
UNIVERSITY OF CALIFORNIA

Los Angeles

Connection-Based Adaptive Routing Using

Dynamic Virtual Circuits

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Computer Science

by

Yoshio F. Turner

2005

 Copyright by

Yoshio F. Turner

2005

Table of Contents

Chapter One - Introduction .. 1

1.1. Dynamic Virtual Circuits .. 7

1.2. Reducing Packet Discarding in ATM and IP Switches 10

1.3. Organization .. 11

Chapter Two - Background and Related Work 13

2.1. Routing in Packet Switched Multicomputer Networks 14

2.1.1. Overview of Routing Algorithm Design Issues 14

2.1.2. Cut-Through Switching .. 20

2.1.3. Fixed-Path Routing .. 23

2.1.4. Adaptive Routing ... 25

2.1.4.1. Adaptive Routing without Buffer Dependency

Cycles ... 26

2.1.4.2. Adaptive Routing with Buffer Dependency

Cycles ... 29

2.1.5. Packet Buffer Deadlock: Theory .. 34

2.1.5.1. Deadlock Detection and Resolution 34

2.1.5.2. Deadlock Avoidance .. 37

2.2. Switch Implementations ... 40

2.3. Connection-Based Routing ... 44

2.3.1. Circuit Switching ... 44

iii

2.3.2. Virtual Circuit Switching ... 46

2.3.2.1. Static Virtual Circuits ... 47

2.3.2.2. Relaxing the Restrictions of Static Virtual

Circuits ... 51

2.4. ATM and IP Switch Cell Loss Reduction Techniques 54

2.5. Summary ... 58

Chapter Three - Dynamic Virtual Circuits: Overview 61

3.1. Tearing Down and Re-Establishing Circuits 62

3.2. Maintaining Packet Ordering with DVCs 66

3.3. DVC Implementation: Overview .. 68

3.3.1. Input Port Hardware and Operation 71

3.3.2. Output Port Hardware and Operation 74

3.3.3. Sequencing of Switch Operations .. 75

3.4. Summary ... 78

Chapter Four - Deadlock Detection and Resolution in DVC

Networks .. 80

4.1. Deadlock Resolution in Centrally Buffered Packet Switching

Networks ... 81

4.2. Deadlock Resolution in Input-Buffered Packet Switching

Networks ... 82

4.3. Deadlock Resolution With DVCs ... 88

4.3.1. Deadlock Avoidance in DVC Networks with

Dependency Cycle-Free Routing .. 90

iv

4.3.2. Deadlock Detection Phase .. 94

4.3.3. Cycle Rotation: Handling DVC Dependencies 96

4.3.3.1. Rotation Unmapped Packets Using a Dedicated

RVC .. 97

4.3.3.2. Rotation Unmapped Packets Using a New

Packet Type .. 102

4.4. Performance Evaluation .. 103

4.5. Summary ... 108

Chapter Five - DVCs: Deadlock Resolution .. 111

5.1. Scheme for Avoiding Deadlocks in DVC Networks 112

5.1.1. Avoiding Deadlocks Involving Data Packets 114

5.1.2. Avoiding Deadlocks Involving Control Packets 116

5.1.2.1. Cases Without Data Packets 121

5.1.2.2. Cases With Data Packets .. 122

5.1.3. Algorithm for Handling Control Packets with DVCs

... 124

5.2. Algorithm Correctness .. 126

5.2.1. Proof of Deadlock-Freedom ... 126

5.2.2. Correct Delivery ... 132

5.3. Implementation Issues .. 139

5.3.1. Switch Organization ... 139

5.3.2. Control Buffer Implementation .. 141

5.3.3. Sequencing and Diversion .. 143

v

5.4. Performance Evaluation .. 145

5.4.1. Intelligent Flow-Based Routing ... 146

5.4.2. Transpose Traffic Pattern ... 148

5.4.3. Bit-Reversal Traffic Pattern ... 152

5.4.4. Uniform Traffic Pattern .. 154

5.4.5. The Impact of Network Size .. 156

5.5. Summary ... 159

Chapter Six - Reducing Cell Loss in Low Complexity Multi-

Path Multistage Switching Fabrics .. 161

6.1. Switch Design Considerations and Performance Metrics 163

6.2. Characterizing Cell Losses in Multistage Switches 165

6.2.1. Simulation-Based Characterization of Factors

Determining the CLR .. 166

6.2.2. Extrapolation Technique .. 173

6.3.1. Evaluation of Distribution Stage Interconnection

Alternatives ... 177

6.3.2. Routing Versus Distribution ... 182

6.4. Summary ... 185

Chapter Seven - Summary and Conclusions ... 188

Bibliography ... 195

vi

List of Figures

1.1 Multicomputer ... 3

2.1 A Simple Deadlock .. 17

2.2 A Virtual Circuit .. 48

3.1 Example: DVC Establishment ... 65

3.2 A Multicomputer Node .. 69

3.3 Input Port Block Diagram ... 72

3.4 Output Port Block Diagram ... 74

3.5 Input Port Data Packet Handling ... 77

4.1 Partial Physical Network ... 85

4.2 Partial Virtual Network ... 85

4.3 Deadlock With FIFO Buffers .. 91

4.4 Procedure executed by a virtual switch to prepare for rotation 98

4.5 Packet rotation procedure using dedicated RVC 99

4.6 Handling rotated packet arrival with the dedicated RVC approach

.. 101

4.7 Handling rotated packets with the new packet type approach 103

4.8 Mesh With Cyclic Routing Pattern .. 105

4.9 Recovery Time VS. Timeout ... 106

4.10 Failed Cycle Detection Attempts VS. Timeout 107

5.1 Packet format ... 113

vii

5.2 Deadlock involving only control packets .. 116

5.3 Example deadlock involving three switches ... 119

5.4 Algorithm for handling control packets with DVCs 125

5.5 Buffer dependency graph for mapped RVC i and unmapped RVC k

.. 129

5.6 State notation ... 135

5.7 Input Mapping Table ... 139

5.8 Circuit Information Table .. 139

5.9 Non-uniform Traffic Patterns .. 145

5.10 Routing Procedure ... 147

5.11 Transpose traffic: latency .. 149

5.12 Transpose traffic: fraction diverted ... 150

5.13 Transpose traffic: fairness ... 151

5.14 Transpose traffic: fairness at saturation ... 151

5.15 Bit-reversal traffic: latency .. 153

5.16 Bit-reversal traffic: fraction diverted ... 154

5.17 Uniform traffic: latency ... 155

5.18 16 by 16 transpose traffic: latency ... 156

5.19 16 by 16 bit-reversal traffic: latency ... 157

5.20 16 by 16 uniform traffic: latency ... 157

5.21 16 by 16 transpose: fraction diverted .. 158

5.22 16 by 16 transpose: fraction diverted .. 158

5.23 16 by 16 uniform: fraction diverted ... 159

viii

6.1 Butterfly Switch ... 167

6.2 CLR VS. Load, Single SE ... 168

6.3 CLR VS. Load, Multistage Switch .. 168

6.4 CLR VS. Stage Number .. 170

6.5 CLR VS. Buffer Capacity, Single SE .. 171

6.6 Traffic Pattern .. 172

6.7 CLR VS. Buffer Capacity, 2 Stages .. 172

6.8 Scale factor VS. 1st stage CLR, 4 by 4 switch .. 174

6.9 Scale factor VS. 1st stage CLR, 16 by 16 switch 175

6.10 Butterfly-Connected Distribution Stage .. 179

6.11 Alternative Distribution Stage Configuration 179

6.12 CLR Distributions, Static .. 181

6.13 CLR Distributions, Routing ... 184

6.14 CLR Distributions, Routing, Low Background 185

ix

List of Tables

5.1 Switch state space .. 134

5.2 State transition table .. 136

x

ACKNOWLEDGMENTS

I am grateful to my thesis advisor, Professor Yuval Tamir, for his guidance and

support. When I was a UCLA undergraduate, Professor Tamir introduced me to

computer systems research and encouraged my interest in applying to graduate school.

