
PBProbe: A CapProbe based Scalable Capacity Estimation Tool∗

Ling-Jyh Chen, Li Lao, Tony Sun, Guang Yang, M. Y. Sanadidi, Mario Gerla
Department of Computer Science, University of California at Los Angeles

Abstract
We present a scalable capacity estimation technique,
called PBProbe. PBProbe is based on CapProbe. Instead
of solely relying on packet pairs, PBProbe employs a
“packet bulk” technique and adapts the bulk length in or-
der to overcome a well known problem with packet pair
based approaches, namely the lack of accurate timer res-
olution. As a result, PBProbe not only preserves the sim-
plicity and speed of CapProbe, but it also correctly esti-
mates link capacities within a much larger range. Using
analysis, we evaluate the accuracy and speed of PBProbe
with various bulk lengths. We then perform a set of ex-
periments to evaluate the accuracy of PBProbe in the In-
ternet over wired and wireless links. Finally, we per-
form emulation and Internet experiments to verify the
accuracy and speed of PBProbe on extremely high-speed
links. The results show that PBProbe is consistently fast
and accurate in the great majority of test cases.

1 Introduction

Estimating the bottleneck capacity of an Internet path is
a fundamental research problem in computer network-
ing; knowledge of such capacity is critical for efficient
network design, management and usage. In the past few
years, with the growing popularity of emerging technolo-
gies such as overlay, peer-to-peer (P2P), sensor, grid and
mobile networks, it is becoming increasingly desirable to
have a simple, fast and accurate tool for capacity estima-
tion and monitoring. Moreover, the tool must be scalable
and applicable to a variety of network configurations.

A number of techniques have been proposed for ca-
pacity estimation on generic Internet paths [3, 7, 13, 14,
16, 18, 25]. Among them, CapProbe [16] and Pathrate
[13] have been well accepted as two fast and accurate
tools in generic network scenarios. However, CapProbe

∗This material is based upon work supported by the National Sci-
ence Foundation under Grant No. CNS-0435515.

is a round-trip estimation scheme that works well only on
paths consisting of a symmetric bottleneck link. Pathrate,
on the other hand, is based on histograms and may con-
verge slowly when the initial dispersion measurements
are not of unimodal. As a result, CapProbe has difficulty
estimating the capacities of asymmetric links [12], and
Pathrate performs poorly on wireless links [16].

To address the problems above, specialized capacity
estimation tools have been proposed for specific network
scenarios. For instance, ALBP [22] and AsymProbe [12]
are intended for capacity estimation on asymmetric links,
AdHoc Probe [11] aims to estimate the end-to-end path
capacity in wireless networks, etc. Yet, a general and
practical capacity estimation tool applicable to any net-
work configurations is still lacking. This technique must
be simple, fast, accurate, minimally intrusive, and work
well in all aforementioned scenarios including asymmet-
ric, wireless and high speed links.

In this paper, we propose such a scalable capacity es-
timation tool called PBProbe. PBProbe is inspired by
CapProbe. However, instead of relying on one pair of
packets, PBProbe employs the concept of “Packet Bulk”
to adapt the number of probing packets in each sample in
accordance to the dispersion measurement. More specif-
ically, when the bottleneck link capacity is expected to be
low, PBProbe uses one pair of packets as usual (i.e. the
bulk length is 1). For paths with high bottleneck capaci-
ties, PBProbe increases the bulk length and sends several
packets together, in order to enlarge the dispersion be-
tween first and last packet and therefore overcome the
timer resolution problem. As we will discuss later, this
is the main challenge in the estimation of high capacity
links [15, 17].

We study the performance of PBProbe under differ-
ent loads of Poisson cross traffic via analytical models.
We also evaluate the accuracy and speed of PBProbe,
through testbed experiments, in various network con-
figurations including generic Internet links, asymmetric
links, and wireless links. We have carried out exten-

UCLA Computer Science Department Technical Report CSD-TR No. 050029



sive testbed experiments to validate the performance of
PBProbe on high speed links; we have also compared it
to Pathrate. The results show that PBProbe accurately
and rapidly estimates the link capacities in all tested sce-
narios, thereby outperforming Pathrate in most experi-
ments.

The rest of the paper is organized as follows. In sec-
tion 2, we present an overview of CapProbe and summa-
rize related work on capacity estimation. In section 3, we
present and describe PBProbe. In section 4, we present
an analysis of PBProbe and evaluate the speed and accu-
racy of PBProbe with Poisson cross traffic. In section 5,
we present PBProbe experiments in general network sce-
narios. In section 6, we evaluate PBProbe on high speed
links in our emulator testbed as well as on the Internet .
Section 7 concludes the paper.

2 Background and Overview

2.1 Related Work
Previous research on capacity estimation relied either on
delay variations among probe packets as illustrated in
Pathchar [14], or on dispersion among probe packets as
described in Nettimer [18] and Pathrate [13]. Pathchar-
like tools (such as pchar [7] and clink [3]) have limita-
tions in accuracy and speed as shown in [16] [19]. More-
over, they evaluate the capacity of a link based on the
estimates on previous links along the path, thus estima-
tion errors accumulate and amplify with each measured
link [25].

Dispersion-based techniques suffer of other problems.
In particular, Dovrolis’ analysis in [13] showed that the
dispersion distribution can be multi-modal due to cross
traffic, and that the strongest mode of such distribution
may correspond to either (1) the capacity of the path,
or (2) a “compressed” dispersion, resulting in capacity
over-estimation, or (3) to the Average Dispersion Rate
(ADR), which is always lower than capacity. Another
dispersion-based tool, SProbe [25], exploits SYN and
RST packets of the TCP protocol to estimate the down-
stream link capacity, and employs two heuristics to filter
out those samples which have experienced cross traffic.
However, SProbe could not work properly when the net-
work is highly utilized. [21].

