the redirector. Upon the receipt of each request, the redirector chooses a

server and redirects the client to retry its request to that server. In some

implementations, the redirector can also act as a server and choose to process some

of the requests itself.

Similar to centralized routers, the application-level redirection approach can

be extended to provide enhanced availability by adding fault detection to the server

selection component of the redirector. The difference is that instead of directly

forwarding the client requests to the selected server, a redirect directive is sent

back to the client directing it to try its request at the selected server. To increase

availability, the redirector monitors the servers and does not redirect clients to any

faulty servers. Hence, faulty servers are effectively removed from service and the

overall availability of the system is increased. The redirector itself is a single point

of failure in this scheme. Therefore, there is an assumption here that the redirector

does not fail, or that it fails less frequently than the servers due to its relatively

simpler functionality.

19

2.2. Availability and Reliability Solutions

Solutions that increase reliability as well as availability have stricter

requirements than availability only solutions. The main goal of availability only

solutions is to ensure that the service is quickly restored after a failure so that new

incoming clients can be serviced. With these solutions, a server failure will often

cause some of the client requests to be lost. As a result, some clients may not

receive a reply for their request or they may receive incorrect replies.

Solutions that provide increased reliability extend the requirements and

ensure that every client request is processed correctly, and a correct reply is sent to

the client. Replication is used to preserve the relevant server state over failures,

allowing for the recovery of requests whose processing was ‘‘in-progress’’ at

failure time.

Implementations of availability and reliability solutions can be categorized

into two groups: client-aware and client-transparent. Client-aware solutions

require changes to the clients at either the OS level [Snoe01, Sult01] or application

level [Frol00, Zhao01]. Clients are active participants in the fault-tolerance scheme

and their interaction with servers may differ from the communication performed

with standard off-the-shelf servers. Client-transparent solutions do not require any

additional or different operations from clients in support of the reliability

enhancement scheme. Thus, no changes to the clients are required.

The redundant resources of a service can be co-located or be geographically

distributed. Geographically distributed solutions are resilient to failures caused by

complete destruction of a server site, such as a terrorist attack or natural disaster.

However, the performance overhead is typically larger because communication

20

between replicas must take place over the Internet. Also, on the Internet, IP

addresses are typically mapped to a static geographical location. Client packets

sent to an IP address will be routed to the same geographic location unless entities

which control the Internet backbone routers make changes to the routing tables.

Since service providers are unlikely to have access to Internet routers, client-

transparent solutions cannot cause client packets sent to the same IP address to be

routed to a different location after a server failure. Hence, client-transparent

schemes require either co-location [Aghd01, Aghd02] or a redirector [Shen00] that

is a single point of failure to the system.

We discuss the details of schemes which increase both availability and

reliability in the rest of this section.

2.2.1. Client-Aware Solutions

Several client-aware schemes [Frol00, Zhao01, Snoe01, Sult01, Zand02,

IBM 2, Evan03, Bilo03] have been proposed for increasing the availability and

reliability of network services. They typically involve the client in a fault recovery

protocol. The client is aware of server-side replication and is actively involved in

the fault-tolerance aspects of the system. In the rest of this section we discuss these

schemes in detail.

Frolund and Guerraoui [Frol00] increase reliability and recover in-progress

requests by using replication and a distributed protocol. Here, a three-tier server

structure is considered, and a protocol is developed to assure the exactly-once

execution of a client transaction. The developed protocol is similar to the two-

phase commit protocol with clients, as well as application servers (web servers)

21

and backend servers, being active participants. Replicated application servers

receive a request from the client, and first send a ‘‘prepare’’ message to the

backend. The applications servers then reach consensus on the reply from the

backend, and move to the commit phase of the protocol. Subsequently, a commit

or abort message is sent to the backend and the client. The application servers use

‘‘write-once registers’’ for synchronization and reaching consensus. The drawback

of this scheme is that the client must retransmit the request to multiple servers upon

failure detection and must be aware of the address of all instances of replicated

servers. A consensus agreement protocol is also required for the implementation of

their ‘‘write-once registers’’ which could be costly, although it allows recovery

from non fail-stop failures.

Zhao et al [Zhao01]. have described a similar infrastructure for increasing

reliability in a three-tier systems. Their implementation is based on CORBA. The

front-end application server is actively replicated. A two-phase commit protocol is

used for the transaction processing communication between the front-end

application server and the back-end database. A user-level library is added to the

clients, enabling automatic failover to a replica application server in the event of a

failure.

Snoeren et al [Snoe01] developed a scheme that migrates a faulty server’s

active client connections to a working replica. The scheme is based on the

replication of critical server state maintained for each connection (e.g., request

URL and TCP sequence number) using periodic dissemination of the state in a

weakly consistent manner, and the ability to migrate active connection end points.

Server replicas are organized into ‘‘support groups.’’ A health monitoring agent,

22

implemented at either the client or server site, detects failures and notifies each

server in a support group when a fault occurs. A server in the group is selected as

the destination host, and all active connections are migrated to that server. The

implementation is transparent to the application, however, kernel-level

modifications at all clients and servers are required for the implementation of

connection migration capabilities. Changes to the TCP state machine are

proposed [Snoe00], allowing a host to seamlessly migrate the transport layer state

of an active connection to a different host. The migration can be initiated by the

local host (e.g. server) or remotely (e.g. a client). In addition to the kernel-level

changes, a ‘‘wedge’’ or proxy on each server host relays TCP connections from the

clients to the local server. The soft-state maintained by each wedge is periodically

examined and information about each connection is sent to the the server support

group (i.e., replicas). Thus, if a server fails, a replica in its support group will have

both the transport layer state and applicable application level state, and will be able

to seamlessly take over the active connections.

Migratory TCP (M-TCP [Sult01]) is another client-aware scheme similar to

Snoeren [Snoe01]. The client can migrate the remote end-point of an active

connection from a faulty server to an alternate replica. Changes to the transport

layer protocol are used for the implementation. M-TCP is designed for increasing

system performance and lacks the synchronization of server-state that is required

for failover. Both server replicas are involved in the migration of applicable server

state and thus must be working correctly for the migration to take place. Hence,

currently M-TCP only increases service availability. However, it can be

transformed into a reliability solution with the addition of a server state

23

synchronization on top. In general, the requirement to use a specialized transport

layer protocol at the client is a major drawback. It is obviously difficult to deploy

these solutions on today’s standard clients (e.g., web browser on a PC). Therefore

it is unlikely for these solutions to be widely used, unless the required client kernel

modifications become part of a standard and widely adopted into off-the-shelf

operating systems.

Reliable network connections [Zand02] is another client-aware connection

based migration based solution. The difference with this solution is that it only

requires user-level modifications. The implementation uses wrappers around

socket calls on both the client and servers. The client is capable of detecting server

faults. If a failure is detected, the implementation migrates the connection to a

replica and retries the requests there.

HTTPR [IBM 2] is a protocol built on top of HTTP [Bern96] for the reliable

transport of messages from one application to another over the Internet, despite the

occurrence of failures on either end. HTTPR messages are encapsulated within the

payload of HTTP request and reply messages. Globally unique identifiers,

composed of client URI (Uniform Resource Identifier), server URI, and a channel

identifier, are created for each connection. HTTPR also defines a set of commands

that allows each side to send a transaction request or query the other side regarding

the status of previous transactions. If a server fails, the client can issue a ‘‘report’’

command to the (recovered) server and based on the reply from the server

determine exactly which messages have been safely received by the server. Since

HTTP requires in-order message processing, the client can safely retry the lost

messages. Also, the server can discard messages that the client reports as having

24

been safely delivered. This scheme requires both the client and server application

to implement the HTTPR protocol.

Web Services Reliability Specifications [Evan03] describes a SOAP based

protocol for exchanging SOAP messages with guaranteed delivery without

duplicates. Although SOAP messages are independent of underlying protocol, they

are typically sent on top of HTTP. This scheme requires the client to log all

outgoing messages, and the server to log all incoming messages. Every reliable

message contains a globally unique ID. Upon the receipt of a request, the server

must send a reply message (i.e. an HTTP message) back to the client. The reply

message is either an acknowledgement or a fault message. If a client receives a

fault message or if it does not receive an acknowledgement for a request within a

timeout period, it must resubmit the request using the same ID. The globally

unique ID is used to eliminate duplicate message, and sequence numbers are added

to messages by the clients to assure guaranteed message ordering.

In general, although client-aware solutions provide flexibility for fault-

tolerance solutions, unless client-aware standards such as recent industry proposals

WS-Reliability [Evan03], WS-ReliableMessaging [Bilo03], or HTTPR [IBM 2] are

widely accepted, client-transparent solutions are imperative.

2.2.2. Client-Transparent Server Fault Tolerance

In order to hide server failures from the client, the system must replicate the

critical server-side state, detect failures, recover from them, and continue operation

and communication using a consistent (same as pre-fault) address — all without

any explicit help from the client. Over the last few years, several schemes that

25

achieve client-transparent fault tolerance have been proposed [Shen00, Alvi01,

Zago03, Burt02, Luo01, Marw03, Koch03]. The common features of these

schemes are client transparent replication of server side state and recovery and

failover of active communication connections from a failed server to a working

replica. The key differences among the schemes are implementation choices,

efficiency of the scheme such as failure-free overhead and recovery time, and

assumption, e.g., deterministic versus non-deterministic server behavior. In the

rest of this section we discuss these schemes in detail.

2.2.2.1. HydraNet-FT

HydraNet-FT [Shen00] is a scheme that uses active replication to preserve

server state. Two (or more) server replicas process every TCP packet, locally

producing an up-to-date copy of the server state required to maintain

communication with the client. Client packets travel through a specialized router

(‘‘redirector’’) which sends a copy of the packet to each of the server replicas.

Each replica independently processes the packets and generates

acknowledgements. The acknowledgements generated by the backup(s) are routed

to the primary, and the primary sends the actual acknowledgement to the client

only after it has received a copy from the backup. This assures that the client

packets are not acknowledged unless all replicas have received a copy. Hence, if a

packet is lost enroute to one of the replicas, the client will not receive an

acknowledgement and will retransmit the packet.

In normal operation, only the primary sends generated reply messages to

client. Replies generated by other replicas are effectively dropped. Client

26

acknowledgement packets are broadcast to the replicas by the redirector in the

same manner as client data packets. Since all replicas see all client packets and

generate the same replies, a backup can takeover at any time should the primary

fail.

HydraNet-FT incurs a large processing overhead because all of the processing

is duplicated on each replica. In addition, due to the use of simple active

replication, the servers are required to be deterministic. An advantage of this

scheme is that unlike most other client transparent schemes, the server replicas can

be geographically distributed anywhere on the Internet. The use of redirectors that

provide multicast functionality allows for this flexibility. However, the use of

redirectors is also a weakness of this scheme since they are a single point of failure

and a bottleneck, similar to the centralized router schemes.

2.2.2.2. FT-TCP

Alvisi et al. implemented FT-TCP [Alvi01], a kernel level TCP wrapper that

transparently masks server failures from clients. FT-TCP uses the log and replay

approach. Incoming client packets are logged (redundantly stored) on an alternate

host. If the server fails, logged packets are replayed (reprocessed) to regenerate the

server state prior to the fault. Once the server state is restored, the communication

and processing of requests can resume.

FT-TCP is implemented using layers of software around the server TCP stack

and a logger on a separate processor is used to log the packets. Incoming client

packets arrive at the server and are logged to the logger. The logger sends an

acknowledgement to the server when it receives and logs the packets. The

27

incoming client packets are acknowledged (by the server to the client) only after

they have been logged. As mentioned above, if the server fails, all logged packets

are replayed from the logger to a new server. As a result, the server state is

recovered to the same state as prior to the failure and communication can continue.

The basic log and replay approach requires deterministic servers in order to

ensure that the state obtained from the reprocessing of the packets will be identical

to the state prior to the fault. The FT-TCP implementation includes some support

for non-determinism. For example, since the initial sequence number selection in

TCP is not deterministic, a recovered server may produce different initial sequence

numbers than the failed server. The FT-TCP wrapping layers handle this non-

determinism by also logging the initial sequence number and performing

operations on packet TCP sequence numbers to assure transparent failover and

recovery. FT-TCP also logs the number of bytes returned by the recv system call,

thus handling any non-determinism that might cause changes to the behavior of

that system call.

Since all packets received during the lifetime of each connection must be

replayed in case of a failure, FT-TCP can suffer from long recovery times. A

follow-up version of the FT-TCP scheme [Zago03] contains a few changes and

improvements: A backup host is used instead of the logger, more sources of non-

determinism are handled via the synchronization of system calls between the

primary and backup hosts, and the system supports operation in either cold

(logging) or hot (active replication) modes. The hot replication mode has shorter

recovery times at a cost of higher processing overhead during failure-free

operation.

28

2.2.2.3. HotSwap

HotSwap [Burt02] is an active replication scheme that uses a similar approach

to FT-TCP [Zago03]. TCP connections are replicated on a primary and backup

server. Both servers see all packets that are sent by clients. Both servers execute

identical copies of the application. In normal operation, the outgoing packets from

only one of the replicas (primary) is sent to the client. HotSwap handles non-

deterministic behavior by ensuring that applications on both servers are

synchronized at each system call. Identical system call results lead to identical

(deterministic) application execution and thus identical state on both server

replicas.

HotSwap suffers from the inherent costs of active replication as both primary

and backup must perform duplicate application processing. The synchronization of

system calls adds additional overhead, which can be significant specially in terms

of latency.

2.2.2.4. Zero-Loss Web Services

Luo and Yang’s work ‘‘Constructing Zero-Loss Web Services’’ [Luo01] uses

an alternate approach for implementing the multicast (from client to server

replicas) that is required for replication. It also handles non-determinism via a

store and forward approach. IP address aliasing is used to multicast the client

requests to both the primary and backup servers. Instead of forwarding the packets

from one host to its replica [Aghd01, Aghd02, Shen00, Zago03] Both servers read

the packets whose destination address is the service’s address. Although this

avoids the typical multicast associated overheads, such as extra messages, relying

29

on IP aliasing for the multicast of client packets is not completely reliable. This

approach does not guarantee that both primary and backup servers will have a copy

of a client packet before an acknowledgment is sent to the client. Hence, there is a

possibility that only one of the servers would receive a packet since packets may be

dropped due to buffer overflows in one of the servers, or due to physical network

conditions. Therefore, it leaves a possibility for the two servers to have different

states and thus, some failures may not be handled. Another disadvantage of IP

aliasing is that it requires the use of a shared network.

For content that is dynamic and generated non-deterministically, this work

relies on a distributor and a ‘‘store and forward’’ approach. The distributor

receives a client request and sends it to a server. The server reply is sent back to

the distributor, however the distributor does not immediately forward the reply

packets to the client. Instead, it stores the packets until the entire reply is received.

Should the server fail in the middle of sending a reply, the distributor resubmits the

request (or a partial request for the portion of the reply that wasn’t received) to a

different server. As in centralized routers [Ande96, Cisc99b] and HydraNet-

FT [Shen00] the distributor is a single point of failure and a possible performance

bottleneck.

2.2.2.5. ST-TCP and Transparent TCP Connection Failover

Some schemes use packet snooping to implement the multicast of client

packets. ST-TCP [Marw03] uses a backup which snoops client packets that are

intended for a primary server. Similar to IP aliasing, snooping does not guarantee

that both servers will receive all the packets. Packets may be lost on their way to

30

the backup or inside the backup’s kernel due to overload. In order to guarantee

identical receipt of packets by both replicas, the primary does not discard a packet

until it receives a notification from the backup that it has received the same packet.

Furthermore, to handle primary failures along with a dropped packet by the

backup, a logger is required to log all incoming packets. Packet snooping will only

work if the primary and backup servers are on a shared network. The snooping

approach leads to lower latency overheads because packets do not have to be

forwarded. However, the extra required resources (logger) make this approach a

poor choice for scenarios where price/performance is important.

Transparent TCP Connection Failover [Koch03] uses a similar scheme where

a backup server runs its network interface in promiscuous mode to receive client

packets that are sent to the primary. The need for a logger is eliminated by

forwarding backup’s outgoing (acknowledgement) packets to the primary, and

delaying the primary’s outgoing packets until a matching packet is received from

the backup. Hence, the need for additional hardware (logger) is eliminated at a

cost of increasing the latency during fault-free operation.

2.3. Replicated Back-end Servers

Many database vendors such as Oracle [Orac99a, Orac99b] offer fault tolerant

databases and back-end servers that provide high availability and reliability. These

offerings increase the availability and reliability of the back-end server only and do

not handle failures in other parts of the system. Hence, while such schemes are

necessary components of three-tier architectures, they do not solve the problems

dealing with front-end server failures — the main focus of our work.

31

The use of a fault-tolerant back-end servers in a three-tier system simplifies

the implementation of a front-end solution. For example, once a back-end

transaction is completed, the front-end server is not responsible for the preservation

of relevant state changes that occur at the back-end.

The front-end server does have to ensure that each transaction is performed

exactly once. Some requests maybe non-idempotent [Gray92], where the results of

multiple executions of the same transaction is different than a single execution. To

avoid repeated execution of the same transaction (e.g., retry of a transaction by a

front-end server recovering from a failure), a fault-tolerant front-end server may

either use a two-phase commit protocol [Frol00] or use a unique transaction ID

with each transaction so that the fault-tolerant back-end can identify repeated

transactions.

In summary, fault-tolerant back-end and fault-tolerant front-end servers are

complimentary. A system composed of a combination of the two provides a

complete reliability solution for three-tier systems capable of handling faults that

may occur anywhere in the server room.

2.4. Fault-Tolerant Video Conferencing

In Chapter 5 we present our client-transparent fault tolerance scheme for

video conferencing. To our knowledge, there is no published work specific to fault

tolerance for video conferencing. Published work on fault tolerance features for

media servers [Chu00, Chu01, Zago03] are typically concerned with servers which

broadcast media to clients in a unidirectional fashion. Our work is different in that

we focus on video conferencing — bi-directional communication among a group of

32

multiple clients. Video conferencing implementations typically use a stateful

centralized server whose functionality is different than those of broadcast

multimedia servers. However, some of the fault tolerance issues involved are

related, and thus we present the details of a few media server reliability schemes in

the rest of this section.

Zagorodnov et al [Zago03] adapted FT-TCP [Alvi01] to increase the

reliability of Apple Darwin server which is typically used to broadcast multimedia

streams to clients. FT-TCP uses the log and replay approach to mask server

failures and transparently recover from server faults (see Section 2.2.2). FT-TCP

includes features to handle some non-determinism (e.g., selection of initial TCP

sequence numbers), but for the most part it requires the server application to be

deterministic. Their experience adapting FT-TCP to work with the media server

showed that the server’s behavior contained additional sources of non-determinism

at the application level (e.g., randomly generated session ID) which had to be

addressed. To handle the non-determinism, relevant system calls were

synchronized between the primary and backup to ensure the deterministic

execution of the application. As a result, identical decisions are made at both

server replicas and thus an identical server state is available at a backup if the

primary server fails. Their results show transparent recovery from server failures

and relatively low failure-free overhead due to the execution of relatively few

system calls by the media server. Another scheme, Hot-Swap [Burt02], also uses

system call synchronization to handle non-determinism, although that scheme has

not been used for media or conferencing applications.

End system multicast [Chu00, Chu01] increases availability by using

33

multicast at application level. It provides overlay spanning trees for data (media)

delivery. Changes to clients or deployment of proxies at strategic locations near

the clients are required. In their peer-to-peer approach, each client is a node in the

overlay multicast tree. Idle network resources of the clients are used to help

distribute the broadcast media to other clients. With this approach, a fault at any

multicast node may cause interruption to downstream clients. Faults are handled

by reconstruction of the spanning tree without the faulty node. The clients are

actively involved in the decision making regarding changes to the overlay network

and the multicast in general. Hence, this is a client-aware solution.

Since broadcast schemes can be implemented on top of stateless routers or

softstate nodes (that multicast the video), fault-tolerance solutions are relatively

simpler than schemes for stateful servers. Again, the schemes presented above are

based on one way delivery of video from one server to multiple clients. Our

solution (presented in Chapter 5) is based on interactive communication between

multiple client, using a stateful centralized conferencing server and transparent

recovery from fault that may occur at the server.

2.5. Summary

In this chapter we presented research and products related to our work.

Availability only solutions are the simplest and have the least overhead. They

effectively remove faulty servers from the system. However, they do not recover

active connections or in-progress requests. Thus, active clients will notice server

failures, and the reliability of the service is not increased.

Solutions that increase both availability and reliability can be classified into

34

two categories: client-aware and client-transparent. Client-aware schemes have

more flexibility in the implementation. However, since clients may already be

widely deployed or independently developed, deployment of these solutions for

existing applications and services will be difficult.

Client-transparent solutions share the same philosophy as our work. Server

failures are masked from clients and active connections and in-progress requests

are preserved over faults. Most of the existing solutions have some drawbacks,

including: assumption of deterministic server behavior [Shen00], high

cost [Marw03] (e.g., extra hardware for a logger), large failure-free

overhead [Shen00] (e.g., due to pure active replication), and long recovery

time [Alvi01] (e.g., due to log and replay). We will address and propose solutions

for these problems in our work.

35

Chapter Three

Constructing Client-Transparent Reliable
Network Services

This chapter presents a methodology for constructing client-transparent fault-

tolerant network services with off-the-shelf components. We begin by presenting

the requirements, targeted system model, and our assumptions. The main

requirements are identification of critical service state, replication and preservation

of that state over failures, error detection, and service failover. We identify the key

server-side service state elements — service identity, connection state, application

state — that must be preserved over server failures. We describe several

approaches for meeting the rest of the requirements, explain the tradeoffs involved,

and discuss the service properties (e.g. non-determinism) that must be carefully

considered when adding fault tolerance features to off-the-shelf network services.

A summary of our proposed methodology concludes the chapter.

3.1. Requirements for Adding Client-Transparent Fault Tolerance to

Network Services

In order to provide client-transparent fault tolerance, clients must be able to

continuously communicate with the service inspite of a server fault. Fault

tolerance schemes for network services should increase the availability of the

service by providing the ability to service new client requests following server

failure. Such schemes should also increase the reliability of the service by

ensuring that in-progress requests, i.e., those that are being processed at the time of

36

server failure, will be handled correctly.

In order to connect to a service, a client must have some way to specify the

identity of the desired service. For example, this may be a (host name, service

identifier) pair or an (IP address, port number) pair. In order to achieve client-

transparent fault tolerance, the client must be able to continue to use the same

mechanism and the same names to specify the identity of the service despite server

failure. This implies that the implementation of the service must maintain the

service identity despite server failure. Thus, if replication is used and the primary

server replica fails, client requests transmitted in exactly the same way as before

the failure must now reach a backup server replica.

Servers typically maintain some state while providing a service. For example,

the server must maintain some state in order to implement a reliable

communication protocol such as TCP. In order to achieve client-transparent fault

tolerance, the relevant server-side state must be preserved and available on a

backup server replica if the primary server fails. We classify the server state into

two key components: connection state and application state. Connection state is

the state required to sustain communication with clients. Application state is the

state required to deliver proper service results. These state components are

described in more detail in Section 3.3.

Once an error occurs, it must be detected so that recovery actions can be

initiated. Error detection is typically implemented via exchanges of messages

among server replicas or between server replicas and comparators or voters. With

replication, if a server failure is detected, failover must occur — the system must

be reconfigured to resume normal operation without the faulty server. Failover

37

may involve the taking over of the identity of the failed server by a replica, and the

recovery and use of its preserved state.

