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Abstract— Grido is an architecture that targets a network
operator intending to provide enhanced services to its customers.
This is achieved by setting up a “backbone” overlay network. A
backbone overlay is set of Internet hosts dedicated to providing
overlay services. A network operator can view Grido as a
sand-box for rapid prototyping and market adoption assessment
of novel services. In the past, overlay networks have been
designed to mitigate deployment issues of functionalities such
as multicast and QoS at the network layer. Grido provides a
WS-Agreement based negotiation interface complying with the
current Global Grid Forum (GGF) standards. We propose to
use a novel virtual coordinates-assisted overlay construction and
maintenance protocol.

We demonstrate using simulations, that Grido incurs a low
latency overhead while maintaining sparse connectivity on the
backbone overlay. Grido also incurs low overhead for virtual
coordinates estimation and chooses the closest 5% overlay node
to any IP address, 95% of the time.

I. INTRODUCTION

Overlay network structures have been proposed to deploy
new functionalities in Internet, such as multicasting [10] [15],
and to provide better services, such as fault-tolerance and QoS-
aware routing [4] [23] to existing applications.

Large-scale deployment of overlay networks have been in
the application-specific overlay domain. Application-specific
overlays such as those for supporting multicasting, implement
the functionalities exclusively at the end users, and thus do not
require infrastructure support from intermediate nodes such as
routers and proxies. However, there are serious scalability is-
sues with increased adoption and usage of application specific
overlays.

The alternative approach which alleviates the scalability
problem are backbone overlays. Backbone multicast over-
lays [15] for example, can be a set of strategically deployed
proxy nodes that self-organize into an overlay network and
deliver data packets on multicast distribution trees built on
top of this overlay. End users subscribe to appropriate overlay
nodes and receive data via unicast or local IP multicast. Hence,
the communication overhead to maintain control and data
delivery path is limited in scope. [8] suggest two approaches
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towards a synergistic co-existence of overlay networks and
underlying IP networks.

The first approach seeks to obviate the need for an overlay
by augmenting the services of the underlay. This approach
might eventually be deployed along with IPv6.

The second approach proposes to share information either
between overlays and underlays or between multiple overlays.
Sharing state or performance information across such bound-
aries would alleviate the lack of awareness on each side. One
solution that takes this approach is [9] which proposes the use
of a routing underlay. The ”backbone” overlay concept aims to
share information between multiple overlays and consequently
amortize the overlay maintenance across multiple overlays.
The backbone overlay approach can fill the gap in the present
by providing enhanced services.

The key contributions of our paper are as follows: (a) A
novel overlay construction strategy that uses virtual coordi-
nates. The joint use of Q-OSPF and virtual coordinates enables
a fast and efficient overlay construction strategy for providing
QoS support. (b) We devise an adaptive strategy on the overlay
that mimics the power-law like topology of the underlying
Internet to achieve scalability. (c) We also provide a scalable
solution to determine the closest overlay node to a given
Internet host with minimal probing overhead. (d) We present
a Grid-based interface for third-parties to negotiate and get
a desired service level from the overlay service provider. We
envision this standardized interface to be used between inter-
provider agreement settlement as well.

The next few sections are organized as follows. Section II
deals with our approach to construct and maintain the overlay
in a distributed manner. In Section III, we discuss the problem
of isolating the best overlay node for any Internet host and
detail our approach to set up routing within the overlay. In
Section IV, we present a possible QoS Call Admission Control
(CAC) mechanism that can be used as a back-end for the
Grid interface. We derive from our previous research [22] and
take a network layer measurement based CAC algorithm and
propose to use it at the overlay layer. Section V outlines the
Grid interfaces that the overlay exposes for inspection and
session set-up. We present a Grid standards (WSRF) compliant
agreement protocol based mechanism for customer-provider
interaction. We elaborate on the use cases of our overlay
architecture and talk about possible applications and economic
incentives for its feasibility. In Section VI, we evaluate our
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construction strategy and evaluate its performance with respect
to certain well accepted parameters for overlay evaluation.
Finally, Section VIII concludes the paper and outlines the road
map for the realization of this architecture on an Internet-wide
testbed.

II. BACKBONE CONSTRUCTION

Given a set of overlay nodes, we want to construct the
backbone overlay to have a well-connected mesh with “good”
overlay links. The backbone mesh serves as the base for the
overlays that may be constructed on top of it. Thus, if latency
is the primary concern, it is important for the mesh to have
links which are very low latency. Since the overlay in its
most connected form can be a complete mesh, and a complete
mesh may not scale in terms of the overhead involved in
maintaining the structure, we would also like to constrain the
overlay to not use all possible overlay links. For example,
the message overhead of link state protocols like Q-OSPF is
directly proportional to the number of edges. We conclude
from our observations that maintaining a good backbone mesh
that is not too densely connected is one of the crucial design
goals.

Narada [10] addressed the problem of maintaining a mesh of
end-systems by estimating latency between hosts and adding
or dropping links based on the utility of the links. However
estimating the utility of potential neighbors on the basis of ping
results implies regular probing of nodes on the network, an
activity that is not low in overhead. Virtual coordinates allow
nodes to estimate latency in a distributed manner without the
intensive overhead of regular pinging. We take an approach
that is similar to Narada, but we use virtual coordinates to re-
duce the overhead involved in determining latency. We briefly
cover the spectrum of virtual coordinate systems and discuss
our use of Q-OSPF, a link-state protocol for disseminating QoS
metrics and virtual coordinates in the next few paragraphs.

A. Background

There are several virtual coordinates systems proposed in
literature such as GNP [30], IDMaps [33] and PIC [34].
A recent idea, Vivaldi [11] is an algorithm for assigning
virtual coordinates to hosts such that the distance between
the coordinates of two hosts accurately predicts the round trip
time, or RTT, between them. Unlike previous methods to allow
estimation of latency a priori, Vivaldi is distributed among
participating hosts and thus scales efficiently as the size of
the network grows. Furthermore, coordinates change quickly
in reaction to adverse traffic patterns such as congestion.

Q-OSPF [7] is an extension to the standard OSPF protocol, a
link-state routing protocol that is commonly run within an AS.
Q-OSPF piggy-backs the QoS parameters of the links along
with the link state advertisements, so that routers can make
intelligent decisions while forwarding. In our architecture, we
use Q-OSPF merely as a information-propagation protocol and
that it runs at the application layer for our overlay nodes. The
link-state advertisements correspond to overlay links which
are themselves composed of multiple physical links. Thus the
QoS parameters for a particular overlay link correspond to the

measured metrics over the IP route between the two overlay
neighbors. Each node in the overlay network builds a link state
database which contains all the recent link state advertisements
from other nodes. Routing decisions are made at the higher
layers and the forwarding mechanism is set up based on these
decisions.