Unlike the above approaches, CapProbe [16], uses
both dispersion measurements and end-to-end delay
measurements to filter out the packet pair samples that
where distorted by cross traffic. This method has been
shown to be both fast and accurate in a variety of sce-
narios. The original implementation of CapProbe uses
ICMP packets as probing packets, and it measures the
bottleneck capacity on a round-trip basis. As a result, the
capacity estimate may fail when the path is asymmet-

ric. Other difficulties are encountered when intermedi-
ate nodes employ priority schemes to delay ICMP packet
forwarding (e.g. Solaris operating system limits the rate
of ICMP responses, and it is thus likely to perturb Cap-
Probe measurements) [26].

Recent capacity estimation studies have extended the
target network scenarios to more diverse environments.
For instance, Lakshminarayanan et al. have evaluated es-
timation tools of capacity and available bandwidth in the
emerging broadband access networks [20]. Chen et al.
extended CapProbe to estimate effective path capacity in
ad hoc wireless networks [11]. In addition, ABLP [22]
and AsymProbe [12] have been proposed for capacity
estimation on the increasingly popular asymmetric links
(e.g. DSL and satellite links).

Capacity estimation on high speed links is still a chal-
lenge. Though recent studies have verified the accuracy
of Pathrate estimates on gigabits links [24], they did not
include the experimental evaluation of such estimates.
Moreover, the evaluation was done on an emulator-based
testbed, which cannot represent realistic Internet dynam-
ics.

In this paper, we propose a novel packet bulk tech-
nique for capacity estimation on high speed links and
present a measurement tool called PBProbe. PBProbe
is based on CapProbe, and it probes bottleneck link ca-
pacity using UDP packets (instead of ICMP packets as
CapProbe does). We recap the CapProbe algorithm in
the next subsection.

2.2 CapProbe Overview

CapProbe is a packet-pair based capacity estimation
technique, which has been shown to be both fast and ac-
curate over a large range of scenarios [16]. Conceptually
speaking, when a back-to-back packet pair is launched
into a network, and assuming they arrive at the bottle-
neck link unperturbed (i.e. back to back) by cross traffic
on previous links, they are always dispersed at the bot-
tleneck link according to the bottleneck capacity. If such
dispersion arrives at a destination unperturbed, it will ac-
curately reflect the bottleneck capacity (as shown in Fig.
1-c). However, if either packet in a pair has been queued
due to cross traffic, the dispersion of this sample might
be either expanded or compressed, where “expansion” of
dispersion leads to under-estimation and “compression”
of dispersion leads to over-estimation of the capacity (as
shown in Fig. 1-a,b).

CapProbe combines the use of dispersion measure-
ments and end-to-end delay measurements to filter out
packet pair samples distorted by cross traffic. The basic
idea is that, if a packet pair sample has not been queued
by cross traffic, it will estimate the bottleneck capacity
correctly. For such “good” samples, the sum of the de-

2

UCLA Computer Science Department Technical Report CSD-TR No. 050029



Figure 1: (a) Under-estimation caused by “expansion” (b) Over-estimation caused by “compression” (c) The ideal
case.

lays of the packet pair packets, called the delay sum, does
not include cross-traffic induced queuing delay, and is in-
deed smaller than the delay sum of the samples distorted
by cross traffic. Thus, this kind of “good” samples can
easily be identified since their delay sum will be the min-
imum among the delay sums of all packet pair samples,
and we refer to their delay sum as the minimum delay
sum. In this way, the capacity can be estimated by the
equation:

C =
P

T
(1)

where P is the sampling packet size, and T is the dis-
persion of the sample packet pair with the minimum de-
lay sum.

However, since CapProbe relies on dispersion mea-
surements for accurate capacity estimation, it suffers in-
accuracy in estimating high speed links and/or when op-
erating on slow machines [17]. More specifically, ac-
cording to Eq. 1, when C is extremely large, either T
must become small or P must become very large. Since
the accuracy of T measurement is limited by the system
timer resolution, the only feasible solution for CapProbe
estimation on high speed links is to enlarge the packet
size. However, once the packet size becomes larger than
the Maximum Transmit Unit (MTU), this “big” packet
will be segmented into several fragments before enter-
ing the network, and these fragments will be reassem-
bled to the original packet size at the receiver [23]. The
latency caused by segmentation (i.e. on the sender) and
reassembly (i.e. on the receiver) leads to expansion of the
dispersion measurement and therefore results in under-
estimation. In order to prevent such additional latency,
we propose to send multiple packets back to back, each
with MTU packet size, together (i.e. virtually, the prob-
ing packets are launched into the network as a “big”
packet). As a result, the dispersion measurement is ap-

Figure 2: Illustration of PBProbe (a) Phase I: measuring
forward direction link capacity; (b) Phase II: measuring
backward direction link capacity.

plicable to accurate capacity estimation using CapProbe
algorithm since the segmentation and reassembly latency
can be avoided. We present the design, analysis, and
evaluation of PBProbe in the following sections.

3 Proposed Approach: PBProbe

In this section we introduce PBProbe. Similar to Cap-
Probe, PBProbe estimates the link capacity by actively
sending a number of probes to the network and using the
minimum delay sum filter to identify the “good” sample.
However, instead of employing a packet pair, PBProbe
uses packet bulk of length k in each probing and mea-
sures the capacity for each direction separately. Specif-
ically, there are two phases in PBProbe. In the first
phase, PBProbe estimates the capacity of the forward
link; whereas in the second phase, PBProbe estimates
the capacity of the backward link. Fig. 2 illustrates the
algorithm of PBProbe.