3.2. Fault Model and Assumptions

In the worst case, faults can cause system behavior to be arbitrarily incorrect

and even malicious. Such fault are called Byzantine faults [Lamp82]. An example

of a Byzantine server fault is the transmission of unwanted or incorrect messages

from the faulty server. Unfortunately, Byzantine faults cannot be handled

transparently for some communication protocols. With TCP protocol for example,

a faulty server may send TCP reset or FIN packets for the connection, causing the

remote end (i.e., client) to abandon or close the connection. Once the client-side

connection state is lost, the TCP connection cannot be transparently restored.

Hence, client-aware solutions are required in order to handle Byzantine faults.

While Byzantine faults do occur in real systems, most faults that cause errors

result in incorrect behavior that is not malicious. In the best case, a fault that has

an impact (i.e., causes an error), causes a subsystem to die silently — stop

generating outputs. In such cases, the fault is said to have caused a fail stop (or

crash) failure [Schn84]. Fail-stop faults are easier to handle because the behavior

of the faulty component after the fault is known — it will no longer function or

generate any output. Hence, such faults can be detected using relatively simple

techniques. For example, server replicas can exchange periodic ‘‘heartbeat’’

messages and missing heartbeats indicate that an error has occurred.

Fault injection research has shown that in practice, most faults either have no

effect or they cause fail-stop failures [Made02]. Our experience with fault

38

injection (see Chapters 4, 5) also confirms that most failures are fail-stop. We

found the most common type of failures (by far) to be process crashes. Thus, we

assume the server processes to be fail-stop.

Fault tolerance solutions often assume nodes (i.e. server hosts) to be fail-

stop [Aghd02, Alvi01, Shen00]. If any components of the node fails, (e.g., network

interface, kernel, application processes) it is assumed that the entire node will

crash. In practice, faults in a particular component of a server often do not have an

effect on other parts of the system. For example, a crashed process typically does

not cause a crash of the kernel or other processes. Hence, instead of assuming that

nodes are fail-stop, our work is based on the assumption that processes are fail-

stop. We assume that if a process fails, it will crash and die silently, but other

processes on the host may continue to operate correctly. We further assume that a

fault in the kernel that has an effect results in a host crash (fail-stop failure of the

entire host).

Our scheme is based on several other assumptions besides fail-stop processes.

We assume that a fault may impact only a single host at a time (a single process

crash or the crash failure of the entire node). In practice faults are relatively rare.

Thus the probability of simultaneous failures in independent service elements (i.e.,

server replicas) is order(s) of magnitude less than that of a single fault. We also

assume that the server replicas are connected on the same IP subnet and that the

local area network connecting the server replicas as well as the network connection

between the clients and the server LAN will not suffer any permanent faults. In

practice, the reliability of the network connection to that subnet can be enhanced

using multiple routers running protocols such as the Virtual Router Redundancy

39

Protocol [Knig98]. This can prevent the local LAN router from being a critical

single point of failure.

3.3. Service State

In order to achieve increased availability and reliability, and client-transparent

seamless recovery of active connections, the server-side service state must be

preserved over failures. The server-side state is composed of three main

components: service identity, connection state, and application state. The details of

these service state components are discussed in the rest of this section.

3.3.1. Service Identity

Service identity is the address known to and used by clients to access the

service. For services built on top of the IP protocol, the service identity is the

destination IP address used by the clients. The service identity also includes the

TCP or UDP destination port number if those protocols are used on top of IP. If

the server host that is configured with the service identity fails, a backup replica

must take over the identity.

The simplest fault tolerance solutions provide increased availability for

stateless service. In this case, there is no state to be preserved or repaired and there

is no attempt to handle requests that are in progress at the time of server failure.

Hence, only the service identity is required to be preserved. A mechanism for

detecting server failure, such as heartbeats, is needed. When a fault is detected,

failover is accomplished by mapping (routing) new requests to alternate resources

(servers). New servers are thus allowed to take over the identity of the failed

40

server.

As discussed in Section 2.1.1, for services built on top of IP, identity take over

is typically accomplished by using DNS to change the binding of server name to IP

address at the client [Bris95] or by routing the packets with a fixed destination IP

address to different servers at the server site. One common approach for a server

site solution is the use of a special central router or load balancer that is an integral

part of the fault tolerance solution [Ande96, Best98, Cisc99a, Cisc99b, Inte00].

The router detects server failures and routes client packets only to working servers.

This approach does not require any changes to the server host for identity

preservation. However, the router is a potential performance bottleneck and single

point of failure. An alternative approach is the reconfiguration of the local network

after a fault. For example, a backup replica is reconfigured with the failed server’s

IP address and the local network’s router is informed of the location change of the

IP address via ARP messages [Aghd03b].

3.3.2. Connection State

Server hosts typically maintain some state for each logical communication

channel. This state is required to sustain communication with the clients. For

example, TCP requires some state to be kept at each end-point in order to

implement the functionality that is provided by the protocol (e.g. reliable delivery

or congestion control). This state also includes partially received messages

(requests) and partially transmitted messages (replies). This state is updated with

arrival or departure of each packet. We refer to any communication state kept at an

end-point as ‘‘connection state.’’

41

Servers typically maintain some state for both reliable and unreliable

communication. For communication protocols that do not guarantee reliable

packet delivery, such as UDP, the connection state typically consists of socket

structures and protocol related addressing information such as port numbers. With

such protocols, packet loss is acceptable so it is not necessary to consider client

packets themselves to be part of the connection state that must be preserved. It

may still be useful for fault tolerance solutions to try to minimize packet loss due to

faults in order to minimize the impact of faults on service performance/quality.

For a reliable communication protocol such as TCP, the connection state

typically includes additional information such as sequence and acknowledgment

numbers. More importantly, the connection state for reliable communication also

includes any client packets that have been acknowledged by the server. These

packets must not be lost due to a fault since the client may not be capable of

retransmitting packets that have been acknowledged. Hence, client packets

received by the server must be stored redundantly before they are acknowledged.

3.3.3. Application State

The user-level application maintains internal state that it requires in order to

correctly handle requests. The application state is often maintained for the entire

lifetime of the application, across multiple client requests and connections. Unlike

connection state, where state changes only have an effect on the related connection

or request, application state changes may have an effect on the handling of other

future client connections and requests. In some architectures (e.g., three-tier

systems), application state may be kept on a separate server host such as a database

42

server.

Application state changes may occur deterministically or non-

deterministically. If state changes are deterministic, it may be possible to recover

the state by re-executing the application after a fault. However, if state changes are

non-deterministic, it may not be possible to regenerate the state by performing

identical operations. Hence, it may be necessary to preserve a copy of the state

whenever state changes occur. Possible approaches for state preservation are

discussed further in section 3.4.

It is also possible for the service application to be stateless. In such cases,

there is no application state to preserve and a reliability solution at the connection-

level will suffice. However, there are subtleties that must be carefully considered.

For example, a web server (application) that is providing static data (e.g., IRS

forms) might be considered to be stateless since the processing of a client request

does not affect the processing of any future client requests. However if relevant

application state is not preserved across server failures, the system may lose client

requests that have been received but for which a reply has not been sent. Hence, a

web server application does maintain some state that must be preserved —

received client requests and generated replies that have not been fully sent. These

application-layer messages must be preserved across server failures [Aghd03b]

43

3.4. Approaches for State Preservation

In order to achieve client-transparent fault tolerance, a valid, up-to-date copy

of the state maintained by an active server must be available to an alternate server

replica. If the active server fails, the backup replica can use this state to recover

active connections and resume the service with minimal interruption to the clients.

There are three common approaches for preserving server state: active replication,

message logging, and checkpointing. In the rest of this section, we discuss each

approach and its tradeoffs in detail.

3.4.1. Active Replication

The state of a server can be replicated by having two server replicas actively

perform the same exact operations on identical input. As a result, identical state

changes will occur on both replicas and both servers will have an up-to-date copy

of the state. The approach where two (or more) replica servers perform identical

operations is called active replication.

Active replication can be used at the communication level to maintain

identical connection state on both server replicas. Client packets must be multicast

to both server replicas and simultaneously processed by each server. In order for a

solution to be client-transparent, the multicast of client packets must be achieved

without any changes to client [Aghd01, Aghd02].

Active replication can also be used to preserve the application state. An

identical copy of the service application is executed on each replica [Burt02,

Shen00]. In order for the replicas to reach the same state, the application input (i.e.

the client requests) arriving at the replicas must also be identical. For example,

44

active replication of connection state can be used to ensure identical data streams

reach both servers.

Active replication requires the processing to be deterministic (see

Section 3.5). In practice, the processing at either the connection or application

level is often non-deterministic. Thus, techniques such as synchronization of

replicas must be used to handle the non-determinism. We discuss approaches for

handling non-determinism in Section 3.5.

Active replication incurs a high processing overhead since all processing is

performed on a replica. Hence, there is at least 100% overhead in terms of

processing cycles used by the service. In Chapter 5 we show that the overall

system overhead of active replication can be reduced for some applications by

avoiding full replication and only selectively replicating the critical portions of an

application.

3.4.2. Message Logging

The server state may also be preserved by using the message logging

approach. The service input (i.e. client messages) are redundantly stored (logged)

on a replica or storage node. If the server fails, logged messages are replayed and

reprocessed on a new initialized alternate server, bringing the alternate server back

to the pre-fault state of the failed server.

Message logging can be used at either connection [Alvi01] or

application [Aghd01, Aghd02] level. To preserve connection state, all incoming

client packets are logged on a replica server or storage node. For reliable

communication, the packet is not processed until an acknowledgment is received

45

signaling that the packet has been safely stored. If a server fails, logged packets

are replayed to an initialized alternate server configured with the same identity as

the failed server, bringing the alternate server back to the pre-fault state of the

failed server.

Message logging at the application level is similar to connection level

logging, except that it is the user-level application messages that are logged to a

replica or storage node. If there is a failure, the logged messages are replayed on

an initialized alternate server, restoring the pre-fault server state.

There is a performance tradeoff in terms of resource usage and recovery time

when choosing between the active replication and message logging approaches.

Active replication requires more processing resources during fault-free operation

since all processing is performed multiple times. However, since a replica has an

identical copy of up-to-date state, the recovery time from failure is short. Logging

does not duplicate processing during fault-free operation. Hence, it typically incurs

lower processing overhead than replication. However, it suffers from longer

recovery times because all logged messages must be replayed in order to reach

pre-fault state.

3.4.3. Checkpointing

With checkpointing, the server state is saved in stable storage or copied to a

standby backup whenever an event that changes critical state occurs, or whenever

some period of time has passed since the last checkpoint. If a fault occurs, the

most recent checkpointed state is recovered and processing resumes using the

recovered state.

46

The overhead incurred by checkpointing is directly related to the frequency of

checkpoints. In order to avoid any loss of service state, a checkpoint must occur

with every state change — a very costly approach. Since frequent checkpointing of

state is costly, implementations typically combine message logging with

checkpointing. Messages received since the last checkpoint are logged. After a

fault, the most recent checkpointed state is recovered, followed by the replaying of

logged messages to reach the exact state at failure time. Hence, compared to

checkpointing every state change, the overhead during normal operation is

reduced. However, the recovery time is increased.

3.5. Techniques for Handling Non-determinism

Both active replication and logging schemes require servers to be

deterministic — processing of identical input (i.e. request) must always result in

the production of the same output (i.e. reply). However, in practice many servers

are not deterministic so the use of active replication or logging may lead to an

inconsistent (incorrect) state following recovery. Non-deterministic application

behavior is usually caused by non-deterministic system call results. For example,

calls to the time system call may return a different value for each replica. Hence,

one approach for handling non-deterministic server behavior is to synchronize

system calls made by server replicas [Burt02]. The results of system calls made by

the primary server are sent to the backup replica. Backup system calls use the

results obtained from the primary instead of results from its own kernel. Since

applications may frequently execute a large number of system calls, this approach

may suffer from a large overhead. The advantage is that knowledge of the

47

application internals is not required.

An alternative approach for handling non-deterministic server behavior is to

identify possible sources of non-deterministic state changes and synchronize the

replicas via messages at those points. Depending on the application,

synchronization may be possible at coarse granularity, such as once per client

request [Aghd01, Aghd02], or at finer granularity, such as at specific system

calls [Zago03]. Since some real applications have relatively few non-deterministic

state changes [Aghd05, Zago03], fewer synchronization messages are required

compared to a scheme that synchronizes every system call, leading to lower

performance overhead. The drawback is that knowledge of implementation details

and modification of the application are required.

Although less frequent, non-deterministic state changes may also occur at the

connection level. For example, the initial TCP sequence number for each

connection is chosen non-deterministically and must be synchronized when

preserving TCP connection state [Aghd02].

3.6. Error Detection

A key step of most fault tolerance mechanisms is to detect the occurrence of

an error — error detection. Once an error is detected, diagnosis must be

performed — the failed component is identified. In order to be able to continue

with correct operation, the system must be restored to a valid state. If duplication

is employed, a failover is performed where the failed component is replaced with a

redundant replica (Section 3.7). The replica must have a copy of pre-fault state of

the failed component obtained by using one of the approaches described in

48

Section 3.4.

The techniques that may be used for the identification of errors are dependent

on the assumptions made regarding the possible behavior of failed components.

These assumptions are generally referred to as the fault model (Section 3.2). If

server hosts are fail-stop [Schn84] a heart-beat monitoring mechanism can be used

to detect errors. In error-free operation, each host periodically transmits a

heartbeat message. This hearbeat message is monitored, either by a replica host or

by a third party monitor. If a server host fails, i.e., crashes, heartbeat messages are

no longer generated. Hence, the monitor will not receive them. Missed heartbeats

from a host signal that a failure has occurred. Thus, the monitor can inform

interested components of the system of the failed host.

In practice, errors often have an impact at a smaller granularity than hosts.

For example, an error may cause a process to crash while other processes on the

host continue to operate correctly. Implementation of error detection at smaller

subsystem level, e.g., heartbeat monitoring for every process, becomes more

complex and costly. Hence, while we assume that individual processes may crash

— processes are fail-stop (Section 3.2), our implementation converts process crash

failures to host crash failures (Section 4.4.3).

Systems that do not make the fail-stop assumption must use more

sophisticated error detection mechanisms. A heartbeat mechanism alone does not

suffice since a faulty node may produce incorrect results while transmitting

heartbeats. Typically, solutions use active replication of all operations, with results

compared or voted in order to, respectively, detect or mask failed replicas.

49

3.7. Service Failover

The next step after error detection is the resumption of normal operation with

a repaired system state. When the fault tolerance mechanism used is duplication,

this step involves migrating the service from one replica to another. This process is

called service failover. When an error is detected, the system must transition from

standard replicated (duplex) operation to single server (simplex) mode. The

identity of the service must be preserved for new and existing connections. The

system must ensure that active connections and in-progress requests are processed

in simplex mode. Each and every client request must be processed correctly and

valid service reply messages must continue to be delivered after failover.

With many implementations of duplication, the service is unavailable during

failover — no new client connections are accepted and the processing of active

connections is delayed while a valid state is established. Hence, in order to mask

failure from clients, the time required to perform failover operations (and error

detection) must be short. This is especially critical for applications with real-time

requirements, such as multimedia services or video conferencing. The failover

time is not as critical to other types of applications, e.g., bulk file transfer over

TCP, that are not as time sensitive. The failover time is often largely affected by

the state preservation approach. For example, as discussed in Section 3.4, the

message logging approach requires a large failover time since all messages

received prior to the fault must be replayed. There is typically a tradeoff between

the failover time and the overhead incurred during fault-free operation. The

requirements of the service application often dictate the appropriate design choice.

50

3.8. Restoration of Fault-Tolerant Service After Failover

After a failover, it is desirable to restore the system back to its fault-tolerant

configuration. A mechanism is required to integrate a new (or recovered) server

into the system. The required operations are similar to the initialization of the

service with one key difference: unlike initialization time, one of the servers is

operating in simplex mode and actively processing client requests. The new server

replica must be integrated into the system without any disruption to active

connections being processed in simplex mode.

Ideally, all new connnections arriving after the integration, as well as existing

active connection being processed in simplex mode, would be transitioned to

fault-tolerant (duplex) operation. That would allow for recovery from any new

failures. The transition of active connections from simplex to duplex operation

requires the applicable server-side state be transferred and replicated on the new

server. This synchronization required between the active and new server can be

costly and increase the transition time. To avoid this cost and complexity, our

implementation differentiates between active connection at the time of integration

and new connections that arrive after integration [Aghd03b]. While new

connections are processed in duplex mode, active connections continue to be

processed in simplex mode so that they are vulnerable to additional faults. Since

web service connections are typically short-lived, the duration of this vulnerability

is short.

51

3.9. Summary

The first step of our methodology is the identification of critical state

components maintained on a server. The critical state typically includes service

identity, connection state, and application state. Server failures can be

transparently masked from the clients if the critical server state is preserved over

failures and recovered on an alternate replica.

Once the critical state is identified, an approach must be selected for

replication and preservation of this state over server failures. Three common

approaches are widely used: active replication, message logging, and

checkpointing. As discussed, each approach has tradeoffs involving fault-free

overhead and recovery time.

One approach that we found to be effective and efficient for network services

(as shown in Chapters 4 and 5) is a combination of active replication and message

logging. The connection state — which changes frequently with each packet, but

has a relatively low processing cost — is actively replicated on a replica host. At

the application level, message logging and synchronization of non-deterministic

state changes are used. Some applications may be stateless (e.g. web server) with

their critical state confined to the application level messages. For these

applications, message logging at the application level allows critical state to be

recovered following replica failure while avoiding the processing cost that active

replication would incur.

The use of message logging in order to allow a valid application state to be

established following replica failure is not always the best approach. In particular,

for stateful applications (e.g. video conferencing), message logging must be

52

accompanied by periodic checkpointing [John88]. For such applications, active

replication may be the preferred approach. Active replication incurs a high

processing overhead since all processing is performed on a replica. However, only

the processing that affects the service state is required to be replicated. It is not

necessary to replicate any processing that does not cause changes to the critical

service state. Hence, in some cases an implementation can avoid full replication

and reduce the overhead of the overall scheme. For example, most of the

processing performed by a video conferencing server is related to the media and

does not affect the critical state maintained on the server. Thus, a replicated video

conferencing server can avoid the full cost of active replication by avoiding the

replication of media processing. In Chapter 5 we present an efficient replicated

implementation of video conferencing which eliminates the unnecessary

replication of media processing and uses application-level synchronization to

handle non-deterministic state changes.

In order for recovery to be initiated, errors must first be detected. If it can be

assumed that system components are fail-stop, heartbeat exchanges among the

components may be used to detect errors. In practice, it cannot be assumed that

hosts are fail-stop. However, assuming that either processes crash (processes are

fail-stop) or hosts crash (hosts are fail-stop) covers the majority of errors observed

in real systems.

When an error is detected, a failover must occur. If the service identity was

mapped to the failed server, a replica must take over that address in order to

achieve client-transparent recovery. The preserved state of the failed server must

be recovered and reused, and system operations must transition from replicated

53

(duplex) to simplex. Once the failover operations have completed and the system

is active in simplex mode, it is desirable to restore the ability of the system to

recover from the effects of additional faults. This requires the ability to integrate a

new server into the system and resume replicated operation.

54

Chapter Four

CoRAL: A Transparent Fault-Tolerant
Web Service

We have designed and implemented CoRAL [Aghd01, Aghd02, Aghd03b,

Aghd03a], a fault-tolerant Web service scheme based on Connection Replication

and Application-level Logging. CoRAL recovers in-progress requests and does not

require deterministic servers or changes to the clients. The server-side TCP

connection state is actively replicated on a hot standby backup, allowing for fast

failover. Application-level (HTTP) request and reply messages are logged to the

backup and can be replayed if necessary, allowing for the handling of non-

deterministic content.

In this chapter, we present our design, implementation, and experimental

evaluation. Section 4.1 is an overview of the assumptions underlying our work.

The system architecture and key design choices are presented in Section 4.2. A

high level description of how our recovery mechanisms function is presented in

Section 4.3. Based on this design, we implemented CoRAL using two approaches.

Section 4.4 presents the details of our implementations: a proxy-based user-level

implementation (Subsection 4.4.1) and an implementation based on kernel-level

and web server modifications (Subsection 4.4.2). Techniques for optimizing

CoRAL’s performance under certain workloads are discussed in Section 4.5. The

detailed evaluation of our scheme’s overhead during failure-free operation as well

as impact of failures on the service are presented in Section 4.6. The correctness of

our scheme was tested by intentionally emulating (injecting) faults and monitoring

55

their impact. The results of our software fault injection experiments are presented

in Section 4.7.

4.1. Assumptions

Fault injection experiments on other systems [Made02] have shown that most

transient hardware faults either have no effect or cause a process or the entire node

to crash, i.e., processes are usually fail-stop [Schn84]. In practice faults are

infrequent. Thus, unless faults on multiple hosts are expected to be correlated, it is

reasonable to assume that only one host at a time will be affected by a fault. The

probability of correlated failures can be reduced by using preventive techniques

such as putting machines on different power circuits [Zhan04].

Based on the above considerations, we assume that only one host at a time can

be affected by a fault and that the impact of the fault can be to either crash a

process or crash the entire host. As discussed later in Subsection 4.4.3, our

implementation converts process crash failures to host crash failures. Thus, most

of the discussion is focused on host crash failures (fail-stop hosts).

We assume that the local area network connecting the two servers as well as

the Internet connection between the client and the server LAN will not suffer any

permanent faults. The primary and backup hosts are connected on the same IP

subnet. In practice, the reliability of the network connection to that subnet can be

enhanced using multiple routers running protocols such as the Virtual Router

Redundancy Protocol [Knig98]. This can prevent the local LAN router from being

a critical single point of failure. Our scheme does not currently deal with the

possibility that the two hosts become disconnected from each other while both

56

maintaining their connection to the Internet. Forwarding heartbeats through

multiple ‘‘third parties’’ could be used to detect this situation and continue normal

operation in a degraded mode or intentionally terminate one of the servers. We

assume that the primary and backup are physically close, so that communication

between the two servers is much faster than communication with the client.

4.2. System Architecture

In order to provide client-transparent fault-tolerant web service, a fault-free

client must receive a valid reply for every request that is viewed by the client as

having been delivered. Both the request and the reply may consist of multiple TCP

packets. Once a request TCP packet has been acknowledged by a server, it must

not be lost. All reply TCP packets sent to the client must form consistent, correct

replies to prior requests.

The basic idea behind CoRAL is to use a combination of active replication

and logging. There is a primary server and a backup server. At the connection

level, the server side TCP state is actively replicated on the primary and backup.

However, the standby backup server [Borg83] logs HTTP requests and replies and

does not process requests unless the primary server fails. Clients communicate

with the service using a single server address, composed of an IP address and TCP

port number, henceforth called the advertised address. At the TCP/IP level, all

messages sent by clients have the advertised address as the destination and all

messages received by clients have the advertised address as the source address.

The primary and backup hosts are connected on the same IP subnet, which is also

the subnet of the advertised address.

57

Client

Server

Client

Server

Client

Backup Primary

Client

Backup Primary

data data
data

data

data
ack ack

ack

ack

ack

Reply ReplyRequest Request
entire reply

STANDARD CoRAL

Figure 4.1: Message paths for a standard unreplicated server and a hot
standby replication scheme. Replicated servers appear as a single
entity to clients. The reply is generated by the primary and reliably
sent to the backup before being sent to the client.

Figure 4.1 shows the building blocks and message paths in CoRAL. The

primary and backup receive and process every TCP packet. In fault-free operation,

the advertised address is mapped to the backup. Hence, the backup server receives

all packets with the advertised address as their destination. Upon receipt of a

packet, the backup server forwards a copy of the packet to the primary server by

changing the destination address of the packet. The packet’s source address

remains the client’s address. Thus, these packets appear to the primary server as

though they were sent directly by the client. The primary server generates and

sends the TCP acknowledgment packets to the client, using the advertised address

as the source address. This scheme ensures that the backup has a copy of each

request before it is available to the primary.