Through coursework and research discussions, he has shared his knowledge of and

insight about computer systems. His guidance and feedback has helped to ensure and

improve the quality of my research and its presentation. In short, he has been

instrumental in helping me to build a solid foundation for my career.

I am grateful for useful technical discussions with many UCLA colleagues,

especially G. (John) Janakiraman, Greg Frazier, Tiffany Frazier, Hsin-Chou Chi, and

Professor David Rennels. I would like to thank Verra Morgan in the Computer

Science Department Graduate Student Affairs Office for her consistent

encouragement and outstanding administrative support,

I would also like to thank the Fannie and John Hertz Foundation, which awarded

me a generous Hertz Fellowship. This fellowship provided the valuable opportunity

to pursue my research interests with maximum freedom, unfettered by the need to

consider funding sources.

Finally, I am grateful to my parents and my sister for their unconditional love

and support, and for always encouraging me to pursue my goals.

xi

VITA

October 19, 1966 Born in Los Angeles, CA

1988 B.S Computer Science and Engineering
University of California, Los Angeles
Los Angeles, CA

1988-1989 Chancellors Fellowship
University of California, Los Angeles
Los Angeles, CA

1989-1990 Teaching Assistant
University of California, Los Angeles
Los Angeles, CA

1990-1995 Graduate Fellowship
Fannie and John Hertz Foundation

1991 M.S. Computer Science
University of California, Los Angeles
Los Angeles, California

1996-1998 Consultant
Samsung Los Angeles Design Center
Cypress, CA

1999- Research Scientist
Hewlett Packard Laboratories
Palo Alto, CA

PUBLICATIONS AND PRESENTATIONS

J. Gummaraju and Y. Turner, ‘‘Hidra: History-Based Dynamic Resource Allocation
for Server Clusters,’’ First International Conference on Internet Technologies
and Applications (ITA-05), Wrexham, UK (September 2005).

xii

G. Janakiraman, J. R. Santos, D. Subhraveti, and Y. Turner, ‘‘Cruz: Application
Transparent Distributed Checkpoint-Restart on Standard Operating Systems,’’
International Conference on Dependable Systems and Networks (DSN),
Yokohama, Japan (June-July 2005).

G. Janakiraman, J. R. Santos, and Y. Turner, ‘‘Automated System Design for
Availability,’’ International Conference on Dependable Systems and Networks
(DSN), Florence, Italy (June-July 2004).

G. Janakiraman, J. R. Santos, and Y. Turner, ‘‘Automated Multi-Tier System Design
for Service Availability,’’ First Workshop on the Design of Self-Managing
Systems (at DSN-2003), San Francisco, CA (June 2003).

A. Menon, J. R. Santos, Y. Turner, G. Janakiraman, and W. Zwaenepoel,
‘‘Diagnosing Performance Overheads in the Xen Virtual Machine
Environment,’’ First ACM/USENIX Conference on Virtual Execution
Environments (VEE05), Chicago, IL (June 2005).

M. Mesarina and Y. Turner, ‘‘Reduced Energy Decoding of MPEG Streams,’’
ACM/SPIE Multimedia Computing and Networking (MMCN), San Jose, CA
(January 2002).

M. Mesarina and Y. Turner, ‘‘Reduced Energy Decoding of MPEG Streams,’’
ACM/Springer Multimedia Systems Journal (special issue) 9(2) (August 2003).

J. R. Santos, Y. Turner, and G. Janakiraman, ‘‘End-to-End Congestion Control for
InfiniBand,’’ IEEE INFOCOM, San Francisco, CA (April 2003).

J. R. Santos, K. Dasgupta, G. Janakiraman, and Y. Turner, ‘‘Understanding Service
Demand for Adaptive Allocation of Distributed Resources,’’ IEEE Global
Internet Symposium, Taipei, Taiwan (November 2002).

J. R. Santos, Y. Turner, and G. Janakiraman, ‘‘Evaluation of Congestion Detection
Mechanisms for InfiniBand Switches,’’ IEEE Globecom (High-Speed
Networks Symposium), Taipei, Taiwan (November 2002).

Y. Tamir and Y. F. Turner, ‘‘High-Performance Adaptive Routing in Multicomputers
Using Dynamic Virtual Circuits,’’ 6th Distributed Memory Computing

xiii

Conference, Portland, OR, pp. 404-411 (April 1991).

Y. Tamir and Y. F. Turner, ‘‘High-Performance Adaptive Routing in Multicomputers
Using Dynamic Virtual Circuits,’’ Computer Science Department Technical
Report CSD-900026, University of California, Los Angeles, CA (September
1990).

Y. F. Turner and Y. Tamir, ‘‘Deadlock resolution in networks employing connection-
based adaptive routing,’’ Computer Science Department Technical Report
CSD-960032, University of California, Los Angeles, CA (August 1996).

Y. F. Turner and Y. Tamir, ‘‘Connection-Based Adaptive Routing Using Dynamic
Virtual Circuits,’’ International Conference on Parallel and Distributed
Computing and Systems, Las Vegas, NV, pp. 379-384 (October 1998).

Y. Turner, T. Brecht, G. Regnier, V. Saletore, G. Janakiraman, and B. Lynn,
‘‘Scalable Networking for Next-Generation Computing Platforms,’’ 3rd
Annual Workshop on System Area Networks (SAN-3), Madrid, Spain (February
2004).

Y. Turner, J. R. Santos, and G. Janakiraman, ‘‘An Approach for Congestion Control
in InfiniBand,’’ HP Laboratories Technical Report HPL-2001-277, Hewlett
Packard Laboratories, Palo Alto, CA (October 2001).

xiv

ABSTRACT OF THE DISSERTATION

Connection-Based Adaptive Routing Using

Dynamic Virtual Circuits

by

Yoshio F. Turner

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2005

Professor Yuval Tamir, Chair

High-bandwidth, low-latency communication is the key to delivering high

performance in scalable multicomputers and clusters, which consist of compute

nodes that include communication switches interconnected via point-to-point links.

With advancing semiconductor technology, the rate at which processors generate

and consume traffic is increasing. Future designs must exploit the increasing

number of transistors per chip to also achieve higher performance in the

communication subsystem, matching the needs of faster CPUs.

Two techniques that can use additional hardware resources to improve

network performance are adaptive routing and connection-based routing. Adaptive

routing may change traffic routes to avoid congestion or faults. Connection-based

routing can reduce packet processing overhead by reserving resources prior to

communication. Most connection-based routing schemes, such as traditional

virtual circuits, are static — once a connection is established, it remains fixed for

its lifetime.

xv

This thesis presents a new mechanism that combines the advantages of

adaptive routing and connection-based routing for arbitrary topologies. The

proposed Dynamic Virtual Circuit (DVC) mechanism allows existing connections

to be quickly torn down in order to release resources needed for others or to be re-

established along routes that are better for current network conditions.

The challenges for the DVC mechanism are to efficiently retain connection

semantics despite rerouting, and to avoid or resolve protocol or packet buffer

deadlocks. A previous approach for deadlock resolution is extended for use in

DVC networks, and its performance limitations are identified. Subsequently, a

competing deadlock avoidance technique is developed. It is based on

unconstrained routing of DVCs combined with a deadlock-free virtual network.

Simulations show that with DVCs, global routing optimization is possible and

provides performance superior to fixed routing. The use of deadlock-free escape

paths is sufficiently infrequent to preserve the bandwidth efficiencies of the DVC

mechanism.