In the first phase (as shown in Fig. 2-a), host A first

3

UCLA Computer Science Department Technical Report CSD-TR No. 050029



sends one START packet to host B to initiate the esti-
mation process. Once the process is initiated, B sends a
Request To Send (RTS) packet to A every G time units.
Upon the receipt of the RTS packet, host A immediately
sends B a packet bulk of length k (note: bulk length =
k means that k + 1 packets are sent back to back). For
the i-th probing sample, suppose B sends the RTS packet
at time tsend(i) and receives the j-th packet (in the i-th
sample) at time trcv(i, j). The delay sum (i.e. Si) and
the dispersion (i.e. Di) of the i-th packet bulk sample are
given by:

Si = (trcv(i, 1)− tsend(i))+(trcv(i, k + 1)− tsend(i))
(2)

Di = trcv(i, k + 1)− trcv(i, 1) (3)

If neither the first nor the (k + 1)th packet has experi-
enced cross-traffic induced queueing, the sample will re-
flect the correct capacity. Thus, the “good” sample (say,
the m-th sample) is identified by applying the minimum
delay sum filter to all probing samples (say, n samples):

m = arg min
i=1...n

Si (4)

Therefore, the capacity estimate is made by using the
dispersion of the m-th sample with the minimum delay
sum:

C =
kP

Dm
(5)

where P denotes the packet size of each probing
packet. Since the packet bulk samples are delivered only
in the forward direction, the estimated capacity corre-
sponds to the bottleneck in this direction.

Once the first phase ends, B sends an END packet to
A, and PBProbe enters the second phase (as shown in
Fig. 2-b). In this phase, A first sends an RTS packet
(every G time units) to B, and B replies a packet bulk
of length k right upon the receipt of each RTS packet.
Similar to the first phase, PBProbe measures the delay
sum and dispersion for each sample, and estimates the
capacity in the backward direction by using the minimum
delay sum filter.

3.1 The Inter-sample Period: G
PBProbe probes the link capacity by sending a packet
bulk every G time units. The value of G is critical for
the convergence time of PBProbe. The larger G is, the
slower PBProbe estimation becomes. However, G can
not be too small either. If it is too small, PBProbe is more
likely to create congestion in the network. Therefore, in
PBProbe, we set G to be:

G =
2Dm′

U
(6)

where Dm′ is the dispersion of the good sample (i.e.
Dm′ = kP

C ), which has the minimum delay sum among
all probing samples seen so far, and U is the maximum
network utilization allowed for PBProbe estimation.

Corollary 1. If G = 2Dm′
U , PBProbe will never utilize

the network with utilization larger than U .

Proof. Since k ≥ 1, we know that

G =
2Dm′

U
≥ Dm′

U
+

Dm′

kU
=

kP

CU
+

P

CU
=

(k + 1)P
CU

(7)

⇒ (k + 1)P
G

≤ CU (8)

Let R denotes the introduced data rate of the packet
bulk probing, i.e. R = (k+1)P

G ; therefore we can con-
clude R ≤ CU , i.e. the probing data rate is never larger
than the load constraint, U .

3.2 The Packet Bulk Length: k
The major difference between CapProbe and PBProbe
is that PBProbe sends packet bulks. The purpose of
using packet bulks is to overcome the limited system
timer resolution, as well as to avoid the additional la-
tency caused by segmentation and reassembly when the
employed packet size is larger than the MTU. Alg. 1
is employed by PBProbe to automatically determine the
proper bulk length, k, for capacity estimation.

In the beginning, k is initialized to 1, i.e. PBProbe be-
haves as CapProbe, using packet-pair to probe the link
capacity. However, whenever the measured dispersion is
smaller than a certain threshold, say Dthresh, this algo-
rithm will increase the bulk length (k) by ten-fold and
restart the estimation process. Clearly, the decision of
Dthresh value depends on the system timer resolution.
In this work, we set Dthresh = 1ms in all experiments.

Corollary 2. In PBProbe, the difference of the maximum
network utilization (i.e. U ) and the achieved network uti-
lization (i.e. U ′) increases as the the bulk length (i.e. k)
increases.

Proof. Let R denotes the introduced data rate of the
packet bulk probing, the achieved network utilization is
then given by U ′ = R

C = (k+1)P
CG . Since G = 2Dm′

U ,
U ′ = (k+1)PU

2CDm′
.

Let 4U denotes the difference of U and U ′, i.e.
4U = U − U ′ > 0, 4U is given by:

4

UCLA Computer Science Department Technical Report CSD-TR No. 050029



Algorithm 1 The algorithm for determining the appro-
priate bulk length, k, in PBProbe.

k ← 1
count ← 0
D ←∞
repeat

Send START packet
Receive a packet bulk (of lengh k) and measure D′

if D′ < Dthresh then
k ← k × 10
count ← 0

else
D ← min(D′, D)
G ← 2D/U
count ← count + 1
Sleep(G)

end if
until count == n

4U = U − (k + 1)PU

2CDm′
=

(
2CDm′ − (k + 1)P

2CDm′

)
U

(9)
Since Dm′ = kP

C , one can get:

4U =
(

2kP − (k + 1)P
2kP

)
U =

(
1
2
− 1

2k

)
U (10)

Therefore, 4U increases as k increases.