At the application level, HTTP request and reply messages are logged. The

backup logs each request while the primary processes the request and generates a

reply. Once a reply is generated by the primary, a complete copy is reliably sent to

58

the backup before any reply is sent to the client. The reliability of this transmission

is assured using an explicit acknowledgment from the backup upon receipt of the

entire reply. Upon receiving this acknowledgment, the primary sends the reply to

the client. If the primary fails before starting to transmit the reply to the client, the

backup transmits its copy. If the primary fails while sending the reply to the client,

the error handling mechanisms of TCP are used to ensure that the unsent part of the

reply will be sent by the backup. If the primary fails before logging the reply, the

backup processes its copy of the request, generates a reply, and sends it to the

client. As with acknowledgement packets, the advertised address is used as the

source address of reply packets sent to the client. Upon the receipt of the reply

data packets, the client sends TCP acknowledgment to the source of the replies,

i.e., the advertised address. The backup server receives these acknowledgments

and forwards them to the primary server in the same manner as client data packets.

The key to the scheme described above is that the backup server obtains every

TCP packet (data or acknowledgment) from the client before the primary server.

Thus, the only way the primary obtains a packet from the client is if the backup

already has a copy of the packet. Replies (TCP data packets) generated by the

primary server are logged to the backup before they are sent to the client. Since all

the acknowledgments from the client arrive at the backup before they arrive at the

primary, the backup can easily determine which replies or portions of replies it

needs to send to the client if the primary fails.

While our implementation does not include the communication between the

front-end and back-end servers, this can be done as a mirror image of the

communication between the client and front-end servers. Furthermore, since the

59

transparency of the fault tolerance scheme is not critical between the web server

and back-end servers, simpler and less costly schemes are possible for this section.

For example, the front-end servers may include a transaction ID with each request

to the back-end. If a request is retransmitted, it will include the transaction ID and

the back-end can use that to avoid performing the transaction multiple

times [Orac99a].

4.3. Failure Recovery

In the event of a server failure, the surviving server replica must take over and

continue providing service to the clients, including handling of in-progress requests

— requests that were being processed at failure time. If the backup server fails, the

primary server takes over the advertised address and starts operating in simplex

mode. If the primary server fails, the backup begins processing HTTP requests and

sending replies in simplex mode. Table 4.1 summarizes the mechanisms used to

recover from server failures that occur during different phases of handling HTTP

requests and replies.

Our system can tolerate single server failure as well as transient

communication faults that lead to lost, duplicated, or corrupted packets. Packet

loss, corruption, or duplication are handled by TCP’s error handling mechanisms.

Table 4.2 summarizes possible communication errors and the mechanisms used to

recover from them.

60

���
failed
server

HTTP message
processing phase

recovery mechanism
��

backup after backup receives an in-
complete client HTTP message

some client TCP data packets of the HTTP mes-
sage are not acknowledged since they were not
received by primary. primary takes over adver-
tised address, client retransmits and/or transmits
any unacknowledged TCP packets of the mes-
sage, primary receives and processes entire mes-
sage���

backup after backup receives a com-
plete client HTTP message but
before all of it is relayed to pri-
mary

primary takes over advertised address, since some
client TCP data packets are unacknowledged,
they are retransmitted by the client, primary re-
ceives and processes entire message���

backup after backup forwards a com-
plete client HTTP message to
primary

all client TCP data packets are properly ack-
nowledged by primary, primary handles message,
primary takes over advertised address and han-
dles future requests���

backup no HTTP request or reply in
progress

primary maps the advertised address to itself and
starts operating in simplex mode handling all fu-
ture requests���

primary after primary receives an in-
complete or complete client
HTTP message but before it can
acknowledge the last client
TCP data packet of the message

unacknowledged client TCP data packets are re-
transmitted, backup takes over and starts operat-
ing in simplex mode, backup acknowledges all
unacknowledged client TCP data packets and
processes message���

primary after primary receives and ack-
nowledges a complete HTTP
request but before it sends a full
copy of the HTTP reply to
backup

backup takes over and starts operating in simplex
mode, backup starts processing its copy of pend-
ing requests for which replies have not been
transmitted, backup generates and sends HTTP
reply to client���

primary after primary sends a complete
copy of an HTTP reply to back-
up but before transmitting some
of the reply TCP data packets to
client

backup takes over and starts operating in simplex
mode, backup starts processing its stored copies
of HTTP replies which have not been completely
acknowledged by client, backup transmits miss-
ing TCP data packets of HTTP reply to client���

primary no HTTP request or reply in
progress

backup takes over and starts operating in simplex
mode handling all future requests���

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 4.1: Recovery from server failures that occur during different
phases of handling HTTP requests and replies.

4.4. Implementation

The scheme described in Section 4.2 can be implemented in several ways.

61

� ���
packet lost/corrupted detection and recovery mechanism� �� ���

client data: client → backup primary doesn’t receive packet, no ack to client, client
retransmits� ���

client data: backup → primary primary doesn’t receive packet, no ack to client, client
retransmits, backup ignores retransmitted packet as
duplicate but still relays it to primary� ���

server ack: primary → client client doesn’t receive ack and thus retransmits data packet,
primary (and backup) ignore retransmitted data packet as
duplicate and primary retransmits ack� ���

server data: primary → backup no ack to primary, primary retransmits server data packet
to backup� ���

server ack: backup → primary no ack to primary, primary retransmits server data packet
to backup, backup ignores data packet as duplicate and
retransmits ack to primary� ���

server data: primary → client no ack to primary, primary retransmits server data packet
to client� ���

client ack: client → backup primary doesn’t receive ack, primary retransmits server
data packet, client ignores retransmitted packet as
duplicate but still retransmits ack� ���

client ack: backup → primary primary doesn’t receive ack, primary retransmits server
data packet, client ignores retransmitted packet as
duplicate but still sends ack, backup ignores duplicate ack
but relays it to primary� ���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 4.2: Communication errors and the mechanism used to recover
from them. All actions except relays by the backup are a direct
result of using TCP.

We have implemented the scheme using two approaches. The first approach is

based on user-level proxies [Aghd01]. It does not require any kernel modifications

and requires minimal (if any) changes to the web server software. The second

approach consists of a combination of kernel modifications and modifications to

the user-level web server using their respective module mechanisms [Aghd02].

The proxy-based implementation is simpler and potentially more portable than an

implementation that requires kernel modification. However, it also incurs a higher

performance overhead (e.g., multiple user/kernel context switches for processing of

each packet) and requires stricter assumptions (e.g., multiple proxies being

62

operational or fail-stop as a single entity). The approach based on a combination of

web server and kernel-level modifications is more efficient but it is more difficult

to implement. As discussed in Section 4.4.2, our modular approach simplifies the

porting of this implementation to other kernels or web servers. As an alternative to

our implementations, it is also possible to implement the scheme entirely in the

kernel using a kernel-level web server [RedH01]. A kernel-only implementation

may possibly reduce the scheme’s overhead. However it is generally desirable to

minimize the complexity of the kernel [Blac92, Golu90], and such an approach

may lead to the degradation of the overall system performance and reduce the

kernel’s robustness.

4.4.1. A Proxy-Based User-Level Implementation

The tasks of the scheme described in Section 4.2 can be divided into two

categories: modification of TCP packet headers and operations performed at the

HTTP message granularity. In our proxy-basesd implementation, each of these

categories of tasks is implemented by a separate process, henceforth referred to as

proxy. This leads to a simple modular design and also has the potential to facilitate

pipelining (on a multiprocessor) of the handling of requests and replies. The proxy

that performs operations at the granularity of IP packets is called the raw proxy

since it uses the socket interface in the RAW mode to gain access to the packet

headers. The proxy that performs operations at the granularity of HTTP messages

is called the TCP proxy since it uses the socket interface in the STREAM (TCP)

mode. The TCP proxy sends and receives complete HTTP messages and buffers

HTTP requests and replies for fault recovery.

63

Our scheme requires processing of IP packets in ways that do not match

standard kernel-level implementations of TCP. This processing could be

accomplished by modifying the kernel, however avoiding kernel modifications is

advantageous for overall system reliability and for simplicity and portability.

Using the ‘‘raw socket’’ interface with Sun Microsystem’s Solaris operating

system, it is possible to avoid most kernel processing of packets and perform non-

standard modifications of packet headers at user-level. However, once the packets

reach the user-level they must be processed in a manner consistent with standard

TCP protocol. Hence, the use of the raw socket interface could lead to a

requirement for a full user-level TCP implementation on the servers for

communication with the client. Such a user-level TCP implementation could be

integrated with the web server code and modified to provide all the required

functionality. User-level TCP implementations are not easily available and often

lack the robustness of kernel-level implementations. On the other hand, kernel-

level TCP implementations are relatively robust since they are critical to the

operation of the system and subject to extensive testing and use by developers and

users. Thus, we chose to avoid using an user-level TCP implementation and

instead use a second-tier of proxies (TCP proxies) described below. Our user-level

proxy based implementation uses proxies to avoid both kernel modifications and

user-level TCP implementations while minimizing changes to the servers; all at the

cost of additional overhead.

The system is comprised of a raw proxy and a TCP proxy for the primary

server as well as a raw proxy and a TCP proxy for the backup server. We refer to

the triple of raw proxy, TCP proxy, and server as a cluster. The functionality of

64

the ‘‘primary server,’’ as described in Section 4.2, is implemented by the primary

cluster. The functionality of the ‘‘backup server,’’ as described in Section 4.2, is

implemented by the backup cluster. We assume that each of the clusters is either

operational or fail-stop as a single entity. Using fail-stop hosts [Schn84], this

assumption can be enforced using heartbeats from each host running any cluster

component coupled with intentional termination of a cluster if any of its

components fail. The overall structure of the system is shown in Figure 4.2.

The backup TCP proxy logs HTTP requests from the client (arriving via the

backup raw proxy). The primary server gets each request from the primary TCP

proxy and sends the HTTP reply back to the primary TCP proxy. From the

primary TCP proxy the entire reply is sent to the backup TCP proxy. The backup

TCP proxy must then match this reply with the corresponding HTTP client request

received previously. Each client HTTP request can be uniquely identified by the

client address and a request sequence number. However, since the TCP proxies

communicate with the raw proxies and not directly with the client, the TCP proxy

does not automatically have the client address. To solve this problem the raw

proxies add the client address to the HTTP requests before forwarding them to the

TCP proxies. The primary TCP proxy removes the client address from the HTTP

request before it is sent to the primary server. These are items 3 and 6 in the

description of TCP level events below (Figure 4.2).

In order to explain the operation of our system, we provide a step-by-step

explanation of the progress of requests and replies when the system is operating in

its normal fault-tolerant (duplex) mode. The numbers of the steps correspond to

the labels in Figure 4.2.

65

6

5,9

4,8 4,83,12 3,12

2,11

1,10

Client

Backup Raw Primary Raw

Backup TCP Primary TCP

Backup Server Primary Server

7

Figure 4.2: System structure for client-transparent fault tolerance. The
connections shown are the TCP/IP packet routes for normal fault-
tolerant (duplex mode) operation.

1. The client sends a data packet to the advertised address, which is mapped to

the backup raw proxy.

2. The backup raw proxy reads the packet, makes a copy, and changes its

destination address to the primary raw proxy (the source address remains the

address of the client). The packet is then sent to the primary raw proxy.

66

3. Each raw proxy changes the source address of the client’s packet to its own

address. If this is the first data packet from the particular client address, the

raw proxy also appends the client IP address and TCP port number to the TCP

data and makes appropriate changes to the packet’s TCP sequence number.

The modified packet is then sent to each raw proxy’s respective TCP proxy.

4. The TCP proxies receive the packets sent to them by the raw proxies. The OS

kernels on which the TCP proxies are running send TCP acknowledgment

packets back to the raw proxies.

5. The raw proxies receive the TCP acknowledgment packets from the TCP

proxies. The primary raw proxy changes the source address of the packet to

the advertised address and the destination address to the client address. It also

modifies the TCP acknowledgment number to account for the extra bytes that

are sent to the TCP proxy at step 3 since these extra bytes are acknowledged

by the TCP proxies. The primary raw proxy then sends this packet to the

client. In duplex mode, the backup raw proxy drops the packet.

6. When enough TCP data packets have arrived at the TCP proxy to compose an

entire HTTP request, the TCP proxies remove the extra bytes (client address)

that are placed in the request by the raw proxies (step 3). The backup TCP

proxy logs the received request. The primary TCP proxy sends the HTTP

request to the primary server via a TCP connection. If all goes well, the

primary TCP proxy then receives the HTTP reply from the primary server.

Note that this entire step can occur simultaneously with step 5.

7. The primary TCP proxy appends the client address that it removed from the

HTTP request in step 6 to the HTTP reply and sends the reply to the backup

67

TCP proxy via a TCP connection. The backup TCP proxy receives the HTTP

reply and uses the embedded client address to match the reply with the HTTP

request that it received in step 3.

8. The TCP proxies send the HTTP reply to their respective raw proxies. The

HTTP replies may be broken up (by the OS kernel) into several TCP packets.

9. The raw proxies change the source address to the advertised address, the

destination address to the client’s address, and adjust the TCP sequence

number. Normally, the backup raw proxy discards the packet. The primary

raw proxy sends the TCP packets to the client.

10. The client receives the TCP data packets (HTTP reply) and sends

acknowledgment packets to the source address of the data packets, i.e., the

advertised address.

11. Similar to step 2, the backup raw proxy receives the acknowledgment packet,

changes its destination address to the primary raw proxy (maintaining the

client as the source address) and sends the packet.

12. The raw proxies change the TCP acknowledgment numbers to match the TCP

sequence numbers used by the TCP proxies (reverse of step 9) and send the

packets to their respective TCP proxies.

The TCP sequence number adjustments in steps 9 and 12 are necessary in

order to ensure that both the primary and backup are using the same sequence

numbers, allowing a transparent switch to simplex mode operation in case of

failure. Each TCP proxy is free to choose any sequence number when initializing a

TCP connection. The backup raw proxy selects the actual initial TCP sequence

number that is used by the servers when communicating with the client. After the

68

selection, the backup raw proxy sends this initial sequence number to the primary

raw proxy, ensuring that both raw proxies will use the same sequence number

space when communicating with the client (see kernel module section for more

detail). Each raw proxy calculates the offset of the actual TCP sequence number

and the TCP sequence number generated by the corresponding TCP proxy. This

offset is then used to modify the TCP sequence number of packets being sent to the

client for the lifetime of the connection.

Since only the primary raw proxy sends packets to the client (step 9), a

problem can arise if the backup cluster falls behind the primary and as a result

receives TCP acknowledgments for packets that it has not yet sent. To solve this

problem the backup raw proxy keeps track of TCP acknowledgment packets that it

receives. Whenever it receives a TCP data packet from the backup TCP proxy that

contains a TCP sequence number that has already been acknowledged by the client,

the backup raw proxy generates a ‘‘fake’’ acknowledgment packet with the client

address as the source and sends it to the backup TCP proxy. This allows ‘‘old’’

data at the backup TCP proxy to be acknowledged.

4.4.2. An Implementation Based on Kernel-Level and Web Server

Modifications

Although the user-level proxy implementation presented in Section 4.4.1 is

simpler and potentially more portable, its associated performance overheads

proved too costly for practical settings. In particular, there is a difference of almost

a factor of five in the required CPU cycles per request between the user-level proxy

approach and the approach that includes kernel-level modifications (see

69

P
r
i
m
a
r
y

B
a
c
k
u
p

Client

Kernel Module Kernel Module

Server Module Server Module

Kernel Kernel

Server Server

HTTP Reply

Incoming Msg

Outgoing Msg

Figure 4.3: Implementation: kernel and web server modules are used to
provide the necessary mechanisms for replication. Message paths are
shown.

Section 4.6.4). Hence, in practice a more efficient implementation is necessary.

As discussed previously, the tasks of the scheme described in Section 4.2 can

be divided into two categories: packet header modifications and operations

performed at the HTTP message granularity. In our implementation based on

kernel-level and web server modifications presented in this section, each of these

categories of tasks is implemented by a separate module (Figure 4.3). Kernel

modifications, implemented in a Linux loadable kernel module, perform TCP/IP

packet operations. HTTP message operations are performed in the Web servers

and are implemented in an Apache Web server module. In the rest of this section,

we present the details of our kernel module, Web server module, and service

failover.

70

4.4.2.1. Kernel Modifications

The kernel modifications implement the client-transparent atomic multicast

mechanism between the client and the primary/backup server pair. In addition,

modifications facilitate the transmission of outgoing messages from the server pair

to the client such that the backup can continue the transmission of replies

seamlessly if the primary fails. The kernel modifications modify the operation of

the kernel as follows: 1) a copy of incoming client packets arriving at the backup

are forwarded to the primary, 2) outgoing (from the primary to the client) packets’

headers are rewritten to use the advertised address as source, 3) outgoing packets

generated at the backup are dropped during normal fault-free operation, and 4)

server-side initial TCP sequence numbers are synchronized between the primary

and backup, and packet headers are rewritten to ensure the use of a consistent

sequence number space. The details of these modifications are discussed in the rest

of this subsection.

As in the user-level proxy implementation, the advertised address of the

service known to clients is mapped to the backup server, so the backup will receive

the client packets. After an incoming packet goes through the standard kernel

operations such as checksum checking, the backup’s modified kernel forwards a

copy of the packet to the primary. The backup’s kernel then continues the standard

processing of the packet, as does the primary’s kernel with the forwarded packet.

The primary server sends the outgoing packets to the clients. Again as in the

user-level implementation, such packets must be presented to the client with the

advertised address as the source address. Hence, the primary’s kernel

modifications change the source address of outgoing packets to the advertised

71

address. On the backup, the kernel processes the outgoing packet and updates the

kernel’s TCP state, but the modified kernel intercepts and drops the packet when it

reaches the device queue. TCP acknowledgments for outgoing packets are, of

course, incoming packets and they are multicast to the primary and backup as

above.

The key to our multicast implementation is that when the primary receives a

packet, it is assured that the backup has an identical copy of the packet. The

backup forwards a packet only after the packet passes through the kernel code

where a packet may be dropped due to a detected error (e.g. checksum) or heavy

load. If a forwarded packet is lost while enroute to the primary, the client does not

receive an acknowledgment and thus retransmits the packet. This is because only

the primary’s TCP acknowledgments reach the client. TCP acknowledgments

generated by the backup are dropped by the backup’s modified kernel.

Another issue that the kernel modifications address is the selection of the

initial TCP sequence number. To achieve client transparency at the TCP level,

both servers must choose identical sequence numbers during connection

establishment. For security reasons, most TCP stack implementations select initial

sequence numbers using a random component. Hence, our scheme requires this

value to be passed from one server to the other. We avoided any extraneous

message passing between the servers by passing the initial sequence number in the

unused ack field of TCP SYN packets. Upon the receipt of a SYN packet from the

client, the backup server calculates an initial sequence number using the kernel’s

standard secure functions. The chosen sequence number is then placed in the ack

field of the SYN packet before it is forwarded to the primary. A standard kernel

72

would ignore the ack field of a SYN packet since the ACK flag in a standard TCP

SYN packet is not set. However, our modified kernel at the primary server expects

this value and uses it as it’s initial sequence number.

The kernel-level implementation does not require any modification to the data

portion of TCP packets. As described previously, the raw proxies in our proxy

based user-level implementation modify the data portion of TCP packets in order

to add a connection identifier (i.e. the client address) to each request. Our

implementation choice of using two levels of proxies caused this requirement.

Since the raw proxies mediate between the clients and TCP proxies, the source

addresses of packets that arrive at the TCP proxies are the addresses of the raw

proxies and not the client. Hence, the TCP proxies can not use standard socket

calls to obtain information regarding the clients. The raw proxies must provide any

desired information about the clients to the TCP proxies. With the kernel-level

implementation, however, copies of client TCP packets reach both the primary and

backup kernels. As a result, the user-level server processes can use standard socket

calls to obtain client addresses, thus avoiding the need to modify the data portion of

any TCP packets.

Our kernel modifications are implemented in the form of a loadable Linux

kernel module. The module is loaded onto each server replica at initialization

time. In addition to the kernel module, we modified the kernel itself and added a

few function ‘‘hooks’’ (i.e., entry points) where our module code is called. The

use of a kernel module allows for isolation of our implementation code from the

rest of the kernel source. It also simplifies debugging and modifications of the

code since only the module (and not the entire kernel) must be recompiled. The

73

total size of our kernel modification are roughly 5000 lines of code for the kernel

module with small changes (less than 100 lines) to the kernel source as mentioned

above.

4.4.2.2. Modifications to the Server Application

The server modifications are used to handle the parts of the scheme that deal

with messages at the HTTP level. The operations of a standard off-the-shelf web

server are modified to: 1) log arriving requests at the backup, 2) implement a user-

level reliable reply logging mechanism where each generated reply on the primary

is first logged to the backup before being sent to the client, and 3) garbage collect

the logged requests on the backup when the matching reply arrives from the client.

We implemented the server modification as an Apache module. The Apache web

server [Apac98] implementation includes several entry points where a module may

interface. Our Apache module acts as a handler [Stei99] and generates the replies

that are sent to the clients. Our modules is composed of roughly 6500 lines of C

code. It implements worker, mux, and demux processes. The Apache code itself

(approximately 100,000 lines of code) was not modified. The details are described

in the rest of this subsection.

4.4.2.2.1. Worker Processes

A standard Apache web server consists of several processes handling client

requests. We refer to these standard processes as worker processes. In addition to

the standard handling of requests, in our scheme the worker processes also

communicate with the mux/demux processes described in the next subsection.

74

P
r
i
m
a
r
y

ack

To Primary KernelTo Backup Kernel

Worker ProcsWorker Procs
Demux Proc

Demux Proc

reply
Mux Proc

B
a
c
k
u
p

Figure 4.4: Server Structure: The mux/demux processes are used to
reliably transmit a copy of the replies to the backup before they are
sent to clients. The server module implements these processes and the
necessary changes to the standard worker processes.

The primary worker processes receive the client requests, perform parsing and

other standard operations, and then generate the replies. Other than a few new

bookkeeping operations, these operations are exactly what is done in a standard

web server. After generating the reply, instead of sending the reply directly to the

client, a primary worker process passes the generated reply to the primary mux

process so that it can be sent to the backup. The primary worker process then waits

for an indication from the primary demux process that an acknowledgment has

been received from the backup, signaling that it can now send the reply to the

client.

The backup worker processes perform the standard operations for receiving a

request, but do not generate the reply. Upon receiving a request and performing

the standard operations, the worker process just waits for a reply from the backup

demux process. This is the reply that is produced by a primary worker process for

the same client request.

75

4.4.2.2.2. Mux/Demux Processes

If each server replica contained only a single worker process, the reply

logging step of our scheme could be implemented simply with a direct

communication between the two worker processes. Upon generation of each reply,

the worker process on the primary would send a copy of the reply to the backup

worker process, wait for a user-level acknowledgement, and then send the reply to

the client. Practical servers however, typically contain multiple worker processes

or threads. Hence, a mechanism is required to link the worker process from each

replica that is handling the same request.

One possible approach would be to pair worker processes (one on each

replica) statically at server initialization time. This approach would be simple,

however, it requires the paired processes to always receive and process identical

requests. In practice (e.g. Apache web server), the handoff of new client

connections to a worker process is typically done by the kernel (via listen and

accept calls) and is not deterministic. Thus, we can not ensure at the user-level that

the both processes in the pair will always receive identical requests. Hence, an

alternative approach is required.

An alternative approach is to have connections between each and every

possible combination of process pairs on both replicas. Obviously a large

initialization and resource overhead is incurred. In addition, with each request a

primary process must identify which remote process is handling the same request.

