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Abstract— This paper studies the TCP performance with
delayed ack in wireless networks (including ad hoc and WLANs)
which use IEEE 802.11 MAC protocol as the underlying medium
access control. Our analysis and simulations show that TCP
throughput does not always benefit from an unrestricted delay
policy. In fact, for a given topology and flow pattern, there exists
an optimal delay window size at the receiver that produces best
TCP throughput. If the window is set too small, the receiver
generates too many acks and causes channel contention; on the
other hand, if set the window too high, the bursty transmission
at the sender triggered by large cumulative acks will induce
interference and packet losses, thus degrading the throughout.
In wireless networks, packet losses are also related to the length
of TCP path; when traveling through a longer path, a packet is
more likely to suffer interference. Therefore, path length is an
important factor to consider when choosing appropriate delay
window sizes. In this paper, we propose two independent yet
compatible adaptive delayed ack mechanisms, based on path
hop-count and end-to-end delay respectively. These schemes
significantly improve TCP performance in both multihop ad
hoc wireless and hybrid wired/wireless networks. The simulated
results show that our schemes can effectively improve TCP
throughput by up to 30% in static networks, and provide more
significant gain in mobile networks. Some simulation results are
also validated by real testbed experiments.

I. I NTRODUCTION

The Transport Control Protocol (TCP) is the most widely
used reliable transport protocol over the Internet. TCP was
originally designed for wired links where buffer overflows
account for most packet losses. However, in multihop ad hoc
wireless networks, several other inherent factors attribute to
the TCP performance deterioration, including unpredictable
channel errors, medium access contention complicated by
hidden/exposed terminal problems, and frequent route break-
ages caused by node mobility. All these factors pose great
challenges to the design of TCP protocols to provide efficient
and reliable end-to-end communications. Many researchers
have made valiant effort to propose various methods to make
TCP survive in such challenging environments. In this paper,
we focus on studying the effect of delayed acks on TCP
performance. Then based on our analysis, we propose adaptive
schemes that address the aforementioned factors effectively.

In standard TCP the receiver generates one ack for each data
packet or two in-order data packets with the standard delayed
ack option. This mechanism works well in wired networks. In
multihop wireless networks, however, this mechanism can be
further improved due to:

• Interference issue: since the data and ack packets usually
take the same route (or spatially close routes), the inter-
ference caused to data packets increases with the number
of acks generated.

• Generating acks wastes scarce wireless resources. Though
acks are essential to provide reliability, generating more
acks than necessary is not desirable in wireless networks.
Ideally, the receiver should generate minimal number of
acks required for reliable data recovery.

Recently, the delayed ack strategy has been studied to im-
prove TCP performance [1], [2]. However, this field is not fully
exploited and many issues remain unsolved. Some important
questions include how delayed acks effect TCP performance,
and how to choose the optimal delay window (the number of
in-order data packets to be waited for before generating an
ack) in multihop wireless networks. In this paper we carry out
a systematic study to understand the effect of delayed acks on
TCP over wireless links. We investigate TCP performance and
delayed ack related packet loss characteristics, under various
wireless network scenarios and flow patterns. Our objective is
to clearly identify the relationship between TCP throughput
and delayed ack over multihop wireless links. Through both
analysis and simulations, we reveal several interesting find-
ings, which are tremendously beneficial to deeply understand
TCP behavior in wireless multihop networks, and to design
enhanced TCP protocols.

First, we found that TCP does not always benefit from
arbitrary delaying of acks. In fact, for a given network topology
and flow pattern, there exists an optimal delay window size
at the receiver, at which TCP achieves maximum throughput.
Further increasing delay window size induces increased packet
losses and degraded TCP throughput. Second, since 802.11
does not guarantee collision free packet transmission, a packet
is more likely to be interfered with when going through a
long path. Over a long path, a large delay window may cause
large bursts of packets in transit. This, in turn, causes severe
packet interference with each other. When packet loss rate
becomes high, the benefit of delaying acks, via reducing ack
packets, disappears. Consequently, TCP performance degrades
after reaching the peak with the optimal delay window size.

In order to achieve optimal TCP performance, we analyze
the packet loss probability of burst transportation over 802.11
MAC using the worst case scenario. The analysis sheds lights
on the effect of delayed ack on TCP performance and provides
guidance for optimal delay window selection. It is worth noting
that although our analysis is carried out under the worst case
scenaio, it still provides a relatively accurate prediction for
packet loss in the delay window range we focus on. The
correctness of our analysis is validated by simulations.

Armed with the deep understanding of delayed ack im-
pact on TCP performance over multihop wireless links, we
propose an adaptive scheme based on the hop count of a



TCP path. The basic idea behind this scheme is, for a short
path, we delay the ack as much as possible to maximally
improve TCP throughput; while for a long path, we apply an
appropriate delay window size restriction to avoid high packet
loss and achieve optimal TCP performance. Furthermore,
we propose an end-to-end delay based scheme tailored for
hybrid wired/wireless networks. These two schemes can be
deployed separately, but are also compatible to provide better
performance in heterogenous networks. It’s also worth noting
that our proposed schemes are deployed only in the end hosts,
thus no modification on intermediate nodes is needed.

While our work shares the common concept with previous
research in that the TCP receiver delays ack up to a certain
number of data packets, we take a unique, systematic and
optimized approach to understand the delayed ack impact
and propose effective solutions. Moreover, to the best of
our knowledge, our proposed schemes are the only existing
mechanisms designed for both MANET and hybrid wired and
wireless networks.

In ad hoc networks, delayed acks may potentially improve
TCP throughput regardless of underlying routing protocols.
Different routing mechanisms, however, have great impact
on TCP performance [3], and to what degree delayed acks
can benefit TCP performance. In this paper, we study the
performance of TCP-DCA with three popular used ad hoc rout-
ing protocols, namely, Ad-Hoc On-Demand Distance Vector
Routing (AODV) [4], Dynamic Source Routing (DSR) [5] and
Greedy Perimeter Stateless Routing (GPSR) [6]. The reason
we include GPSR in our study is that Geo-routing is a recently
developed routing scheme promising to be scalable, and robust
to node mobility. The significant TCP-DCA performance im-
provement is shown over the above mentioned ad hoc routing
schemes, in both static and mobile ad hoc networks.