Connection-based adaptive routing may be beneficial for different networking

environments. We evaluate the potential of such routing to reduce packet loss in

large multi-path ATM or IP switches. With the class of traffic patterns considered,

the results show that routing of the heaviest flows can lead to significantly lower

cell loss than oblivious distribution.

xvi

Chapter One

Introduction

Advances in VLSI technology have enabled the development and widespread

availability of high-performance microprocessors, high capacity memory chips,

and single-chip switches supporting high-speed communication links.

Microprocessor and memory components can be used to construct inexpensive and

physically compact compute nodes which can be combined to form a parallel

system in which multiple processors operate concurrently to perform parallel and

distributed computations or transactions. Potential advantages of parallel systems

include incremental system expandability, fault tolerance, and the ability to exploit

concurrent execution to improve performance [Atha88, Noak93, Ande95, Stun95,

Scot96b, Agar99, Duni05].

To realize performance advantages for a wide variety of applications, a

parallel system must support high throughput, low latency communication among

the compute nodes. At small system sizes, high performance communication can

be provided by connecting each pair of nodes with a high speed communication

link without intervening switches. For larger systems, this approach has

prohibitive cost because the number of links would grow quadratically with the

number of nodes. To achieve high performance at an acceptable cost, larger

systems use a scalable interconnection network in which switches are used to route

data between pairs of nodes that are not directly connected [Laud97, Gall97,

Scot96a, Stun95, Stun94a].

Nodes communicate by exchanging messages across the network. With

1

packet switching, the most commonly used basic switching technique, messages

are divided into fixed or bounded size packets which are individually handled and

forwarded by switches along a path of links between the source node and the

destination node.

A multicomputer is a type of parallel system in which several compute nodes

(up to hundreds or thousands) are packaged together as a single system and

interconnected with a scalable interconnection network. Each node has a processor

and memory, and some nodes may have specialized functionality (e.g., disk,

video). The nodes are interconnected via a network of switches with point-to-point

links. If each switch is connected to a node, the network is called direct [Scot96a].

An example of a multicomputer that has a direct network with an arbitrary,

irregular topology is shown in Figure 1.1. If nodes are connected only to a subset

of the switches, the network is called indirect. An example of an indirect network

is a multistage interconnection network in which switches are arranged in a series

of connected stages, and nodes are connected only to the first and last stages of the

network [Stun95].

A cluster is another type of parallel system in which several separate

computers are interconnected via a high-performance local area network. The

bandwidth capacities of local-area network communication links and the speed of

switching logic are currently high enough to support a wide variety of distributed

computing applications [Ande95, Part94, Petr02, Bode95].

The key to high performance for a multicomputer or high-end cluster

interconnection network is to make efficient use of network resources such as link

bandwidth and the buffers at each switch that are used to store packets. In

2

N

Disk Drive

Disk Node

Nodes
Regular

N

N

N

N
N

N

N

N

N

DN

N

N

N

N

DN

DN

N
Link
Communication

Figure 1.1: Multicomputer with arbitrary topology

particular, traffic load should be balanced across network resources to avoid

overloading some resources while other resources which could perform useful

work are under-utilized. High contention for resources increases packet queuing

and communication latency, while under-utilization limits the network’s

throughput capacity. A second requirement for efficient use of network resources

is to maximize the utilization of these resources for transferring application data.

In particular, the goal should be to minimize the use of these resources to transfer

or process packet addressing and sequencing information.

The routing scheme used in the network is the primary factor that determines

3

how efficiently network resources are used. The routing scheme determines the

network path taken by each packet from its source node to its destination node.

The routing scheme should direct packets through the lowest latency paths from

source to destination. It should take into account the topology of the network and

adapt to the current workload and resource availability to route packets around

congested or faulty areas [Bold97, Dall93, Duat98, Glas94, Kim97, Taji77,

Venk96]. By avoiding congested network resources, adaptive routing schemes

have the potential to effectively balance load across the network resources.

A critical requirement for an adaptive routing scheme is to avoid packet buffer

deadlock. Multicomputers and high-end clusters perform distributed computations

that generate and consume packets at very high rates and require low message

latency to avoid impeding performance by stalling applications. Applications

would pay prohibitive performance penalties if the network were to discard packets

which would subsequently have to be re-transmitted. Therefore, multicomputer

and high-end cluster networks use backpressure flow control mechanisms in which

packets that encounter congestion are blocked rather than discarded. As a result,

unless sufficient constraints are imposed on packet routes and/or buffer usage, a

sequence of blocked packets can form a deadlock cycle in which no packet in the

cycle can advance forever. The routing scheme should therefore minimize routing

constraints while preserving deadlock-freedom.

In addition to providing adaptive routing, the routing scheme should minimize

the overhead for routing and forwarding packets. The addressing and control

information that is sent with each packet should be minimized to enable efficient

utilization of link bandwidth. In addition, the processing required to interpret and

4

route each packet at each hop should be minimized to provide low latency

communication.

These overheads can be high with conventional packet switching, in which

each packet is routed independently through the network. With packet switching,

each packet must contain routing information (e.g., the packet’s source and

destination node identifiers) to enable switches to route the packet properly toward

the destination. At each hop, a switch delays each arriving packet while processing

the routing information in the packet header to determine which output port to use

to forward the packet. In addition, if packets injected into the network by a node

can take different paths to reach a common destination, then ordering information

(e.g., a sequence number) must be transmitted with each packet to enable the data

to be delivered in-order to the application at the destination node. For workloads

where most packets have small data payloads, routing and sequencing information

can consume a high fraction of the network link bandwidth.

Bandwidth and processing overheads can be minimized by using connection-

based routing [Chow88, Bork90, De 96, Dao97, Hsu92, Tyme81], in which

resources are reserved in advance of communication at each switch along the path

from source node to destination node. With this approach, addressing and routing

information for a connection is recorded at the switch at connection setup time. As

a result, the only information a switch needs in order to route an arriving packet is

an identification of the connection used by the packet. Thus connection-based

routing reduces the processing required for routing each packet compared to packet

switching, and enables reducing the amount of addressing information that must be

transmitted with each packet. Finally, since all packets that use a connection take

5

the same path from source to destination, with connection-based routing packet

headers do not require sequencing information for packet reordering at the

destination.

Connection-based routing reduces the overhead for forwarding each packet

but introduces connection setup/teardown operations. Thus this approach can

improve overall network efficiency if these new operations are fast or occur

infrequently, e.g., for workloads in which each connection is used by several

packets [Hsu92].

In this dissertation, we present new communication techniques that combine

the benefits of connection-based routing and adaptive routing. In the following

sections, we outline the main contributions of the dissertation. Section 1.1 gives a

brief overview of the primary contribution, a routing scheme called Dynamic

Virtual Circuits, or DVCs, which provides fast mechanisms for dynamically

changing the routes of established connections while avoiding packet buffer

deadlock. This enables each connection to be routed or rerouted onto a low latency

path through the network from source to destination to provide high performance.

While most of our design and evaluation of the DVC scheme is in the context of

interconnection networks for multicomputers or clusters, we have also investigated

the potential benefits from using a similar approach in the context of switching

fabrics used to implement network switches. Specifically, we present an

evaluation of the potential performance benefits of explicitly routing selected flows

through IP or ATM multistage network switches. Section 1.2 outlines our

evaluation of different configurations for providing alternate paths through the

network switch, and our evaluation of the benefits of different techniques for

6

routing traffic through the switch. Our evaluation shows that routing some flows

on selected paths has the potential to significantly improve switch performance by

reducing contention between different flows.

1.1. Dynamic Virtual Circuits

The primary contribution of this dissertation is the design and evaluation of a

novel packet routing mechanism called Dynamic Virtual Circuits, or

DVCs [Tami91, Turn98, Turn05]. DVCs add adaptive routing capabilities to an

existing connection-based routing technique called virtual circuit

switching [Bork90, Dao97, Hsu92, Tyme81]. Virtual circuit switching provides

end-to-end connections called virtual circuits. The network’s physical resources

(packet buffers, link bandwidth, etc.) are multiplexed among active virtual circuits.