3.3 The Number of Samples: n

CapProbe employs a sophisticated convergence test to
determine whether a good sample has been obtained. To
simplify the implementation, PBProbe simply estimates
link capacity using a fixed number of n samples. Obvi-
ously, the larger n is, the more accurately PBProbe esti-
mates. The required time for one PBProbe capacity es-
timate is linearly proportional to the value of n. More
specifically, the larger n is, the longer time PBProbe re-
quires to converge to a given accuracy. Based on the
experimental results reported in the previous CapProbe
studies [10] [16], we decide to set n = 200 throughout
this paper.

4 Analysis

In this section, we present a queueing model that can
predict the probability of obtaining a “good” sample for
a single link with Poisson distributed cross traffic. For
simplicity, we assume the probing samples of PBProbe
arrive according to a Poisson distribution so that they

take so to speak “a random look” at the link. We also as-
sume that the probing samples do not constitute a signifi-
cant load on the network since they are sent infrequently.
Finally, we assume the buffers are large enough so that
probing packets will not be dropped due to buffer over-
flow. The analytical model is described next, followed
by the results.

Suppose the arrival and service rate of Poisson cross
traffic are λ and µ, the service time of one single prob-
ing packet is τ , and the bottleneck link utilization is ρ.
The probability of the first probing packet arriving to an
empty system, i.e. p, is given by:

p = 1− λ

µ
= 1− ρ (11)

Since there is no queueing delay experienced by any
probing packets of a “good” sample, the probability of
no queueing delay for the remaining k probing packets
(i.e. no cross traffic packets arrive in the kτ period) is
e−λ(kτ). Therefore, the probability of obtaining a “good”
sample, i.e. p0, is given by:

p0 = peλ(−kτ) = (1− ρ) e−kλτ (12)

The expected number of samples, N , for obtaining a
good sample is then derived as:

N =
∞∑

n=1

np0(1− p0)n−1 =
1
p0

=
ekλτ

1− ρ
(13)

Suppose the size of the probing packets and the cross
traffic packets are equal, then τ = 1

µ = ρ
λ . Therefore, N

could be rewritten as:

N =
ekρ

1− ρ
(14)

The relationship between the expected number of re-
quired samples for one good sample (N ) and link utiliza-
tion (ρ) with different packet bulk length (k) is shown in
Fig. 3.

From the results of Fig. 3, when k = 1 (i.e. packet-
pair based CapProbe), N is around 25 while the utiliza-
tion (ρ) is as high as 0.9. However, as k increases, N in-
creases exponentially. For instance, when ρ = 0.31, N is
around 30 while k = 10, but becomes around 5,000,000
while k = 50. It turns out that the estimation speed of
PBProbe (i.e. the required number of samples for ob-
taining a good sample) is highly related to the employed
packet bulk length. Though employing a large packet
bulk can improve the accuracy of dispersion measure-
ments, such large bulk will need a much larger number
of tries in order to lead to a good sample and therefore
will slow down the estimation considerably.

1The utilization of Abilene backbone network, which is the gigabits
backbone of Internet2, is hardly over 30% [1].

5

UCLA Computer Science Department Technical Report CSD-TR No. 050029



Figure 3: The expected number of samples (N ) with dif-
ferent link utilization (ρ) and packet bulk length (k) un-
der Poisson cross traffic.

5 Internet Experiments: General Links

In this section, we present experimental results evaluat-
ing the accuracy of PBProbe on general Internet connec-
tions. We first evaluate PBProbe on the symmetric In-
ternet links in Section 5.1, and then present the results
of PBProbe on the emerging first/last-mile asymmetric
access links in Sections 5.2 and 5.3.

5.1 Symmetric Links
We first performed Internet experiments on the general
symmetric fast Ethernet links. One of the selected paths
is a local connection within UCLA campus networks
(UCLA ↔ UCLA; Capacity: 100 Mbps; Round trip
time: 0.2 ms), and the other two paths are from UCLA to
California Institute of Technology (UCLA ↔ CalTech;
Capacity: 100 Mbps; Round trip time: 8 ms) and from
UCLA to National Taiwan Normal University (UCLA↔
NTNU; Capacity: 100 Mbps; Round trip time: 180 ms).

For each network path, 20 runs of PBProbe were per-
formed in order to collect the average capacity estimate
and standard deviation. The normalized capacity esti-
mates (i.e., the ratio of estimated capacity to real capac-
ity) and 95% confidence intervals are illustrated in Fig. 4.
The employed bulk length k and the average time spent
for one estimate (i.e. for one direction) of each path are
shown in Table 1.

Table 1 shows that PBProbe adapted its bulk length,
k, to 10 in all experiments. This is due to the fact that,
while k = 1 (i.e. PBProbe sent packet pairs as probing
samples, which is the same as CapProbe), the dispersion
measurements were smaller than the threshold value (i.e.
Dthresh = 1ms). Therefore, the bulk length adaptation
algorithm increased k in order to keep measured disper-
sion larger than Dthresh and overcome the system’s in-

Figure 4: PBProbe capacity estimation (mean and 95%
confidence intervals)on 100 Mbps Internet links.

Table 1: Path properties of the employed symmetric In-
ternet connections.

Path Bulk Length k Time Spent

UCLA↔ NTNU 10 10 sec

UCLA↔ CalTech 10 10 sec

UCLA↔ UCLA 10 10 sec

adequate timer resolution.
Compared with the experiment results presented in

[16], PBProbe achieved the same estimation accuracy as
CapProbe and Pathrate did on 100 Mbps links. As de-
picted in Figure 4, PBProbe estimates the bottleneck ca-
pacity accurately in most cases. The capacity estimate
for the path from NTNU to UCLA fluctuates slightly
more than other paths, because the heavy cross traffic
on this path reduces the probability of obtaining a good
packet bulk sample.