The remainder of this paper is organized as follows. Back-
ground work is provided in Section II. A thorough study of de-
layed ack impact on TCP performance is presented in Section
III under various network topologies and traffic patterns. We
present our worst case packet loss analysis and proposed TCP-
DCA (Delayed Cumulative Ack)scheme in Section IV. Section
V evaluates TCP-DCA on static and mobile ad hoc network,
and hybrid wired/wireless networks as well. The performance
comparison with [2] is also presented in this section. Section
VI discusses a few issues to further improve TCP with delayed
ack. We conclude the paper in Section VII. The impact of
different routing protocols on TCP is also considered in proper
sections.

II. RELATED WORK

Standard TCP assumes that a packet loss is invariably due
to buffer overflow and reduces the congestion window by half
when packet loss happens. However, in ad hoc network, packet
loss caused by buffer overflow is rare. Instead, it is more likely
due to medium contention as shown in [7]. The fundamental
problem resides in the limitations of IEEE 802.11 MAC. Since
the interference range is usually longer than the transmission
range, Request-To-Send (RTS) and Clear-To-Send (CTS) in
802.11 MAC cannot ensure collision free transfer of packets.

This causes hidden/exposed terminals leading to packet loss
in ad hoc multihop wireless paths [7]. Many research efforts
have been made to adapt TCP to the unique characteristic of
wireless ad hoc network, e.g. Transport layer “Fixed RTO” in
[3], delayed ack in [1], [2], network layer support [8], [9], [10]
and even lower-layer assistance, for example, MAC support in
[7].

Although a TCP ack packet is small, typically 40 bytes,
the transmission of TCP ack packets may require the same
overhead as that of data packets in 802.11 MAC depending
on the RTS threshold. If interference from TCP acks could be
reduced, data packets would suffer less collisions resulting in
higher throughput. Several approaches to delay acks have been
proposed [1], [2], [11]. TCP-ADA (Adaptive Delayed Ack)
[11] proposed to decrease the number of acks to improve TCP
performance. They claimed that maximum TCP throughput is
achieved when one ack acknowledges the full congestion win-
dow. However, the method did not address several important
issues, such as packet loss and out-of-order packet reception.
In fact, as we show in this paper, TCP does not always benefit
from delaying ack as much as possible.

Allman[1] presented a basic delayed ack scheme which
was further improved in [2]. The scheme is called TCP-
DAA (Dynamic Adaptive Acknowledgement). In TCP-DAA,
the receiver adjusts the delay window according to channel
condition (packet loss event). A TCP-DAA receiver delays
acking until it receives a certain number of data packets,
ranging from 2 to 4 packets. When there is no packet loss,
the TCP-DAA receiver waits for more data packets (up to 4)
before generating an ack, but reduces the number to 2 in case
of out-of-order packet arrival. However, since a TCP sender
automatically cuts the congestion window when packet loss
occurs, i.e. automatically adapting to the channel state at the
sender side, the receiver side adaptation provides little extra
improvement. We will show that in our adaptive delayed ack
scheme, the receiver does not respond dynamically to packet
loss, yet achieves better performance.

In [2], the ack time is set to be one average packet inter-
arrival time. That is, an ack is generated when no data packet
arrives after one average packet inter-arrival time since last
unacknowledged data packet. Since the inter-arrival time is
highly variable in the wireless network because of random
MAC contention and back-off, it is very difficult to get any
accurate enough statistics in a complex large system. Another
impact of this timer implementation is that the receiver oper-
ates insensitively to the number of acks (2 to 4) to be delayed
because any unexpected extra delayed data packet will trigger
an ack.

An important aspect of TCP with delayed ack is the delay
window size selection. In TCP-DAA [2], the receiver may
delay up to four ack packets and this number is limited by
the sender congestion window, which is fixed at four packets.
The similar delay window size of 3-4 packets is also picked in
[1] heuristically. There are issues in this scheme that desires
further clarification and improvement. First, although a small
congestion window limit helps TCP operation in wireless
networks, it is not suitable for hybrid wired and wireless



network where a high bandwidth delay product exists. Second,
if the congestion window is not limited, the choice of a delay
window size of 4 may no longer be suitable. In this paper,
we address the issues above providing effective and general
solutions that apply to wired/wireless environments

We also study the impact of delayed acks at a TCP-DCA
sender. Since the receiver does not ack as frequently as in
standard TCP, the congestion window increase rate for delayed
ack is slowed down. Such slower probing rate improves
TCP performance in ad hoc networks, as reported in [12].
The conservative window increase, however, hinders efficient
transmission in wired network where delay bandwidth product
may be large. In this paper, we propose a simple technique to
solve this problem and allow TCP-DCA to cope with hybrid
wired/wireless networks.

In this paper, we also show the impact of congestion window
limit on the proposed TCP-DCA scheme. A small sender
congestion window can decrease interference and maximize
pipeline effect. [7] revealed that there exists an optimal TCP
congestion window size that maximizes spatial channel reuse.
Further increasing the window size does not lead to better
performance. On the contrary, it results in increased link layer
contention and degraded TCP throughput. In [13], the optimal
congestion window limit is determined based on the hop
count for maximum pipeline effect. In TCP-DCA the sender’s
congestion window is not limited, and yet, we will show it
performs better than the case of limited sender’s congestion
window defined in [13]. Our results indicate a setting of the
congestion window limit more suited to TCP-DCA is needed.

III. TCP THROUGHPUT VS. DELAY WINDOW

In this section, we investigate the impact of the receiver ack
delay window size on TCP performance. The conclusion we
draw is that, when the path length is short, TCP achieves better
performance with a delay window as large as the entire sender
congestion window. When the path length increases, however,
a large delay window triggers bursty transmissions, which
results in mutual data packet contention and higher losses.
In fact, for long paths, there exists an optimal delay window
size that achieves maximum TCP throughput. We verify the
delay ack impact using various network topologies, including
cross and grid topologies with various flow patterns. Real
testbed measurement results are also presented to reinforce
our conclusions.

In the following, we first study a basic scheme (TCP-DCA)
with a receiver delay window limit and evaluate the impact of
the delay window size on TCP performance. Here we use a
manually configured static routing to investigate delayed ack
performance over ad hoc networks ignoring at first any routing
impact.

A. TCP with Receiver Delay Window Limit

A TCP-DCA receiver maintains a variabledelay window
“w” representing the number of data packet arrivals before
acking at the receiver. This delay windoww is bounded by a
delay window limit, and also limited by the congestion window
size to prevent the delay window from possibly exceeding

the congestion window which results in delaying the ack,
but for possibly non-existent packets. If data packets arrive
in order, the receiver generates one cumulative ack for every
w data packets. If an out of order packet is received, or a
packet that fills a gap in the sequence space of packets in the
receiver buffer (that is, recovery from earlier packet loss) the
receiver acks immediately to inform the sender of the packet
loss/recovery in a timely manner. The receiver also keeps a
fall-back delay ack timer which estimates the expected time to
receivew data packets. When the sender receives a cumulative
ack acknowledgingw data packets, it updates the congestion
window and sends out a burst of at leastw packets (provided
such packets are ready for transmission in the sender buffer).