Once a virtual circuit is established, packets can be sent without the addressing and

sequencing information needed in pure packet switched networks. Packets are

quickly forwarded along the virtual circuit’s network path by using a single lookup

in a small virtual channel table at each hop. This mechanism enables low overhead

packet forwarding even in networks with irregular topologies [Flin00]. In these

topologies, intermediate nodes between a source and destination cannot use simple

algorithmic routing. Instead, routing is based on large tables at each node which

are constructed at system initialization and may be changed over time to adapt to

changing traffic conditions. With virtual circuits, the routing tables can be used

during virtual circuit establishment to determine a virtual circuit’s network path.

Subsequently, packets are forwarded along the path using the more efficient virtual

circuit forwarding mechanism.

7

Most virtual circuit schemes have the limitation that each established circuit’s

route cannot be changed until the connection is no longer needed and the circuit is

torn down. This prevents adaptation to changes in traffic patterns, and it prevents

establishment of new virtual circuits once all the required resources are assigned to

existing circuits.

To solve this problem we have proposed the Dynamic Virtual Circuits (DVC)

mechanism [Tami91, Turn98] which combines adaptive routing and connection-

based routing. With DVCs, a portion of a virtual circuit can be torn down from an

intermediate node on the circuit’s path and later be re-established, possibly along a

different route, while maintaining the virtual circuit semantics of reliable in-order

packet delivery. The DVC mechanism provides fast circuit establishment and re-

routing by using only local operations at each node. This enables packets to

proceed on new circuit paths without waiting for end-to-end handshakes.

In this dissertation, we present the DVC algorithm and propose a

hardware/firmware architecture for its implementation. The challenge in devising

the algorithm is to simultaneously provide fully adaptive routing, deadlock-

freedom, and the low per-hop overhead of static virtual circuit switching.

Compared to pure packet switching networks, DVC networks pose a more

complicated deadlock avoidance problem because DVCs introduce dependencies

among circuit establishment and teardown operations and also dependencies

between these operations and packet buffer resources.

We present two contrasting approaches to eliminate packet buffer deadlocks

in DVC networks. The first approach is based on deadlock detection and

resolution in which deadlocks may occur in the network and then later be detected

8

and resolved. The attraction of this approach is that it minimizes the restrictions

that are placed on the use of buffer resources since no resources must be reserved

to prevent deadlocks. Through detailed experimental evaluation using simulation,

we find that this approach works well in scenarios where deadlock conditions are

infrequent. However, performance can suffer in scenarios where deadlock events

have high probability because it may not be possible to remove packets from

deadlock cycles as rapidly as new packets arrive to refill buffers in the cycles.

We present an alternative deadlock avoidance approach for DVC networks

which completely eliminates the possibility of deadlock. The main challenge in

devising this scheme is to retain the total freedom to establish virtual circuits on

any network path, while eliminating the possibility of deadlocks involving packet

routing buffer dependencies or the additional dependencies introduced by circuit

manipulation operations. The approach we take is to avoid packet buffer deadlock

by providing a dependency cycle-free virtual network for use as an escape path for

any packets that encounter dependency cycles. In addition, we provide a second

virtual network which decouples packet routing dependencies from the

dependencies introduced by circuit manipulation operations. This enables us to

avoid complex deadlock cycles that involve both types of dependencies.

In addition to presenting the algorithm used to realize the DVC mechanism

with deadlock avoidance, we describe and evaluate the hardware resources and

mechanisms needed to implement this algorithm. Our analysis shows that the

scheme is simple to implement, with only modest hardware requirements. We also

present a correctness argument, based on an analysis of the system’s state space, to

prove that each packet injected into the network using a DVC is delivered to the

9

DVC destination in order. We evaluate the performance of adaptive routing with

DVCs using a detailed simulation model and show that DVCs have the potential to

enable higher performance compared to non-adaptive routing. Compared to the

deadlock detection and resolution scheme, our deadlock avoidance scheme

imposes more restrictions on buffer usage but provides much better performance at

high load levels since deadlock never occurs.

1.2. Reducing Packet Discarding in ATM and IP Switches

The DVC mechanism provides high performance by enabling each connection

to be routed onto a low latency network path from source to destination. To

investigate the potential value of using similar approaches in the context of

switching fabrics used to implement network switches, we have performed a limit

study evaluating the potential performance benefits of explicitly routing selected

flows through IP or ATM multistage network switches.

Modern network switches enable the creation of high-speed multiservice

networks that simultaneously support real-time (deadline sensitive) and best-effort

traffic [Turn86, Part94]. A large-scale network switch uses a multistage switching

fabric to direct packets, or cells, from the switch inputs to the switch outputs. By

adding extra stages to the switching fabric, alternate paths can be provided between

each input and output. These alternate paths can be exploited to reduce traffic

contention that can lead to packet discarding.

Our focus is on the effective management of a low-cost subset of multi-path

switches, those with only a single extra stage for providing alternate paths. The

performance of such a switch is determined by the degree of contention of different

10

flows for switch resources. The potential for contention between traffic flows

depends on the precise set of alternate paths through the switch, which is

determined by the manner in which the extra stage is attached to the remaining

stages. Therefore, we evaluate the performance that results with different

configurations for the connection of the extra stage. Specifically, we compare a

standard butterfly configuration with an alternative configuration that minimizes

worst case contention. Our results show that for some traffic patterns the

alternative interconnection results in a slightly higher probability of meeting

performance (cell loss rate) requirements. To enable effective exploitation of the

alternate paths that are provided by the extra stage, we also investigate traffic

management policies that control the routes that cells use to traverse the switch.

We compare policies that, for select flows, may explicitly route each flow along

one of the alternate paths it can use to a policy that distributes all traffic evenly

among all available paths. Our results show that using the former policies has the

potential of resulting in significantly improved performance compared to the latter

policy.

1.3. Organization

The rest of this dissertation is organized as follows. Chapter 2 summarizes

related work in three areas: routing algorithms for multicomputer and cluster

networks, connection-based routing techniques, and techniques for reducing packet

discarding in large-scale switches used for general-purpose networks. Chapter 3

presents an overview of our proposed DVC technique. Chapter 4 describes a

deadlock detection and correction technique for use with DVCs and evaluates the

11

performance behavior of this approach. Chapter 5 describes a deadlock avoidance

technique for use with DVCs which overcomes the performance limitations

identified for the deadlock detection and resolution approach. Chapter 6 presents

an evaluation of the potential for using adaptive routing and connection-based

routing in the context of large-scale switches for general-purpose networks which

can discard packets in congestion scenarios. Finally, we present conclusions and

suggest directions for future work in Chapter 7.

12

Chapter Two

Background and Related Work

This chapter provides necessary background information and surveys previous

work that is related to this dissertation. Our proposed Dynamic Virtual Circuits

mechanism combines the benefits of adaptive routing and connection-based routing

for multicomputer and cluster interconnection networks. The techniques we use to

provide deadlock-free adaptive routing in DVC networks build on previously

proposed routing algorithms. in Section 2.1 we survey a broad range of these

previously proposed routing algorithms for packet switching multicomputer and

high-end cluster networks. The routing algorithms that we describe vary in degree

of adaptivity, the approaches taken to eliminate packet buffer deadlocks, and the

network topologies for which they can be applied. In Section 2.2, we present

overviews of example switch implementations to illustrate how these routing

algorithms and deadlock elimination techniques have been used in practice. In

Section 2.3, we describe connection-based routing techniques including circuit

switching and traditional static virtual circuits. In addition, Section 2.3 surveys

previous proposals that had similar goals to those of the DVC mechanism —

combining the advantages of adaptive routing and connection-based routing. We

describe the advantages of the DVC mechanism compared to these prior

approaches.