B. Embedding the overlay on the coordinate system

The backbone overlay nodes use Vivaldi to embed them-
selves in a virtual coordinate system. While constructing the
overlay (deciding which overlay links to keep and which to
prune), we need to know the virtual coordinates of other nodes.
Therefore we use Q-OSPF to propagate useful information
about links, and piggyback the virtual coordinates of the over-
lay nodes in the advertisements that Q-OSPF generates. Other
attributes that are propagated using Q-OSPF advertisements
are discussed in Section IV. Each overlay node maintains a list
of overlay nodes that it sees the least distances to (in terms of
virtual coordinates). Out of this set of nodes, the node decides
which nodes to maintain overlay links with using a Narada-
like mechanism. To encourage diversity and prevent network
partitioning, each node also maintains overlay links with one
or two nodes which are relatively far away. The overlay links
that are constructed are used to forward overlay traffic as
well as link state advertisements. The backbone overlay nodes
ping their overlay neighbors to estimate virtual coordinates. In
case, an overlay node does not have twelve neighbors, it will
ping random nodes on the overlay to make up the remaining
number. These ping messages are tunneled through the shortest
path on the overlay.The virtual coordinates pings travel on
the overlay links, and therefore mirror the structure of the
overlay.1 However, any coordinate system that tries to place
nodes in Euclidean space will have to create errors in the
actual estimates in order to satisfy the triangle inequality. This
necessarily implies that using virtual coordinates to identify
cases where a certain link i, j is longer than a path i, k, j is
difficult if not impossible. However on overlays, that is one
of the most critical things that you need to know, whether its
quicker to get to a certain node through the overlay or directly
through the Internet.

C. Topology Construction Using Synthetic Coordinates

We assume that the overlay initially consists of a set of
nodes, all of which know each others identities (IP addresses).
For bootstrapping, the nodes start pinging each other on
virtual coordinates over the Internet until the prediction error
stabilizes. At this point, the nodes locally execute a k-means
clustering [27] algorithm on the virtual coordinates and asso-
ciate each node to a cluster. The value of k (i.e. the number of
clusters) is a system parameter and has been experimentally

1 [13] contends that Vivaldi technique suffers from small oscillations which
move the coordinates indefinitely and stop it from converging [12] if the
nodes do not satisfy the triangle inequality. However, we realized that in the
Vivaldi code, which is part of the Chord source code, you move a distance

local error2

(local error2+remote error2)
as opposed to local error

(local error+remote error)
as

claimed in [11]. The squaring leads to better stability and the pathological
three node case does not keep changing coordinates indefinitely.



3

evaluated in the Section VI. Nodes that are deemed to be in
the same cluster are called CloseNodes and nodes that are in
other clusters are called FarNodes. Once this is done, each
node bootstraps itself with ShortDegreeMin random nodes
in its cluster and LongDegreeMin nodes outside its cluster.

Each overlay node has a window of the number of neighbors
(both close and far) that it wants to have. It is not desirable
to add links between overlay nodes that are too close, since
that would lead to redundant overlay hops. Thus the system
has a parameter called minOverlayDistance which is the
minimum distance on the virtual coordinate space between
two nodes for them to be potential neighbors on the overlay.
Refer to Figure 1 to see a sample of the system parameters
used in the construction.

After the bootstrap phase, edges have been added to the
topology. The nodes now go into maintenance phase, where
they try to improve the mesh quality. During the mainte-
nance phase, pings for estimating the virtual coordinates start
travelling on the overlay edges. Thus, the virtual coordinates
distance mirrors the overlay latency of the nodes. In the next
subsection we describe the exact mechanism for addition and
deletion of links to the overlay network.

Close−Nodes set
MinOverlay Distance

Cluster i 

Cluster j 

Cluster k

ShortDegreeMin=2
ShortDegreeMax=4

LongDegreeMax=2
LongDegreeMin=1

Fig. 1. A node, shown in red, selecting its overlay neighbors. Here it
is constrained to the parameters as shown. Initially, each node starts
out with ShortDegreeMin = k − 1, ShortDegreeMax = 2(k − 1);
LongDegreeMin = 1 and LongDegreeMax = 2.

D. Addition of Links

Every member receives link-state updates which inform
it about other members’ virtual coordinates. Based on these
coordinates a particular node i calculates its virtual coordinates
distance to the nodes.

Each node i estimates the real latencies between i and a
randomly picked CloseNode j by pinging it. This pinging
process is a periodic process that looks at the CloseNodes
table and pings a randomly chosen node. These real latencies
are exponentially averaged, and once they are sufficiently old
(5-10 samples spread out over a minute for example) they are
compared with the shortest distance on the virtual coordinate
space between i and j on the graph using the overlay topology.
The ratio of Internet latency to virtual distance is computed,
and the link is considered a candidate for addition if this ratio
is better than the worst ratio in the current neighbors list. The
probability of choosing to add this particular link is inversely

proportional to the number of times that the link has been
added previously. Links have a high “added” count only if
they’ve been deleted often. Therefore, making the probability
inversely proportional to the number of times that the link has
been added inhibits addition of links which have been deleted
often (to prevent another potential deletion). Addition of short
links happens freely until the threshold ShortDegreeMax is
reached. After this, a short link is added only if its Internet to
virtual coordinates distance ratio is better than the best ratio
among the current neighbors.

We experiment with an adaptive strategy in which a node
increases its ShortDegreeMax and LongDegreeMax, if it
perceives its Relative Delay Penalty (RDP) to be greater than
α. Thus the number of neighbors that the node can have is
increased based on the nodes local view of the RDP that it
experiences. This intuitively allows overlay nodes near routers
with high degree, to attain higher degree in terms of their
overlay edges.

RDP is a well-known metric for evaluating overlay topolo-
gies. The RDP between two overlay nodes is defined as the
ratio of the overlay latency and the Internet latency between
the two nodes. To the best of our knowledge, the exact policy
that is assumed while calculating the latencies has not been
well-specified. In our evaluations of Grido, we use the shortest
delay path on the overlay (since nodes have Q-OSPF driven
knowledge of the link delays on the topology) for calculating
the overlay latency. The Internet latency is calculated assuming
Min-Hop routing where ties are broken on the basis of shortest
delay. The RDP of a topology is calculated by taking the 95%
value of RDP for the sampled node pairs.