To get the delay timer period, the receiver monitors the data
packet inter-arrival interval and computes a smoothed interval
through a low-pass filter. The average inter-arrival interval is
used to set the ack delay timer based on the current delay
window size. In TCP-DCA, an accurate delay timer is not
needed and the timer is solely for fall back purpose. In fact,
our inter-arrival time computation is rather loose: the receiver
samples the inter-arrival time ofanyconsecutively arrived data
packets, not necessarily in-order packets. Therefore, the inter-
arrival sample is aninflatedvalue compared with inter-arrival
between in-order packets. A TCP-DCA receiver smoothes such
inflated inter-arrival samples through a low-pass filter:

Ii+1
avg = βIi

avg + (1− β)Is (1)

whereIavg is the average ofinflated packet inter-arrival time
Is. Iavg is used to set delay ack timer (Tw) which defines the
total time for receiving a whole delay window of in-order data
packets:

Tw = αwIavg (2)

wherew is the delay window size,α is a parameter to tolerate
high dynamic packet delay. Obviously, the delay ack timer is
rather inflated and quite robust to high inter-arrival variation.
In the paper, we chooseβ as 0.8 andα as 1.5. The receiver
also generates an ack within 500 ms of the arrival of an
unacknowledged data packet in accordance with RFC2581
[14].

One apparent drawback to this approach is that the TCP-
DCA receiver needs to be informed of sender’s congestion
window size to prevent delay window larger than congestion
window leading to unnecessary delaying at the receiver. In
TCP-DCA the sender reuses the advertised window field
in data packet header for “advertising” back its congestion
window size to the receiver. But our design is not unrealistic
due to the following fact that current TCP connection is mostly
used for single direction, i.e. there is only data packets from
the sender to the receiver and no backward data, and the
advertised window field from the sender is usually wasted.
We would further discuss this issue in Section VI. Real testbed
measurements results with TCP-DCA confirm the feasibility
of our delayed ack scheme. Measurements results are provided
in Section III-B.2.
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Fig. 1. Chain Topology. The solid-line circle denotes a node’s valid
transmission range. The dotted-line circle denotes a node’s interference range.
Node 4’s transmission will interfere with node 1’s transmissions to node 2.

B. Chain Topology

We used the chain topology in Ns2 [15] simulation. An
example is shown in Fig.1. The TCP connection is sourced
at the first node (node 1) and packets travel over the chain
to the end node (node 6). The interference range is 550m
and transmission range is 250m. We place the nodes at
200m intervals, so nodes that are 4 hops away can transmit
simultaneously without interference. Notice that a node that is
3 hops away is a “hidden node”. IEEE 802.11 is the underlying
MAC. Data rate on the wireless channel is 2Mbps and one
simulation run lasts 300 seconds. Each data point represents
an averaged of 5 simulation runs with different random seeds.
The packet size is 1000 bytes and TCP NewReno is used.

1) Single TCP Flow:TCP performance over wireless mul-
tihop inevitably depends on the path length (hop count). The
longer the path is, the lower the throughput would be. We
present TCP throughput as a function of delay window limits
on chain topologies of variable lengths in Fig.2. Fig.2(a) shows
that when a sender and a receiver are within 3 hops, TCP-
DCA gets steady performance gain by increasing the delay
window size up to the entire congestion window size. For
the one hop case, the graph demonstrates a steady throughput
increase when the delay window increases from 1 to the whole
congestion window at where the delay window limit is set to a
very large number. Compared with the throughput of standard
TCP (with delay window at 1), the fastest throughput increase
can be seen when the delay window is small, say less than 5.
The increasing trend becomes slower for delay windows larger
than 5 and the throughput approaches the limit when the delay
window reaches the congestion window size (CW ). Fig.2(a)
indicates that delaying acks at the receiver up to the sender
window size improves TCP throughput for the one hop case.
The same trend is observed when the path length is 2 and
3. The reason for this performance gain is that 802.11 MAC
provides collision free packet transmissions in such short path
length. Since the interference range is larger than 2 times the
transmission range, when the sender and receiver are within
2 hops, every node along the path can sense all other nodes
transmissions. In this case, no hidden nodes exist and thus no
packet loss occurs. When the hop length is 3, the TCP receiver
is the only node hidden from the TCP sender. If the receiver
acks only after receiving all packets in a congestion window,
no data packet can be interfered. Therefore, there is no data

packet loss due to interference on a path less than or equal to 3
hops. TCP gets steady throughput gain by increasing the size
of the receiver delay window until the maximal performance
gain is achieved when the receiver acks after receiving all
packets in a congestion window. We observe that TCP-DCA
attains up to 25% throughput gain relative to standard TCP.

Since the interference range is larger than the transmission
range, RTS/CTS cannot completely solve the hidden/exposed
terminal problem. As the chain becomes longer, packet col-
lision is unavoidable. For example, node 1 and node 4 are
interfering nodes in Fig.1 and simultaneous packet trans-
missions on them will be interfered. Though MAC has a
retransmission mechanism to recover lost packets, it cannot
recover such lost packet in the presence of severe interference.
The hidden terminal potentially results in packet loss and
this problem becomes more severe for longer paths because a
packet has more chances to be interfered with. Moreover, the
sender immediately sends a burst of packets upon receiving a
cumulative ack, these packets can interfere with each other.
We will show that packet loss probability increases as the
size of the packet burst increases in Section IV. And the
packet burst size is directly related with the receiver delay
window since the size of a burst is at least equal to the
size of the delay window. When the packet loss becomes
high, the TCP throughput gain from delaying an ack is lost
due to the increased transmission burst size and its higher
loss probability. Fig.2(b) shows this tradeoff of TCP-DCA
performance gain with delay window size for paths larger
than 3 hops. When the hop count is 4 or 5, we observe
unsuccessful packet transmissions caused by interference in
our simulation. However, since a TCP sender is able to recover
packet loss rapidly due to the small RTT, TCP-DCA maintains
performance gain by delaying ack for more data packets. For
paths longer than 5 hops, TCP achieves throughput gain when
the delay window size is small, but for large delay window
size, delaying ack cannot maintain throughput gain because
of excessive burst data packet losses. Further, now that RTT
is larger, TCP spends more time detecting packet loss and
recovering lost packets by entering fast retransmit/recovery in
which only one packet is recovered per RTT, and thus more
TCP throughput degradation. Therefore, for long paths with
large delay window, large delay window is not preferred.