In Chapter 6, we propose and evaluate techniques for exploiting alternate

network paths and adaptive routing to improve performance in a different

networking environment, the design and management of large-scale ATM and IP

13

switches which discard packets when packet buffers overflow. In Section 2.4, we

review previous techniques for reducing the incidence of packet discarding in these

large-scale switches.

2.1. Routing in Packet Switched Multicomputer Networks

In this section we describe representative routing algorithms for

multicomputer and high-end cluster interconnection networks. We focus on

networks that use packet switching in which data transmitted between a source and

destination are partitioned into packets which are individually routed through the

network as directed by the routing algorithm. At each switch, the routing

algorithm determines for each arriving packet the set of output ports which are

appropriate to forward the packet.

2.1.1. Overview of Routing Algorithm Design Issues

The primary goals of routing algorithm design are to maximize the network’s

capacity in terms of throughput and to minimize packet latency at each level of

throughput, and to achieve these goals for a wide variety of traffic patterns. An

additional goal can be to support Quality of Service (QoS) requirements, which for

example may reserve link bandwidth and buffer space for packets that support

high-priority applications or system management functions. Finally, for

multicomputers and high-end cluster networks, the switch must be able to execute

the routing algorithm for each arriving packet quickly, on the order of a few clock

cycles, to ensure the network retains the low latency packet forwarding provided

by high speed switching hardware.

14

The most distinguishing feature of a routing algorithm is its degree of

adaptivity. With fixed-path routing, also sometimes called oblivious, deterministic,

or non-adaptive routing, the path a packet takes through the network depends only

on the addresses of the packet’s source and destination nodes. A fixed-path routing

algorithm can be described by a routing function which takes as input a packet’s

source and destination IDs and current location in the network and returns the

unique output port that the packet must use for its next hop. Although fixed-path

routing is simple, it can give rise to network regions with high traffic congestion

which limits performance.

With adaptive routing algorithms, a packet can take any of multiple paths. In

a packet switching network, at each switch a packet visits, the routing algorithm

can use information in the packet along with the current state of the switch to

determine the appropriate next hop for the packet. The packet’s header typically

includes addressing information such as the destination node ID and the source

node ID. The switch state includes the contents of its packet buffers and the status

of its output links, and may additionally include other state such as the contents of

routing tables or information relayed from other switches about current or recent

traffic congestion in the network. The routing function that describes an adaptive

routing algorithm returns the set of output ports a packet can choose from for the

next hop. An additional selector function can be defined which describes the

selection of exactly one of these output ports which will be used to forward a

particular packet. By allowing packets to select from among multiple output ports,

adaptive routing algorithms can enable reduced network congestion by routing

packets around congested regions, thereby balancing the load on various network

15

resources and reducing packet latency compared to using fixed-path routing.

Both fixed-path and adaptive routing must address the problem of packet

buffer deadlock, a situation that arises when there is a set of resources (e.g., packet

buffers) in which each resource is held by a client (e.g., a packet) that cannot

release the resource until the client first acquires another resource in the set. Since

each client is blocked waiting for a resource to become unblocked, no resource can

be released, and the clients never progress. This problem can spread throughout

the network until all clients in the network join the deadlock and cannot make

further progress.

Figure 2.1 shows an example of a deadlock in which packets have filled the

buffers that are shown. Each packet waits for the next buffer in the cycle to

become free before it can be forwarded. A resource dependency exists from a first

buffer to a second buffer if a packet in the first buffer can be blocked waiting for

the second buffer to become free. In general, every deadlock contains a subset of

resources whose resource dependencies form a cycle.

To eliminate deadlocks, there are two basic approaches: deadlock avoidance,

and deadlock detection and resolution. Deadlock avoidance is based on restricting

the use of resources. For example, packet routing can be restricted such that there

are no resource dependency cycles in the network [Dall87]. As we describe later in

Section 2.1.4.2, these restrictions can be relaxed to allow dependency cycles so

long as packets that become caught in such cycles have an alternative ‘‘escape

path’’ that they can use to leave the cycle [Duat96]. The alternative to deadlock

avoidance is deadlock detection and resolution. As a simple example, some

networks resolve deadlocks by simply discarding packets that experience long

16

Figure 2.1: Deadlock involving three switches. Each switch has a packet
buffer which is full of packets that are blocked waiting for
free space in the packet buffer at the next switch.

delays which may arise either from deadlock or from traffic congestion [Metc76,

Chow88, Kim97]. As we describe later in Section 2.1.5.1, for multicomputer and

high-end cluster networks which do not discard packets, deadlock resolution

requires temporarily adding reserved resources to the network to enable packets

that are stuck in deadlocks to advance [Jaff89].

In general, other problems besides deadlock must be addressed in the design

of routing algorithms and switches. Livelock occurs if a packet continues to move

about in the network (i.e., it does not enter a deadlock) but never reaches its

destination. For example, livelock can occur if a packet is repeatedly discarded

from the network and re-transmitted, never reaching its destination. As another

example, if the path a packet takes through the network contains a loop that does

not include the destination node, the packet may never exit the loop. In this case

livelock can be avoided by ensuring that routes are loop-free or that any routing

17

loops are only followed temporarily. Starvation occurs if a packet becomes

blocked forever at a switch or at a host interface because the packet scheduling

policy always favors other packets for advancement. Even though the packet is

blocked forever, this is not a deadlock situation because there is no cycle of

blocked resources. Starvation can be avoided by using a starvation-free packet

scheduling policy, for example by giving higher priority to older packets.

In networks with regular topologies (e.g., trees, meshes, or ring networks), a

switch can determine which output ports to use to forward a packet by performing

a simple arithmetic calculation based on the coordinates of the current switch and

the packet’s destination node. In contrast, for routing in networks with arbitrary

topologies, routing algorithms cannot use simple arithmetic calculations to route

packets. Instead, for these networks routing tables are provided at each network

node to store the routing function. The contents of the routing tables may be

computed continuously using a distributed algorithm that monitors the costs of

traversing each link of the network and sends cost updates to neighboring

nodes [Taji77, Bert87]. To prevent inconsistent table entries as the distributed

algorithm proceeds, some algorithms require each switch to periodically broadcast

cost information about its adjoining links to every other switch (this is called a

link-state approach) [McQu80]. Each switch uses the broadcast information from

other switches to construct an estimate of the state of the entire network topology.

Since all switches receive the same link state data from the broadcasts, the switches

use the same data to calculate a consistent routing function that, for example,

avoids routing loops. Alternative techniques called distance vector algorithms

require switches to diffuse link state information through the network by sending

18

state information only to immediate neighbor switches. Compared to link state

approaches, distance vector approaches are more susceptible to the problem of

inconsistent table entries at different switches, which can lead to routing loops and

potential livelock. However, distance vector algorithms do not require the global

broadcasts required for link state approaches and can be devised to minimize

undesirable looping [Shin87]. For very large networks, it may be desirable to

employ hierarchical network routing to keep the size of the routing tables from

growing too large [Awer89].

The rest of this section is organized as follows. Section 2.1.2 describes the

pipelined ‘‘cut-through’’ packet forwarding mechanisms used in modern switches

to enable very low end-to-end packet latency compared to naive store-and-forward

packet switching. In order to take full advantage of these fast forwarding

mechanisms, each switch must execute the routing algorithm for each arriving

packet quickly, on the order of a few clock cycles. Next, Section 2.1.3 describes

representative fixed-path routing techniques that have been proposed for early

multicomputers. These techniques are designed to be free of packet buffer

deadlocks and to require only simple logic for implementation. Section 2.1.4

describes several adaptive routing techniques which also avoid deadlocks, and

Section 2.1.5 describes generalized results in the theory of packet buffer deadlocks

in interconnection networks. Two contrasting general approaches for eliminating

packet buffer deadlocks are outlined: deadlock detection and correction, and

deadlock avoidance. Finally, Section 2.2 presents examples of real

implementations of switches for multicomputer interconnection networks.