E. Deletion of links

A least recently used (LRU) cache of the active overlay
links is maintained. Every time a link is used as part of a path
set-up, the nodes on each side of the link update the overlay
link time-stamp in their respective tables and place it at the
top, thus marking it as freshly used. Similarly, when a link
is just added, it is also marked as freshly used. When the
threshold ShortDegreeMax is crossed, the link which has
been least recently used is dropped with a certain probability.
This probability is inversely proportional to the number of
times the link has been added. This leads to giving links that
have been added often more time to prove their utility. If
the link is not chosen for deletion this time, the threshold
remains unchanged, and the node has more short neighbors
than ShortDegreeMax for the time being. The next time a
table modify operation occurs, the process of trying to delete
a link will repeat. Thus links that are added often (since they
show an apparent gain in the latency inspite of being deleted
often) are given more time to prove their utility. This helps in
dampening oscillations of both good links which do not seem
useful in the short run as well as bad links which just seem
attractive in the short run but are not useful on the overlay.
Long degree links are also handled in the same way, except
that the initial thresholds are lower as mentioned earlier.



4

F. Overlay Management

We now summarize some related functions associated with
managing the backbone, both in terms of the members be-
longing to the backbone overlay as well as the structure of the
backbone. We are assuming in a backbone overlay architecture
that nodes will not be joining and leaving very often, the
only events we need to handle are node failures and mesh
partitioning.
• Mesh performance: When an overlay node first joins

the backbone, the overlay links it creates can be quite
sub-optimal, however after a dozen pings to other nodes
the node should be able to establish good coordinates.
Nodes maintain overlay links with close neighbors with
low latency and also a few links with neighbors slightly
far away. This helps in getting better coordinates as well
as preventing mesh partitioning. Nodes also drop their
existing overlay links if they are being used very rarely.

• Node failure: In the event of a backbone node failure,
neighbors of the backbone node detect it due to the
absence of Q-OSPF keep alive messages. As a result,
the failed node gets deleted from their routing tables and
link state databases. Eventually, this node’s entry will be
purged from the databases of all other backbone nodes.

• Mesh partitioning prevention: To prevent mesh partition-
ing, each node maintains one or two overlay links to
nodes which do not measure up as the closest nodes on
the network. Thus, given the virtual coordinates of all the
nodes, the node will try to maintain overlay links with
one or two nodes which are relatively far away in the
coordinate space. This allows nodes to maintain nodes
across AS’es.

• Mesh repair: In the unlikely event of a mesh partitioning,
nodes observe the timeouts in the link state database of
an unusually high number of links. This leads to nodes
probabilistically probing the nodes whose entries expired,
leading to the healing of the mesh.

III. OVERLAY ROUTING

In most of the backbone overlay solutions proposed, all the
end hosts involved in the exchange need to subscribe to the
overlay, or pick the closest overlay node to them. In other
cases, the overlay uses DNS records to try to resolve the same
hostname to the closest server, depending on where the request
originated [6].

In this paper we address simple unicast scenarios where
only one of the participants needs to subscribe to the overlay
service. Thus, we have situations such as, User A subscribes to
Grido to get enhanced services when A is watching a stream
from MovieStream Inc. Grido has to determine the path to
use for routing the traffic for this session on the overlay. This
implies that the overlay nodes have to figure out the best
ingress and egress nodes in the overlay for routing from the
source to the destination IP.

In the unicast scenario, the customer contacts a central
server, say Grido.com and the overlay automatically figures
out the best ingress node for the customer. The customer then
executes a WS-Agreement handshake with the ingress node

and the best egress node and the overlay path is determined by
the QoS provisioning mechanism. Therefore both the source
and the destination are totally oblivious to the structure of the
backbone overlay and the identity and proximity of the overlay
nodes. As long as they possess a valid IP address and know of
one way of contacting the overlay, the overlay will optimize
their experience. The next section deals with routing within
the overlay once the route has been decided.

A. Intra-backbone Overlay Routing

As discussed earlier, the nodes on the backbone overlay
run Vivaldi, thus after some time the nodes on the back-
bone overlay are relatively stable in terms of their synthetic
coordinates. The nodes also maintain tunnel-ids which cor-
respond to paths on the backbone overlay. Thus similar to
label switching schemes, the overlay will route traffic within
the overlay by encapsulating the packets with the tunnel-
ids. Tunneling packets from one overlay node to the next is
accomplished by setting up Generic Routing Encapsulation
(GRE) tunnels. We also want to do source routing on the
overlay. Therefore we do label switching similar to Multi-
Protocol Label Switching (MPLS), on top of the GRE tunnels.
We use globally unique labels, each node picks a monoton-
ically increasing sequence number for the tunnel id and the
<ingress-overlay-node-ip,seq no> tuple is used to
create the path. There is a tunnel set-up phase executed in a
manner similar to RSVP, where the labels of the route are set
up on the path. We do not need all the complexity of RSVP
since we do not let downstream nodes decide for us whether
they can support the overlay tunnel or not. Once created, the
intra-overlay path is never broken down, thus future traffic
through that path will not need a tunnel set-up phase at all.

B. Routing through the Overlay

Pseudo-code 1 shows the steps involved in deciding on the
ingress and egress nodes.

Pseudo-code 1: This pseudo-code describes the events that ensue
when a customer wants to use the backbone overlay service. If the closest
ingress node is cached in the DHT, we use that; otherwise we attempt to
“geo-locate” the customer node by computing its virtual coordinates. For
this purpose, we first select k backbone nodes that ping the customer, as
shown in Fig 2. After this is done, we pick a backbone node with the
shortest virtual distance to the customer node.