We also show TCP-DCA performance over a very long path
h ≥ 10 in Fig.2(c). Here, TCP only gets performance gain for
small delay window size. For large delay window size, TCP
even gets lower throughput than standard TCP.

2) Real Testbed Verification:We investigate the effective-
ness of our TCP-DCA in an actual ad-hoc network testbed. Our
testbed consists of six Dell Pentium III, 650/500Mhz processor
equipped with Orinoco 802.11b PCMICA cards with channel
rate of 2Mbps. The laptops run Mandrake Linux distribution
7 with kernel version 2.4.3. Linux PCMCIA package version
3.2.0 and Orinoco wavelan2-cs driver are used for 802.11b
devices and the devices are set to ad-hoc mode. The topology
of the testbed is a chain and the route is statically configured.
There is one source laptop and one selected destination laptop
among other 5 laptops depending on the number of hops in
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Fig. 2. TCP Throughput vs. Delay Window on Chain Topology

our experiments. We use ”Iperf” to generate FTP traffic with
packet size of 1000 bytes. From the experiment results shown
in Fig.3, we confirm that the TCP throughput vs. receiver delay
window follows the same trends as in the simulation results
shown in Fig.1.

Fig.4 compares TCP-DCA throughput for 1 hop and 5 hops
paths from simulation and actual testbed, when delay window
limit is equal to 1 and congestion window respectively. We
note that the average difference between the testbed TCP
throughput and the simulated results is below 10%. Such
difference is mainly caused by parameter setting in the testbed
measurements. In our testbed experiments, RTS/CTS control
packets are adopted to provide carrier sensing for unicast
data packets to overcome the hidden terminal problem if
the packet size is above the minimum threshold 256 bytes.
However, the size of TCP ack packet (40 bytes) is below
the minimum RTS/CTS threshold in linux settings so that no
RTS/CTS handshake is performed when transmitting acks in
testbed experiments. Compared with simulation results where
RTS/CTS is always performed no matter what the packet size
is, such “zero” MAC overhead in the measurements has two
impacts on the performance results: 1)TCP-DCA throughput in
testbed experiments is slightly higher than simulated results (in
Fig.2) for small delay window, as shown in Fig.3 when delay
window is 1; 2) the throughput gain derived from TCP-DCA
in the measurements is lower than the corresponding results in
the simulations because of the lack of RTS/CTS reduction for
acks in experiments, as shown in Fig.4. The lessons learned
from the testbed measurements and simulations have greatly
enriched our understanding of the cross layer interdependence
and will undoubtedly contribute to more efficient designs in
the future.

C. More Complex Topologies and Flow Patterns

We expand our study to scenarios of more complex topolo-
gies and flow patterns, including cross and grid topologies. We
keep the same simulation parameters as before.

For all cases, we observe the similar results to what is
described above, i.e. TCP does not always benefit from an
unlimited delaying of acks. There exists an optimal receiver
delay window at which TCP achieves its best performance.
The following provides a short summary of results with more
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Fig. 4. Simulation vs. Experiment

flows and various topologies. We also show our TCP-DCA
performance over random topologies with multiple flows in
Section V-C.

1) Multiple TCP Flows:Fig.5 exhibits result for 5 concur-
rent TCP flows on a chain topology with hop count varying
from 3 to 7. It shows similar results to Fig.2: TCP throughput
gets maximal improvement by delaying acks up to the entire
congestion window for short paths. For longer paths, the
throughput increases with the increase of delay window until
the maximum throughput is reached at a certain delay window
size. After the peak point, TCP throughput gracefully degrades
with larger delay window sizes.
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(a) Cross Topology (b) Grid Topology

Fig. 6. More Complex Topologies. Left: cross topology with 9 nodes. 200
meter distance between two adjacent nodes. 2 TCP flows in each direction.
Right: 5x5 grid topology, 200 meter distance between horizontal and vertical
adjacent nodes.

2) Cross and Grid Topology:Fig.7 shows examples of
cross and grid topologies in which each TCP flow traverses
a 4 hop path. We actually vary the path length to study its
impact. The results are presented in Fig.7. Similar trends
to those found in chain topologies are observed. We also
ran extensive simulations on cross and grid topologies with
multiple overlapped flows instead of one flow. The results,
not included here due to space constraints, confirm the same
trends discussed above.

To summarize, both simulation and testbed experiments
show that TCP with delayed ack can enhance throughput
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Fig. 7. TCP Throughput vs. Delay Window on Complex Topologies

performance. When the path length is short, TCP achieves
optimal throughput by delaying acks as much as possible, up to
entire sender congestion window. On the other hand, when the
path becomes longer, a large delay window hinders effective
transmission and deteriorates TCP throughput gradually. We
show that there exists a certain delay window size, at which
TCP achieves optimal throughput performance. Based on this
observation, we analytically study packet losses triggered by
delayed acks in a worst case scenario. We will discuss our
proposed mechanisms to determine appropriate delay window
sizes in the next section.

IV. TCP WITH ADAPTIVE DELAYED CUMULATIVE ACK

(TCP-DCA)

In this section we analyze the packet loss probabilities as-
sociated with bursty traffic triggered by delayed ack and study
the optimal delay window size for given topologies. TCP-DCA
with adaptive delayed window is proposed according to the
underlying path information to optimize TCP performance.
The impact from different routing protocols on TCP with
delayed ack is also discussed.

A. Packet Burst Transportation over 802.11 MAC

In what follows we study the effectiveness of burst trans-
portation over 802.11 MAC. In what follows we study the
effectiveness of burst transportation over 802.11 MAC. In
TCP-DCA, the sender emits a burst of packets after receiving
a cumulative ack, therefore, the efficiency of such bursts trans-
port has direct impact on TCP performance. For short paths,
since the 802.11 MAC can guarantee packet transmission
without collision, no packet loss occurs no matter what the
burst size is. Therefore, TCP throughput reaches the peak
when delay window is at maximum size (congestion window
size). However, when paths are longer, collisions occur. In
a long path, the packets sent at the beginning of the burst
will potentially interfere with the packets at the rear of the
burst. Thus, the rear packets have higher loss probability and
the loss probability becomes higher with the increase of the
burst size and path length. When interference is so severe
that 802.11 MAC cannot recover packet losses even after the
maximum number of retransmissions, such packets will be
discarded. For example, 802.11b typically tries a maximum of
7 RTS retransmissions. In the following we analyze packet loss
probabilities for a packet burst and derive the optimal burst size
which maximizes the probability of successful delivery of an
entire burst. Then, the optimal delay window is set equal to the
optimal burst size in order to maximize TCP-DCA throughput
gain.