19

2.1.2. Cut-Through Switching

For parallel systems, the methods used at each switch to interpret, route, and

forward each packet must be fast in order to minimize the end-to-end latency of

packets sent through the network as well as to maximize throughput. In the

simplest form of packet switching, called store-and-forward routing, each packet

that arrives at a switch must be stored completely at the switch before being

forwarded to the next switch. This results in high end-to-end packet latencies due

to queuing delays at each hop. If each link operates at rate r, a packet of length L

which traverses n hops through the network has a minimum end-to-end delay of

n*L/r. Thus with store-and-forward routing, end-to-end latencies increase

proportionally with network diameter.

Current switches avoid such high latencies by using forwarding techniques

that transmit packets through the network in a pipelined fashion in which a switch

can begin forwarding an arriving packet to the next switch before the entire body of

the packet arrives to the switch. At each hop, a very short delay t is incurred for

routing and forwarding the initial portion (of size b < L) of the packet, leading to a

delay of n*t for the initial portion of the packet to reach the destination. The

remaining portion of the packet (length L−b) arrives at rate r, leading to a total

end-to-end latency of n*t+(L−b)/r. For long packets, this delay increases slowly

with network diameter since t is small. Two variations of this basic technique are

virtual cut-through [Kerm79] and wormhole routing [Dall87].

With wormhole routing, the contents of each message are handled as a series

of contiguous data blocks called flow control units, or flits. A flit is composed of a

fixed number of physical transmission units, or phits. A switch may not begin

20

forwarding a message until it has first reserved at the next switch a free buffer that

can store at least one flit. Once the buffer is reserved, each flit of the message may

be transmitted to the buffer whenever it has free space for the flit. Using this flow

control policy, a message can be spread across multiple switches with different flits

of the message stored at buffers at each switch, forming a worm-like path through

the network. If the flit at the front of the message encounters congestion, this flit

blocks and can result in all the subsequent flits of the message also being blocked

at multiple switches along the path. This behavior is the main disadvantage of

wormhole routing since a message which is blocked across multiple switches

consumes the buffers and potentially also consumes link bandwidth for extended

periods while the message remains blocked. Holding these scarce resources for

extended periods prevents other messages from making progress and reduces

overall performance.

With virtual cut-through, messages are partitioned into packets with bounded

length. As with wormhole routing, when the initial portion of a packet arrives at a

switch input port, the switch examines the packet header, determines which output

to use, and if the output is free the switch can begin forwarding the packet

immediately. Unlike wormhole routing, with virtual cut-through a packet that

blocks in the network only consumes resources at a single switch, similar to store-

and-forward routing. This is accomplished using a flow control policy which

ensures that two conditions are satisfied before a switch is allowed to begin

forwarding a packet to the next switch: 1) the output link is idle, and 2) the next

switch is able to receive the entire packet without blocking. The second condition

is satisfied if the next switch has enough free buffer space to accommodate the

21

packet, or if the next switch is currently transmitting a packet and releasing buffer

space at a rate fast enough to guarantee that an arriving packet will not overflow

the buffer. If the head of the packet encounters congestion in the network and

becomes blocked, the second flow control condition described above guarantees

that all the subsequent phits of the packet can accumulate at the buffer at the head

of the path instead of being blocked at multiple switches as occurs with wormhole

routing. Thus with virtual cut-through, a blocked packet only consumes a buffer at

a single switch, whereas resources that span multiple switches are held by the

packet only long enough to forward the packet at full link speed.

There are a number of additional trade-offs between virtual cut-through and

wormhole routing. With virtual cut-through, each buffer must have capacity for at

least one complete packet. With wormhole routing, even buffers with capacity of

only one or two flits suffice, although performance may be improved by providing

larger buffers. The smaller buffer requirements of wormhole routing are becoming

unimportant as improvements in fabrication technology continue to reduce

transistor size, lowering the chip area cost for deep buffers. A second possible

advantage of wormhole routing is that messages need not be chopped into packets

as with virtual cut-through, although breaking long messages into smaller packets

can improve performance by allowing messages to multiplex the use of buffers and

link bandwidth at the granularity of packets.

22

2.1.3. Fixed-Path Routing

With fixed-path routing, the hardware logic required for a switch to determine

where to forward a packet can be very simple and fast, at least for networks with

regular topologies. However, the use of fixed-path routing algorithms may lead to

poor performance for some traffic patterns and does not tolerate node or link

failures which break some of the fixed paths.

Fixed-path routing algorithms that avoid deadlock have been devised for

regular topologies commonly used in multicomputers such as the k-ary n-mesh and

the k-ary n-cube. In those topologies, each node/switch can be labeled with an ID

consisting of n radix-k digits S0S1
. . . Sn−1 where each Si is a value in

0, 1, . . . , k−1. The ID gives the coordinates of the node/switch in an imaginary

n-dimensional space. In the k-ary n-mesh, each switch has links to all the switches

whose IDs differ in exactly one dimension by plus or minus one. In the k-ary n-

cube, there are additionally links between the switches at coordinates 0 and k−1 in

each dimension, thus forming rings in each dimension. The k-ary n-cube is also

called a n-dimensional torus network.

A special case is when k=2. The 2-ary n-mesh and 2-ary n-cube are identical

and are also called binary n-cube, or hypercube. Each switch ID in the hypercube

can be represented by a vector of n radix-2 digits (i.e., n bits). The dimensions that

must be traversed along any minimal (i.e., shortest-hop) path from a source node to

a destination node are determined by taking the bitwise XOR of the two bit vectors

used as their node IDs. The positions of the ‘‘1’’ bits in the result identify the

dimensions that must be traversed, and the number of ‘‘1’’ bits is the number of

hops in the minimal paths.

23

In k-ary n-meshes in which each switch has a separate packet buffer for

packets that arrive on each dimension, deadlock-free fixed-path routing can be

achieved by ordering the dimensions and restricting packets to minimal paths that

traverse the dimensions in order. This approach, called Dimension Order Routing

(DOR), and sometimes called e-cube routing in the hypercube [Sull77, Lang82],

eliminates any dependency cycles that include buffers belonging to different

dimensions. Since physical cycles do not exist within a single dimension in the k-

ary n-mesh, there is no way a dependency cycle can form within a dimension.

Thus with no dependency cycles within a dimension and no dependency cycles

between dimensions, DOR in the k-ary n-mesh is deadlock-free [Dall87].

In contrast to the k-ary n-mesh, the k-ary n-cube with k≠2 has a physical

cycle within each of the n dimensions. Buffer dependency cycles within a

dimension can be removed by introducing a second buffer at each switch input port

that is used exclusively by any packets from the point they traverse an ‘‘end-

around link’’ (i.e., the link between coordinate positions 0 and k−1) in a dimension

until they reach the destination or change dimensions. Using this second buffer,

which has its own flow control, eliminates the cycle of buffer dependencies within

each dimension.

In general, fixed-path deadlock-free routing for any topology can be devised

using the methodology presented in [Dall87]. In this methodology, each link is

conceptually divided into multiple buffering virtual channels, or BVCs. Note that

BVCs are usually called ‘‘virtual channels’’, but we use the term BVC since the

term ‘‘virtual channel’’ is also commonly used to express a completely different

concept (which has to do with virtual circuits, as we introduce later in

24

Section 2.3.2). A BVC is a packet buffer for which the switch provides separate

flow control. The routing algorithm determines which link and BVC a packet will

use on each hop. A buffer dependency graph for a routing algorithm is defined as a

graph in which the vertices are BVCs and there is an edge from BVC ci to BVC cj

if and only if the routing algorithm can direct a packet which is stored in ci to be

forwarded in one hop to cj. For fixed-path routing, this buffer dependency graph

must be acyclic to guarantee deadlock-freedom. It can be shown that the buffer

dependency graph is acyclic if and only if the routing algorithm assigns a partial

ordering to the BVCs and requires packets to use the BVCs according to that

ordering.