FindClosestNode(IPAddress){
DnsIP = FindDnsServer(IPAddress);
ClosestNode = DhtLookup(DnsIP );
If(ClosestNode eq ∅){
OverlayPingers = Select K Pingers();
Coords = CalculateVivaldi(OverlayPingers, DnsIP );
Guardian = FindClosestOverlayNode(Coords);
DhtInsert(DnsIp,Guardian);
}

return(Guardian);
}

ComputePaths(SourceIP,DestIP, QoSParams){
Ingress = FindClosestNode(SourceIP );
Egress = FindClosestNode(DestIP );
Paths = QoSFeasiblePaths(Ingress, Egress, QoSParams);
return(Paths)
}

We adopt the idea first proposed in [14] that the RTTs to the
local DNS server for a particular host gives you a reasonable
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approximation about the RTTs to the host itself. Also DNS
servers typically respond to pings (individual hosts may be
firewalled), and keeping state regarding DNS servers instead
of the actual hosts reduces the total state overhead. Each
overlay node maintains a set of DNS servers to which it
maintains virtual coordinates with. The overlay node is called
the Guardian for the DNS servers that it is responsible for.
This information is stored in a Distributed Hash Table (DHT)
composed of the backbone overlay nodes. Given the IP address
of a DNS server, a lookup in the DHT results in information
about its Guardian. In our architecture the Guardian is the
closest node in terms of virtual distance for the particular IP
address. If the DHT lookup for the DNS server results in a
failure, k overlay nodes are pressed into action to ping the
DNS server and return back the RTTs that they experience.
Keeping the information organized on the basis of the DNS
servers in a DHT leverages two aspects of design: First,
executing k-pings everytime a client wants to route through
the overlay is not scalable, because it creates a lot of traffic and
hammers too aggressively at the DNS servers. Second, DNS
servers are typically well-connected and their distance to the
overlay is not likely to change very often. Thus, the Guardian
infrequently pings the DNS servers that it is responsible for,
to ensure liveness.

Customer

Backbone Node

Request

PPP Setup 

Ingress 

Destination

Egress

Bootstrap Node

Fig. 2. The k-pinger algorithm: The customer contacts its bootstrap
node, who dispatches 3 pinging nodes. From their RTTs its virtual
coordinates are calculated, and the shown ingress is found as the closest
node.

Since the DNS server which is being pinged will not
typically be running a virtual coordinate system, but just
responding to the pings, the overlay nodes which ping it must
exchange the RTTs that they experience and fix the DNS
server in the virtual space as described in Pseudo-code 2.
Given the coordinates, the closest overlay node to those
coordinates is identified and assigned to be the Guardian for
that DNS server, and this information is inserted in the DHT.

Pseudo-code 2: Centralized k-pinger virtual coordinate calcula-
tion2

//Input: latency matrix and initial coordinates
//Output: accurate coordinates in x
compute coordinates(L,x)
while(error(L,x) > tolerance)
F = 0
foreachj
// compute error force of this spring
e = Li,j− ‖ xi − xj ‖
//Add the force vector of this spring to the total force
F = F + e × u(xi − xj)
//move a small step in the direction of the force
//xi = xi + t× F

Given the source IP and the destination IP, the overlay can
compute the ingress and the egress node for each session.
WS-Agreement negotiations are carried out with the ingress,
which computes the best path to the egress taking into account
the intra-backbone conditions. The routing is adhered to by
encapsulating the packets of that session with the tunnel-id
corresponding to the path that has been calculated. When the
packets are finally decapsulated at the egress node, they are
simply routed to the destination IP using regular IP routing.
In case of multiple-paths, depending on the application, it
may desire packet scattering in which packets are sent round
robin over the candidate paths or mesh routing [26] in which
multiple copies of the same packet are sent over the paths. The
ingress node functions as a round-robin scheduler in the former
case and a multiple packet copy generator for the latter case.
The packets are either striped through the different tunnels or
merely copied out onto multiple tunnels.

Bootstrapping the system: The system starts out with no
knowledge of any DNS servers. As requests start coming in,
the tables of the overlay nodes start filling up with DNS
servers and their virtual coordinates. The DHT starts filling
up with DNS servers and their Guardians. It is important to
note that the information that is stored in the DHT is merely
the identity of the Guardian for the DNS server. The virtual
coordinates themselves are stored at the Guardian and are
modified periodically by it based on the updated RTTs that
it sees from the DNS server. Thus the virtual coordinates
are being maintained in a two-tier process. At the top tier,
the backbone overlay nodes maintain good coordinates on the
overlay. At the lower tier, the overlay nodes are infrequently
pinging DNS servers close to them and executing the k-pinger
procedure to re-“place” the DNS server, if the delay changes
significantly. Figure 3 gives a good overview of the whole
system.

State Analysis

It takes O(log n) hops to do a DHT lookup (where n is the
number of backbone overlay nodes) and figure out whether a
particular DNS server is there in the system or not.

There are about 130K IP prefixes in the Internet as of now,
out of which about 70K are unique. The logical organization of
DNS servers and IP prefixes tend to mirror each other, so we

2Compare with the original Centralized Vivaldi algorithm the only thing
that changes is that we the ingress node that runs this k-Pinger to ”Geo-
locate” a new node in the virtual Coordinate space does not need to iterate
over all i in the original algorithm
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Vivaldi Pings
Vivaldi Pings

Pings

Overlay Links

Tunnel

Tunnel

IP routing

Tier I

Vivaldi

Ingress
Guardian for DNS(A)

Guardian for DNS(B)
Egress

DNS Server
DNS(A)

B

Tier II

Tier II

DNS Server
DNS(B)

PPP

A

Fig. 3. Overall architecture of the backbone overlay routing. Customer
A wants to set up communication with Customer B. (1)Ingress and
egress nodes on the overlay are discovered using the K-Pinger algorithm
described earlier. (2) Point-to-Point Protocol (PPP) tunnel is established
to the ingress, followed by the tunneled path on the backbone overlay and
is finally routed to the customer B through the egress over the Internet.

can assume that on an average if there are about 500 overlay
nodes, each node will take care of about 260 DNS servers.
This means that if the DHT is filled completely, each node
will be a Guardian for about 260 DNS servers.

IV. QOS PROVISIONING ON THE OVERLAY

We derive from our previous research [22] and propose
to use a measurement-based QoS Call Admission Control
mechanism to provide feasible load balancing on the overlay.
We contend that the Internet is overprovisioned (i.e. there is
plenty of capacity), but is prone to hot spots (i.e. sections may
become quite overloaded). This is in part because Internet
routing cannot balance loads on alternate paths. Thus, one
important advantage of the overlay lies in better routing (being
able to figure out good paths) and better network utilization
(being able to perform load balancing over the network to
avoid hot spots). It would be interesting to evaluate whether
these benefits can be provided by a simple measurement based
approach such as the one proposed in [22]. This mechanism
was originally developed to address QoS concerns at the
network layer. Simulation results in the papers and practical
implementation results in [28] show that the technique is light-
weight and capable of providing enhanced single-path and
multi-path provisioning for QoS-sensitive flows. The mecha-
nism is purely measurement based, and therefore it is attractive
to use it at the overlay layer only if we employ scalable and
accurate measurement techniques for the metrics of interest.
We are primarily concerned with measuring the capacity of
overlay links, the latency of the links and having an estimate
of the level of link utilization. The following subsections
elaborate on the details of the solution.