Our approach avoids the overhead and implementation complexity by using

dedicated processes on each replica for reply logging. There are two processes

added to the primary (a ‘‘mux’’ and a ‘‘demux’) as well as a ‘‘demux’’ processes

76

added to the backup. The mux/demux processes ensure that a copy of each reply

generated by the primary is sent to and received by the backup before the

transmission of the reply to the client starts. The mux/demux processes

communicate with each other over a TCP connection, and use semaphores and

shared memory to communicate with worker processes on the same host (Figure

4.4).

The primary mux process receives the replies generated by primary worker

processes and sends them to the backup on a TCP/IP connection that is established

at startup. A connection identifier (client’s IP address and TCP port number) is

added as a custom header to each reply message so that the backup can identify the

worker process with the matching request. The main reason for existence of this

process is that there is no easy way for multiple processes to share a single

connection/socket descriptor for sending. For a multi-threaded server

implementation, this process would not be necessary as all threads of a process can

share and use the same socket descriptor.

The backup demux process receives replies from the primary and sends an

explicit (i.e. user-level) acknowledgment back to the primary for each reply. The

reply’s connection identifier is included in the acknowledgment message. The

backup demux process then examines the custom header of each reply and hands

off the reply body to the appropriate backup worker process.

The primary demux process receives acknowledgment messages from the

backup and signals the appropriate worker process that its reply has been logged by

the backup and that it may proceed with sending of the reply to the client. Again,

the connection identifier is used to match the acknowledgments with the

77

appropriate worker process.

4.4.3. Converting Process Crashes to Host Crashes

As discussed in Section 4.1, our work is based on the assumption that only

one host at a time can be affected by a fault and that the impact of the fault can be

to either crash a process (fail-stop processes) or crash the entire host. However, the

fault tolerance mechanisms can be simplified if it can be assumed that the only

possible impact of a fault is for the host to crash (fail-stop hosts). In particular, as

discussed below, there are two key complications with fail-stop processes as

opposed to fail-stop hosts: 1) as a result of a fault on a server, the client may close

the connection and thus the fault tolerance mechanism is no longer client-

transparent, and 2) error detection may be more complex. In order to avoid these

complications, our implementation converts process crashes to host crashes.

With a standard UNIX/Linux kernel, when a server process crashes, the

kernel closes all open network connections of that process. As a result, the TCP

implementation in the kernel generates either an RST or a FIN packet, depending

on the state of the connection. Upon receiving this packet, the client on the other

side of the connection will close the connection. Once the TCP connection is

closed, re-establishing the connection would have to involve special action by the

client, thus violating the requirement of client-transparent fault tolerance. Hence,

our implementation must detect process crashes and prevent the transmission of

these RST and FIN packets. This requires the implementation to distinguishing

between TCP RST or FIN packets generated due to a process crash, which must be

discarded, and those RST or FIN packets generated during normal operation, which

78

must be allowed to reach the client.

Only minor changes in the kernel were required in order to discard the RST or

FIN packets when a process crashes [Aghd05]. These changes identify process

crashes by setting a special flag when the process performs an explicit exit call.

During process termination cleanup, if this flag is set, any TCP packets generated

for any of the open sockets of the process are transmitted normally. However, if

the flag is not set, thus indicating that the process terminated abnormally, all

outgoing packets for sockets of this process are discarded.

As described in Subsection 4.4.2.2, the server implementation consists of

multiple processes on each host. If one of these processes crashes, e.g., the mux or

demux processes, a complex fault tolerance scheme would be required in order to

identify which process crashed and take recovery actions that would allow other

processes on the host to continue to run correctly. Instead, our implementation

responds to any process crash by killing all the service-related processes on the

host. On each server host there is a process that generates periodic heartbeats and

sends them to the other member of the (primary, backup) host pair. If the heartbeat

monitor process on a host detects missing heartbeats from its partner host, it takes

recovery actions that are appropriate for a host crash (Subsection 4.6.3). The

heartbeat generator process is among the processes that are killed if any of the

processes on the host crashes.

All the service-related processes on each server host are descendants of a

single ancestor, henceforth referred to as the top process. Except for the top

process, every other process is forked from another process and is thus a ‘‘child’’

of some other process. Whenever a child process crashes or terminates normally,

79

standard UNIX/Linux functionality is that the parent is notified via a SIGCHLD

signal. The kernel passes to the SIGCHLD signal handler a flag that indicates

whether the process exited normally or terminated abnormally. In our

implementation, every process includes a handler for the SIGCHLD signal. If the

child process terminated abnormally, the parent process kills all other service-

related processes, including itself and the heartbeat generator. This ensures that the

other member of the server pair will eventually detect a fault (missing heartbeats)

and take over, as described in the next subsection. The top process on the host

cannot be monitored in this fashion. Instead, the heartbeat generator explicitly

checks that its parent process (which is the top process) is still alive before sending

each heartbeat. If the parent process is not alive, the heartbeat generator kills all

other service-related processes, including itself.

4.4.4. Failover

We assume failures to be fail-stop [Schn84]. For fault detection, heartbeat

messages are exchanged between servers. A process in the user-level server

modules of each server periodically sends sequenced UDP packets to its

counterpart. Consecutive missed heartbeats signal that a fault has been detected.

When a fault is detected, the system must transition from standard replicated

(duplex) operation to single server (simplex) mode (Figure 4.5) [Aghd03b]. The

identity of the service (i.e., advertised address) is preserved for new and existing

connections. Existing active connections are migrated to simplex mode. For each

received HTTP request, the system ensures that the complete HTTP reply message

is delivered to the client.

80

entire reply

S2S1

Backup Primary

input

input

inputoutput output

Client Client

Pre Fault After Failover

S1 or S2

Simplex

Figure 4.5: In normal (pre-fault) operation, client input is sent to the
backup and then forwarded to the primary. The primary generates the
output, logs it to the backup, and sends it to the client. After a fault,
the surviving node takes over the identity of the failed node and
operates in simplex mode.

As previously mentioned, the advertised address is mapped to the backup

server in fault-free operation. The service address used by the clients must

continue to be available following a backup server failure. Hence, the remaining

member of the duplex pair, the primary, has to take over that IP address. This

takeover can be implemented using a Linux ioctl that establishes an additional IP

address alias for the network interface. However, as discussed later in this section,

this functionality is included in a new system call that we implemented.

In a standard modern networking setup, the servers are connected to a

switched LAN and all packets from remote clients pass through multiple routers on

their way to the server. Following IP address takeover, the local router must be

81

informed that a new host (MAC address) should now receive packets sent to the

‘‘migrated’’ IP address. We use gratuitous ARP [Plum82] to accomplish this task.

Specifically, ARP reply packets are sent to hosts (including the router) on the same

IP subnet without waiting for explicit ARP requests. Once the router receives an

ARP reply packet, its ARP cache is updated, causing it to route packets that are

sent to the service address to the surviving server. Gratuitous ARP is not reliable

since the ARP reply packets may be lost. Hence, we added a level of reliability by

pinging a known host outside the server subnet. If a ping reply is received, it

implies that the router’s ARP cache has been updated. If a reply is not received

within a timeout interval, the gratuitous ARP reply packets are retransmitted. Only

a single outside host is used in our implementation. However, this approach can be

trivially extended to ping multiple outside hosts to avoid the possibility of the

outside host becoming a single point of failure. A ping reply from any outside host

would indicate a successful router ARP cache update.

Since faults are detected by the user-level heartbeat processes in the server

module, the kernel module must be informed in order to transition active

connections from duplex to simplex processing mode. Hence, we have

implemented a system call which allows a user-level process to notify the kernel of

a fault detection. The kernel module’s transition from duplex to simplex mode is

simple. If the primary fails, the backup kernel module no longer forwards the

incoming client packets to a primary. Also, outgoing packets are sent to the client

instead of being discarded. As a result, unacknowledged portions of any logged

replies will reach the clients. If the backup fails, the primary kernel module takes

over the advertised address and incoming packets are received directly from the

82

clients instead of being forwarded from the backup, but this change is not

noticeable to the server.

At the user-level, the heartbeat process must notify all other user-level worker

and mux/demux processes of a detected fault. The user-level notification is

implemented by setting a global flag in shared memory. Each server module

process checks this flag when it receives a client request, and determines whether

the system is in duplex or simplex mode. At failure time, some of the server

module processes may be waiting for an event. For example, a backup worker

process may be waiting for a reply, or a primary worker process may be waiting for

acknowledgement that its reply has been logged. When a fault occurs, these

waiting processes must be notified to no longer wait, since the events they are

waiting for will not occur in post-fault (simplex) operation. The process that

detects the fault performs these notifications using the same mechanism normally

used by the demux process.

After a failover and transition to simplex mode, new requests are processed in

simplex mode and replies are sent directly to the client. In-progress requests

logged at the Backup, for which a reply was never logged (by the failed Primary),

are similarly processed in simplex mode.

4.4.5. Restoration of Fault-Tolerant Service After Failover

After recovery from a fault, it is desirable to restore the system back to its

replicated configuration so that other faults can be tolerated. Our implementation

allows for the integration of a new server into the system without any disruption to

active connections. No extra resources other than a process listening for a

83

connection are used while operating in simplex mode. After a failover to simplex

mode, a server module process listens for a new server that may want to join the

system. The new server trying to join the system is initialized with all the required

modules and processes for duplex operation before contacting the active simplex

server. The new server connects to the waiting simplex server process and the two

exchange identity and configuration information. At this point, the active simplex

server begins the transition to duplex mode. At the user-level, processes required

for the logging of replies in duplex mode are spawned and initialized. Their

initialization includes setting up the required TCP connections with the new server.

Once all processes are initialized, the active simplex server invokes our system

call, notifying the kernel module to also transition to duplex mode. Packets for

new connections received after the transition are processed in duplex mode.

Our implementation does not transition the existing client connections being

processed in simplex mode to duplex mode. Hence, a server may need to operate

in simplex and duplex modes simultaneously. To support multiple modes

simultaneously, the kernel module keeps track of the system mode at a per

connection granularity. At user-level, the server module uses our system call to

check the mode of a connection. This check, i.e. system call, is only necessary

while the transition from simplex to duplex is not fully complete — i.e., there are

still existing simplex connections that have not yet terminated.

A conceivable improvement to our scheme would be to transition existing

simplex connections to duplex mode as well, thus allowing for tolerance of

multiple faults on the same connection. The simplex node’s existing connection

state and generated HTTP replies would have to be transferred to the new node,

84

which can be expensive. We extended our implementation to minimize the need

for such a scheme by using the protocol semantics of HTTP/1.1 to ensure that after

transition to duplex mode, existing simplex connections will be short-lived.

HTTP/1.1 allows multiple requests to be pipelined on the same connection.

However, the server has the option of terminating the connection at any

point [Fiel99]. The server may close the connection cleanly using the HTTP

‘‘Connection: close’’ directive or by closing the connection at the transport level.

The client should retry the pipelined requests for which it does not receive a

reply [Fiel99]. We use this property to our advantage and force leftover simplex

connections to be short-lived. After a server integration, the first request on each

existing simplex connection is processed normally in simplex mode. However,

when sending the reply, we notify the client at the HTTP level that the connection

should be closed. As a result, the client will start a new connection for the

processing of the rest of pipelined requests. Since these will be new connections,

they will be automatically processed in duplex mode by our system. Hence, after

the start of transition to duplex mode, our implementation will only process the

single current active HTTP request of a connection in simplex mode. The rest of

the requests will be processed in duplex mode, on a new connection.

4.5. Optimizations

Our performance evaluation of CoRAL (see Section 4.6) revealed two areas

where CoRAL’s performance could be improved. 1) The backup server does not

execute the application, and during fault-free operation its processing potential is

largely wasted, especially for processor-intensive applications. 2) The reply

85

logging operations add unnecessary overhead for static, deterministically generated

content. The application-level logging step can be safely eliminated for content

that is generated deterministically. Based on the above findings, we implemented

two performance optimizations for our scheme [Aghd03a]. The first, dual-role

servers, improves throughput by distributing the primary and backup tasks among

all the server hosts. The second, reduces the average overhead per request by

allowing a more efficient scheme to be used with requests for static content.

4.5.1. Dual-Role Server Hosts

With our primary/backup scheme, the primary is likely to require significantly

more processing than the logging that is performed on the backup, especially when

serving dynamic content that requires significant processing in order to generate

each reply. This type of content is typical for transaction processing e-commerce

applications, where fault-tolerance is critical. For the experimental setup described

in Section 4.6, Figure 4.6 shows the CPU cycles used per reply, where replies are

generated using the WebStone [Mind02, Tren95] CGI benchmark. The large

difference between the processing cycles used at the primary and backup servers

indicate that the backup host is mostly idle, with its processing potential largely

wasted. A simple solution to this problem is to distribute the primary server tasks

and backup server tasks among all the hosts. Hence, each server host will serve as

the primary for some requests and the backup for others [Time02, Borg83]. We

refer to this scheme as dual-role servers. The distribution of requests between the

two servers can be done using standard load balancing techniques, such as Round

Robin DNS [Bris95], centralized load balancers [Cisc99a, Cisc99b], or redirection

86

schemes [Sury00].

0

2

4

6

8

10

12

0 10 20 30 40 50

C
P
U

C
y
c
l
e
s

Reply Size (kbytes)

.

.

Duplex Total

Duplex-pri

Duplex-bu

Standard

Figure 4.6: Server hosts CPU cycles (in million) per request for
processing requests requiring dynamically-generated replies of
different sizes. The primary and backup nodes of the system in duplex
mode are depicted by Duplex-pri and Duplex-bu respectively. The
Duplex Total line is the sum of the cycles used by the primary and
backup per request.

CoRAL implementation without the dual-role optimization uses kernel

modules and Apache server modules that are statically initialized to perform either

the primary or backup functions [Aghd02]. For the dual-role server optimization,

the kernel module must perform both functions simultaneously. Hence, for each

packet received, the kernel module must dynamically determine whether it should

process the packet as the primary or the backup. Similarly, it is also convenient for

the web server processes (server modules) to dynamically determine whether to

process requests at the primary or backup. Our solution is to use two separate TCP

ports: one for incoming packets from clients and another for the forwarded packets

from the other server. When a kernel module receives a packet on the public

(client) port, it functions as the backup and forwards a copy of the packet to the

87

internal (forwarding) port of the other server. As a result, the forwarded packets

arrive on a different TCP port number than the client packets, and the acting mode

of the kernel module can be determined based on each packet’s destination TCP

port number. The same basic mechanism also works for the server module.

Although the user-level server modules do not have access to the packet headers,

they can determine the message destination address and their appropriate mode

based on the socket where the request is received.

4.5.2. Efficient Handling of Static, Deterministic Content

As discussed previously, CoRAL is designed to handle non-deterministic

dynamic reply generation. The reply is generated by the primary and then logged

on the backup before its transmission to the client can begin. The logging is done

over a dedicated TCP connection between the primary and backup. The primary

waits for an explicit user-level acknowledgment from the backup before it begins

to transmit the reply to the client [Aghd01, Aghd02]. Compared with transmission

of the reply as soon as it is generated, our scheme results in increased latency.

Specifically, most of the latency overhead of our scheme is due to the logging of

the replies and increases with message size (see Section 4.6).

Much of the latency overhead of our scheme can be eliminated if the replies

are deterministic — for example, if the replies are based on the contents of static

data (files) available to all hosts. In that case, instead of logging replies, active

replication [Schn90, Shen00] can be used, where both the primary and backup

independently generate each reply.

A possible disadvantage of using active replication is increased CPU load on

88

the backup for generating the replies. However, deterministic replies of web

services are often generated from static files and their generation is not processor

intensive. Even processor intensive deterministic server applications (e.g.

deterministic CGI scripts), typically have their results pre-computed and preserved

in ‘‘cache’’ files or memory for performance reasons. With reply logging, our

measurements have shown that the amount of processing required at the primary

and backup hosts are similar when replies are generated from cached

files [Aghd02]. Hence, the number of CPU cycles required by the backup server

for logging the replies is approximately the same as the number of CPU cycles

required by the primary to generate the replies. Thus, when processing associated

with reply logging is eliminated, system performance improves (see

Section 4.6.2.3.4).

The lack of synchronization between the primary and backup servers with this

optimization can cause a degradation of performance for some requests. Since

replies are no longer logged and reply messages are not exchanged between

servers, the backup may fall behind the primary. The primary server may process a

request, produce the reply, and send the reply to the client all before the backup

server processes the same request. In such a case, the backup will receive client

TCP acknowledgment packets before it has produced the corresponding TCP data

packets. To maintain correctness for fault-tolerance, the backup kernel module

drops these acknowledgments, allowing the primary and backup TCP states to

converge before the acknowledgment packets are processed. This approach can

lead to retransmission of some packets and an increase in the observed request

processing time by some of the clients. This problem can be fairly common under

89

heavy load because both servers perform identical operations except that the

backup performs the extra step of forwarding every client packet to the primary,

making the backup the processing bottleneck of the system.

We have implemented an alternative optimization, henceforth referred to as

sync static (synchronized static), that reduces the probability of retransmissions at a

cost of some latency and processing overhead. With the sync static approach, the

backup server sends a message containing the connection identifier to the primary

upon the generation of each reply. The primary sends the reply to the client only

after it receives the synchronization message from the backup. This prevents the

primary from getting too far ahead of the backup.

The optimized version and the original reply logging version of our scheme

can be used simultaneously on the same servers. The Apache web server provides

a mechanism similar to a content-based (layer-7) router, where decisions about the

processing of a request can be made based on the request URL in the HTTP header.

Instead of routing requests to different servers as done by routers, Apache decides

whether or not to use each module based on the request URL [Stei99]. If the

request URL includes a path that has been designated to be non-deterministic

content, our module that implements the reply logging is used. Otherwise, the

module and the reply logging step is skipped. For example, servers can be setup

where the URLs for non-deterministic content begin with http://hostname/non-

deterministic/, and those for deterministic or static content begin with

http://hostname/static/.

As mentioned before, the static optimization is best suited for cases where

reply generation is not processor intensive. A conceivable further optimization for

90

processor intensive cases is to have the backup server log the requests and generate

the reply only if the primary fails. As a result, processing cycles on the backup

would not have to be used for reply generation during normal operation. Our

original non-deterministic scheme also accomplishes this goal with the additional

cost of sending the replies from the primary to the backup. Hence, the benefits of

this possible approach are limited to only the cases where the replies are

deterministic, processor intensive, and very large.

4.6. Performance Evaluation

In order to better understand the implications of design tradeoffs and

implementation choices of CoRAL, we evaluated the performance of our scheme

considering the overhead during normal operation as well as duration of any impact

on the service when a fault occurs. The overhead during normal operation can be

expressed in terms of increased response time, an increase in the number of server

CPU cycles per request, and a decrease in the maximum request throughput that

can be handled by a fixed number of servers. The response time (latency) will

increase due mainly to the latency of forwarding the request by the backup and

then logging the reply by the primary to the backup before sending the reply to the

client. Some additional, relatively minor, factors that increase response time

include address translation, sequence number mapping, and checksum

recomputation. All the extra operations that increase the response time also

account for the extra processing cycle per request. However, the extra latency is

not directly proportional to the overhead processing cycles since part of the latency

is due to communication between the server replicas and not simply extra

91

processing.

To a first order approximation, the response time of our scheme can be

expressed by a very simple equation:

Response_Time = α × Reply_Length + β + Reply_Generation (Eqn 1)

This equation also holds for the standard service implementation without any of

our changes. Reply_Generation is the time to generate a reply on a server replica

once the request has been received and thus this factor is not impacted by our

scheme. Our scheme does impact α and β. The fixed time to set up the connection

is β, while the latency per reply byte is α. While Reply_Size may impact

Reply_Generation , neither of these factors is impacted by our scheme.

The total number of server processing cycles per request can be expressed

with an equation that has the same form as Equation 1. The maximum throughput,

when not limited by network bandwidth, is approximately inversely proportional to

the processing cycles per request.

The rest of this Chapter presents the results of experimental evaluation of our

implementations of CoRAL.

4.6.1. Experiment Setup

Unless otherwise noted, our measurements were performed on 350 MHz Intel

Pentium II PCs interconnected by a 100 Mb/sec switched network based on a Cisco

6509 switch. The servers were running our modified Linux 2.4 kernel and the

Apache 1.3.23 web server with logging turned on. For some experiments, the

server replies were generated dynamically, using WebStone 2.0 benchmark’s CGI

92

workload generator [Mind02, Tren95]. This benchmark randomly generates each

reply byte. With this reply generator, where γ is the cost per byte of generating

the reply, Equation 1 becomes:

Response_Time = α × Reply_Length + β + γ × Reply_Length (Eqn 2)

For other experiements, the server replies were static, read from a file whose

contents did not change. In those cases, since the file was read repeatedly, it was

cached in memory by the OS. Hence, the reply was effectively simply read from

memory. With respect to Equation 2, this corresponds to γ = 0.

We used custom clients similar to those of the Wisconsin Proxy

Benchmark [Alme98] for our measurements. The clients continuously generate

one outstanding HTTP request at a time with no think time. For each experiment,

the requests were for replies of a specific size as presented in our results. Internet

traffic studies [Bres99, Cunh95] indicate that the median size for Web replies is

typically around 15k bytes.

Measurements were conducted on at least three system configurations:

standard, simplex, and duplex. Standard is the off-the-shelf system with no kernel

or Web server modifications. The simplex system includes the kernel and server

modifications but there is only one server, i.e., incoming packets are not multicast

and outgoing messages are not logged to a backup before transmission to the client.

The extra overhead of simplex relative to standard is due mainly to the packet

header manipulations and bookkeeping in the kernel module. The duplex system is

the full implementation of the scheme.

93

4.6.2. Failure-Free Performance

CoRAL introduces several new communication and processing steps that are

performed in addition to the standard communication and processing that occur

with a standard off-the-shelf web service. Incoming client TCP packets are

forwarded by the Backup to the Primary, adding an extra hop to the path traveled

by each incoming packet. The TCP/IP processing inside the kernel is actively

replicated on both the Primary and Backup replicas. The transmission of replies to

the client does not occur until a copy is logged by the Primary to the Backup, and

an acknowledgement of the logging is received by the Primary. Each of these step

adds to the overhead incurred by our system.

We performed several experiments to better understand the overheads of our

system in failure-free operation. The key performance measures to consider

include latency — the client observed time for receiving a reply for a request —

and throughput — the amount of client requests that can be processed per unit

time. Latency is important because clients often have an expectation of how long

request processing should take. Hence, long latencies (longer than what the client

expected) can lead to unsatisfied clients, and should be avoided. For web services

the expectation for response time (latency) is typically in the sub-second to at most

a few seconds range [Bail01]. Throughput is important because typically it is

directly correlated with the service provider’s income. A service provider’s goal is

to achieve the maximum possible throughput with its resources. A related metric is

the amount of processing (CPU) cycles required to service each request. Assuming

the service application is CPU bound (see discussion below), an increase in the

processing requirement will result in either a lower system throughput or a higher

94

cost to the service provider (in terms of new/faster CPUs) to achieve the same

throughput.

The system latency, throughput, and processing requirements are directly

affected by the CoRAL overheads. The forwarding of incoming client TCP

packets by the Backup to the Primary adds an extra hop to the path of each packet,

increasing the latency of each request processed. The forwarding of packets also

adds processing overhead since each received packet is copied and modified for

sending. The active replication of TCP processing on both the Primary and Backup

replicas also introduces processing overhead to the system. The reply logging step

which allows for the handling of non-deterministic generated replies also adds

overhead in terms of both latency and processing. The latency is also increased

since the transmission of each reply to the client is delayed until the Primary sends

a copy of the reply to the Backup and a user-level acknowledgement is received.