In the following we focus on packet loss due to mutual
interference among data packets belonging to the same flow.
We derive a worst-case bound on the probability of successful
delivery of a whole burst and determine the optimal burst size.
Although we only give a worst case analysis, the analytic
results are still well matched by simulation results for the
window size range of interest . In our analysis we do not
take the interference from other flows into account, however,
our analysis is a worst-case case study and can tolerate more



packet loss in the presence of interference from other flows.
This is verified by simulation. A complete study of burst
transportation and packet loss probability on various topology
and multiflow is beyond the scope of this paper and is left
for future research. For an initial study, please refer to the
technical report [16].

Consider packet losses caused by interference among data
packets of a burst. For example, in Fig.1, if node 1 is
transmitting to node 2 and node 4 is transmitting to node 5
simultaneously, the packet from node 4 is rarely interfered by
a transmission from node 1, while the packet from node 1
has high probability of being interfered with. The reason is
that node 2 and node 4 can interfere with each other. Packet
reception at node 2 will be interfered by node 4 if node 4
is transmitting data packet. Since a data packet is usually
much larger than RTS/CTS/ACK in the MAC layer, the packet
interference probability at node 2 is significant. On the other
hand, the interference at node 4 can happen only when node 4
is receiving CTS/ACK and node 2 is transmitting CTS/ACK,
since RTS/CTS/ACK packets are small (at most 20 bytes, i.e.
less than 2% of data size). The packet loss probability at node
4 is negligible. With the MAC retransmission mechanism,
node 4 can ensure successful packet transmission, but node 2
has high probability of being interfered by transmissions from
node 4. Even with MAC retransmissions of collided packets,
successful packet transmission probability on node 1 depends
on the link-layer queue size at node 4. Because node 4 has little
interference, the transmissions from node 4 usually capture the
channel while node 1 is in back-off phase induced by heavy
interference. In this example, the flow direction is from node
1 to node 6, thus we can safely say that a packet in a burst
can only be interfered with by packets previously sent, and not
interfered by the packets sent afterwards in the same burst.

We include the above observations in our model. Generally,
the interference experienced at a node depends on the queue
size at the interfering(hidden) nodes when interfering nodes
capture the medium until they empty their queues. If the queue
size at interfering nodes is large, the loss probability for an
interfered packet waiting to be transmitted is high. In the worst
case, an interfered packet needs to wait for all packets at
the interfering nodes to leave before successful transmission,
i.e. a packet could be interfered with by “all” packets sent
previously in a burst and wait for those packets to leave the
interfering(hidden) nodes. In terms of a burst, then-th packet
in a burst needs to wait forn − 1 packet transmission times
before successful transmission.

Now let’s look at the specific MAC layer back-off mecha-
nism since it determines the time of the eventual successful
transmission after recovering from interference. In 802.11b,
RTS/CTS help reserve the channel for a packet transmission.
If a node successfully receives CTS after RTS transmission,
the channel is clearly reserved for data transmission and thus
the collision on data transmissions is rare compared with
collision on RTS transmissions. In the following, we only
consider RTS collisions and the back-off time during RTS
retransmissions. If a node cannot transmit a packet after 7
RTS retransmissions, the packet will be lost. We study the
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Fig. 8. Maximal Back-off Distribution

802.11b back-off mechanism during retransmissions and use
it to determine the optimal burst size. When a node senses
the channel busy, it enters the back-off mode by selecting a
back-off time uniformly distributed over the range[0, CW −
1] × SLOT , whereCW varies betweenCWmin = 32 and
CWmax = 1024, the value of SLOT is 20µs. CW doubles
each time when a collision is detected, up toCWmax. CW is
set back toCWmin after a successful transmission.

If a packet is not successfully transmitted after 7 retrans-
missions, it will be dropped at MAC layer. We proceed to get
the total back-off time distribution for 8 transmissions (first
transmission plus 7 retransmissions) and derive the success
probability for a whole burst. Leti be the number of retrans-
missions, and letri be the discrete random variable uniformly
distributed over[0, CWi − 1], CW0 = 32, CWi+1 = 2CWi

andCWi ≤ 1024.
The distribution forri:

P (ri = T ) =
1

CWi
T ∈ [0, CWi − 1]× SLOT (3)

Z-transform forri:

Gi(z) =
CWi−1∑

n=0

1
CWi

zn (4)

The distribution forP (
∑7

i=0 ri = T ) is the convolution of
these 8 random variables and can be derived from their Z-
transform product. Lets =

∑7
i=0 ri, we plot the distribution

for s in Fig.8.
We proceed to get the loss probability of a packet in the

worst case; that is when a packet is interfered by all previous
packets in the same burst. If the burst size isw, in the worst
case, the total back-off time of then-th packet ought to be
larger than the transmission time ofn − 1 packets. Here we
assume that packets previously sent in the same burst only
interfere with this packet once during the packet transmission
event on one node. Thus the successful packet transmission
probability is at leastP (s > (n − 1)Tx), where Tx is the
packet transmission time. In our simulations, packet size is
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Fig. 10. Successful Burst Transmission Probability in Worst Case

set to 1000 bytes and capacity is 2Mbps, and thusTx = 4ms
without considering MAC overhead.

Let f(n) = P (s > (n − 1)Tx) represent the successfuln-
th packet transmission probability in a burst. We plotf(n)
vs. n in Fig.9. Intuitively, asn increases, the packet reception
success probability decreases, and it decreases in an exponen-
tial fashion because of more interference from increased burst
size.

If a burst size isw, the successful probability for the entire
burst at a node in the worst case is:

P (w) =
w−1∏
n=1

f(n) (5)

Fig.10 plotsP (w) vs. w. We see that when the burst size
is small (≤ 3), the whole burst has 100 percent successful
transmission probability. The successful probability begins to
decrease exponentially when burst size is beyond 3.