A. Propagating QoS information

The overlay nodes will be running Q-OSPF at the applica-
tion layer using the neighbor info in the tables to broadcast
overlay link state info to their overlay neighbors. The link state
advertisements will contain the following information.

• Capacity of the virtual link as reported by CapProbe [32].
• Load or Congestion level on the virtual link.
• Delay on the link as experienced by pings involved in

CapProbe.
• Current Vivaldi coordinates of the node generating the

advertisement.

B. Qos-Based Path Selection

When a WS-Agreement is being executed with a user, the
overlay consults the underlying QoS routing algorithm (i.e.,
Q-OSPF with the enhanced routing algorithms in our case)
for feasible paths. If no feasible path is found, the offer is
rejected. Depending on the logic at the higher layer, this may
lead to a new offer by the user, which may be accepted by
the overlay if the metrics are satisfied. As discussed in [22],
we propose to use two different QoS routing algorithms in our
system; the conventional single path algorithm and a multiple
path algorithm.

The single QoS path computation algorithm with multiple
QoS constraints derives from the conventional Bellman-Ford
algorithm as a breadth-first search algorithm minimizing the
hop count and yet satisfying multiple QoS constraints.

The proposed multiple QoS path algorithm is a heuristic
solution. We do not limit ourselves to strictly “path disjoint”
solutions. Rather, the algorithm searches for multiple, maxi-
mally disjoint paths (i.e., with the least overlap among each
other) such that the failure of a link in any of the paths will still
leave (with high probability) one or more of the other paths
operational. [5] has shown that with “blind” multi-path overlay
routing, packet losses on “overlay-edge-disjoint” paths are
often correlated. Therefore inferring topology characteristics
from virtual coordinates would be very helpful, and is the
subject of our ongoing research. The interested reader is
referred to the detailed descriptions of the single and the
multiple path algorithms in [22].

As a consequence of running the single-path or the multiple-
path computation algorithms, we get one or a set of overlay
paths. These paths are set up using the label set-up mechanism,
and the encapsulation at the ingress is set up like we discussed
in Section III.

The metrics of interest and the toolset that we plan to
evaluate are the following

• Capacity estimation: CapProbe [32] is a capacity esti-
mation technique that has proven to be very accurate
and light-weight. CapProbe derives from the packet-pair
estimation technique and sends packet trains of increasing
size. It estimates the capacity by picking the samples
which experience the minimum RTT since intuitively
these samples experience the least queuing delay at inter-
mediate nodes. We propose to use CapProbe to estimate
the capacity of an overlay edge. Since the capacity of
wired links are highly unlikely to change, CapProbe
can be run very sparingly, further reducing the overhead
involved.

• Available bandwidth calculation: Computing the “exact”
load on a particular link is challenging and is often
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of no real use, because by the time the data reaches
the party concerned, the load may have changed. Thus
it is important that the estimating technique should
have low latency. Techniques such as Spruce [35] and
Pathrate [29], [31] have proven effective in providing
approximate estimates with reasonable latency. Our sys-
tem implementation would incorporate an evaluation of
how scalable these schemes are for a real overlay based
implementation.

• Latency calculation: Latencies can be estimated from
the RTTs observed during CapProbe pings and
Spruce/Pathrate probes. Changes in the delays will be
propagated through Q-OSPF only when they change
significantly from the previous values.

V. GRID INTERFACES FOR THE BACKBONE

The future of the Internet pricing architecture is likely to be
based on a flat-fee service at the network layer complemented
by a number of enhanced services at the application layer [39]
[40] [41] [42]. For example, an ISP may provide a virtualized
multi-homed service that uses the backbone overlay to deliver
traffic while adhering to certain QoS metrics even in the
event of BGP-failures (see figure 4.) Recent studies show that
in terms of latency, standard overlay routing outperforms or
equals any multi-homed BGP-based routing [38]. In particular,
a virtualized multi-homed service can provide the same latency
as physical multi-homing and would cost only a fraction
of it. It is expected that an actual multi-homed domain is
reliable to failures in the access link while a virtualized multi-
homed is obviously not. Although in absolute terms, a multi-
homed domain performs slightly better than a single backbone
overlay in terms of throughput (2-12%) due to the completely
independent access to the network [38], the two solutions are
comparable in terms of cost. Finally, it is worth noting that
all the current studies are based on RON/Narada technologies
and they don’t consider the increased scalability and optimality
introduced with our scheme.

We envision that standardized Grid-based interfaces can
become key enablers for seamless negotiation and usage of
such services by enterprise customers. The overlay nodes on
the backbone will have interfaces for applications to make
WS-Agreement based negotiations with the ingress overlay
node. Customers will be able to make queries of the form of
“I need B-Mbps bandwidth and D-ms delay, with multi-path
support going to final destination IP Address Y”. Using WS-
Agreement instead of any other specific structure, allows us
to be compliant with the current GGF standards, thus making
it easy for other “grid-enabled” overlays, resource managers
and end systems to interact with the backbone seamlessly.

The objective of the WS-Agreement specification is to
define a language and a protocol for advertising the capa-
bilities of service providers and creating agreements based on
creational offers, and for monitoring agreement compliance at
runtime.

WS-Agreement is an XML language for specifying an
agreement between a resource/service provider and a con-
sumer, and a protocol for creation of an agreement using

(a) Virtual multi-homing service is provided by ISP 2 who can provide
cheaper rates to customers since it negotiates bulk agreements with peer
ISPs

(b) Multi-homing service through 3 different ISPs. The customer is
required to pay 3 different access fees.

Fig. 4. The figure shows two different solutions to provide reliability
and enhanced performance: (a) shows our proposed schema in which
the advanced services are supported by a single provider through the
deployment of backbone overlays and WS-agreements; (b) shows a
traditional multi-homed site, in which the customer can choose between
different ISPs through different physical connections.

agreement templates. The specification consists of three parts
to be used in a composeable manner: a schema for specifying
an agreement, a schema for specifying an agreement template,
and a set of port types and operations for managing agreement
life-cycle, including creation, termination, and monitoring of
agreement states.