This logging communication and the logging implementation described in

Section 4.4.2.2 also requires some processing.

4.6.2.1. Application Reply Types and System Behavior

Web service application replies can be categorized into two types: static and

dynamic. Static replies are generated deterministically, typically from contents of

a file. The cost of generating these replies in terms of CPU cycles is relatively low.

The files used for reply generation tend to be cached in memory, thus avoiding a

disk access. As a result the latency for such replies is also typically relatively low

and the throughput is often limited by the available bandwidth. Dynamically

generated replies are typically non-deterministic and relatively processor intensive.

95

Therefore, the throughput is often limited by the amount of available CPU

processing power.

With CoRAL, the content of replies is generated only at the primary (except

with the static optimization discussed in Subsection 4.5.2). Hence, CoRAL’s

overheads are related to the size of the replies and not to the amount of processing

required to generate the replies. There is a fixed processing overhead that is

incurred regardless of the reply type. As a result, the overhead of CoRAL relative

to a standard server is larger for static replies (which require few cycles to

generate) than the more processor-intensive dynamic replies. In Section 4.5.2 we

showed how to optimize CoRAL and reduce the overhead for static content.

However, in general, practical applications that require a high level of reliability

and fault-tolerance (e.g., transaction-based systems) typically involve dynamically

generated replies. Hence, our experiments with dynamically generated replies are

more representative of a practical setting.

4.6.2.2. Dynamically Generated Replies

As mentioned earlier, practical systems that require a high level of reliability

and fault-tolerance are typically processor intensive. Static content results

presented in Section 4.6.2.3 show the baseline case where the generation of replies

requires minimal processing. In this section we present results for an example

application where more CPU cycles are spent on generating a reply than the static

case — a CGI script that dynamically generates the replies. As described in

Section 4.6.1, for these experiments our clients were configured to send requests

for the CGI content. The web server used the CGI script that is part of WebStone

96

2.0 benchmark [Mind02, Tren95]. This CGI workload generator generates each

reply byte using a random number generator. In addition, as with typical CGI

processing, a new server process is created (forked) to handle the request. Hence,

the server CPU utilization is significantly higher than the CPU utilization for

generating static content. This behavior is more indicative of targeted practical

applications such as transaction processing where increased system reliability and

fault-tolerance is required. We measured the client observed latency for individual

requests, peak system throughput in terms of requests per second and Mbytes per

second, and processing overhead incurred due to our fault-tolerance

implementation.

0

10

20

30

40

0 10 20 30 40 50

L
a
t
e
n
c
y

Reply Size (kbytes)

.

.
Duplex
Duplex Logging Overhead
Simplex
Standard

Figure 4.7: Average latency (ms) observed by a client for different
reply sizes and system modes.

97

4.6.2.2.1. Latency Overhead with Dynamic Replies

Figure 4.7 shows the average latency on an unloaded server and network from

the transmission of a request by the client to the receipt of the corresponding reply.

There is only a single client on the network, with a maximum of one outstanding

request. These results match Equation 2, with γ = 0.34 µs/B, and for (standard,

simplex, duplex), respectively, α = (0.10, 0.14, 0.21) µs/B,

β = (5.59, 5.86, 6.40) ms.

The higher value of the factor α for duplex compared to standard means that

the absolute latency overhead increases with increasing reply size. The extra

processing per reply byte is due mostly to the logging of the reply. In Figure 4.7,

the difference between the ‘‘Duplex Logging Overhead’’ line and the ‘‘Standard’’

line is the time to transmit the reply from the primary to the backup and receive an

acknowledgement at the primary. As the figure shows, this time accounts for most

of the duplex overhead. In practice, taking into account server processing and

Internet communication delays [Matr00], server response times of tens or even

hundreds of milliseconds are common. Hence, the increased latency of a few

milliseconds (6.6ms for 50KB replies) will have negligible impact on the service

observed by the Internet clients.

4.6.2.2.2. Processing Overhead with Dynamic Replies

We measured the CPU cycles used by a server host in several different

settings in order to identify CoRAL’s processing overhead. The measurements

were performed using a driver [Pett03] which utilizes the processor’s performance

monitoring counter registers. Specifically, we measured

98

0

5

10

0 10 20 30 40 50

C
P
U

C
y
c
l
e
s

Reply Size (kbytes)

.

Duplex

Duplex-pri

Duplex-bu

Simplex
Standard

Figure 4.8: Used CPU cycles (in million) by different system modes for
processing requests for different reply sizes. The primary and backup
nodes of the system in duplex mode are depicted by Duplex-pri and
Duplex-bu respectively. The Duplex line is the summation of primary
and backup results.

global_power_events [Inte04] which accumulates the time during which the

processor is not stopped. First we measured the number of cycles used by an idle

host (just running the OS and minimal system processes) in a given amount of time

(e.g. 10 seconds). We then measured the number of cycles used by a host while

processing a known number of requests (e.g. 1000) in the same time period. The

actual number of cycles used by our scheme was obtained by deducting the cycles

used by an idle host from the cycles used by the host processing requests.

Figure 4.8 shows the CPU cycles used by the servers to receive one request

and generate a reply of a given size. As mentioned earlier, these results can be

modeled by an equation that has the same form as Equation 2:

Cycles_Used = ω × Reply_Length + ψ + φ × Reply_Length (Eqn 3)

The measured results fit the values: φ = 120 cycles/B, and for (standard, simplex,

99

duplex), respectively, ω = (10, 12, 56) cycles/B, ψ = (1.89, 2.0, 2.55) Mcycles.

Comparing duplex to standard, the component of the overhead that depends

on the reply size (the change in ω) is 46 cycles per reply byte. This overhead

consists of 14 cycles/B on the primary host and 32 cycles/B on the backup. This

overhead component is larger on the backup because the extra work on the primary

per reply byte is simply to transmits (log) it to the backup. On the other hand, on

the backup the extra work is to receive the reply byte, transmit it (with the kernel

module dropping it before it is physically transmitted to the network), and handle

as well as forward the client acknowledgements for the reply.

Based on Figure 4.8, the relative overhead of duplex versus standard is in the

range of 32%-35% for the entire range of reply sizes. This relative overhead is

heavily dependent on the cost of generating the reply (the parameter φ in

Equation 3. For example, if the reply is static, generated from files that are cached

in memory, the value of φ is essentially 0. In this case, the measured results

(Subsection 4.6.2.3.1) fit the values: for (standard, simplex, duplex), respectively,

ω = (10, 13, 56) cycles/B, ψ = (0.385, 0.423, 0.949) Mcycles. While the absolute

overhead for duplex is essentially the same as with dynamic replies, the relative

overhead reaches about 310% for 50KB replies. For most applications where

reliability is important (e.g., banking), there is likely to be significant processing

required to generate the reply. Hence, with respect to relative processing overhead,

the results above for dynamic content are more representative of practical

deployment. As shown in Section 4.6.2.3.4, lower relative overheads can be

achieved using the optimization for static content discussed in Section 4.5.2.

100

0

50

100

150

200

250

0 10 20 30 40 50

Requests
per

Second

Reply Size

...............

Theoretical

Standard
Simplex
Duplex

0

500

1000

1500

2000

2500

0 10 20 30 40 50

Kbytes
per

Second

Reply Size

..
...
..
...
..
..
...

..
..

..
..

..

Theoretical

Standard
Simplex
Duplex

Figure 4.9: Peak system throughput (in requests and kbytes per second)
for different message sizes (kbytes) and system modes. ‘‘Theoretical’’
line represents the theoretical throughput of an standard server which
uses an equivalent number of processing cycles as the duplex system.

4.6.2.2.3. Throughput with Dynamic Replies

With the experimental setup for dynamically generate replies, the maximum

throughput is limited by the number of CPU cycles required per request.

Figure 4.9 presents the measured peak throughput for different system

101

configurations. As shown in Figure 4.8, with the duplex configuration, the number

of CPU cycles per request on the primary is just slightly higher than with the

standard configuration (less than 11% higher). Hence, the maximum throughput

with duplex is also within 11% of the maximum throughput of standard. However,

this comparison is not ‘‘‘fair’’ since duplex uses two servers while standard uses

only one. With the same amount of resources (two server hosts), a standard

system can achieve twice the throughput of a single server. Specifically, the

difference between the 2*standard line and the duplex line represents the real

throughput overhead of our scheme — duplex achieves only 44%-46% of the

maximum throughput of standard on two hosts.

The theoretical line represents the theoretical throughput of a standard server

where in addition to a single server, the cycles used by the backup server in our

scheme is also used for generating replies in standard mode. The values were

calculated using our processing cycle measurements for our backup server and the

cycle measurements of a standard unreplicated server.

As discussed in Section 4.5.1, the large throughput overhead of the duplex

configuration is due to the fact that only the primary processes the requests and the

backup is mostly idle. Section 4.6.2.2.4 presents an evaluation of the dual-role

optimization (Section 4.5.1) that keeps both server replicas busy.

Since the primary server sends the replies to the backup and to the clients on

the same physical link, it is possible for this link to become a bottleneck. This

phenomenon is unlikely to occur for processor intensive applications (i.e. dynamic

replies) but it can occur for network bound applications such as cached static file

replies. In such cases, the throughput of our system can be improved by using a

102

secondary network interface on each server for the reply logging (see

Subsection 4.6.2.3.2).

4.6.2.2.4. Evaluation of the Dual-Role Servers Optimization

In Section 4.5.1 we described our dual-role optimization where each server

host can simultaneously act as both the primary and backup for different requests.

As a result, idle cycles on the backup can be used to process requests and generate

replies (as the primary), increasing the overall throughput of the system. Figure

4.10 presents the throughputs of a standard server and CoRAL with and without the

dual-role optimization. For these measurements clients were manually configured

so that half of the requests were sent to each server. In practice, a load-balancing

mechanism should be used to distribute the requests amongst the servers.

The dual role results show significant throughput improvement over duplex

results (Figure 4.10) — 70%-72% of the Standard throughput (on two hosts) is

achieved. As mentioned earlier, the performance improvement is due to the use of

otherwise idle backup cycles for processing of requests. The difference between

the 2*standard line and the duplex line represents the throughput overhead of our

original scheme. The dual role theoretical line shows the theoretical upper bound

of the dual-role scheme. The values were calculated using measurements of

required CPU cycles for the processing of a single request and the known

processing speed of our servers. The small difference between the theoretical

(calculated) and experimental values are likely due to the increased number of

context switches that occur during high loads.

103

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50

Requests
per

Second

Reply Size

........

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

��

�

.
2*Standard
Dual Role Theoretical
Dual Role
Standard
Duplex

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50

Kbytes
per

Second

Reply Size

..
...
...

..
..

...
. .

. .
. .

.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

2*Standard

Dual Role
Theoretical

Dual Role
Standard

Duplex

Figure 4.10: Peak system throughput (in requests and kbytes per
second) for different reply message sizes (kbytes). Replies generated
with WebStone 2.0 CGI benchmark.

4.6.2.3. Replies Based on Static Content

For static content experiments, the web server generated the replies using

contents of files available on the local host. Clients made requests to files of

specific sizes as noted in each experiment. Since repeated requests were made for

the same files, file contents were cached in memory and disk I/O operations were

104

not involved. We measured the client observed latency for individual requests,

peak system throughput in terms of requests per second and Mbytes per second,

and processing overhead incurred due to our fault-tolerance implementation. The

setup for the experiments were described in Section 4.6.1. Results are presented in

the rest of this subsection.

4.6.2.3.1. Latency Overhead for Static Content

For latency measurements, a single client sent a single outstanding request to

an unloaded server and network, and the time from the transmission of the request

to the the receipt of the full corresponding reply was measured on the client. This

experiment was repeated one thousand times for each reply size, and the averages

were calculated.

0

5

10

0 10 20 30 40 50

L
a
t
e
n
c
y

Reply Size (Kbytes)

.

Duplex

Reply Overhead

Simplex

Standard

Figure 4.11: Average latency (ms) observed by a client for different
reply sizes and system modes. The Reply Overhead line depicts the
latency caused by replication of the reply in duplex mode.

Figure 4.11 shows the average client observed latency. The results show that

105

the latency overhead relative to the standard system increases with increasing reply

size. This is due to processing of more reply packets and the associated overhead

of modifications made to each packet header. The difference between the Reply

Overhead line and the standard line is the time to transmit the reply from the

primary to the backup and receive an acknowledgement at the primary. This time

accounts for most of the duplex overhead. Note that these measurements

exaggerate the relative overhead that would impact a real system since: 1) the

client is on the same local network as the server, and 2) the requests are for

(cached) static files. In practice, taking into account server processing and Internet

communication delays [Matr00], server response times in the order of a hundred

milliseconds or greater are common. The absolute overhead time introduced by

our scheme remains the same regardless of server response times and therefore our

implementation overhead is only a small fraction of the overall response time seen

by clients.

4.6.2.3.2. Throughput with Static Content

We conducted experiments to measure the peak throughput achieved by the

system. Several experiments were performed, each for a fixed reply size. For

these measurements, multiple clients simultaneously send requests to the server.

There is one outstanding request per client. Upon the receipt of a reply, the client

continues and transmits another request. The total number of client requests

processed per unit time by the server were measured.

The number of clients were fixed for each experiment, and ranged from 8 for

large (50k) replies to 32 for small (1k) replies. The number of clients for each

106

experiment was carefully chosen. If the number of clients for an experiment is too

small, the server will receive fewer requests than it is capable of handling and the

throughput results will be artificially low. If the number of clients is too large, the

server will receive more requests than it can handle, causing packets to be dropped.

This will cause TCP to backoff and the client to send requests at a lower rate.

Since the number of experimental clients (tens) are much smaller than in practice

(hundreds or thousands), and new experiment requests are sent by a client only

after the previous request has been serviced, a small backoff by the experimental

clients will cause an exaggerated drop in the number of transmitted requests and

thus system throughput. Hence, we manually varied the number of clients to find

the best (highest throughput) setting for each (reply size) experiment.

Figure 4.12 shows the peak throughput of a single pair of server hosts for

different reply sizes. The throughputs of standard and simplex (in Mbytes/sec)

increase until the network becomes the bottleneck. However, the duplex mode

throughput peaks at less than half of that amount. This is due to the fact that on the

primary, the sending of the reply to the backup by the server module and the

sending of reply to the clients (Figure 4.3) occur over the same physical link.

Hence, the throughput to the clients is reduced by half in duplex mode. To avoid

this bottleneck, the transmission of the replies from the primary to the backup can

be performed on a separate dedicated link. A high-speed Myrinet [Bode95] LAN

was available to us and was used for this purpose in measurements denoted by

‘‘duplex-mi’’. These measurements show a significant throughput improvement

over the duplex results, as a throughput of about twice that of duplex mode with a

single network interface is achieved.

107

0

200

400

600

800

1000

0 10 20 30 40 50

Requests
per

Second

Reply Size

....

Standard

Simplex

Duplex-mi
Duplex

0

2

4

6

8

10

12

0 10 20 30 40 50

Mbytes
per

Second

Reply Size

..
...
..
..
...
..

..
..

..
...

. .
. .

. .
. .

. .
. .

. .
.

Standard

Simplex

Duplex-mi

Duplex

Figure 4.12: System throughput (in requests and Mbytes per second)
for different message sizes (kbytes) and system modes. Duplex-mi line
denotes setting with multiple network interfaces for each server - one
interface is used only for reply replication.

108

� ���

1kbyte reply 10kbyte reply 50kbyte reply
� ���System Mode

user kernel total cpu% user kernel total cpu% user kernel total cpu%
� ���

Duplex (primary) 190 337 527 100 193 587 780 77 224 1548 1772 53
� ���

Duplex (backup) 147 330 477 91 158 615 773 76 185 1790 1958 58
� ���

Duplex-mi (primary) 192 353 545 100 198 544 742 85 225 1283 1508 85
� ���

Duplex-mi (backup) 147 355 502 93 152 545 697 80 169 1124 1293 72
� ���

Simplex 186 250 436 100 191 365 556 99 208 871 1079 70
� ���

Standard 165 230 395 100 166 342 508 99 178 730 908 60
� ���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

TABLE 4.3: Breakdown of used CPU cycles (in thousands) - cpu%
column indicates CPU utilization during peak throughput.

4.6.2.3.3. Processing Overhead with Static Content

CoRAL’s processing overhead was evaluated by taking advantage of the

processor’s performance monitoring registers [Inte04], using the procedure

described in Subsection 4.6.2.2.2. Table 4.3 shows the CPU cycles used by the

servers to receive one request and generate a reply of different sizes. For each

configuration the table presents the kernel-level, user-level, and total cycles used.

The ‘‘cpu%’’ column shows the cpu utilization at peak throughput, and indicates

that the system becomes CPU bound as the reply size decreases. This explains the

throughput results, where lower throughputs (in Mbytes/sec) were reached with

smaller replies.

Based on Table 4.3, the duplex server (primary and backup combined) can

require more than four times (for the 50KB reply) as many cycles to handle a

request compared with the standard server. However, as noted earlier, the likely

applications of this technology is for dynamic content. With dynamic content,

109

replies are likely to be smaller and require significantly more processing. Hence,

the actual relative processing overhead can be expected to be much lower than the

factor of 4 shown in the table (see Section 4.6.2.2.2).

4.6.2.3.4. Optimization for Deterministic or Static Content

Section 4.5.2 presented an optimization for more efficient handling of

deterministic or static content. Much of the overhead of our scheme is due to the

logging of replies from the primary to the backup. Furthermore, when the reply is

simply the contents of a file that is usually cached in memory, generating the reply

requires few CPU cycles. Hence, instead of logging the reply, it is more efficient

to generate the reply at both the primary and backup.

0 10 20 30 40 50

0

1

2

3

4

5

Reply Size (kbytes)

CPU Cycles
(million)

.

.

duplex-total

duplex-primary

duplex-backup
optimized-total

optimized-primary
optimized-backup

standard

Figure 4.13: Processing cycles per request, with replies generated from
cached static files. Two schemes are compared: the full duplex
CoRAL and the version of CoRAL optimized for static content. In
each case, results include the cycles at the primary, at the backup, and
total cycles used.

For replies generated from cached static files, Figure 4.13 compares the CPU

110

cycles used per request with the full duplex CoRAL and with the version of

CoRAL optimized for static content. These measurements show that with the

optimization for static content, compared to the full duplex CoRAL, there is a 45%

reduction in the cycle count per reply byte, and an 18% reduction in the fixed cost

to set up the connection. The results for the full duplex CoRAL shown in

Figure 4.13 are different from the results shown in Table 4.3, even though it is for

the same basic configuration. The reason for this difference is that the

measurements were conducted on different versions of the operating system with

different device drivers. However, assuming that the relative reduction in cycle

count for these two similar configurations would be approximately the same, it is

possible to compute the cycle counts for the optimized CoRAL that corresponds to

the result for the full CoRAL shown in Table 4.3. Applying the results of this

computation to Equation 3, this yields parameter values of: φ = 0, ω = 31,

ψ = 0.778. These parameters can be compared with the parameters discussed in

Subsection 4.6.2.2.2. These results show that this optimization can significantly

reduce the overhead of our scheme for static, deterministic content. In particular,

with this optimization, for reply sizes of up to 50KB, the relative overhead of our

scheme for static content is below 163%.

Figure 4.14 shows the average request latency as observed by a client. The

static line shows the latency with the static optimization. There is very little

latency overhead compared to the unoptimized duplex implementation because

most of our latency overhead (which is due to reply logging — reply overhead

line) is eliminated.

Figure 4.15 shows the distribution of request-reply latencies for the standard,

111

0

2

4

6

8

10

12

14

0 10 20 30 40 50

L
a
t
e
n
c
y

Reply Size (kbytes)

.
Duplex
Reply Overhead

Sync Static
Static
Standard

Figure 4.14: Average latency (ms) observed by a client for dynamically
generated replies with different sizes. The Reply Overhead line shows
the fraction of Duplex mode overhead due to reply replication. Static
and Sync Static depict the latency with optimization.

0 1 2 3 4 5 6 7 8

1

0.1

0.01

0.001

0.0001

0.00001

F
r
e
q
u
e
n
c
y

Latency (seconds)

...................................
..
..
..
..
..
..
..
..
..........................

.............
...........

.................
........

.........
...
.........

..
.....

........
.....

..........
...
.............

...
..
.......
..
................

..
..
....................

................
...
..
.......

...
............

.......
..
..............

...
..
...............

..
................

..
..........
........

....................................
........

....................
..................................

....................
....... . .

. Static
Sync Static
Standard

Figure 4.15: Latency distribution for 5 Kbyte static replies at 550
requests/second throughput. (Note the log scale on the Y axis).

static, and sync static schemes for 5Kbytes static replies and a throughput of 550

requests per second. While the overwhelming majority of requests are processed

within a few milliseconds, with the static optimization, under heavy load, a tiny

fraction of requests result in latencies on the order of few seconds. This is due to

an increased probability of required retransmissions as discussed in

112

Subsection 4.5.2. The figure also shows that the sync static optimization reduces

the probability of the long latencies. Figure 4.14 shows that the reduced latency

variance of the sync static scheme compared to the static scheme comes at the cost

of increased average latency.

Figure 4.16 shows the peak throughput of our system with replies being

generated from cached static files. For large replies, the large throughput

difference between a standard server and our original duplex scheme is largely due

to the network becoming a throughput bottleneck due to the logging of replies. We

showed in Subsection 4.6.2.3.2 that this situation can be greatly improved by using

two network interfaces on each server, with one being dedicated for the reply

logging. The duplex-mi line shows the benefit of using such a dedicated

connection.

The static optimization eliminates reply logging and thus, as shown in

Figure 4.16, exceeds the performance of the duplex-mi scheme, without� ����������� using a

dedicated network connection. The increased throughput compared to the duplex-

mi scheme is due to the elimination of the processing overhead involved in logging

the reply. The sync static line in Figure 4.16 shows that, due to the increased

processing required, there is also a throughput cost for reducing the latency

variance relative to the static scheme.

113

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50

Requests
per

Second

Reply Size

.............

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

.

Standard
Static
Sync Static
Duplex-mi
Duplex

0

2

4

6

8

10

12

0 10 20 30 40 50

Mbytes
per

Second

Reply Size

..
...

. .
...

. .
. .

. .
.

�

�

�

�

�

�
�

�

�

�

�

�

�

� �
�

Standard

Static

Sync Static

Duplex-mi

Duplex

Figure 4.16: Peak system throughput (in requests and Mbytes per
second) for different reply message sizes (kbytes). Replies generated
from cached static files. Duplex-mi shows results for duplex system
with multiple network interfaces. Static and Sync Static depict peak
throughput for optimizations.

4.6.3. Service Failover and Recovery

When a server replica detects that the other member of the server pair has

failed, it reconfigures itself to continue to operate in simplex mode (see

114

Section 4.4.4). These operations require time, and the system may be unavailable

to clients while the failover and recovery operations take place.

To evaluate this system failover, fail-stop faults were emulated by physically

disconnecting a server host from the network. For these experiments, the workload

was generated by eight client processes, each continuously sending an HTTP

request for a 1 Kbyte dynamically generated reply.

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50

T
h
r
o
u
g
h
p
u
t

Timeline (sec)

Duplex

Simplex
Fault

2*Peak Standard

Peak Standard

Figure 4.17: System throughput (in requests per second) for 1 kbyte
HTTP replies before and after a fault. Dashed lines indicate the upper
bound, i.e., the peak throughputs of one and two standard servers
serving the same content.

Figure 4.17 shows the system throughput before and after a failover,

measured at one second intervals. The system operates at the maximum duplex

system throughput prior to the fault. Since in duplex mode replies are not actually

generated on the Backup, two servers in dual-role duplex mode can process more

requests per unit time than a single server in simplex mode. Thus, the throughput

of the system decreases following reconfiguration to simplex mode.