2.1.4. Adaptive Routing

Fixed-path routing cannot adapt to changing traffic patterns and cannot

tolerate faults in network switches or links which break some of the fixed paths and

disconnect some sources and destinations. In contrast, adaptive routing algorithms

can adapt to changing traffic patterns, and some adaptive routing algorithms can

route packets around failed components, ensuring no loss of connectivity.

Adaptive routing algorithms can be classified as fully adaptive or partially

adaptive. Fully adaptive routing algorithms allow all minimal paths (i.e., all

shortest hop paths) to be used between each source and destination node, whereas

partially adaptive algorithms allow only a strict subset of the minimal paths to be

used. Some routing algorithms also allow non-minimal paths that are longer than

shortest hop paths. Routing algorithms that tolerate the loss of any single link or

switch usually must be non-minimal, since some source-destination pairs are

25

connected by only a single minimal path. With non-minimal routing, packets can

travel away from their destinations as well as closer to them. This may introduce

the possibility of livelock, in which some packet forever loops in the network

without reaching its destination. Thus non-minimal routing algorithms should be

free of both deadlocks and livelocks.

To avoid deadlock, adaptive routing algorithms can take the same approach as

used with fixed-path routing algorithms in which the network’s buffer dependency

graph is constrained to be acyclic. We describe schemes that take this approach in

Section 2.1.4.1, and alternative approaches that provide greater routing flexibility

by allowing dependency cycles in Section 2.1.4.2.

2.1.4.1. Adaptive Routing without Buffer Dependency Cycles

Most early attempts to provide fully-adaptive deadlock-free routing were

based on ensuring acyclic buffer dependency graphs, the same basic approach

which is required for deadlock-free fixed-path routing. Some of these early

approaches took straightforward approaches which amounted to allocating a BVC

at each link for each distinct network path that all packets could take through the

link [Hilb89, Lind91]. The resulting solutions are extremely hardware-intensive as

the number of BVCs grows exponentially with the network size.

One way to reduce the hardware costs is to give up fully adaptive routing in

favor of providing only partially adaptive routing. For example, Konstantinidou

proposed a partially-adaptive routing algorithm for the hypercube [Kons90a]. In

this algorithm, the only paths that can be taken are minimal paths that consist of

two series of hops. In the first series of hops, links are traversed for all the

26

dimensions in which the source coordinate is zero and the destination coordinate is

one. These zero-to-one transitions may be taken in any order. In the second series

of hops, links are traversed for all the dimensions in which the source coordinate is

one and the destination coordinate is zero. These one-to-zero transitions may be

taken in any order. At the end of these series of hops, the packet has reached its

destination. The scheme is adaptive since the dimensions are not required to be

traversed in a fixed order, but it is not fully-adaptive since no one-to-zero

transitions are allowed to be taken before any zero-to-one transitions. Deadlock-

freedom is preserved by using two buffers at each switch, one buffer for packets

that are taking the first series of hops, and a second buffer for packets that are

taking the second series of hops. Packets in the first buffer wait only for buffers at

switches with more ‘‘1’’s in their addresses or for the second buffer at the same

switch. Packets in the second buffer wait only for buffers with fewer ‘‘1’’s in their

switch addresses. As a result, there are no cycles in the buffer dependency graph,

and the network is deadlock-free. To avoid the bottleneck this approach incurs

near switches with many ‘‘1’’s in their address, an additional buffer can be added

to each switch for use by a subset of the packets which take the two series of hops

described above in the opposite order.

A similar approach called planar-adaptive routing has been proposed for

non-minimal partially-adaptive fault-tolerant routing for k-ary n-meshes and k-ary

n-cubes [Chie92, Chie95]. In this approach, each 2-D plane (or m-D sub-mesh) is

provided enough BVCs to enable dependency cycle-free fully-adaptive routing

within that plane (or sub-mesh). Packets are restricted to traverse the planes (or

sub-meshes) in a particular order, thus ensuring there are no buffer dependency

27

cycles that span different planes (or sub-meshes), and therefore the entire network

is deadlock-free. For fault-tolerance, a mechanism is provided for detecting faulty

switches or links and for deactivating neighboring healthy switches/links in order

to form convex regions of faults in the topology. After the formation of convex

fault regions, packets that reach these regions switch to a new routing mode in

which the packets take hops along the periphery of the fault region until reaching a

switch from which they can continue to their destination node using the normal

routing mode.

The Turn Model [Glas92, Glas94] is a different approach to deadlock-free

adaptive routing that does not rely on multiple BVCs per link and which,

depending on the topology, may or may not allow adaptive, fully-adaptive or non-

minimal routing. In this approach, which works with topologies that have multiple

dimensions (e.g., k-ary n-mesh), the ‘‘turns’’ of the network are analyzed, where a

turn is a possible change of dimensions or directions within a network path. For

example, in a 2-D mesh, a path can change from the X dimension to the Y

dimension, and can do so going in various directions within each dimension (the

full set of possible turns for the 2-D mesh is +X+Y, +X-Y, -X-Y, -X+Y). A

sufficient condition for deadlock-freedom is that the paths taken by packets in the

network use a set of turns which cannot be arranged to form a cycle. In the Turn

Model methodology for designing routing algorithms, all possible turns are

analyzed, and the minimum number of turns is prohibited such that the remaining

turns cannot form a cycle. The remaining turns determine the routing algorithm

and its adaptivity. Often the resulting algorithms allow non-minimal paths to be

taken, which can be used to avoid faulty components or congestion.

28

2.1.4.2. Adaptive Routing with Buffer Dependency Cycles

The routing algorithms described in the previous section rely on the fact that

an acyclic buffer dependency graph is a sufficient condition for deadlock

avoidance. However, acyclic buffer dependency graphs are not necessary for

avoiding deadlock with adaptive routing.

For example, in the Compressionless Routing scheme, packets can take any

routes which may incur buffer dependency cycles, but any packets that block in the

network are removed from the network and re-transmitted from the source

node [Kim97]. Fault-tolerant and deadlock-free routing are provided by adding to

the tails of messages sufficient padding flits to ensure that the head of the message

arrives at the destination before the last padding flit is transmitted by the source. In

this way, a packet that becomes blocked at a faulty switch or enters a deadlock is

able to use the backpressure flow control signaling mechanism of wormhole

routing to signal to the source node that there is a problem. The signaling causes

the packet to be removed from the network and for the source node to retransmit

the message. Any minimal path may be chosen for the packet to traverse. The

number of required padding flits is determined by the number of pipeline stages

(transmission stages plus buffering stages) that the packet must traverse on a

minimal path from source to destination. Compressionless routing can use non-

minimal paths by adding additional padding flits beyond what is needed for

minimal paths. A potential problem with Compressionless routing is that

retransmissions are not guaranteed to eventually succeed in delivering a message to

the destination. Thus without introducing some further mechanism, the scheme is

susceptible to livelock.

29

A different approach to non-minimal fully-adaptive routing that does not rely

on retransmissions is misrouting. In one example of this approach, a central packet

buffer is provided at each switch. Whenever the buffer is full, the switch must

transmit a packet on each output link, even if doing so would require one or more

of the packets to be transmitted in an ‘‘unprofitable’’ direction that takes it one hop

further away from its destination [Ngai89a, Ngai89b, Ngai87]. This rule

guarantees that the switch frees buffer space that can be used to receive packets

from the neighbors, and therefore the network is deadlock-free. Any buffer

dependency cycles are broken dynamically by misrouting packets to outputs that

the packets were not waiting for. Livelocks are avoided by assigning unique

priorities to packets such that during a packet’s lifetime in the network, at most a

bounded number of other packets will be assigned higher priorities. One policy

that satisfies this requirement defines priority as a combination of a packet’s age

and distance in hops from its destination, where older packets have highest priority,

and packets closer to their destinations have higher priority among equally aged

packets. Only the lowest priority packets in the buffer are routed in unprofitable

directions. Misrouting has the advantage of sending packets away from regions of

high traffic congestion. This increases traffic at the periphery of a congested

region, but decreases congestion in the interior of the region. This scheme is

applicable to any network topology that has a path from each switch to every other

switch and in which all switches have output bandwidth that equals or exceeds the

input bandwidth. The primary disadvantage of this approach is the hardware

complexity required to select which packets must be misrouted.