If the path hash hops, the successful delivery probability
is the product of successful transmission probability of all
possible interfering nodes in the chain topology. The number
of all possible interfering nodes in a chain ish−3 as depicted
in Fig.1. In the worst case scenario, every packet will be

interfered with by all the other previously sent packets in the
same burst ateveryinterfering nodes. LetP (w, h) denote the
successful burst delivery probability along ah hop path:

P (w, h) = P (w)h−3 (6)

We plotP (w, h) in Fig.11. Note the same trend as in Fig.10.
When burst size is small and less than 4, the whole burst
can go through the path without packet loss. The packet loss
probability in a burst increases when burst size increases, and
successful burst delivery probability decreases exponentially.
Moreover, the longer the path, the lower the successful burst
delivery probability.

To verify the above analytic results, we run simulations of
sending a burst of packets from the sender to the receiver with
different path length. For all simulation results, the analytic
result did provide a lower bound for the packet loss rate.
Interestingly the gap between analytic model and simulation
is very small when the burst size is not more than 5, and
it becomes large for burst size greater than 5. Fig.12 shows
an example of burst success probability on a 5 hop route. In
Fig.12, we note that the analytic model can predict packet loss
fairly accurately for small delay window. However, the analytic
result becomes loose for large delay window. For other path
lengths, the results are similar. As we will discuss later, the
receiver ack delay window in TCP-DCA never grows beyond
5 for paths longer than 3 hops, and thus the bound obtained
is accurate for the range of delay window size of interest.

Now let’s look at previous TCP-DCA results in Fig.2(a)-
Fig.2(b). A TCP-DCA sender transmits a burst of packets after
it gets a cumulative ack. For short paths up to 3 hops, no data
packet loss occurs, and TCP-DCA performance gets steady
increase with the increase of the delay window up to the entire
congestion window. For longer hop count path, from the above
analysis, a delay window size of 3 is always a good choice
since no packet loss occurs regardless of path length. A larger
delay window would cause a larger burst size and make packet
loss more likely, thus potentially has a negative effect on TCP
performance. On the other hand, a larger delay window would
bring more performance gain by generating less ack packets.
If TCP could recover fast enough from packet loss, TCP
performance would not be significantly affected by larger delay
windows. This tradeoff is clearly shown in Fig.2(b) where a
delay window slightly larger than 3 still gets performance gain
for a moderately long pathh = 4, ..., 9. For instance, for the
5 hop path, when the delay window is not greater than 6,
the successful burst delivery probability is larger than 90%
(as shown in Fig.11). TCP-DCA still gets throughput gain
from delaying acks. Nevertheless, for delay windows larger
than 6, TCP-DCA gets less throughput gain. A large delay
window causes large burst and more packet loss. Since TCP-
DCA is a TCP clone which employ fast retranmit/recovery to
recover lost packets one by one, TCP-DCA cannot efficiently
recover packet loss. Therefore, when path is long, small delay
window is preferred for best TCP performance. For the very
long paths (h ≥ 10) shown in Fig.2(c), minimum packet loss
in a burst is desired. From our analytic model, burst size 3
guarantees burst transport reliability, and this is confirmed in
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Fig.2(c) where TCP-DCA gets optimal throughput for delay
window of 3 over such long paths.

B. Routing Impact on Delayed Acks

In ad hoc networks, routing schemes have great impact
on TCP performance [3]. In what follows we study the
performance of TCP with delayed ack running over AODV
and GPSR and assuming a chain topology. For short paths
with 3 hops, no data packet collision occurs, so there is no
routing impact on TCP-DCA performance. TCP-DCA results
on these two routings are the same as those on static routing
in this case. For paths longer than 3 hops, we show TCP-DCA
results in Fig.13. These results are similar to results on static
routing, however, some minor differences exist and primarily
come from different routing implementations. In GPSR, when
packet transmission failure occurs, GPSR drops the packet
since it does not rediscover the old path (only one path is
available in the chain topoloy). Thus TCP-DCA performance
on GPSR is similar to that on static routing. AODV gets better
performance when the delay window is slightly larger than that
in static routing. The reason is that AODV implements a local
repair scheme in which a packet to be lost at MAC layer can
be salvaged by another route discovery at intermediate nodes.
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Fig. 13. Routing Impact on TCP-DCA

TABLE I

DELAY WINDOW AT TCP-DCA RECEIVER

Path Length (h) Delay Window Limit

h ≤ 3 Congestion Window

3 < h ≤ 9 5

h ≥ 10 3

With local repair, the reliability of burst transport in AODV
is improved. However, the performance gain with the delay
window size greater than those defined in Table I is marginal.

Here we have studied the routing impact on TCP with
delayed ack when nodes are static, in Section V-C we further
discuss the case of mobile nodes.

C. TCP-DCA with Adaptive Delayed Ack

Up to now we have presented the relationship between
packet burst size and delay window size, and the tradeoff
between TCP throughput and delay window size on different
path lengths. When delay window is not large, TCP keeps
performance gain by generating fewer acks. When the delay
window increases, the reliability of burst transportation de-
teriorates on long paths. When packet loss becomes so high
that TCP-DCA cannot recover lost packets fast enough, TCP-
DCA throughput is degraded. Inspired by this observation,
we dynamically select the delay window size in TCP-DCA
based on the hop count of a TCP connection. For a short path
(h ≤ 3), TCP-DCA could delay ack for a whole congestion
window to get best performance; for a long path (h ≥ 10), a
small delay window, say 3, is preferred; and for path lengths
falling between these two extremes, delay window slightly
larger than 3, say 4 or 5 is a good choice. TCP-DCA receiver
could get the path length information from the TTL field in
TCP packet header or from the routing layer. Table I lists the
delay window size applied in TCP-DCA according to the path
length.

D. Ack Loss

In standard TCP, more acks are generated than TCP-DCA.
Due to the cumulative property of the ack, one ack successfully
received at the TCP sender can makes up for all the preceding
lost acks. Thus, the ack loss in standard TCP is not serious.
However, the number of acks in TCP-DCA is much less than
standard TCP, and thus an ack loss has more negative impact
on TCP-DCA performance. In order to be robust to ack loss,



a retransmission timer at the receiver is adopted to retransmit
a cumulative ack if necessary.

A challenge here is to estimate RTT at the receiver which
is needed for setting the ack retransmission timeouts. If TCP
includes two-way data, the receiver can get the accurate RTT
measurement since the sender acks the data immediately. If
TCP only has one-way data, RTT measurement at the receiver
may not be straightforward. If the TCP timestamp option is
used, the receiver could use it to estimate RTT, though such
an estimate may be inflated if the sender does not send data
packets immediately after receiving an ack [17]. However,
in TCP-DCA, the ack retransmission timer is only a coarse
timer for predicting when to retransmit acks, an accurate RTT
measurement is not required and thus an inflated RTT can be
tolerated.