115

0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1

L
a
t
e
n
c
y

Timeline (sec)

� � � �� � � � �� � � � �� � � � �� � � ����

�� ��

�

� �
� �� � � � � �� �� � � � � � � � �

�

�� � � � � ���

�

�� �� �� �� � � � �� � �� �� �� � � � �� � � � �� �� � � � �� � � �� � �� �� �� � � � �� � � �� � �� � � �� � � � �� � �� � � � �� � � � �� �� � � �� � � � �� � � � �� �� � � � �� � � �� � �� � � �� � � � �� � � � �� �� � � � �� � � � �� �� � � � �� � �� � � �� � � �� � � �� � � �� � �� � � �� � � � �� � �� � � �� � � � �� � �� �� �� � � � �� � � � �� �� � � � �� � �� �� �� � � � �� � � ��

� � �

� �

�

� �

�

� �� � � � � � � � � � � � � � � � �� �� �

�

� � � �� �
�

� � � � � � � � � � � � � � ��

�

� �

�

� � � � � � � � � � �� � � � � � � � � � � �

Fault

Duplex Simplex

Figure 4.18: Client observed request latencies (in seconds) for 1 kbyte
HTTP replies before and after a fault. During failover, the system is
unavailable for a fraction of a second.

When a server host fails, there is a short period of time during which no new

requests are processed — the system is unavailable. This is the time required for

fault detection and failover from duplex to simplex mode. Figure 4.18 shows

typical client observed request latencies before and after a fault. Although clients

continuously transmit requests, there is a gap at the fault point where no requests

are processed — the system is unavailable for a short period of time. Our

measured failover transition time from fault detection in duplex mode to system

execution in simplex mode is just 1.5 milliseconds (see Table 4.4). Since the

transition time is short, most of the overall failover time is the time for fault

detection. The heartbeat rate determines the fault detection time but generating

and processing heartbeats uses CPU resources. Hence, the choice of this rate is a

tradeoff between failover speed and overhead during normal operation. For our

evaluation, we used a heartbeat rate of 100 milliseconds and a fault was assumed

116

when two consecutive heartbeats were missed. As a result, the unavailability

period was between 100 and 200 milliseconds.

In the worst case, when a server replica fails, a few packets may be lost. The

impact of this will be exactly the same as the impact of packets lost in the network

— the client may experience an additional delay that is approximately equal to the

TCP retransmission timeout. Such packet losses may occur during the brief

(fraction of a second) ‘‘unavailable time’’ mentioned above. However, all requests

are eventually received by a working server replica and all replies are eventually

delivered to the client.

� ���
Operation Latency (ms)� �� ���

Kernel Notification and Operations 0.3� ���
User-level Process Notification and Operations 0.5� ���
Identity Preservation

gratuitous ARP 0.5
outside host ping 0.2� �� ���

Total 1.5� ���
��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

Table 4.4: Breakdown of failover latency measured from the time a
fault is detected to start of system operation in simplex mode. This
table does not include the time to regenerate replies that were not
logged prior to the failure.

After a failover, it is desirable for the system to return to duplex operation,

allowing for the handling of other faults that may occur. Our implementation

includes a mechanism for integrating a new server with an active simplex server

(Section 4.4.5). We measured the required time for each of the key operations

involved. Table 4.5 shows a breakdown of latency for integration of a new server

with a simplex server. Most of the overall time is due to forking of the processes

that are used for communication between the server for reply logging. In our

117

implementation, the logging processes are forked and initialized only after an

initial handshake between the simplex host and the new server. This allows for

minimal resource requirements during simplex operation. The fork and

initialization latency overhead can be reduced by eliminating the need to fork

processes during server integration. This can be accomplished, at a cost of

increased resource usage, by forking these processes in simplex mode before they

are actually needed.

The other significant amount of time is due to exchange of configuration

information, i.e., server TCP/IP addresses, over a TCP connection. This is

necessary because we assumed that the active simplex server has no knowledge

regarding the new server that is joining it. Static configuration of server pairs can

reduce or eliminate this overhead. The identity restoration step consists of

removing an aliased IP address from the simplex node, mapping this IP address to

the new server, and informing the router using our reliable gratuitous ARP

implementation described in Section 4.4.4.

���
Operation Latency (ms)��

Identity Restoration 0.3���
Exchange Configuration Info Over TCP 3.9���
Fork and Initialize Processes 6.8��
Total 11.0���

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Table 4.5: Breakdown of latency for integration of a new server with a
working simplex server node to recover back to a duplex system.

118

4.6.4. Implementation Comparison: User-Level versus Kernel Support

As mentioned earlier in Chapter 4, the first implementation of CoRAL was

based on user-level proxies, without any kernel modifications. Two levels of

proxies implemented the required functionality. The first layer (raw proxies) had

packet header rewriting capabilities, and implemented the connection replication

portion of our scheme. The second layer (tcp proxies) implemented the message

logging requirements at the user-level. The performance analysis of our proxy

based implementation (discussed below) showed that our scheme introduces a

minimal latency overhead to standard off-the-shelf servers [Aghd01]. However,

the processing cost of our user-level implementation led us to the more practical

and efficient implementation using kernel-level support. In the rest of this section

we present details of our performance analysis for our user-level implementation

and compare the overheads of our user-level and kernel-level implementations.

The proxy-based experiments were performed on 350 MHz dual Intel Pentium

II PC’s running Solaris 7 and connected via a switched network using 100 Mbit/Sec

Ethernet cards and a Nortel 350 Baystack 10/100MB switch. In all experiments the

raw and TCP proxies of each cluster (primary/backup) ran on the same machine.

We used custom clients and servers similar to those of Wisconsin Proxy

Benchmark [Alme98] for our measurements. The client generates continuous

HTTP requests and in response the server sends a reply of predetermined size

without any processing.

Figure 4.19 compares the request latency times as measured by the client for 1

kbyte messages. We ran the same experiment with our system in duplex mode and

simplex mode. We also ran the experiment with direct client and server

119

3

6

9

12

15

0 200 400 600 800 1000

Time
(milliseconds)

Request Number

................
............................

..

..............
..................
................
.............................

..................
....................
........
....
........................

..

......
...................................

..

...........
..................
......................
............
..................
..
......
......................
..
..

..

..................
...........................

........
........
..
....
..
.........................

.........
..........................

.......................
..
..
...........
..
......
..........
..................
..

..........................
...................
.
......................
................................

..........
..
....
..............
............
....
......
..
...............
..
.............................

Duplex
Simplex
Null Proxies

No Proxies

Figure 4.19: Comparison of client measured response times for
different system modes

� ���
Mode Average (ms) Median (ms)� ���

Duplex Mode 6.05 6.08� ���
Simplex Mode 4.56 4.44� ���
Null Proxies 3.27 3.19� ���
No Proxies 1.23 1.16� ���

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Table 4.6: Average and median response times for different system
modes

connections (‘‘no proxies’’) and on a simplex mode system with proxies that just

relay the packets (‘‘null proxies’’). The performance of the system with null

proxies was evaluated in order to evaluate the overhead introduced by our decision

to use the two proxy approach. The difference between the simplex and duplex

modes shows the replication overhead. We have verified that the ‘‘spikes’’ in

Figure 4.19 are not caused by processing time of our code, message loss, or

retransmission. We believe these spikes to be caused by elements outside of our

implementation, such as the operating system. Table 4.6 shows the average and

120

mean request times for each experiment.

3

6

9

12

15

0 200 400 600 800 1000

Time
(milliseconds)

Request Number

...............
.........
......
.........
.....
.....
..
...
..............
.......
.........
........
.....
........
.....
.....
...
............
..
...
.....
.....
.......
..
..
..
....
..........
.....
.......
..
...
...........
............
.........
.....
.......
..
..
..
..
.
..........
....
.....
.......
.......
..
...........
......
......
.......
..
...........
..
.......
.....
.....
...
..........
........
.........
.......
......
..
.......
.....
.......
....
.........
......
..
..
.....
....
..
...
........
.......
....
.....
.......
.........
.......
..
..
.......
.......
........
....
..
.....
......
..
......
.....
..
......
........
.......
..........
..
..
....
.....
..........
..
......
..
...
.....
......
.....
....
......
........
.........
.........
.
...
........
......
......
.......
..
........
......
.....
..
...
..
..
......
.......
.....
........
..
...
.............
..
....
.....
.....
..
...
......
......
.....
....
.......
.......
.........
........
............
..
...
......
..........
.......
.......
........
..
......
..
...
......
...........
......
.....
.......
.....
......
.....
......
......
.....
.....
..
.
........
.....
..
..
..
...
........
..
......
.....
..
..
..
..
..
..
..
..
..
.............................
..
..
..........
.....
........
....
..
...
.............
..........
.......
............
.......
.......
.....
................
............
......
.....
...
..
........
.......
.....
..
.....
................
.........
.......
......
......
.......
......
..........
......
......
.....
..
...
........
.........
...............
.......
.....
....
.......
.......
.........
......
...
..........
.........
..
...
.....
..
......
..
...
.....
....
........
..
..
.................
........
..
..
..
..
..
...
..
...
..
.........
.......
.....
........
..
.......
......
..
..
......
..
...
..........
......
..........
.......
..
.
..
..
.......
........
........
.......
..
...
..
.......
....
......
.......
.....
........
.......
.......
...........
..
...
............
.......
......
........
......
..
.......
..
...
......
.......
.......
.
...
.......
.....
...
..
.............
......
........
.......
..
.....
.......
.........
.....
...
.........
.
...........
......
Client
Rawproxy

TCPproxy

Server

Figure 4.20: Component breakdown of duplex mode response time for
1 Kbyte replies

� ���
Component Avg (ms) Median (ms)� ���
Client 6.05 6.08� ���
Raw Proxy 5.42 5.26� ���
TCP Proxy 2.52 2.40� ���
Server 0.61 0.57� ���

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Table 4.7: Breakdown of average and median response times for 1
Kbyte replies in duplex mode

Figure 4.20 and table 4.7 show the breakdown of where the time is being

spent for each message. They show the times for the raw proxy, TCP proxy, and

the server. Note that the figure depicts an exaggerated view of overhead that is

introduced by the proxies since we use a custom server that does not do any

processing. In practice, taking into account server processing and Internet

communication delays, server response times of hundreds of milliseconds are

common. The absolute overhead time introduced by the proxies remains the same

121

regardless of the server response time. Therefore, in practice our implementation

overhead is only a small percentage of the overall response time.

3

6

9

12

15

0 20 40 60 80 100

Time
(milliseconds)

Request Number

MsgSize

10K

5K

1K

Server

Figure 4.21: Duplex mode response times for different HTTP message
sizes

1

2

3

4

0 20 40 60 80 100

Time
(milliseconds)

Request Number

MsgSize

10K

5K

1K

Server

Figure 4.22: Standard server (without proxies) response times for
different HTTP message sizes

The comparison of request times for different HTTP reply message sizes

122

� ���
Mode Size (kbytes) Avg (ms) Median (ms)� ���

Duplex 1 6.05 6.08� ���
Duplex 5 8.41 8.36� ���
Duplex 10 10.85 10.87� ���
No Proxies 1 1.23 1.16� ���
No Proxies 5 1.81 1.71� ���
No Proxies 10 2.34 2.21� ���

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Table 4.8: Average and median request times for different HTTP
message sizes

shows that our system scales in the same manner as a non replicated system.

Figure 4.21 shows the client request times for our system in duplex mode and

Figure 4.22 shows the times of the same requests for direct client to server

communication. The server processing time is also shown in both figures. Table

4.8 lists the average and mean times. Our system introduces an increased

connection setup overhead (difference between server time and small message

size) and a slightly larger per packet processing overhead (difference between

small and large messages). The figures show that the processing overhead

increases linearly in respect to message size in both cases and therefore both

systems scale in the same manner with respect to message size and number of

TCP/IP packets.

Our preliminary performance evaluation of our proxy-based user-level

implementation indicated insignificant latency overhead. The overall latency

overhead (similar to those of our kernel-level implementation presented in

Section 4.6.2.3.1) is on the order of few milliseconds — acceptable for most

network service applications. However, further experiments showed that the user-

level implementation incurs a large processing overhead and reduced throughput.

123

���
Implementation Primary Backup Total���

User-level Proxies 1860 1370 3230���
Kernel/Server Modules 337 330 667���

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

TABLE 4.9: User-level versus kernel support — CPU cycles (in
thousands) for processing a request and generating a 1kbyte reply from
a cached static file.

Table 4.9 shows a comparison of the processing overhead of the user-level

proxy approach with the implementation with kernel level support. The

experimental settings for this comparison are not perfectly identical. While both

schemes were implemented on the same hardware, the user-level proxy approach

runs under the Solaris operating system and could not be easily ported to Linux due

to a difference in the semantics of raw sockets. In addition, the server programs

are different although they do similar processing. However, despite the experiment

setting differences, the difference of almost a factor of five is clearly due mostly to

the difference in the implementation of the scheme, not to OS differences. The

large overhead of the proxy approach is caused by the extraneous system calls and

message copying that are necessary for moving the messages between the two

levels of proxies and the server.

4.6.5. Impact of Processor and Network Speed on System Performance

To evaluate the impact of processor on the performance of CoRAL, we ran

some experiments on 2.66GHz Intel Pentium 4 Xeon PC’s. Some of these

experiments also evaluated the impact of a faster network interconnecting the two

server replicas. For these latter experiments, the server hosts were interconnected

by a Gb/sec switched network. The clients were identical to those of previous

124

experiments, and server replies were generated dynamically using the WebStone

2.0 CGI benchmark. The connections to the clients were always through a

100Mb/sec switched ethernet. In the rest of this section we present the results from

the experiments on Pentium IV PC’s and compare them with Pentium II results

which were presented in the previous sections.

0 10 20 30 40 50

0

10

20

30

40

Reply Size (kbytes)

Latency
(ms)

.

P2-Duplex

P2-Standard

P4-Duplex-100

P4-Standard
P4-Duplex-giga

Figure 4.23: Average latency (ms) observed by a client for Pentium II
(P2) and Pentium IV (P4) server hosts. P4-Duplex-100 and P4-
Duplex-giga denote P4 system in duplex mode with 100 Mbit/sec and
gigabit/sec network configuration respectively.

4.6.5.1. Latency

Figure 4.23 shows request-reply latencies, as measured on the clients, for

Pentium II (P2) and Pentium 4 (P4) server hosts. The latencies for the P4 hosts

with the Gb network fit Equation 2, with γ = 0.0518 µs/B, and for (standard,

duplex), respectively, α = (0.0856, 0.102) µs/B, β = (1.67, 2.09) ms. The figure

shows that, for large replies, the latency overhead of duplex with 100Mb/sec inter-

server connection relative to standard is much larger than the overhead of duplex

125

with the 1Gb/sec connection. As discussed earlier, most of the overhead for duplex

is for logging the replies. By using a faster inter-server connection, the latency of

logging the replies and thus the overhead are reduced significantly. The overhead

for P4 servers with 100Mb/sec inter-server connections are slightly lower than the

overhead for P2 servers, due to the use of a faster CPU.

4.6.5.2. Throughput

With the P2 servers, the duplex configuration reached a peak throughput of

1.8MB/sec (Figure 4.10). As shown in Figure 4.24, the P4 reach a peak throughput

that is significantly higher: 6.0MB/sec and 7.8MB/sec with the 100Mb/sec and

1Gb/sec inter-server connection, respectively. With the P2 servers and with the P4

servers and Gb connection, the throughput is CPU-limited. On the primary, the

logging of the reply to the backup and the sending of the reply to the clients occur

over the same physical link. Hence, with the P4 servers and 100Mb connection,

network bandwidth is the bottleneck. In this case, the reply throughput to the

clients cannot exceed half the primary’s outgoing link’s throughput (50 Mbit/sec or

6.25 Mbytes/sec). Our results show that this bottleneck can be avoided with the

faster inter-server connection.

4.6.6. Performance Under Overload

The logging of replies from the primary to the backup can result in

undesirable performance characteristics under high load. Specifically, we

discovered such a problem in our initial evaluation of the system with the server

replicas operating in dual-role mode (Subsection 4.6.2.2.4) generating dynamic

126

0 10 20 30 40 50

0

200

400

600

800

Reply Size (kbytes)

Requests
per

Second

∆

∆

∆

∆
∆

∆
∆

∆
Standard
Duplex-giga
Duplex-100

0 10 20 30 40 50

0

2

4

6

8

10

Reply Size (kbytes)

Mbytes
per

Second

∆

∆

∆

∆
∆

∆ ∆

Standard

Duplex-giga

Duplex-100

Figure 4.24: Peak system throughput for Pentium IV server hosts.
Duplex-100 and Duplex-giga denote system in duplex mode with 100
Mbit/sec and gigabit/sec network configuration respectively.

replies. Starting from a low client request rate, as the request rate was increased,

the throughput of the system increased. However, when the request rate exceeded

the peak system throughput, there was a significant decrease in the achieved

system throughput.

127

Mux Proc
reply

Demux Proc

Demux Proc
Worker Procs Worker Procs

Backup Primary

user-level ack

Buffer

TCP window

Figure 4.25: Performance degradation due to overload: If the backup
becomes overloaded, the backup’s TCP receive buffer for the reply
logging connection may become full. The unavailability of buffer
space causes advertisement of small windows to the primary, resulting
in decreased logging throughput.

In dual-role configuration, each server node acts as both primary and backup

for different connections. Hence, if a server node experiences overload due to the

processing of multiple requests as primary, its performance as backup is also

effected. If a backup server is overloaded, the backup demux process

(Subsection 4.4.2.4) is not scheduled frequently and the kernel receive buffer for

the logging connection may become full (Figure 4.25). Since the logging is done

over a TCP connection, this condition will cause the backup kernel TCP stack to

reduce the TCP advertised window sent to the primary. The small (sometimes

zero) window advertised by the backup causes the primary to reduce the send rate

on the logging connection. This throughput reduction on the logging connection

leads to the throughput reduction of the entire system.

Our solution to this problem was to give higher priority to the processing of

messages received over the logging connection. This was done by assigning the

mux and demux processes high priority using the standard Linux mechanism

(sched_setscheduler) for assigning soft real-time priority to time-critical processes.

128

This simple change eliminated the anomalous performance characteristic we

observed initially with no negative impact.

4.7. Fault Tolerance Validation Using Fault Injection

In order to validate the correctness of fault tolerance schemes, they must be

tested under faults. This is often done by intentionally emulating (injecting) faults

in some components of the system and monitoring their impact [Hsue97]. One of

the basic tests of our system has been to physically disconnect one of the server

hosts from the network. This action emulates a fail-stop host failure since that host

immediately stops producing any visible output. This experiment was conducted

over 50 times, and the system detected and recovered from the host failures

correctly every time. The rest of this section describes experiments used to

validate system operation under more likely fault scenarios.

We used a kernel-based software fault injector under development at the

UCLA Concurrent Systems Laboratory. This injector emulates hardware faults by

randomly flipping bits in CPU registers or memory of a process selected randomly

out of a designated set of processes. The actual injection of faults is performed by

a Linux kernel module. A user-level fault injector process periodically interacts

with the kernel module using an ioctl call, and signals it to inject a fault into a

target application process. After a fault is injected, it may cause an error, i.e.,

modify the behavior of a process, the next time the targeted process is scheduled to

run by the OS. Some of the configurable parameters of the fault injector are: the

frequency of injection, whether the injection is to registers or memory, and whether

the injection is to the entire address space of the process or only to part of it (e.g.,

129

only to the stack segment). The fault injector we used does not inject faults into

kernel registers or memory. Hence, faults are only injected into the state of user-

level processes.

The fault injection experiments were conducted on 2.66GHz Intel Pentium 4

Xeon PC’s interconnected by a gigabit/second switched network based on a D-Link

DGS-1008D switch. Faults were injected into the primary node of CoRAL

operating in duplex mode. The workload consisted of clients sending requests for

1KB replies, for a total reply throughput of 64.8 KB/sec. The clients compared the

replies to known correct reply contents in order to determine whether the reply was

corrupted. With each experiment, we monitored the system for recovery actions

and inspected the replies received by clients for corruption.

We conducted targeted fault injection experiments, flipping bits in registers,

or specific areas of memory. The fault injector was configured to randomly choose

a user-level CoRAL process (either Apache worker processes or mux/demux

processes) as the target for each injection. When a fault caused a server or process

crash, a failover occurred and CoRAL processed requests in simplex mode. The

system was configured to restore itself to duplex operation. A new server joined

the simplex node 10 seconds after each failover, thus new faults could be injected

into the system, allowing the experiments to run mostly unattended.

The server reintegration is implemented using two layers of shell scripts. The

inner script starts a new initialized server (configured to join a simplex server) and

does not return (sleeps forever). The outer script consists of a loop which 1) calls

the inner script, 2) waits for it to return, and 3) waits an additional 10 seconds

before going back to the top of the loop. Hence, a new initialized server is started

130

10 seconds after the inner script returns. The inner script must return whenever

there is crash in order to achieve the desired experiment setting. Hence, CoRAL is

configured to kill the inner script as part of the conversion of process crashes to

host crashes (Section 4.4.3). As a result, whenever a process crashes due to a fault

injection, all processes and the inner script are killed, and a new server is initialized

and joins the surviving simplex replica after 10 seconds.

Most faults injected into the system either had no effect or caused a process to

crash. This result is consistent with fault injection experiments performed on other

systems [Made02]. For each experiment we collected the number of injections,

number of detected crashes, location of last injection prior to the crash (an

indication of which fault injection caused the crash), and the number of

corrupted/incorrect replies received by the clients.

4.7.1. Register Fault Injections

For the register fault injection experiments, the fault injector was configured

to inject faults, at a rate of one fault every five seconds, into a process that was

randomly selected out of all the processes related to the service, i.e., Web server

processes, mux/demux processes, and the hearbeat generator and monitor. For

each injection, a CPU register was randomly selected and a randomly chosen bit

within that register was flipped.

Table 4.10 shows the results for register fault injections. For each register,

the number of fault injections and host crash failures are shown. As expected,

injections into critical registers such as the program counter (EPI) and segment

registers cause frequent crash failures. In addition to the crash failures shown, 1%

131

���
Register Crash Failures Faults Injected Failure Percentage���
EBX 0 61 0���
ECX 0 57 0���
EDX 0 76 0���
ESI 0 74 0���
EDI 0 68 0���
EBP 50 56 89���
EAX 0 72 0���
DS 43 50 86���
ES 46 64 72���
FS 0 76 0���
GS 54 57 95���
EIP 61 61 100���
CS 54 60 90���
EFL 3 58 5���
UESP 57 57 100���
SS 55 64 86���
TOTAL: 423 1011 42���

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

TABLE 4.10: CoRAL Fault Injection Experiment - Register Injections.
In addtion to the crash failures shown, ten injections caused the service
to hang.

of injections caused the system to hang. Since these faults did not cause host or

process crashes, the system was not protected from them despite the CoRAL

mechanism.

We did not observe any errors or failures due to faults injections into the

general purpose registers. The web server behavior and implementation combined

with limitations of the fault injector may be the cause this observed result. The

web server implementation uses many wrappers around blocking system calls. The

fault injector injects faults into processes that are not running, i.e., descheduled.

132

Hence, if a web server process is descheduled due to a blocking system call in a

wrapper, faults injected into general purpose registers will not have any effects

because they are immediately overwritten when the wrapper function returns.

In summary, out of 1011 injections, 57% had no impact, 42% caused a

process crash, and 1% caused the system to hang. All crashes were handled

correctly and full duplex operation was restored.