An agreement between a service consumer and a service
provider specifies one or more service level objectives both
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as expressions of requirements of the service consumer and
assurances by the service provider on the availability of
resources and/or service qualities. For example, an agreement
may provide assurances on the bounds on service response
time and service availability. Alternatively, it may provide
assurances on the availability of minimum resources such as
bandwidth.

To obtain this assurance on service quality, the service
consumer or an entity acting on its behalf must establish a
service agreement with the service provider or another entity
acting on behalf of the service provider. Because the service
objectives relate to the definition of the service, the service
definition must be part of the terms of the agreement or be
established prior to agreement creation. The specification in
the appendix provides a schema for defining overall structure
for an agreement document for the overlay path set up.
An agreement includes information on the agreement parties
and references to prior agreements, one or more discipline
specific service definition terms, and one or more guarantee
terms specifying service level objectives and business values
associated with these objectives.

VI. SIMULATIONS

In this section we evaluate some of the features of our
architecture using simulation. The primary goal is to evaluate
our protocol with respect to some key parameters that might
affect the overall performance of the system.
• Latency Overhead: To achieve the goal of providing

quality of service, constructing a overlay network that
can achieve the desired levels of QoS is the primary
goal. We evaluate the performance of our overlay network
construction by computing the Relative Delay Penalty
(RDP) metric as defined previously.

• Stability: Overlay construction mechanisms and virtual
coordinate systems that run on the overlay can lead
to unstable feedback loops in which both the systems
are trying to adjust to each others view. This was also
pointed out in [8]. It is important to measure whether
the overlay construction strategy is stable, and whether
the virtual coordinate system exhibits low error estimates
when it is run on top of the overlay. This assumes
further importance in a backbone overlay network, since
an unstable backbone can potentially affect more overlay
sessions than an application specific overlay. We evaluate
the edge churn rate in terms of edges added and deleted
at each sampling interval and the error estimate of our
virtual coordinates system to measure the stability of our
system.

A. Simulation Setup

We have written a custom event driven simulator in C++
to simulate our protocol. We have not simulated all dynamic
network conditions like queueing delay, packet losses, con-
gestion. We use the Brite topology generator [3] to generate
the network topologies used in our simulations. The different
topology construction methods are run in parallel, so that they
see the same chain of events during a particular run.

We use the Barabasi, preferential connectivity model [2] to
obtain graphs that more closely resemble the Internet hierarchy
compared to a pure random graph. Unless otherwise specified,
a topology of 10,000 nodes, 100 routers in each of the 100
AS’es is used for the simulations. Latencies to links in the
physical topology are assigned by the topology generator.
We’ve experimented with different fractions from 1% to 10%
of the underlying topology to form the overlay network. The
frequency of the Vivaldi pings is 1 ping per node per second.
Thus the overlay as a whole generates about n pings per
second where n is the number of nodes in the overlay.

B. Latency Overhead

We measure the RDP of a particular overlay topology by
picking 10 ∗ n random overlay node pairs and comparing the
ping RTTs on the overlay and on the underlying graph. In
the results presented, the overlay pings are tunneled on the
shortest latency path on the overlay, whereas the underlying
network pings travel on the default IP min-hop path3. The 95%
(percentile) RDP for these pairs is used to calculate the final
RDP for that topology. We evaluated the performance of the
adaptive neighbor selection algorithm where the overlay nodes
adaptively increase the initial values of LongDegreeMax and
ShortDegreeMax to make the overlay more “dense” in order
to achieve the desired amount of RDP. In our simulations,
nodes adaptively increase their degree if they see their local
RDP estimate to be higher than 1.5. The other approaches we
evaluated are “Random”,where the neighbors are randomly
selected, and “Non-Adaptive”, where the maximum and min-
imum node degree is merely a system parameter and overlay
nodes do not adjust their degree based on the instantaneous
RDP. Based on the averages of a 100 independent runs over
an underlying topology of a 1,000 nodes and a 100 overlay
node network, we observe in Figure 5 that Adaptive works
better than the Non-Adaptive and Random. Random stabilizes
at a sub-optimal level of an RDP value of ≈ 2 with the same
degree bound as Non-Adaptive.

While, this seems intuitively clear, one thing to note is that
this makes our protocol scalable and flexible. The adaptive
scheme enables the protocol to pick a degree for a node
based on the underlying Internet’s degree distribution. It is
well known that the Internet topology forms a power-law like
degree distribution. In the simulations, our adaptive scheme
tries to mimic this at the overlay network construction layer.
We evaluate the adaptiveness of the schemes to the underlying
topology by taking the ratio of the overlay degree of the
backbone node and the Internet degree of the underlying
router. It is pertinent to note that the nodes start out with
a minimum overlay degree, so we ignore those samples
where the underlying routers have a lower degree than this
minimum. Also, cases when the overlay degree is greater
than the Internet degree are normalized to 1.0. We calculate
the TopologySimilarity by taking the average of the ratios
over the set of backbone overlay nodes and averaging this

3In the conclusions, we also discuss the results obtained by other methods
of calculating RDP by permuting the different combinations of Min-Hop and
Shortest Delay with the overlay latency and the Internet latency.
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value over the 100 independent runs. The Non-Adaptive
strategy shows a similarity of 63% and Adaptive does better
as expected with a similarity of 89%. We also evaluate the
LinkStress of the schemes by calculating both the average,
and the 95 percentile value of the link stress over all the
Internet links (omitting links with zero stress), again averaged
over the 100 runs. Random has a LinkStressAverage of
3.22 and a LinkStressPercentile of 9, Non-Adaptive has an
average of 2.22 and percentile of 5.5 while Adaptive has an
average of 2.5 and a percentile of 6. Thus, we see that Adaptive
incurs a low LinkStress overhead compared to Non-Adaptive
while giving much better RDP.

[20] simulates Narada and Kudos to conclude that with an
underlying topology of 3600 nodes and 200 overlay nodes,
Narada achieves an RDP of 4, while their enhanced Narada
achieves an RDP of 2.9. This actually remains the best that
they achieve in the paper over various topologies.