The receiver computes the ack retransmission time based
on this RTT measurement. We use the following formula to
calculate the retransmission timer period:

SRTT r
k+1 =

7
8
SRTT r

k +
1
8
RTT r

k+1

RTT var
k+1 =

3
4
RTT var

k +
1
4
|RTT r

k+1 − SRTT r
k+1|

RTOr
k+1 = SRTOr

k+1 + 4×RTT var
k+1

WhereRTT r is the RTT estimation at the receiver,SRTT r

is the smoothed RTT.RTTvar and RTOr are RTT variance
and retransmission timer period at the receiver. The minimum
value of the retransmission timer period is set to 1 second.
This ack retransmission timer is started after sending an ack
to act as a fallback timer for the ack loss event, and is canceled
after receiving an data packet to let delay timer act as a fall
back timer.

Note that all previous results were not obtained with ack
retransmission . This is due to two facts: first, the results with
and without ack retransmission are almost the same for static
networks. Mostly because the ack loss is rare and the ack
retransmission timer period is large, i.e. at least 1 second.
Second, without the ack retransmission timer, it is easy to see
the primary impact of the delay window on TCP performance.
In the following simulations, the ack retransmission timer is
enabled.

V. PERFORMANCEEVALUATION

This section presents the TCP-DCA performance over
MANET and hybrid networks. First, we show TCP-DCA
performance on static multihop wireless networks and compare
it with TCP-DAA in [2]. Second, we demonstrate TCP-DCA
performance on mobile ad hoc network, and discuss the
different routing scheme impact on TCP-DCA performance.
Last, we propose an end-to-end delay based scheme to further
improve TCP-DCA in hybrid wired/wireless networks.

A. Comparison with TCP-DAA

In this section, we compare our TCP-DCA with TCP-DAA
in [2] which is an interesting extension of [1]. The major
differences between TCP-DAA and TCP-DCA are shown in
Table II.

TABLE II

DESIGN DIFFERENCE

TCP-DAA TCP-DCA

Sender Duplicate acks threshold to
trigger retransmission is 2; CW
upper limit is 4; Retransmis-
sion timer is increased fivefold

Puts CW into advertised
window field in packet
header

Receiver Delay window is adaptive from
2 and 4 based on loss event

Delay window is adaptive
on the path length

We compare the performance of TCP-DCA with that of
TCP-DAA [2]. The simulations include chain and grid topol-
ogy as in [2]. The delay window in TCP-DCA is configured
in Table I. Each result is the average of 5 simulation runs.

In Fig.14 we compare TCP-DAA to TCP-DCA in the chain
topology with different hop count and number of concurrent
flows. Although TCP-DCA is designed without congestion
window limit, we show TCP-DCA with congestion window
limit at 4, named TCP-DCA-CWL, for fair comparison with
TCP-DAA. Fig.14 shows that TCP-DCA provides better per-
formance than TCP-DAA in such chain topologies, except for
the cases of 2 connections on 5 and 7 hop path. Overall, TCP-
DCA can get improvement up to 15% over TCP-DAA, and
30% over standard TCP. Interestingly, the TCP-DCA does
not perform worse than TCP-DCA-CWL, and even shows
better performance in Fig.14(a)-Fig.14(b). It indicates that
congestion window limit of 4 is not a good choice for TCP-
DCA. The optimal congestion window limit needs further
investigation for TCP with delayed ack.

We also give results for the grid topology in [2] to compare
TCP-DCA with TCP-DAA. This grid topology is shown in
Fig.15(a) and we only show the case with 6 flows running
on the grid. The case with 3 flows has similar result, but is
not provided here due to space limitation. The performance
of TCP-DCA and TCP-DAA is presented in Fig.15(b). We
compare TCP-DAA to TCP-DCA with and without congestion
window limit equal to 4. When the congestion window size
is limited by 4, the performance of TCP-DCA is similar to
that of TCP-DAA, and neither scheme provides significant
improvement over standard TCP. When the congestion window
is not limited, TCP-DCA achieves better performance than
TCP-DAA and standard TCP.

From simulations in Fig.14 and Fig.15(b), we show that
TCP-DCA outperforms in most cases. Furthermore, we will
demonstrate that TCP-DCA can achieve much better perfor-
mance than TCP-DAA in wired/wireless networks.

B. Hybrid (Wired and Wireless) Network Performance

As wireless networks emerge, it becomes common to com-
municate across wireless networks to an end node in the wired
network. For example, in the real life, one needs to connect
a mobile device (e.g. laptop) to the Internet to download files
from a remote server, and may also need to upload files
from mobiles to the Internet. Improving TCP performance
over such network scenarios is important for the efficiency
of applications using TCP.
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In this section we study TCP-DCA in the wired and wire-
less ad hoc environment. Since wired network has abundant
bandwidth, it demands a much larger congestion window
than the pure ad hoc network for effective TCP performance.
In current TCP implementation, TCP sender increases the
congestion window based only on the number of acks received
while not taking into account the acknowledged data covered
in the acks. Therefore, using delayed ack could potentially
cause slow congestion window increase and thus hurt TCP
performance. The pure adaptive delay window based on the
hop count appears not suitable for this scenario because the
congestion window increase rate is too slow. Although slow
increase for congestion window is helpful for improving TCP
performance in ad hoc networks as shown in our previous
results and reported in [12], it is not desirable for wired
network. In RFC3465 [18] Mark proposed to increase the
congestion window based on the number of bytes acknowl-
edged by the arriving acks rather than based on the number of
acknowledgments that arrive at the sender in RFC2581 [14].
However, this approach also causes large bursts if the delay
window is large. In a nutshell, an appropriate delay window
limit needs to be investigated in this scenario.

Because TCP-DCA delays ack packets more than standard
TCP, the congestion window increase in TCP-DCA is slower
than standard TCP, particularly when large propagation delay
is encountered in the wired part. To combat the inefficiency
of TCP-DCA in this scenario, we propose the following

�������� � ��	

Fig. 16. Hybrid Wired/Wireless Topology

approach: if minimum RTT is small, the congestion window
can increase rapidly even with delayed ack, thus the receiver
can adjust the delay window based on the hop count as before;
otherwise, the receiver limits the delay window to a small
value. Recalling that large end-to-end delay also prevents
TCP from fast packet loss detection/recovery, therefore this
scheme also helps in TCP recovery from packet loss. In our
simulation, TCP-DCA receiver sets the delay window limit
to 5 when minimum RTT is beyond 80ms. Although the RTT
measurement at the receiver is potentially inflated as discussed
in Section IV-D, such inflation does not cause any significant
problem since only the minimum RTT is needed, and generally
can be estimated accurately at the receiver.