4.7.2. Memory Fault Injection

Faults were injected by flippping a random bit in a randomly-selected address

in the address space of a process. As with register fault injection, the process was

randomly selected out of all the processes related to the service. Table 4.11 shows

the memory fault injection experiment results. When faults were injected into a

randomly selected location within the entire process address space, errors occurred

very rarely. Specifically, we observed only one failure (an incorrect reply received

by a client) from more than 70000 fault injections. This is because our

implementation uses a large (30MB) shared segment for communication between

the Web server processes and the mux, demux, and heartbeat processes. With light

load, most of this segment is unused. Hence, injecting faults into this segment very

rarely has any impact.

In order to evaluate the behavior of our system when faults do cause errors,

we performed two ‘‘stress tests,’’ where the injection was focused on memory areas

that are more likely to cause errors.

In the first experiment, the fault injector was configured to exclude 98% of

memory and inject faults only into memory that was not allocated using the mmap

133

� ���
Injection Target Injections Crashes Bad Replies Hangs� �� �� ���

Entire process address space 70000 0 1 0� ���
Non-mmap’ed memory(2%) 10358 84 1 3� ���
Stack (typically 304-9588 bytes) 10114 211 0 5� ���

��
�
�
�
�
�

��
�
�
�
�
�

��
�
�
�
�
�

��
�
�
�
�
�

��
�
�
�
�
�

��
�
�
�
�
�

TABLE 4.11: CoRAL Fault Injection Experiment - Memory Injections

system call. The mmap memory typically consists of large chunks, and in our case

included memory used to store requests and replies. Hence, injections into those

areas have a lower probability of causing crash failures. In this experiment, there

was a crash roughly once in every 123 injections. In addition, in over 10,000

injections, one fault caused a client to receive a corrupted reply and three faults

caused the system to hang and not process incoming client requests.

In the second experiment, the fault injector was configured to inject faults

only into the stack. Since the stack typically contains some critical process state,

as expected, a larger fraction of injections had an impact compared with our other

memory injection experiments (see Table 4.11). However, even in this case, only

two percent of the faults had an impact.

In all experiments, full recovery was achieved from all the crashes. Although

our solution cannot handle failures that do not cause crashes (e.g., hangs or data

corruption), in practice, most faults either cause crash failures or they do not cause

any observable errors in the system. This conclusion is consistent with other fault

injection research [Made02]. Hence, CoRAL can be expected to fully recover from

the majority of errors that occur in practice.

134

4.8. Summary

We have developed a client-transparent fault tolerance scheme for Web

services, called CoRAL, that correctly handles client requests, including those in

progress at the time of failure, in spite of a Web server failure. For each

connection, CoRAL uses two server hosts: a primary and a backup. TCP

connection state is actively replicated while requests and replies are logged at the

backup. If a server host fails, all connections transparently fail over to the backup.

The system has the ability to restore a fault-tolerant configuration for new

connections with a new host while existing connections remain active. From the

perspective of the clients, partially received requests, requests being processed, and

partially transmitted replies, all continue seamlessly despite server host failure.

We have implemented CoRAL with a standard Apache Web server running

on Linux servers. Our implementation is based on a kernel module and a module

for the Apache Web server. The kernel module is reusable for other TCP-based

services and the Apache module code would be largely reusable for other request-

reply protocols. The overhead of the full CoRAL mechanism involves some

additional processing when connections are established plus the cost of logging

replies to the backup. Optimizations for static content and the dual-role

deployment of server hosts can minimize the impact of this overhead. Performance

evaluation results show that in terms of latency, the overhead is too small to be

noticeable for clients connecting over the Internet, even with very slow (350MHz)

server hosts. Failover times on the order of 100-200ms are easily achieved. In

practice, for the likely target applications of this scheme, replies are often small,

dynamically generated, and require significant processing. For such workloads, the

135

results show that the overhead in terms of processing cycles, and thus maximum

server throughput, is likely to be under 30%. Preliminary fault injection

experiments demonstrate that the system will properly recover from the vast

majority of faults.

136

Chapter Five

Transparent Fault-Tolerant
Video Conferencing

Most of the existing work on client-transparent fault-tolerant network services

has focused on web service [Aghd01, Aghd02, Aghd03a, Aghd03b, Alvi01,

Koch03, Marw03, Shen00, Zhan04]. Hence, this work has generally dealt with

TCP connections, HTTP transactions, and web servers. In this chapter, we

examine how the methodology and mechanisms developed in the context of web

service can be adapted and applied to a very different type of service — video

conferencing. Video conferencing is an interesting test-case for applying fault

tolerance for other types of services since it combines critical conference state that

must be protected with media streams where limited data losses are acceptable.

Furthermore, the application sensitivity to latency and high demands in terms of

throughput and processing make video conferencing an interesting example for

evaluation of a fault-tolerance solution.

The rest of this chapter is organized as follows. An introduction to off-the-

shelf video conferencing applications in presented in Section 5.1. Section 5.2

discusses the details specific to the design and implementation of our fault-tolerant

video conferencing scheme using OpenMCU [Quic03], an open source

H.323 [Inte03] conferencing server developed on top of the OpenH323

library [Quic03]. Performance evaluation results are presented in Section 5.3.

Validation of our scheme using fault injection experiments is presented in

Section 5.4.

137

Client

Client

Client

MCU

Figure 5.1: Video Conferencing with a Multi-Conferencing Unit (MCU).
An MCU fault can cause the conference to fail.

5.1. Introduction to Off-the-Shelf Video Conferencing

Off-the-shelf video conferencing schemes typically consist of multiple clients

and a Multi-Conferencing Unit (MCU). The MCU is the central host for the

conference (Figure 5.1). It executes the conferencing application and maintains the

state of the conference. Clients connect to the MCU and join a conference with

other clients. The main functionality of the MCU application is to route the

multimedia stream (i.e. video) from each client to others. The MCU application

may also provide additional functionality such as the mixing of multiple media

streams, echo cancellation, content-adaptation to support different types of clients,

and conference management such as maintaining multiple virtual rooms. Since

conference state is kept only at the centralized MCU, an MCU process failure

results in the failure of all active conferences handled by that MCU.

The conference state kept at the MCU must persist for the lifetime of a

conference. This state changes during the conference as new clients join, some

clients depart, etc. In order to achieve fault-tolerance any changes to the MCU

138

state must be recorded reliably and preserved across faults. The conference state

changes infrequently and most of the MCU processing requirement is due to the

processing of the media streams, where absolute reliability is not required to

maintain the correctness of service. Hence, our approach to adding fault tolerance

to the MCU combines fully replicated operation for maintaining critical conference

state with a very low overhead failover mechanism for handling the media streams

themselves.

5.2. Adding Fault Tolerance to a Video Conferencing Server

We used the same methodology discussed in Chapters 3 and 4 to add fault

tolerance features to a video conferencing server. Our video conferencing

implementation is based on OpenMCU [Quic03], an open source H.323 [Inte03]

conferencing server developed on top of the OpenH323 library [Quic03]. The

OpenMCU application maintains virtual conference rooms, receives and mixes

media from the clients in a conference, and periodically transmits the mixed media

to each client. TCP connections are used as the reliable channel for transmission of

control messages. The media is transferred on top of unreliable channels using the

UDP protocol.

As mentioned previously, the service identity, connection state, and relevant

application state must be preserved over faults. We preserve the required state on a

replica on the same LAN subnet. During fault-free (duplex) operation, the MCU

connection state is actively replicated and the application state is synchronized as

necessary in order to handle non-deterministic behavior. If one of the replicas

fails, the surviving MCU takes over and operates in simplex mode. Our

139

implementation requires changes to the MCU at OS and application levels. A

kernel module on each replica facilitates the functionality necessary for replicating

the connection state. Modifications to the application code are used to implement

application level synchronization and fault detection.

Our implementation consists of roughly 5000 lines of user-level code and also

5000 lines of kernel-level code in the form of a kernel module. We also had to

modify the existing application code (less than 50 lines) and kernel code (less than

100 lines). Most of the modifications created entry points for the rest of our code.

Our user-level code consists of less than 1000 lines of application specific code

whose main functionality is the synchronization of application-level state. This

code was written specifically for the MCU application and cannot be used for other

types of services. The rest of user-level code, which mainly deals with fault-

detection and failover, is mostly application independent and very similar to the

code used for the CoRAL fault-tolerant web service (Chapter 4). The kernel-level

code is not application specific. The TCP portion is exactly the code that was used

for CoRAL, and the UDP code can be used with other services that use UDP

connections.

Some aspects of our fault-tolerant video conferencing implementation are

directly reused from the kernel-based implementation of CoRAL (Section 4.4.2) or

are a minor adaptation (e.g., initialized with a different TCP port number). The

shared aspects include: 1) preservation of reliable communication across failures,

i.e., active replication of TCP connections (Section 4.4.2.1) for the video

conferencing control channel, 2) error detection and failover (Section 4.4.4), and 3)

conversion of process crashes to host crashes (Section 4.4.3). The new aspects of

140

the scheme developed specifically for video conferencing are: 1) preservation of

unreliable communication (i.e., UDP media connections) across failures, and 2)

replication of application state and handling of application-level non-determinism.

In the rest of this section, we will discuss the aspects of the implementation that are

different from CoRAL’s implementation.

5.2.1. Unreliable Communication

The MCU media channel is built on top of UDP. In order to preserve the

media channel across faults, identical UDP socket structures must be created on

both MCU replicas. In addition, client UDP packets sent to the faulty MCU must

be transparently routed to the surviving replica after a fault. H.323 services

typically create the media stream after receiving a client request on the control

channel. With OpenMCU, UDP sockets are created in response to client requests

received on the TCP connection. Since we replicate the TCP connection, we are

ensured that both replicas will receive identical requests. Hence, if identical

applications are executed on both replicas and the application behavior is

deterministic, or non-determinism is handled as shown later in this section, then

identical UDP socket structures will be created on both replicas.

The key to the low overhead of our scheme is that the UDP packets (the

media streams) are not really processed by the backup. The handling of UDP

packets by replicas can be implemented using several configurations. One

approach is the use of forwarding similar to our TCP replication. In fault-free

operation, the service IP address for the media stream is mapped to the backup. As

a result, client packets arrive at the backup first. Upon the receipt of client UDP

141

PrimaryBackup

MCU

Client

MCU

PrimaryBackup

MCU

Client

MCU

Fault-Free Faulty Primary

Adv. IPAdv. IP

Figure 5.2: Direct UDP communication between client and primary.
Advertised IP address is mapped to the primary in fault-free operation.
If primary MCU fails, the backup takes over the advertised address and
continues operation in simplex mode.

packets, the backup forwards a copy to the primary by changing the destination IP

address in the packet. Outgoing packets are transmitted only by the primary, with

the source IP address always being set to the advertised address to maintain

transparency. Faults may occur on either primary or backup replicas. If the

primary MCU fails, the backup no longer forwards packets to the primary, and it

starts transmitting outgoing packets to clients. If the backup MCU fails, the

primary takes over the identity of backup server and client packets arrive directly at

the primary.

Another approach is direct UDP communication between clients and the

primary (Figure 5.2). During fault-free operation, the service IP address for the

media stream is mapped to the primary and UDP packets are exchanged directly

between the client and primary MCU. If the primary MCU fails, the backup takes

over the service IP address, receives incoming client packets, and transmits

142

outgoing packets to clients. If the backup MCU fails, the communication between

the clients and primary can continue normally, albeit now without fault-tolerance

features. The direct client to primary communication eliminates the forwarding

overhead that is incurred with the forwarding approach. However, since our TCP

replication implementation maps the service address to the backup in fault-free

operation, this approach requires the decoupling of reliable and unreliable

connections at the application protocol level. The H.323 protocol includes this

features. The advertised address of the unreliable channel is given to the client by

the server over the control channel. Hence, the service IP address for the control

and media channels need not be the same. However, this feature is not commonly

used. In fact the openh323 library implementation assumes that the two addresses

will always be identical. We made a small modification to the library, allowing the

use of different IP addresses for the TCP and UDP connections.

A third approach is to use IP multicast. An IP multicast address is used as the

advertised address of the media stream. Hence, the network multicasts the client

UDP packets to both replicas (Figure 5.3). In fault-free operation, only the primary

transmits outgoing packets to the client. If the primary fails, the backup starts

transmitting outgoing packets. If the backup fails, no changes take place at the

primary. The use of global IP multicast addresses for such small scale multicast

may not be practical, especially for services provided over the Internet. As an

alternative, a server-side node or router can be used to multicast client UDP

packets and achieve the same effect. The advertised IP address for the media is

mapped to the multicast node. The multicast node simply sends a copy of each

client packet that it receives to both replicas. The fault-free and failover operation

143

Adv. IP

MCU

Client

MCU

Backup Primary

network / multicast node

Figure 5.3: UDP communication using IP multicast or multicast node.
Client UDP packets are multicast to both replicas by either the network
(IP multicast) or a multicast node. The advertised address is an IP
multicast address or address of multicast node, respectively. In fault-
free operation only the primary replica sends outgoing packets to the
client.

of the replicas are identical with using an IP multicast address. The drawback is

that the multicast node introduces a new point of failure, although in practice it is

less likely to fail due to its simple behavior. Since the multicast node is stateless

— it does not contain any connection or application state — it is relatively easy to

make it fault tolerant. All that is required is a backup that detects faults and simply

takes over the IP address and continues the processing of packets in the same

manner.

144

5.2.2. Application State and Non-determinism

The MCU application can be actively replicated, with identical copies

available and running on both replicas. Since the application input, i.e., TCP and

UDP connections, are replicated, the application state will also be identical if the

processing is deterministic. The OpenMCU application is not deterministic, hence

the applications on the primary and backup must be synchronized whenever there

is a non-deterministic state change. We found only a few such events: the selection

of initial sequence number and SyncSourceOut variable used by the RTP

connection, and creation of the UDP port used for media transfer. Fortunately,

they all occur at the creation and initialization of each RTP session and therefore

can be synchronized together. We synchronize the replicas by exchanging

messages. The primary sends the non-deterministic state changes to the backup.

The backup makes state changes according to the primary’s message — it sets

initial values for variables and creates UDP ports — and sends an acknowledgment

back to the primary. The primary waits for the acknowledgment message before it

continues. Hence, the application states will be identical before the RTP session is

used. If the primary fails during the synchronization procedure before the

synchronization message reaches the backup, the backup can safely make its own

non-deterministic state changes because the primary state changes will not have

been visible to the client.

If external processes are allowed to use resources on the replica hosts,

synchronization of non-deterministic state changes as described above may not be

possible. For example, the backup may not be able to create a UDP socket with the

same port number as the primary because another process is using it. To get

145

around such resource conflicts, we added the possibility of a negative

acknowledgment response to the synchronization messages. If the backup cannot

make the required state changes, it sends a nack messages back to the primary,

informing it to undo its state changes and try a different path. In the UDP example,

the primary deallocates the socket structure, creates a new socket bound to a

different port number, and retries synchronization with the backup.

Active replication of MCU application inherently incurs a large performance

overhead. The backup application performs every operation performed by the

primary. Some application operations may not affect the application state and are

not required to be performed by a replica if the only goal is to preserve the

application state. For example, the media processing performed by the MCU is

stateless. During fault-free operation, it is not necessary for the backup MCU to

process or generate media. Only the control stream which affects the application

state must be processed. Hence, as an optimization, we modified OpenMCU and

disabled all operations related to the media stream in backup mode while keeping

the control operations intact. Our evaluation results in Section 5.3 show that we

successfully eliminated almost all the processing on the backup.

5.3. Performance Evaluation

Evaluation experiments were performed on 2.6 GHz Intel Pentium IV Xeon

PC’s interconnected by a gigabit/second switched network based on a D-Link

DGS-1008D Switch. The MCU nodes were running our modified OpenMCU

application on top of the Linux 2.4.20 kernel with our kernel module installed. We

used three client nodes, each running the ohphone [Quic03] application with a

146

Logitech Quickcam Pro 3000 webcam. The webcams were pointed towards

monitors where the screen refresh (i.e., flicker) created a constantly changing

image. Finally, the three clients joined a conference hosted on the MCU.

Faults were injected into the system by physically disconnecting a MCU from

the network (i.e., a host crash), and by killing the MCU application processes with

the kill command (i.e., a process crash). Our implementation successfully

recovered from both types of faults. Qualitatively, with moving video, faults cause

a brief interruption of video at each client, with the magnitude of duration being in

the order of the heartbeat period. If the video is static and not moving, there is a

noticeable (few seconds) impact on the image sent to the clients. The reason is that

the replica taking over (i.e. backup) starts with a blank image. The video image is

partitioned into multiple chunks and the client codec transmits the static parts of

the video image less frequently. Hence, a few seconds are required for the backup

to receive the entire image. Fortunately, this has essentially no impact on the

ability to continue the conference since audio does not suffer from this problem.

Specifically, the audio codec does not rely on history. Hence, the audio

interruption duration is always on the order of the heartbeat period, and is barely

noticeable with typical (<100msec) heartbeat settings.

5.3.1. Processing Overhead

We measured the processing cycles used by the MCU using the CPU’s

performance monitoring registers and Pettersson’s Performance-Monitoring

Counters Driver [Pett03]. We measured global_power_events [Inte04] which

accumulates the time during which the processor is not stopped. CPU cycles used

147

by a bare system were deducted to derive the actual cycles used by the MCU. For

this experiment, the heartbeat rate was set at 100 milliseconds, and the system

throughput was varied by configuring the clients and MCU to transmit video at

different number of frames per second.

5 10 15 20 25 30

0

200

400

600

CPU Cycles
(Million per Second)

Throughput (frames/second)

Primary

Backup (approx 2-6 M cycles)

Standard

Figure 5.4: CPU cycles (million per second) used by a standard off-the-
shelf MCU and the primary and backup MCU’s in our scheme. System
throughput was varied configuring clients and MCU to use video with
different number of frames per second.

Figure 5.4 show the CPU cycles used by our primary and backup MCU and a

standard off-the-shelf MCU without fault-tolerance features. The backup MCU is

mostly idle. It uses approximately 2 to 6 million cycles per second depending on

the UDP connection handling (discussed below). The primary consumes slightly

more cycles than a standard server mainly due to bookkeeping operations in the

kernel module and heartbeat generation and monitoring. Our overall processing

overhead, the difference between the primary and standard cycles plus the cycles

used by the backup, is small — roughly 3 percent for the direct UDP scheme at 30

148

frames per second.

The idle cycles on the backup MCU node are wasted if not used. Those

cycles can obviously be used for processing of other applications. It is also

possible to deploy the fault-tolerant service in dual-role (Subsection 4.5.1) fashion,

where each MCU acts as both a primary and backup for different conferences.

Hence, the idle backup cycles are used by another instance of the MCU acting as

the primary.

5.3.2. Failover Latency

When a MCU fails, the system is briefly unavailable while a failover takes

place. The failover time includes the time to detect a fault (i.e., consecutive missed

heartbeats) and the time for the reconfiguration of system from duplex to simplex

mode. During failover client packets sent to the MCU may be lost resulting in a

visible interruption to the clients. We quantified the interruption by measuring the

lost client packets during failover, and approximating the failover time based on

that information. In this experiment faults were injected into the system by

disconnecting one of the MCU replicas from the network.

Figure 5.5 shows the interruption time due to failover caused by primary or

backup MCU faults. The heartbeat rate has a major effect on the length of

interruption, showing that failover time is dominated by the fault detection time.

Primary faults cause an interruption in all schemes. The forwarding and

multicast-node schemes’ failover times are virtually identical. The direct scheme

has a slightly higher failover time because the backup must takeover the primary’s

IP address which is used as the identity of the UDP connection. The other two

149

25 50 100 200 500

0

0.2

0.4

0.6

0.8 PRIMARY FAILURE

Interruption
(seconds)

Heartbeat Period (msec)

�

�

�

�

�

forwarding
direct

multicast-node�

25 50 100 200 500

0

0.2

0.4

0.6

0.8 BACKUP FAILURE

Interruption
(seconds)

Heartbeat Period (msec)

� � � � �

forwarding

direct, multicast-node (0)

Figure 5.5: Interruption time due to failover for different UDP schemes.

schemes do not require an address takeover if the primary fails.

Backup faults cause an interruption only in the forwarding scheme. If the

backup fails with the forwarding scheme, client UDP packets will not reach the

primary until the fault is detected and a failover occurs. With forwarding scheme,

backup faults cause slightly shorter interruption than primary faults (shown on

150

different sub figures) because IP address takeover is not necessary for a backup

fault. Backup faults in the direct and multicast-node schemes do not cause an

interruption because client UDP packets are not lost. The primary MCU detects

the fault and configures itself for simplex operation without interrupting the media

stream. The reconfiguration from primary to simplex is necessary only for TCP

connection failover and fault detection processes.

0 200 400 600 800 1000

0.1

0.2

0.3

CPU Cycles
(percent)

Heartbeat Frequency (milliseconds)

forwarding

direct

multicast-node

Figure 5.6: Percent of available CPU cycles used by the backup MCU in
duplex mode for different UDP configurations. Experiments were run
on 2.6 GHz PCs. Throughput was kept constant at 30 frames per
second.

5.3.3. Impact of Heartbeat Rate and UDP Configuration Choice

Figure 5.6 shows the percentage of available processing cycles used by the

backup MCU with different heartbeat rates. The system throughput was kept

constant at 30 frames per second. Overall, the backup MCU is mostly idle. Each

scheme uses fewer than one percent of the available CPU cycles on our 2.6 GHz

151

machines. The direct scheme is the most efficient, using the fewest cycles. The

multicast-node scheme has more processing overhead than the direct scheme

because the backup nodes receives a copy of every client UDP packet. Cycles are

used up when these packets are received and copied to a buffer, examined, and then

discarded. The forwarding scheme has the most overhead because every client

packet is copied, it’s header rewritten, and then forwarded to the primary. The

heartbeat rate of course has an effect on the amount of processing cycles used for

all the schemes. Since the heartbeat rate also effects the failover time, there is a

tradeoff between processing overhead and faster failover time.

5.3.4. TCP Replication and Application Synchronization

Most of the MCU processing requirement is due to the processing of the

media streams. Hence, the evaluation results above are focused on the media

streams and UDP connections. However, there is also overhead due to TCP

connection replication and application synchronization. To join a conference, a

client establishes a TCP connection and sends a control message. With our

scheme, the TCP connection is replicated and relevant application state is

synchronized between the replicas at join time. We measured the CPU cycles used

for the establishment of the control channel and the addition of a client to a

conference. Each replica consumes roughly 155 million CPU cycles for the

connection establishment and application synchronization. This initialization cost

is negligible compared to the millions of cycles used every second for the media

processing. Other control messages (e.g., connection close, change in throughput)

may also be exchanged between the MCU and clients, but they are typically

152

infrequent.

5.4. Fault Tolerance Validation Using Fault Injection

Similar to the CoRAL fault injection experiments discussed in Section 4.7, we

also conducted fault injection experiments on our fault-tolerant video conferencing

scheme to validate and evaluate our implementation. The fault injection

experiments were performed with the system operating in duplex mode with three

clients (webcams) participating in an active conference.

First we tried the simple experiment where one of the MCU replicas was

physically disconnected from the network. This experiment was repeated dozens

of times, with our implementation successfully recovering each time. The

surviving replica detected the failure, a failover to simplex mode was performed,

and the clients continued their conference with at most a brief interruption as

mentioned in Section 5.3.