In terms of estimation speed, the performance of
PBProbe lies between CapProbe and Pathrate. The rea-
son that PBProbe requires slightly longer time than Cap-
Probe is mainly due to the packet bulk length adapta-
tion and the fixed number of samples. Nevertheless, it is
worth noting that, by employing packet bulks instead of
packet pairs, PBProbe can adapt to lower timer resolu-
tion and higher capacity environments in a more flexible
way than CapProbe.

5.2 Asymmetric Links

The emerging first/last-mile Internet access links are usu-
ally asymmetric (e.g. DSL and Cable modem links). Pre-
vious asymmetric estimation techniques are either very
complex (e.g. ALBP [22]) or they require fine-scale sys-
tem timer resolution support (e.g. AsymProbe [12]). In

6

UCLA Computer Science Department Technical Report CSD-TR No. 050029



Figure 5: PBProbe experiment results (mean and 95%
confidence intervalsof 20 runs) on Up and Down links of
DSL connections.

this subsection, we performed a set of experiments to
evaluate the applicability of PBProbe to asymmetric ac-
cess links.

Two asymmetric links were selected from our local
host (connected to the Internet via a 100 Mbps eth-
ernet link) to two DSL hosts2. One of them is Ver-
izon DSL link with 1.5M/384Kbps link capacities on
the DOWN/UP links and around 30 ms round-trip de-
lay time. The other is HiNet DSL link with 3M/640Kbps
link capacities on the DOWN/UP links and around 50 ms
round-trip delay time. The experiments were performed
20 times for each destination host, and k was observed
to be 1 in all runs (i.e., when k = 1, the measured dis-
persion was already larger than the threshold value). We
plot in Fig. 5 the normalized average capacity estimates
with 95% confidence intervals for each direction.

The results clearly demonstrate that PBProbe is able
to correctly estimate capacities on all asymmetric links.
Specifically, the average capacity estimates are all within
90% accuracy of the real physical link capacity. Given
95% confidence level, all the capacity estimates remains
within 80% accuracy.

5.3 Wireless Experiments

Here, we evaluate PBProbe on an one-hop wireless link,
which is prevalent in the first/last mile scenarios. The
wireless link is IEEE 802.11b based, and the transmis-
sion rate is configured to be 1, 2, 5.5, and 11 Mbps re-
spectively. For each transmission rate, we repeated the
PBProbe experiment for 20 times in order to collect the
average and standard deviation results. Fig. 6 shows the

2The DSL connections are provided by Verizon
(http://www.verizon.net) and HiNet (http://www.hinet.net).

Figure 6: PBProbe experiment results (mean and 95%
confidence intervalsof 20 runs) on last mile IEEE
802.11b link with different transmission modes.

experiment results3.
From Fig. 6, we observe that PBProbe gives accu-

rate estimates for wireless links as well. The normalized
capacity estimates are very close to 1 in all transmission
modes, and the standard deviations are small too. It turns
out that PBProbe is also able to accurately estimate the
capacity of wireless links.

6 Experiments: High-Speed Links

In this section, we evaluate the performance of PBProbe
on high speed (i.e., over 100 Mbps) links. We first per-
form emulation experiments to test the speed and accu-
racy of PBProbe in a controlled environment. We then
conduct Internet experiments to study the performance
of PBProbe in a more realistic environment. The experi-
ments results are presented in the following subsections.

6.1 Emulation Experiments

The emulator-based experiments were run on our labo-
ratory testbed with the configurations illustrated in Fig.
7. In the first scenario (i.e. Fig. 7-a), three testing ma-
chines are connected serially with 1 Gbps links. The
NISTNet emulator [6] is installed on the middle machine
and would wisely configure the middle machine to cre-
ate bottleneck link on the gigabits path. No cross traffic
is injected into this path. In the second scenario (i.e. Fig.
7-b), three testing machines are connected to one gigabits
switch with 1 Gbps link. A Poisson traffic generator [8]
is installed on one of the three machines, and PBProbe
was installed on the other two machines. The Poisson

3The capacity estimates have been normalized to the effective ca-
pacity as reported in http://www.uninett.no/wlan/throughput.html

7

UCLA Computer Science Department Technical Report CSD-TR No. 050029



Figure 7: NIST Net emulation testbed

traffic generator was configured to generate different lev-
els of cross traffic in order to validate the accuracy and
speed of PBProbe under different link utilization levels.

6.1.1 No Cross Traffic

First, we evaluate the accuracy of PBProbe with dif-
ferent k settings on high speed links by disabling the
bulk length (k) adaptation algorithm. Fig. 7-a illustrates
the testbed configuration, in which no cross traffic was
present during the experiments. We varied the bottleneck
link capacity, and conducted 20 runs of the experiments
for each capacity setting. The results of k = 10 and 100
are shown in Fig. 8 and 9, respectively.

Since no cross traffic was present in these experiments,
packets within a packet bulk are expected to traverse
the path back-to-back without being disturbed. There-
fore, ideally, the measured dispersion of each packet bulk
should represent the undistorted dispersion correspond-
ing to bottleneck link capacity. Moreover, based on these
perfect dispersions, the capacity estimate should be accu-
rate and consistent for every probing sample.