Note that this end-to-end delay based scheme is compatible
with hop based scheme, and it can also work independently.
The minimum RTT on a 10 hop wireless path is about 80ms. A
TCP receiver could set the delay window purely according to
the end-to-end delay: when end-to-end delay is large, a small
delay window limit is used, otherwise a large delay window
limit is used.

In Fig.16 we show a TCP connection from a wired network
to a wireless network with up to 2 wireless hops. The one-way
propagation delay on the wired link is 50ms. The performance
of TCP-DCA, TCP-DAA and standard TCP are shown in
Fig.17. Since TCP-DAA limits the congestion window, the
performance of TCP-DAA is much inferior to that of standard
TCP or TCP-DCA. TCP-DCA provides better performance,
about 20% throughput gain over standard TCP for both cases
of 1 and 2 hop counts.

C. Mobile Ad Hoc Network

We have demonstrated that delayed ack improves TCP
performance in a static network, now we show that it can
improve TCP performance in a mobile network as well.

In Fig.18 we show the performance of standard TCP with
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Fig. 17. Wired and Wireless Performance

and without delayed ack running over the routing schemes:
AODV, DSR, and GPSR. The experiment consists of 40 nodes
randomly placed within a 1000m× 1000m area and nodes
move within this area. Each node moves with the same speed
without pause and the speed ranges from 0m/s to 20m/s to
study low to very high mobility. The Random Waypoint model
is used. Notice that setting the speed to 0m/s also represents
a random static topology. All results displayed are calculated
as the average of five runs with the same traffic models, but
with different randomly generated mobility scenarios. Since
the mobility scenarios are different at different speed, we
only compare TCP-DCA with standard TCP at each individual
speed where they run on the same mobility scenarios. For
fairness, identical mobility and traffic scenarios are used across
protocols.

From Fig.18 we make two observations. First, the ack
retransmission timer discussed in Section IV-D does not have
much impact on TCP-DCA running over AODV and GPSR,
while it has more impact on TCP-DCA running over DSR.
The retransmitted acks help DSR in kicking out stale route
information and improving TCP performance. The second
observation is that the delayed cumulative ack contributes to
remarkable performance gain over standard TCP, regardless
of what routing is used. For one TCP flow in Fig.18(a), TCP-
DCA can provide at least 20% performance gain across all
routing protocols. For five TCP flows in Fig.18(b), TCP-DCA
provides similar noticeable throughput improvement except
TCP-DCA over AODV which produces a smaller improve-
ment.

Another interesting result is that TCP over GPSR performs
generally better than TCP over AODV and DSR. When node
moves fast, DSR cannot adapt to the fast changing routes
because of its aggressive use of route cache, thus standard
TCP over DSR has very low throughput [19]. AODV shows
better performance in high mobility, but the performance is not
as good as GPSR. GPSR has advantages in mobile network
because nodes only keep geo-locations for their neighbors, and
supports end-to-end communication pattern without explicit
route establishment. Therefore TCP performance on GPSR

is not much affected by mobility. The disadvantage of Geo-
routing is that it needs GPS and Geo-location service. For
more details, please refer to [6], [20], [21]. An ad hoc routing
which does not require Geo-location service, but maintains
Geo-routing property is highly desired, and it is one of our
future research goals.

VI. FUTURE WORK AND DISCUSSION

Delayed ack inevitably triggers burst transportation at the
sender. The burstiness increases the packet loss and potentially
hurts TCP performance. To reduce the burstiness, strategies
to limit burstiness could be applied. For example, in [22],
congestion window increase is limited by at most 2 packets
for each delayed ack. However, the problem is more tricky in
the wireless network because of low wireless bandwidth and
pipeline effect. How to find a good limited burst size is a task
for future investigation. Another possible approach to decrease
burstiness is to use rate control at the sender. Certainly rate
control could relax medium contention and decrease packet
loss [23].

In general, the advertised window field in TCP packet
header is not used by the sender since TCP connections are
predominantly half duplex. We propose in TCP-DCA to let
the sender reuse the advertised window field for “advertising
back” its congestion window size to the receiver. An alternative
solution is to imbed the congestion window size in an option
field of the packet header.

In this paper we have focused on how to reduce MAC
layer interference between data and ack packets, via optimal
delayed ack policy. We do not, however, address packet losses
due to lossy physical channel. In the future, we plan to
further investigate the lossy channel issue. We believe that
TCP performance can be further improved by combining TCP-
DCA with schemes that effectively combat packet losses due
to error-prone physical channel, such as TCP-Westwood [24]
and ELFN (Explicit Link Failure Notification) [8].

We have studied on TCP performance with delayed ack
over 802.11b MAC with fixed channel rate and fixed data
packet size. It is possible to extend our work to other MAC
protocols, and with varying rates and packet sizes. The TCP
receiver could dynamically choose a suitable delay window
according to underlying MAC protocol, data rate and packet
size to maximally improve TCP performance. This would be
our future work on the cross-layer design in wireless networks.

Furthermore, TCP-DCA is mainly a receiver-side modifi-
cation, it can be combined with sender side modifications
to achieve better performance, such as a setting of new
congestion window limit suitable for TCP-DCA. It is also
achievable to be integrated with other mechanisms [7], [8],
[9], [10] to improve TCP performance in wireless networks.

VII. C ONCLUSION

TCP, a dominant reliable transport protocol in wired net-
works, is a highly competive candidate for providing reli-
able data transport in wireless and wired/wireless networks.
This paper systematically examines the relationship of TCP
performance to delayed ack via analysis, and simulation and
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Fig. 18. TCP performance over Mobile Network

testbed experiments. We find that TCP does not always get
throughput gain by delaying unlimited acks. The maximal TCP
throughput is achieved at a certain delay window that balances
decreasing ack flow and burst loss. Thus, We introduced two
novel adaptive delayed ack mechanisms compatible with TCP
called TCP-DCA, based on the path hop length and/or end-
to-end delay, to maximize the TCP performance for MANET
and hybrid networks. Our proposed schemes are shown to have
superior performance, achieving up to 30% gain over standard
TCP in static networks (wireless or hybrid wired/wireless
networks). We also demonstrated better TCP performance with
our proposed mechanisms over different routing protocols in
mobile ad hoc networks.
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