Figures 5 and 6 show RDP values over different underlying
topology and overlay node fractions. Over the wide range
of values experimented with, we found that our algorithm
leads to significantly lower latency overhead. Our protocol
achieves RDP of 1.1 because it is a combination of good
neighbor choices, and the capability for better path selection
due to the OSPF driven QoS information propagation. The
adaptive scheme adds more edges if it perceives the RDP to
be high. Thus, there is a tradeoff between the “denseness”
of the overlay graph and the RDP that we can achieve on it.
“Denseness” can be defined as the ratio of the number of edges
in the overlay to the maximum possible edges(which for an n-
node graph is n(n−1)/2). We measured the denseness of the
graph during our runs and observed values around 0.15, so for
example if there are 100 nodes, this implies there are around
700 edges or on the average 3.5 edges/node. We believe the
“denseness” of the graph is an important feature of an overlay
network because it signifies the tradeoff between better RDP
and more overhead. Using virtual coordinates allows us to
minimize one aspect of this overhead. For instance, brute force
pinging in a complete graph is O(n2), whereas using a virtual
coordinates system, we can reduce the frequency and number
of pings, and scale linearly as O(kn) where k is a constant4

number of nodes pinged at random by each node.

C. Stability

We evaluate two measures of stability of the overlay net-
work setup algorithms, namely, virtual coordinates stabiliza-
tion and the churn of edges in the overlay network.

Virtual Coordinates Stability

One of the measures of the stability of the system is
the virtual coordinates computed by the Vivaldi algorithm.
Figure 7 illustrates that the error stabilizes to around 0.15 for
both non-adaptive and adaptive schemes. The random scheme
stabilizes at 0.35. We compare this result to a run where we
just have the overlay nodes pinging each other over the Internet

4a good value of k is 12 as pointed out by Dabek et al [11] to yield best
stability.
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Fig. 6. Comparison of the Relative Delay Penalty. Virtual coordinate
dimension is 5, with k of the clustering as 7. We use the underlying graph
with 10,000 nodes and an overlay network of 100 nodes.

paths (not the overlay links) and using Vivaldi. In this case, we
find that the error levels off at around 0.12. Thus our overlay
construction strategies do not impact Vivaldi’s accuracy to any
significant degree.

Edge Churn

We evaluated the edge churn of the overlay network in
the various clustering schemes. We observe that the adaptive
strategy undergoes slightly more churn in terms of edges
added and deleted. This is understandable since the overlay
network is being optimized in a more aggressive manner, and
is the tradeoff of obtaining a better overlay network. However,
the number of edges added to the global overlay graph per
sampling instance (every 3 mins) finally settles down to a
nominal number of around 5. This is reasonable considering
an overlay network of≈ 700 edges. The churn in edges deleted
is also comparable for adaptive and non-adaptive strategies.
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D. Overlay Routing Simulations

In Section III we discuss an approach to solving the general
problem of routing to any given IP address and estimating the
closest node on the overlay to it. We formally specified the k-

pinger algorithm where k backbone overlay nodes are pressed
into service to ping the DNS server of the target host and place
it in the coordinate space.

We now discuss how well we can find, using k-pinging, the
closest node in a cluster to some outside node. To determine
our k-pingers to some node outside the cluster, we randomly
selected with replacement g groups of size k from within the
cluster. To determine which of the g groups will be our group
of k-pingers, we used three heuristics: First, we used the group
whose maximum Vivaldi error was minimized. Intuitively,
choosing a group of pingers with low aggregate Vivaldi error
should establish more accurate coordinates for an outside node.
Second, we used the group whose minimum pair-wise distance
was maximized. Again, drawing on intuition, nodes that are
farthest apart in the coordinate space should be able to better
“triangulate” the position of an outside node. Third, we ranked
groups independently by the first and second heuristics, and
used the group that had the best joint ranking. Such a group
should have a good balance of low-error nodes that are far
apart from one another. Each k-pinger in the selected group
pings the outside node, yielding a vector of k round-trip times
to the outside node. We then run the algorithm presented in
Pseudo-Code 2 over m iterations, thereby simulating each
node in the group pinging the outside node m times (without
the overhead of repeatedly pinging), and noting the same RTT
each sample.

In our simulation, our cluster size was 100, and the number
of outside nodes we generated was 1000. To model the RTTs
we used the King Data set provided by MIT. The King Data
set consists of a full matrix of pair-wise RTTs between 1740
DNS servers, collected by using the King method [14]. Before
any k-pinging of nodes outside the cluster begins, each node
in the cluster goes through 100 rounds of pinging 10 randomly
selected nodes inside the cluster to establish its own Vivaldi
coordinates. Note that we do not model nodes joining or
leaving the overlay during this time, because we expect the
nodes inside the overlay to be stable. Then, when an outside
node is generated and pinged, using the real pair-wise RTT
data in the King data set we order all nodes in the cluster by
increasing RTTs to the outside node. We then find the rank
of the node we predicted was closest. In an ideal scheme, the
rank of the predicted node would always be one, meaning the
node we predicted was closest was really the node with the
smallest RTT.

Figure 11 shows the results with k = 7, g = 5, m = 10 for
the three heuristics. From it we can gather that it is important
to find nodes with a good balance of pair-wise distance and
low-error before pinging and establishing the outside node’s
coordinates. Figure 10 shows the results of increasing m.
Intuitively, by increasing m we refine the position of the
outside node’s coordinate in the coordinate space, reducing its
error. Thus we increase the likelihood of correctly choosing
the closest node among the nodes in the cluster. In our
trials, the rank of the predicted closest node is equal to one
approximately 60% of the time, and we consistently choose a
closest node in the top 5% approximately 95% of the time. It
will be interesting to investigate in detail the interactions of
the parameters k, g, and m.
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VII. RELATED WORK

Several Internet overlays have been designed in the past
for various purposes, including providing OSI network-layer
connectivity [10], easing IP multicast deployment using the
MBone, and providing IPv6 connectivity using the 6-Bone.

Application level multicast approaches using overlay net-
works have been recently proposed as a viable alternative
to IP multicast. In particular, End System Multicast (ESM)
[10] has gained considerable attention due to its success
in conferencing applications. The main idea of ESM (and
its Narada protocol) is that end hosts exclusively handle
group management, routing information exchange, and overlay
forwarding tree construction. The efficiency of the constructed
overlay multicast trees, in terms of both performance and
scalability, is the primary subject of this paper. [16] proposes
a simple heuristic algorithm, which they call Topology Aware
Grouping (TAG), to exploit underlying network topology
data in constructing efficient overlays for application level
multicast. Unlike ESM, TAG is tailored to applications with a
large number of members, which join the session at different
times and regard delay as a primary performance metric and
bandwidth as a secondary metric. NICE [36], on the other

hand, is designed to support applications with very large
receiver sets and relatively low bandwidth requirements. It
recursively arranges group members into a hierarchical overlay
topology, which implicitly defines a source-specific tree for
data delivery. It has been shown that NICE scales to large
groups in terms of control overhead and logical hops. On
similar lines, TOMA [21] uses a two level hierarchy to create
a scalable distribution overlay for aggregated multicast.