However, since PBProbe requires accurate dispersion
measurements, the capacity estimates tend to become in-
accurate when timer resolution is inadequate. Table 2
shows the required timer resolution of PBProbe on links
with different capacity and for different bulk lengths.
Obviously, when the bottleneck link capacity is high or
the bulk length is small, a high timer resolution is re-
quired. For instance, with link capacity = 100 Mbps and
packet pairs (i.e., k = 1), only a powerful processor can
satisfy the required resolution of 0.12 ms. As the capac-

Figure 8: PBProbe estimation results using NISTNet em-
ulator: normalized capacity estimates with various bot-
tleneck capacity settings.

Figure 9: PBProbe estimation results using NISTNet em-
ulator: coefficient of variance of capacity estimates with
various bottleneck capacity settings.

ity increases to 1 Gbps, the required 0.012 ms resolution
becomes very difficult to achieve, and the measurement
accuracy will degrade. Indeed, this trend was observed in
Fig. 8 and 9. In these two figures, for small k, the capac-
ity estimates become increasingly inaccurate and incon-
sistent when the required timer resolution became greater
(or equivalently, when the bottleneck capacity was en-
larged).

However, the results also reveal that, when measuring
high capacity links, a large k can successfully alleviate
the inaccuracy and inconsistency of capacity estimates
caused by poor timer resolution. For instance, when the
bottleneck link capacity is 600 Mbps, PBProbe with bulk
length k = 100 can accurately estimate the capacity (as
illustrated by very small coefficient of variance on capac-
ity estimates). In contrast, when k = 10, PBProbe can
only measure around 60% of the link capacity, and the
coefficient of variance is much larger. Based on the ex-

8

UCLA Computer Science Department Technical Report CSD-TR No. 050029



Table 2: Required system timer resolution for accurate
PBProbe estimation (assuming probing packet size is
1500 bytes).

Bottleneck Link Capacity

k 1Gbps 100Mbps 10Mbps

1 0.012ms 0.12ms 1.2ms

10 0.12ms 1.2ms 12ms

100 1.2ms 12ms 120ms

perimental results as well as the analysis shown in Table
2, we conjecture that our testbed hosts can only provide
timer resolution of approximately 1 ms. Therefore, we
decided to fix Tthresh = 1ms in the k adaptation algo-
rithm of PBProbe for all the following experiments.

6.1.2 Poisson Cross Traffic

The second set of experiments was performed to investi-
gate the impact of different levels of cross traffic on the
accuracy and speed of PBProbe. Fig. 7-b) illustrates the
testbed topology, in which a Poisson traffic generator in-
jects traffic into the probing path of PBProbe. The Pois-
son traffic generator varied its traffic rate from 0 to 500
Mbps, and 20 trials of the PBProbe experiment were per-
formed for each cross traffic rate. The bulk length k was
fixed to 100. The relationship between the number of
employed samples and the average capacity estimates is
plotted in Fig. 10.

Figure 10: Capacity estimates of PBProbe (k = 100)
under different Poisson cross traffic.

The results show that PBProbe estimated 950 Mbps
capacity very fast (in less than 50 samples) when the
Poisson cross traffic was very light (i.e. the Poisson cross
traffic varies from 0 to 100 Mbps rate). As the cross
traffic increased, the accuracy of PBProbe estimates de-
creased. Specifically, PBProbe achieved around 90% ac-
curacy when the link utilization was 0.2, 85% accuracy

when the link utilization was 0.3. When the link uti-
lization became larger than 40%, PBProbe only achieved
around 80% accuracy after 1000 samples. The results
are consistent with the analytical results shown in Fig. 3,
where the required number of samples increases expo-
nentially with the link utilization.

It turns out that, when the bulk length is large,
PBProbe can estimate link capacity very rapidly when
the link utilization is low, but it requires a large number
of probing samples when the link is highly utilized. For-
tunately, most Internet gigabit backbones nowadays are
moderately loaded. As reported in [1, 2, 4, 5, 9]4, the
utilization of Internet backbones are mostly below 15%.
Therefore, in practice, PBProbe is still adequate for ca-
pacity estimation on high speed Internet links. To vali-
date the feasibility and capability of PBProbe in more re-
alistic scenarios, we perform experiments on high speed
Internet paths in the next subsection.

6.2 Internet Experiments
Here, we conducted Internet experiments to evalu-
ate PBProbe in realistic environments. Five Internet
hosts and five Internet gigabits paths (within California:
UCLA and CalTech); across country: UCLA - PSC, PSC
- GaTech, GaTech - UCLA; and international: NTNU -
UCLA) were selected for the experiments. The selected
Internet hosts are listed in Table 3, and the topology and
path properties of the selected paths are illustrated in Fig.
11.

Table 3: Description of the participating hosts in gigabits
Internet experiments.

Abbrev. Full Name Location

CalTech California Institute of Technology California, USA

GaTech Georgia Institute of Technology Georgia, USA

NTNU National Taiwan Normal University Taipei, Taiwan

PSC Pittsburgh Supercomputing Center Pennsylvania, USA

UCLA University of California at Los Angeles California, USA

Fig. 12 and 13 illustrate the experiment results (i.e.
normalized mean and coefficient of variance of capac-
ity estimates in 20 runs). It is clear that, in Fig. 12, the
normalized capacity estimates are mostly within 90% ac-
curacy range, except three outgoing links from UCLA to
CalTech, GaTech, and PSC. This is due to the fact that
the outgoing link of UCLA backbone has around 30%
utilization, which is much higher than the utilization of
the incoming link (around 15%) [2], and, in this case,

4More information of Internet utilization can
be found at http://netmon.grnet.gr/weathermap/ and
http://people.ee.ethz.ch/ oetiker/webtools/mrtg/users.html

9

UCLA Computer Science Department Technical Report CSD-TR No. 050029



Figure 11: Topology and path properties (bottleneck ca-
pacity and round trip delay) of selected gigabits Internet
paths.