We also conducted software based fault injection experiments using the same

kernel-based fault injector described in Section 4.7. As with the fault injection for

the Web service (Subsection 4.7.1), the fault injector ran on the primary host and

was configured to inject faults, at a rate of one every five seconds, into a process

that was randomly selected out of all the processes related to the service, i.e., the

MCU process (that consists of multiple threads), mux/demux processes, and the

heartbeat generator and monitor. For each injection, a CPU register was randomly

selected and a randomly chosen bit within that register was flipped. Table 5.1

shows the results for register fault injections. Our implementation successfully

recovered from all of the crash failures. 27 percent of injections resulted in a crash

153

���
Register Crash Failures Faults Injected���
EBX 1 11���
ECX 0 5���
EDX 0 9���
ESI 1 8���
EDI 1 11���
EBP 4 8���
EAX 0 12���
DS 5 8���
ES 3 7���
FS 0 2���
GS 3 8���
EIP 5 13���
CS 6 8���
EFL 1 10���
UESP 4 8���
SS 3 8���
TOTAL: 37 136���

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

TABLE 5.1: Video Conferencing Fault Injection Experiment

failure that was detected and recovered from, with the rest having no visible effect

on the system.

As discussed in Subsection 4.7.1, the effects of the fault injection become

visible only when a blocked process is rescheduled. The application

synchronization (mux/demux) processes are used infrequently with video

conferencing — only when a new client arrives and joins a conference. With our

experimental setup, no clients join or depart the conference during the experiment.

Hence, in our experiment, injection to the mux/demux processes will have no

effect. Therefore, it is expected that, in practice, a larger fraction of faults than

154

indicated by our results will cause crash failures.

While injecting register faults to the general-purpose registers of the web

service had no impact, such injection into the video conferencing service (e.g., to

the EBX register) did result in some crash failures (Table 5.1). The explanation

lies in the differences in the application behavior (web server versus MCU) and

their interaction with the fault injector. The MCU application is more CPU

intensive than the web server. Therefore, MCU processes may be descheduled at

any point in the execution, whenever their time quanta runs out. Hence, injections

into general purpose registers may occur in midst of a function that was using

them, thus incorrect register values become visible to the application and possibly

cause a failure. On the other hand, as discussed in Subsection 4.7.1, the web server

processes are almost always descheduled due to the execution of a blocking system

call. Furthermore, the web server implementation includes function wrappers

around blocking calls, resulting in a function return call and thus overwriting of

general purpose registers upon the return from a blocked call. As a result, since the

injection has an impact only when the process is rescheduled, injections into

general purpose register of web server processes are almost always overwritten.

In summary, our video conferencing fault injection experiments show that in

practice, faults either do not cause any observable errors in the system, or they

cause a MCU process to crash. In all cases where a crash occurred, our scheme

detected the failure, failover operations were performed transitioning the system to

simplex operation, and the clients continued their active conferences without

noticing that a failure had occurred.

155

5.5. Summary

We have presented the design and implementation of a client-transparent

fault-tolerant video conferencing service that can recover from host or process

crashes at the server site. We believe that this would be the first publication of a

practical client-transparent fault tolerance scheme for video conferencing. Our

implementation is based on an existing conferencing server (MCU) and required

modification of a tiny fraction of the existing code. Most of the user-level and

kernel-level code in our implementation is directly usable or easily adaptable for

other network services. This is verified by the fact that the TCP components were

minor adaptations of our previous work on fault-tolerant web service. Our

measurements show that the processing overhead of our scheme during fault-free

operation is insignificant — approximately 3% additional CPU cycles. Our

experiments demonstrated successful recovery from all host crashes and process

crashes, including process crashes caused by random fault injection to CPU

registers. With a low-overhead configuration (heartbeat period of 25ms-50ms),

when a fault occurs, the conference proceeds with no loss of audio (a barely

noticeable ‘‘blip’’) and a minor disruption of static video images that clears up in a

few seconds.

156

Chapter Six

Summary and Conclusions
People are increasingly dependent on a wide variety of network services. As

with other ‘‘utilities,’’ service providers will be expected to deliver ‘‘always on’’

highly-reliable service. In order to meet these expectations, extensive use of fault-

tolerance will be required. Many network services already have a large number of

deployed clients. In addition, service clients tend to be generic and developed

independently of the service. Hence, unless standardized fault-tolerance protocols

become widely adopted, it is imperative for fault-tolerance solutions to be client-

transparent. With this motivation, we have developed a general methodology for

engineering client-transparent fault-tolerant network services using commercial

off-the-shelf components.

Most existing fault-tolerance solutions for network services do not provide

fault-tolerance for active connections at failure time, expect servers to behave

deterministically, or they require changes to the clients. These limitations are

unacceptable for many current and future network service applications. Our

solution, based on a hot standby backup approach, is transparent to the clients and

requires minimal changes to the server OS and application.

Our proposed methodology for client-transparent fault-tolerant network

services defines three key server-side service components that must be preserved

across failures: service identity, connection state, and application state. We

presented various possible techniques for preservation of these components and

discussed the associated tradeoffs. We have evaluated our methodology by

building, using off-the-shelf components, two fault-tolerant prototypes of popular

157

network services — web service and video conferencing.

CoRAL, our client-transparent fault-tolerance scheme for web services

correctly handles all client requests in spite of a web server failure. The TCP

connection state is actively replicated on a standby backup. At the application

level, HTTP requests and replies are logged. In the event of a server failure, TCP

connections transparently failover to the backup. The unsent portions of any

logged replies are sent to the client, and requests for which a reply was not logged

are reprocessed. Hence, all requests — including those being processed at failure

time — are handled correctly. Performance evaluation results show that in terms

of latency, the overhead is too small to be noticeable for clients connecting over the

Internet, even with very slow (350MHz) server hosts. Failover times on the order

of 100-200ms are easily achieved. In practice, for the likely target applications of

this scheme, replies are often small, dynamically generated, and require significant

processing. For such workloads, the results show that the overhead in terms of

processing cycles, and thus maximum server throughput, is likely to be under 30%.

We built upon our experience with implementing fault-tolerant web service

and adapted our general methodology for client-transparent fault-tolerant network

service to another important network service — video conferencing. We have

presented the design, implementation, and evaluation of a client-transparent fault-

tolerant video conferencing service that can recover from host or process crashes at

the server site. Our implementation is based on an existing conferencing server

(MCU) and required modification of a tiny fraction of the existing code. Our

measurements show that the processing overhead of our scheme during fault-free

operation is insignificant — approximately 3% additional CPU cycles. With a

158

low-overhead configuration (heartbeat period of 25ms-50ms), when a fault occurs,

the conference proceeds with no loss of audio (a barely noticeable ‘‘blip’’) and a

minor disruption of static video images that clears up in a few seconds.

Our methodology for constructing client-transparent fault-tolerant network

services can be applied to other applications. Most of the user-level and kernel-

level code in our implementation is directly usable or easily adaptable for other

network services. This is verified by the fact that the TCP components for our

video conferencing implementation were minor adaptations of CoRAL — our

previous work on fault-tolerant web service. Our performance evaluation results

indicate acceptable overheads, much lower than duplication, are achievable. Sub-

second error detection and failover times of our scheme successfully mask faults

from clients for most applications. Preliminary fault injection experiments on our

web service and video conferencing implementations demonstrated that our

scheme will properly recover from the vast majority of faults.

159

Bibliography

[Aghd01] N. Aghdaie and Y. Tamir, ‘‘Client-Transparent Fault-Tolerant Web

Service,’’ Proceedings of the 20th IEEE International

Performance, Computing, and Communications Conference, pp.

209-216 (April 2001).

[Aghd02] N. Aghdaie and Y. Tamir, ‘‘Implementation and Evaluation of

Transparent Fault-Tolerant Web Service with Kernel-Level

Support,’’ Proceedings of the The 11th International Conference on

Computer Communications and Networks, pp. 63-68 (October

2002).

[Aghd03a] N. Aghdaie and Y. Tamir, ‘‘Performance Optimizations for

Transparent Fault-Tolerant Web Service,’’ Proceedings of 2003

IEEE Pacific Rim Conference on Communications, Computers and

Signal Processing, pp. 29-32 (August 2003).

[Aghd03b] N. Aghdaie and Y. Tamir, ‘‘Fast Transparent Failover for Reliable

Web Service,’’ Proceedings of the 15th IASTED International

Conference on Parallel and Distributed Computing and Systems,

pp. 757-762 (November 2003).

[Aghd05] N. Aghdaie and Y. Tamir, ‘‘Efficient Client-Transparent Fault

Tolerance for Video Conferencing,’’ Proceedings of the 3rd

IASTED International Conference on Communications and

Computer Networks, (October 2005).

160

[Alme98] J. Almeida and P. Cao, ‘‘Wisconsin Proxy Benchmark,’’ Technical

Report 1373, Computer Sciences Dept, Univ. of Wisconsin-

Madison, (April 1998).

[Alvi01] L. Alvisi, T. C. Bressoud, A. El-Khashab, K. Marzullo, and D.

Zagorodnov, ‘‘Wrapping Server-Side TCP to Mask Connection

Failures,’’ Proceedings of IEEE INFOCOM, pp. 329-337 (April

2001).

[Ande96] E. Anderson, D. Patterson, and E. Brewer, ‘‘The Magicrouter, an

Application of Fast Packet Interposing,’’ Class Report, UC

Berkeley -

http://www.cs.berkeley.edu/˜eanders/projects/magicrouter/, (May

1996).

[Andr96] D. Andresen, T. Yang, V. Holmedahl, and O. H. Ibarra, ‘‘SWEB:

Towards a Scalable World Wide Web Server on Multicomputers,’’

Proccedings of the 10th International Parallel Processing

Symposium, pp. 850-856 (April 1996).

[Apac98] Apache Software Foundation, ‘‘The Apache HTTP Server

Project,’’ http://httpd.apache.org/, (1998).

[Aver00] L. Aversa and A. Bestavros, ‘‘Load Balancing a Cluster of Web

Servers Using Distributed Packet Rewriting,’’ Proceedings of the

2000 IEEE International Performance, Computing, and

Communications Conference, pp. 24-29 (February 2000).

[Aviz04] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, ‘‘Basic

Concepts and Taxonomy of Dependable and Secure Computing,’’

161

IEEE Transactions on Dependable and Secure Computing 1 pp.

11-33 (January-March 2004).

[Bail01] B. Bailey, ‘‘Acceptable Computer Response Times,’’ UI Design

Update Newsletter -

http://www.humanfactors.com/downloads/apr01.asp, (April 2001).

[Bern96] T. Berners-Lee, R. Fielding, and H. Frystyk, ‘‘Hypertext Transfer

Protocol -- HTTP/1.0,’’ RFC 1945, IETF (May 1996).

[Best98] A. Bestavros, M. Crovella, J. Liu, and D. Martin, ‘‘Distributed

Packet Rewriting and its Application to Scalable Server

Architectures,’’ Proceedings of the International Conference on

Network Protocols, pp. 290-297 (October 1998).

[Bilo03] R. Bilorusets, A. Bosworth, D. Box, F. Cabrera, D. Collison, J.

Dart, D. Ferguson, and C. Ferris, Web Services Reliable Messaging

Protocol (WS-ReliableMessaging). March 2003.

[Blac92] D. L. Black, D. B. Golub, D. P. Julin, R. F. Rashid, and R. P.

Draves, ‘‘Microkernel Operating System Architecture and Mach,’’

Proceedings of the USENIX Workshop on Micro-Kernels and Other

Kernel Architectures, pp. 11-30 (April 1992).

[Bode95] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L.

Seitz, J. N. Seizovic, and W.-K. Su, ‘‘Myrinet: A Gigabit-per-

Second Local Area Network,’’ IEEE Micro 15(1) pp. 29-36

(February 1995).

[Borg83] A. Borg, J. Baumbach, and S. Glazer, ‘‘A Message System

162

Supporting Fault Tolerance,’’ 9th Symposium on Operating Systems

Principles, pp. 90-99 (October 1983).

[Bres99] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, ‘‘Web

Caching and Zipf-like Distributions: Evidence and Implications,’’

Proceedings of IEEE INFOCOM, (March 1999).

[Bris95] T. Brisco, ‘‘DNS Support for Load Balancing,’’ RFC 1794, IETF

(April 1995).

[Burt02] N. Burton-Krahn, ‘‘HotSwap - Transparent Server Failover for

Linux,’’ Proceedings of USENIX LISA ’02: Sixteenth Systems

Administration Conference, pp. 205-212 (November 2002).

[Chu00] Y.-h. Chu, S. G. Rao, and H. Zhang, ‘‘A Case For End System

Multicast,’’ Proceedings of ACM SIGMETRICS, pp. 1-12 (June

2000).

[Chu01] Y.-h. Chu, S. G. Rao, S. Seshan, and H. Zhang, ‘‘Enabling

Conferencing Applications on the Internet using an Overlay

Multicast Architecture,’’ Proceedings of ACM SIGCOMM, pp. 55-

67 (August 2001).

[Cisc99a] Cisco Systems Inc, ‘‘Failover Configuration for LocalDirector,’’

Cisco Systems White Paper -

http://www.ieng.com/warp/public/cc/pd/cxsr/400/tech/locdf_wp.htm,

(1999).

[Cisc99b] Cisco Systems Inc, ‘‘Scaling the Internet Web Servers,’’ Cisco

Systems White Paper -

163

http://www.ieng.com/warp/public/cc/pd/cxsr/400/tech/scale_wp.htm,

(1999).

[Cunh95] C. Cunha, A. Bestavros, and M. Crovella, ‘‘Characteristics of

World Wide Web Client-based Traces,’’ Technical Report TR-95-

010, Boston University, CS Dept, Boston, MA 02215, (April 1995).

[Dias96] D. M. Dias, W. Kish, R. Mukherjee, and R. Tewari, ‘‘A scalable

and highly available web server,’’ Proceedings of IEEE

COMPCON ’96, pp. 85-92 (1996).

[Evan03] C. Evans, D. Chappell, D. Bunting, and G. Tharakan, ‘‘Web

Services Reliability (WS-Reliability),’’ http://www.oasis-

open.org/committees/wsrm/charter.php, OASIS Web Services

Reliable Messaging Technical Committee, Working Draft (January

2003).

[Fiel99] R. Fielding, J. Mogul, J. Gettys, H. Frystyk, L. Masinter, P. Leach,

and T. Berners-Lee, ‘‘Hypertext Transfer Protocol -- HTTP/1.1,’’

RFC 2616, IETF (June 1999).

[Frol00] S. Frolund and R. Guerraoui, ‘‘Implementing e-Transactions with

Asynchronous Replication,’’ IEEE International Conference on

Dependable Systems and Networks, pp. 449-458 (June 2000).

[Golu90] D. Golub, R. Dean, A. Forin, and R. Rashid, ‘‘Unix as an

Application Program,’’ Proceedings of Summer USENIX

Conference, pp. 87-96 (June 1990).

[Gray92] J. Gray and A. Reuter, Transaction Processing : Concepts and

164

Techniques, Morgan Kaufmann Publishers (September 1992).

[Hsue97] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, ‘‘Fault Injection

Techniques and Tools,’’ IEEE Computer 30(4) pp. 75-82 (April

1997).

[IBM 2] IBM Inc, ‘‘HTTPR Specifications,’’ http://www-

106.ibm.com/developerworks/webservices/library/ws-httprspec/,

(April 2002).

[Inte00] Intel Inc, ‘‘Intel NetStructure e-Commerce Products,’’

http://www.intel.com/support/netstructure/commerce/index.htm,

(2000).

[Inte04] Intel Inc, IA-32 Intel Architecture Software Developer’s Manual -

Volume 3: System Programming Guide. 2004.

[Inte03] International Telecommunication Union, ‘‘Packet-based

multimedia communications systems,’’ ITU-T, Recommendation

H.323 Draft V5, (May 2003).

[John88] D. B. Johnson and W. Zwaenepoel, ‘‘Recovery in Distributed

Systems Using Optimistic Message Logging and Checkpointing,’’

7th Annual ACM Symposium on Principles of Distributed

Computing, pp. 171-181 (August 1988).

[Katz94] E. D. Katz, M. Butler, and R. McGrath, ‘‘A Scalable HTTP Server:

The NCSA Prototype,’’ Computer Networks and ISDN Systems

27(2) pp. 155-164 (1994).

[Keis64] W. Keister, R. W. Ketchledge, and H. E. Vaughan, ‘‘No. 1 ESS

165

System Organization and Objectives,’’ Bell System Technical

Journal 43(5) pp. 1831-1844 (September 1964).

[Ketc65] R. Ketchledge, ‘‘The No. 1 Electronic Switching System,’’ IEEE

Transactions on Communications 13 pp. 38-41 (March 1965).

[Knig98] S. Knight, D. Weaver, D. Whipple, R. Hinden, D. Mitzel, P. Hunt,

P. Higginson, M. Shand, and A. Lindem, ‘‘Virtual Router

Redundancy Protocol,’’ RFC 2338, IETF (April 1998).

[Koch03] R. Koch, S. Hortikar, L. Moser, and P. Melliar-Smith, ‘‘Transparent

TCP Connection Failover,’’ International Conference on

Dependable Systems and Networks (DSN-2003), pp. 383-392 (June

2003).

[Lamp82] L. Lamport, R. Shostak, and M. Pease, ‘‘The Byzantine Generals

Problem,’’ ACM Transactions on Programming Languages and

Systems 4(3) pp. 382-401 (July 1982).

[Li98] T. Li, B. Cole, P. Morton, and D. Li, ‘‘Cisco Hot Standby Router

Protocol (HSRP),’’ RFC 2281, IETF (March 1998).

[Luo01] M.-Y. Luo and C.-S. Yang, ‘‘Constructing Zero-Loss Web

Services,’’ Proceedings of IEEE INFOCOM, pp. 1781-1790 (April

2001).

[Made02] H. Madeira, R. R. Some, F. Moreira, D. Costa, and D. Rennels,

‘‘Experimental Evaluation of a COTS System for Space

Applications,’’ International Conference on Dependable Systems

and Networks (DSN’02), pp. 325-330 (June 2002).

166

[Marw03] M. Marwah, S. Mishra, and C. Fetzer, ‘‘TCP Server Fault

Tolerance Using Connection Migration to a Backup Server,’’

International Conference on Dependable Systems and Networks

(DSN-2003), pp. 373-382 (June 2003).

[Matr00] Matrix NetSystems Inc, ‘‘The Internet Weather Report,’’

http://www.internetweather.com, (2000).

[Mind02] Mindcraft Inc, ‘‘WebStone Benchmark Information,’’

http://www.mindcraft.com/webstone, (2002).

[Orac99a] Oracle Inc, Oracle8i Distributed Database Systems - Release 8.1.5,

Oracle Documentation Library (1999).

[Orac99b] Oracle Inc, ‘‘Oracle Parallel Server: Solutions for Mission Critical

Computing,’’ An Oracle Technical White Paper -

http://www.oracle.com/database/documents/parallel_server_twp.pdf,

(February 1999).

[Pett03] M. Pettersson, ‘‘Linux x86 Performance-Monitoring Counters

Driver,’’ http://www.csd.uu.se/˜mikpe/linux/perfctr/, (2003).

[Plum82] D. C. Plummer, ‘‘An Ethernet Address Resolution Protocol,’’ RFC

826, IETF (November 1982).

[Quic03] Quicknet Technologies Inc, ‘‘OpenH323 Project,’’

http://www.openh323.org, (2003).

[RedH01] RedHat Inc, ‘‘TUX Web Server,’’

http://www.redhat.com/docs/manuals/tux/, (2001).

[RND 1] RND Networks, ‘‘Web Server Director for Distributed Sites

167

(WSD-DS),’’ RND Networks Technical Applicaton Note 1035 -

http://www.rndnetworks.com/archive/pdfs/whitepapers/app1035.pdf,

(2001).

[Schi01] B. N. Schilit, J. Trevor, D. M. Hilbert, and T. K. Koh, ‘‘m-Links:

An Infrastructure for Very Small Internet Devices,’’ Proc. 7th Ann.

Int’l Conf. Mobile Computing and Networking (MobiCom 01), pp.

122-131 (July 2001).

[Schn84] F. B. Schneider, ‘‘Byzantine Generals in Action: Implementing

Fail-Stop Processors,’’ ACM Transactions on Computer Systems

2(2) pp. 145-154 (May 1984).

[Schn90] F. B. Schneider, ‘‘Implementing Fault-Tolerant Services Using the

State Machine Approach: A Tutorial,’’ ACM Computing Surveys,

pp. 299-319 (December 1990).

[Shen00] G. Shenoy, S. K. Satapati, and R. Bettati, ‘‘HydraNet-FT: Network

Support for Dependable Services,’’ Proceedings of the 20th IEEE

International Conference on Distributed Computing Systems, pp.

699-706 (April 2000).

[Snoe00] A. C. Snoeren and H. Balakrishnan, ‘‘An End-to-End Approach to

Host Mobility,’’ Proceedings of the 6th International Conference

on Mobile Computing and Networking (MobiCom), pp. 155-166

(August 2000).

[Snoe01] A. C. Snoeren, D. G. Andersen, and H. Balakrishnan, ‘‘Fine-

Grained Failover Using Connection Migration,’’ Proceedings of the

3rd USENIX Symposium on Internet Technologies and Systems, pp.

168

221-232 (March 2001).

[Stei99] L. Stein and D. MacEachern, Writing Apache Modules with Perl

and C, O’Reilly and Associates (March 1999).

[Sult01] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode, ‘‘Migratory TCP:

Highly Available Internet Services using Connection Migration,’’

Rutgers Univesity Technical Report DCS-TR-462, (November

2001).

[Sury00] K. Suryanarayanan and K. Christensen, ‘‘Performance Evaluation

of New Methods of Automatic Redirection for Load Balancing of

Apache Web Servers Distributed in the Internet,’’ Proceedings of

the IEEE 25th Conference on Local Computer Networks, pp. 644-

651 (November 2000).

[Time02] TimesTen Inc, ‘‘Data Replication and TimesTen,’’

http://www.timesten.com, (2002).

[Toy78] W. N. Toy, ‘‘Fault-Tolerant Design of Local ESS Processors,’’

Proceedings IEEE 66(10) pp. 1126-1145 (October 1978).

[Tren95] G. Trent and M. Sake, ‘‘WebSTONE: The First Generation in

HTTP Server Benchmarking,’’

http://www.sgi.com/Products/WebFORCE/WebStone/paper.html,

(February 1995).

[Wess99] D. Wessels, ‘‘Squid Web Proxy Cache,’’ http://www.squid-

cache.org/, (1999).

[Zago03] D. Zagorodnov, K. Marzullo, L. Alvisi, and T. C. Bressoud,

169

‘‘Engineering Fault-Tolerant TCP/IP Servers Using FT-TCP,’’

International Conference on Dependable Systems and Networks,

Dependable Computing and Communications Symposium (DSN-

2003), pp. 393 - 402 (June 2003).

[Zand02] V. C. Zandy and B. P. Miller, ‘‘Reliable Network Connections,’’

Proceedings of ACM MobiCom 2002, pp. 95-106 (September

2002).

[Zhan04] R. Zhang, T. Abdelzaher, and J. Stankovic, ‘‘Efficient TCP

Connection Failover in Server Clusters,’’ Proceedings of IEEE

INFOCOM, pp. 1219-1228 (March 2004).

[Zhao01] W. Zhao, L. E. Moser, and P. M. Melliar-Smith, ‘‘Increasing the

Reliability of Three-Tier Applications,’’ Proceedings of the 12th

International Symposium on Software Reliability Engineering, pp.

138-147 (November 2001).

170

	0.title.tout.pdf
	1.copyright.tout.pdf
	3.dedication.tout.pdf
	4.toc.tout.pdf
	5.tof.tout.pdf
	6.tot.tout.pdf
	7.acknowledgements.tout.pdf
	8.vita_pub.tout.pdf
	9.abstract.tout.pdf
	chp1.out.pdf
	chp2.out.pdf
	chp3.out.pdf
	chp4.out.pdf
	chp5.out.pdf
	chp6.out.pdf
	print_ref.tout.pdf