QoS has received its fair share of overlay papers. Schemes
such as QRON [23] try to search for QoS-satisfied overlay
paths using link-state protocols for QoS metric propagation
and source-based provisioning of the path. Service Overlay
Networks [17], [18] have been proposed to purchase band-
width with certain QoS guarantees from network domains
using SLAs and stitch them to provide end-to-end QoS guar-
antees. Such an architecture would still rely on the underlying
domains to meet their specified QoS requirements. We believe
that service composition based techniques such as those men-
tioned in [19] would form an ideal mechanism to perform WS-
Agreement negotiations across backbone overlays. OverQoS
[25] applies QoS enhancements within the overlay network
as opposed to end-to-end. Streaming media flows in OverQoS
can be shaped as part of a larger aggregate as opposed to being
treated as separate flows.

Significant work has also been done on using the overlay
to do “indirect” routing. The Detour framework [24] was
motivated by the potential long-term performance benefits of
indirect routing. It is an in-kernel packet encapsulation and
routing architecture designed to support alternate-hop routing,
with an emphasis on high performance packet classification
and routing. It uses IP-in-IP encapsulation to send packets
along alternate paths.

While RON [4] shares with Detour the idea of routing
via other nodes, it seeks to prevent disruptions in end-to-end
communication in the face of failures. However, RON incurs
high overhead due to its constant probing of its neighbors and
consequently doesn’t scale to more than 50 overlay nodes.

Routing within the overlay has also come under the mi-
croscope. [5] tries to address the important issue of using
multipath on an overlay. The main conclusion of the paper
is that failure independence of Internet paths is “reasonable,
but not large” and hence the usage of multipath might not be
useful.

Inspite of the enormous amount of research that has been
done on overlays, each scheme has its own caveats. A lot of
performance oriented overlay proposals do not address key
issues such as identifying the best ingress and egress node
on the backbone for a given source and destination pair, and
the accuracy and scalability of the measurement techniques
involved in the decisions. Given that so much of the overlay
value lies in making good decisions quickly, scalable and
accurate measurement techniques are very desirable.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we presented an architecture for a Grid-based
backbone overlay network. One of our main contributions is
the usage of virtual coordinates to construct and maintain
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the backbone overlay mesh. We evaluated various strategies
for topology construction and maintenance. We also proposed
an accurate prediction mechanism for identifying the closest
overlay node to any given Internet host. Our key conclusions
are:

• We observed that our protocol gives RDPs of around 1.1
compared to earlier reported results of 2.9 for Narada-
like protocols. However, as we pointed out in Section II-
D, the exact semantics of overlay latency and Internet
latency have not been unambiguously specified across
the existing literature on this topic. Therefore, we have
evaluated our strategies using all possible interpretations
of overlay latency and Internet latency (Shortest Delay
and Min-Hop Shortest Delay). Our evaluations show, that
Adaptive still achieves the desired RDP value, at the cost
of higher “denseness”. Non-Adaptive is not sensitive to
the desired RDP value, and therefore retains the same
“denseness” while achieving a worst-case RDP value of
1.8. It would be relevant to point out the worst-case RDP
value is attained when the overlay latency is computed
as Min-Hop Shortest Delay and the Internet latency is
computed as Shortest Delay.

• Vivaldi assisted overlays are more scalable and retain
desirable optimality characteristics compared to standard
overlays. The dimension of the virtual coordinate space
does not have much impact beyond a certain number. In
our case, we found that beyond 5, the dimension of the
space has negligible impact of the performance of the
overlay network.

• It is possible to identify the closest overlay node to a
given Internet host with high accuracy and low overhead.
Active probing with 7 overlay nodes predicts the 5%
closest overlay node 95% of the time. This is among
a 100 backbone overlay nodes and with a set of 1000
Internet hosts. Our approach of caching this information
in a DHT indexed by the DNS server will reduce the
control overhead when future lookups map to the same
DNS server.

• Using a GGF standards compliant agreement structure
(WS-Agreement) aims at providing a common standard
interface for automating complex customer-provider and
provider-provider negotiations of quality of service pa-
rameters.

Implementation Issues

We are in the process of implementing the architecture on
an Internet-wide test-bed. We expect to see some variations
from expected results due to cross-traffic, the difficulty of
accurate measurements and the time lag incurred by Q-OSPF
in the dissemination of information. So the results of our
simulations are somewhat optimistic considering that the lag in
the dissemination and consequent selection of good neighbors
will be dependent on the Q-OSPF timers. This is one aspect
of the architecture which we will affect the results in the real
implementation.
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APPENDIX

Definition 1: Domain Specific Service Description Lan-
guage is as follows:
<xsd:schema

targetNamespace="http://www.cs.ucla.edu/namespaces/OverlayNetwork"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:qos="http://www.cs.ucla.edu/namespaces/OverlayNetwork"
elementFormDefault="qualified" attributeFormDefault="qualified">

<xsd:complexType name="QoSType">
<xsd:sequence>

<xsd:element name="parties"
type="tns:AgreementPartiesType" minOccurs="1"/>

<xsd:element name="serviceDesription"
type="tns:serviceDescriptionType" minOccurs="1"/>

</xsd:sequence>
</xsd:complexType>
<xsd:element name="qos" type="qos:QoSType"/>
<xsd:element name="executable" type="xsd:anyType"/>
<xsd:complexType name="AgreementPartiesType">

<xsd:sequence>
<xsd:element name="client"

type="xsd:anyURI" minOccurs="1" maxOccurs="1"/>
<xsd:element name="provider"
type="xsd:anyURI" minOccurs="1" maxOccurs="1"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="serviceDescriptionType">

<xsd:sequence>
<xsd:element name="Source"
type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="Destination"
type="xsd:string" minOccurs="1" maxOccurs="unbounded"/>
<xsd:element name="Bandwidth"
type="xsd:int" minOccurs="0" maxOccurs="1"/>
<xsd:element name="Delay"
type="xsd:int" minOccurs="0" maxOccurs="1"/>
<xsd:element name="Multipath"
type="xsd:bool" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
</xsd:complexType>

<xsd:element name=" SetupOverlayPath"
type="qos:serviceDescriptionType"/> </xsd:schema>