PBProbe requires a large number of samples in order to
correctly estimate the capacity. Since we set n = 200
in all experiments, PBProbe only estimated around 80%
of the link capacity, which is consistent with the results
presented in subsection 6.1.2.

In addition, Fig. 13 also shows that the coefficient
of variance of PBProbe estimates are below 0.15 on all
tested links, i.e. the capacity estimates (20 runs) of each
high-speed link are very stable. Comparing with the re-
sults shown in 9, it turns out that PBProbe was able to
adapt its bulk length to the most appropriate value (i.e.
k = 100) so that it could consistently and accurately es-
timate the capacities of high speed links.

6.3 Comparisons of PBProbe and Pathrate
So far, we have evaluated PBProbe in a variety of net-
work scenarios. In this subsection, we compare the per-
formance of PBProbe and Pathrate in terms of accuracy,
speed, and bandwidth consumption (i.e. overhead). The
experiments are performed on the same set of high speed
Internet links as illustrated in Fig. 11, and the results of
capacity estimates and required time are shown in Table
4.

In Table 4, PBProbe measures at least around 85% bot-
tleneck capacities of all tested links; whereas Pathrate is
very accurate and measures at least 90% bottleneck ca-
pacities for all links. However, for some links with long
delay and/or high utilization, Pathrate required more than
1000 seconds to estimate the capacity. This is due to the
fact that, if the distribution of measured dispersion is not
unimodal after the first phase, Pathrate will start the sec-
ond phase to probe the network using different packet
train lengths and packet sizes. Once Pathrate enters the
second phase, it takes long time to determine the correct

Table 4: Comparison of PBProbe and Pathrate on Inter-
net gigabits links. (Capacity: Mbps; Time: seconds)

PBProbe Pathrate

CapacityTimeCapacityTime

CalTech→ UCLA (1Gbps) 919.6 14 933.2 17

UCLA→ CalTech (1Gbps) 839.4 14 945.3 1146

GaTech→ UCLA (1Gbps) 928.1 14 932.9 18

UCLA→ GaTech (1Gbps) 840.3 14 968.1 1223

PSC→ GaTech (1Gbps) 959.9 13 995.4 1122

GaTech→ PSC (1Gbps) 905.9 13 947.0 17

PSC→ UCLA (1Gbps) 889.6 14 935.6 20

UCLA→ PSC (1Gbps) 845.2 15 905.6 20

NTNU→ UCLA (600Mbps) 580.6 20 575.6 1641

UCLA→ NTNU (600Mbps) 588.4 21 573.4 1641

link capacity. As a result, Pathrate converges fast if the
dispersion distribution is unimodal in the first phase, but
it becomes much slower than PBProbe otherwise.

We also compared the packet overhead caused by
PBProbe and Pathrate on high speed Internet links. Table
5 shows the comparison on one of the high speed links,
the UCLA - GaTech link. From the experiment results,
PBProbe is more expensive than Pathrate, if Pathrate
only uses one phase to estimate link capacity on high
speed links. In case when Pathrate is required to enter the
second phase, PBProbe and Pathrate produce a compara-
ble amount of packet overhead. However, since Pathrate
is much slower after entering the second phase, the band-
width consumption (i.e. bits per second) is much smaller
than PBProbe. It is worth pointing out that, even though
the bandwidth consumption of PBProbe (approximately
2 Mbps) seems to be relatively high, it is only 0.2% of the
bottleneck capacity (i.e., 1 Gbps); thus, it is not intrusive
to other traffic flows in the network.

The experiment results suggest that there are trade-offs
between PBProbe and Pathrate for high-speed path ca-
pacity estimation. On the one hand, PBProbe yields good
estimation results very fast (e.g., less than 20 seconds in
most cases). If given more time, it will progressively im-
prove the estimates, since better samples can be obtained.
On the other hand, Pathrate tends to produce accurate re-
sults, but the required time may vary from approximately
20 seconds to 20 minutes. Thus, Pathrate is not indicated
in scenarios when an estimation of the bottleneck capac-
ity needs to be obtained within a very short time.

It should also be noted that the packet overhead of
PBProbe is proportional to the employed bulk length k.
While measuring a high speed link, PBProbe increases
its bulk length and in turn increases the packet overhead,
in order to overcome the limited support of system timer
resolution. Nonetheless, thank to the employed U pa-

10

UCLA Computer Science Department Technical Report CSD-TR No. 050029



Figure 12: PBProbe experiment results (mean of 20 runs) on high speed links.

Figure 13: PBProbe experiment results (coefficient of variance of 20 runs) on high speed links.

Table 5: Comparison of PBProbe and Pathrate overhead
on Internet gigabits links.

GaTech→ UCLA UCLA→ GaTech

PBProbe Pathrate PBProbe Pathrate

spent time 14 sec 18 sec 14 sec 1223 sec

total packets 20,213 2,414 20,213 27,630

total bytes 30,319,500 3,543,752 30,319,500 39,707,740

BW consumption 2.166Mbps 1.575Mbps 2.166Mbps 0.260Mbps

rameter, the bandwidth consumption of PBProbe is re-
stricted by the utilization upper bound. Hence, PBProbe
can carefully control the trade-off between the bandwidth
consumption and the required time in order to satisfy the
requirement of different applications.

To summarize, PBProbe is scalable and adaptive to
network link capacities, and applicable to asymmetric ac-
cess links and one-hop wireless links. It is consistently
fast, accurate, and non-intrusive. Therefore, PBProbe is
indeed feasible to be deployed and applied in the emerg-
ing network applications.

7 Conclusions

In this paper, we studied a classic problem of link ca-
pacity estimation, and we proposed a scalable technique,
called PBProbe, to estimate bottleneck capacity of a path
with a variety of network dynamics. PBProbe is based

on the CapProbe algorithm, and it employs “packet bulk”
technique to adapt the number of packets in each prob-
ing in accordance to the network characteristics. As a
result, it preserves the simplicity, speed, and accuracy
of CapProbe in estimating general Internet paths, and it
overcomes the poor system timer resolution support on
high speed links. Using analysis, emulation, and Inter-
net experiments, we evaluated the accuracy, speed, and
overhead of PBProbe on various network configurations.
The results show that PBProbe is able to correctly and
fast estimate bottleneck capacity in almost all test cases.
PBProbe is ideal in real deployments where online and
timely capacity estimation is required. Typical applica-
tions are peer-to-peer streaming and file sharing, over-
lay network structuring, and network monitoring, pricing
and QoS enhancements.

8 Acknowledgments

We are grateful to the following people for their help
in carrying out PBProbe measurements: Yu-Chin Fang
(National Taiwan Normal University), Sanjay Hegde
(California Institute of Technology), Che-Chih Liu (Na-
tional Taiwan Normal University), Cesar A. C. Marcon-
des (University of California, Los Angeles), and Anders
Persson (University of California, Los Angeles).

References
[1] Abilene network traffic. http://loadrunner.uits.iu.edu/weathermaps/abilene/.

11

UCLA Computer Science Department Technical Report CSD-TR No. 050029



[2] Cenic network statistics. http://cricket.cenic.org/grapher.cgi.

[3] Clink: a tool for estimating internet link characteristics.
http://allendowney.com/research/clink/.

[4] Garr-b network weather map.
http://www.noc.garr.it/mappe/backbone.shtml.

[5] Grnet: Network weathermap. http://netmon.grnet.gr/map.shtml.

[6] Nistnet: network emulation package.
http://www.antd.nist.gov/itg/nistnet/.

[7] pchar: A tool for measuring internet path characteristics.
http://www.kitchenlab.org/www/bmah/Software/pchar/.

[8] Poisson traffic generator. http://www.spin.rice.edu/Software/poisson gen/.

[9] Twaren weather map. http://mrtg.twaren.net/mrtg/wmap/.

[10] CHEN, L.-J., SUN, T., XU, D., SANADIDI, M. Y., AND
GERLA, M. Access link capacity monitoring with tfrc probe.
In E2EMON (2004).

[11] CHEN, L.-J., SUN, T., YANG, G., SANADIDI, M. Y., AND
GERLA, M. Adhoc probe: Path capacity probing in ad hoc net-
works. In WICON (2005).

[12] CHEN, L.-J., SUN, T., YANG, G., SANADIDI, M. Y., AND
GERLA, M. End-to-end asymmetric link capacity estimation. In
IFIP Networking (2005).

[13] DOVROLIS, C., RAMANATHAN, P., AND MOORE, D. What do
packet dispersion techniques measure? In IEEE Infocom (2001).

[14] JACOBSON, V. Pathchar: A tool to infer characteristics of internet
paths. ftp://ftp.ee.lbl.gov/pathchar/.

[15] JIN, G., AND TIERNEY, B. System capability effect on al-
gorithms for network bandwidth measurement. In ACM IMC
(2003).

[16] KAPOOR, R., CHEN, L.-J., LAO, L., GERLA, M., AND SANA-
DIDI, M. Y. Capprobe: A simple and accurate capacity estima-
tion technique. In ACM SIGCOMM (2004).

[17] KAPOOR, R., CHEN, L.-J., SANADIDI, M. Y., AND GERLA,
M. Accuracy of link capacity estimates using passive and active
approaches with capprobe. In IEEE ISCC (2004).

[18] LAI, K., AND BAKER, M. Measuring bandwidth. In IEEE Info-
com (1999), pp. 235–245.

[19] LAI, K., AND BAKER, M. Measuring link bandwidths using a
deterministic model of packet delay. In ACM SIGCOMM (2000).

[20] LAKSHMINARAYANAN, K., PADMANABHAN, V. N., AND PAD-
HYE, J. Bandwidth estimation in broadband access networks. In
IMC (2004).

[21] LEE, S.-J., SHARMA, P., BANERJEE, S., BASU, S., AND FON-
SECA, R. Measuring bandwidth between planetlab nodes. In
PAM (2005).

[22] LIN, Y., WU, H., CHENG, S., WANG, W., AND WANG, C.
Measuring asymmetric link bandwidths in internet using a multi-
packet delay model. In IEEE ICC (2003).

[23] POSTEL, J. Internet protocol. Tech. rep., IETF RFC 791, Sep-
tember 1981.

[24] PRASAD, R., JAIN, M., AND DOVROLIS, C. Eval-
uating pathrate and pathload with realistic cross-traffic.
http://www.cc.gatech.edu/ jain/pub/talk/best03 talk.ppt, 2003
Bandwidth Estimation Workshop.

[25] SAROIU, S., GUMMADI, P. K., AND GRIBBLE, S. D. Sprobe:
A fast technique for measuring bottleneck bandwidth in uncoop-
erative environments. In IEEE Infocom (2002).

[26] SAVAGE, S. Sting: a tcp-based network measurement tool.
In USENIX Symposium on Internet Technologies and Systems
(1999).

12

UCLA Computer Science Department Technical Report CSD-TR No. 050029