Chaos routing is a similar misrouting routing method that has reduced

30

hardware complexity [Kons91, Kons90b]. In this scheme, switches have small

packet buffers at each input port and one larger central buffer. Packets that arrive

to a switch input buffer and do not make progress after a timeout are placed in the

central queue. Packets in the central queue have priority over packets in the input

buffers for profitable transmission. If the queue becomes full, however, then one

of the packets in the queue is picked at random and misrouted. The misrouting

behavior guarantees deadlock-freedom, and the randomness of the selection from

the central queue guarantees livelock-freedom in a probabilistic sense rather than in

a deterministic sense. It has been shown that with this technique, the probability

that a packet will require t hops to be delivered tends to zero in the limit as t tends

to infinity.

Several approaches have been devised for deadlock-free adaptive routing that

allow buffer dependency cycles and do not rely on re-transmissions or packet

misrouting. One of the first examples of these approaches was a technique

presented in [Pifa91]. In this approach, a routing function is identified which leads

to an acyclic buffer dependency graph. However, the routing function is then

extended such that packets can take hops that do not correspond to edges in the

acyclic buffer dependency graph as long as after doing so, the packet would be able

to reach its destination by taking only hops that correspond to edges in the acyclic

buffer dependency graph. The network remains deadlock-free because packets that

encounter buffer dependency cycles always have the option to follow the basic

routing algorithm which is dependency cycle-free. The routing algorithms that

result from this approach improve on the algorithms in [Kons90a], by providing

fully-adaptive routing with the use of only two BVCs per switch and without

31

introducing bottlenecks at switches that have many ‘‘1’’s in their address. Packets

are routed along all the zero-to-one transitions using the first BVC. In addition,

packets can also take one-to-zero transitions using this BVC, so long as the packet

requires an additional zero-to-one transition to reach its destination. Once all the

zero-to-one transitions are done, then the packet is placed in the second BVC and

all necessary remaining one-to-zero transitions are then taken in any order. Since

every packet in the network has the option to be routed according to the acyclic

channel dependency graph of [Kons90a], the scheme preserves deadlock freedom

even though the routing function does not restrict packets to take hops that

correspond to edges in this graph.

A similar approach which provides deadlock-free non-minimal fully-adaptive

routing for k-ary n-cubes and k-ary n-meshes is presented in [Dall93]. The basic

idea is to provide escape paths for packets that encounter buffer dependency

cycles. Two specific algorithms are presented, one termed ‘‘static’’ and the other

‘‘dynamic’’.

In the ‘‘static’’ approach of [Dall93], the n dimensions of the network are

ordered, and packets initially try to traverse the dimensions in increasing order. A

packet that encounters blocking in this first phase may then proceed to take a path

that deviates from the dimension ordering by taking a hop on a lower dimension

than it has previously traversed. Such a packet is said to have undergone a

Dimension Reversal, and the number of times a packet has done this is the packet’s

Dimension Reversal Number (DRN). The buffers (BVCs) at each switch are

partitioned into classes in which the packets of a single class all have the same

DRN. As a packet traverses the network, it changes class upon each Dimension

32

Reversal it undergoes. If the packet enters the final class, it is not permitted to

undergo further Dimension Reversals and must reach its destination using fixed

Dimension Order Routing (DOR). The algorithm allows packets that have not run

out of Dimension Reversals to take non-minimal paths to avoid faulty switches or

links. The routing algorithm is deadlock-free since packets can always escape

from buffer dependency cycles within a buffer class by transitioning to the next

higher class through a Dimension Reversal.

In the ‘‘dynamic’’ approach of [Dall93], the BVCs are divided into two

classes: adaptive and deterministic. Packets start out in the adaptive channel class.

Each packet is tagged with its DRN. A packet with DRN p is not allowed to wait

for a packet at the next switch with DRN q if p ≥ q. If there is no other choice,

however, then the packet with DRN p transitions from the adaptive class into the

deterministic class, where it continues to the destination using DOR.

Finally, the Disha non-minimal fully-adaptive routing algorithm takes an

approach which is similar to but simpler than the approach just described [Anja95].

To eliminate deadlocks, this scheme provides an escape path for any packet that

becomes blocked for a timeout period. A token is cycled through the network that

can be grabbed by any switch that has a blocked packet. The switch that grabs the

token forwards the packet onto a dedicated virtual network that is empty except for

the packet. Once the packet is delivered, the token is released back into the

network. The original Disha technique was later generalized to avoid the need for

the token and exclusive access to the escape path virtual network [Venk96]. The

resulting approach inspired the basic deadlock avoidance mechanism for data

packets which is presented in Chapter 5 for Dynamic Virtual Circuits.

33

2.1.5. Packet Buffer Deadlock: Theory

In this section we examine further the two basic approaches for eliminating

deadlocks: deadlock detection and resolution, and deadlock avoidance. Deadlock

detection and resolution provides maximum flexibility in the use of network

resources, but can suffer from occasional deadlocks that must be resolved.

Deadlock avoidance imposes some restrictions on the use of network resources to

eliminate the possibility of deadlock.

2.1.5.1. Deadlock Detection and Resolution

In this section we describe an approach that has been proposed for deadlock

detection and resolution in communication networks [Jaff89]. This approach is

attractive because it does not restrict routing in any way. In general, routing

restrictions can result in inefficient use of system resources. With this deadlock

detection and resolution approach, the network can freely utilize most of its

resources to improve performance rather than constraining its use of resources in

order to avoid deadlocks. As a result, it is possible for deadlock to occur, but the

deadlock detection and resolution scheme removes any deadlocks that arise. The

scheme can be effective in environments where deadlocks are rare events. This

can be the case in networks that use adaptive routing techniques that are effective

at relieving severe network congestion which could be a precursor to deadlocks. In

Chapter 4 we extend this scheme to be applied to Dynamic Virtual Circuits

networks.

The deadlock detection algorithm is initiated when a buffer containing

packets fails to make progress in a specified timeout period. The algorithm

34

identifies a cycle of similarly blocked buffers as a potential deadlock. Deadlock

resolution is accomplished by introducing an additional buffer into each switch in

the potential deadlock cycle. The additional buffer allows a single packet in each

switch of the cycle to advance by one hop. Once the hop is taken, the extra buffer

is removed. Through this mechanism, packets involved in deadlock cycles make

progress and eventually escape from the cycles.

The algorithm detects and corrects deadlocks in packet switching networks

whose switches have the following properties: each switch has a central buffer

instead of using input or output buffering; links are bidirectional; inputs and

outputs can all operate simultaneously; and the routing algorithm directs packets

eventually to their destinations. It is shown in Chapter 4 how this algorithm can be

extended for use in a network with input-buffered switches and with Dynamic

Virtual Circuit switching.

In the original algorithm [Jaff89], whenever a central buffer becomes full and

remains so for some time without transmitting any packets, a deadlock is

suspected. When a switch decides it may be in a deadlock, it first attempts to

determine if there is a cycle of switches with full buffers which may form a

potential deadlock. That is, all actual deadlock cycles are found by the algorithm,

but the algorithm may find other transient cycles as well, if the buffers along those

cycles are advancing very slowly. A cycle is found by a distributed technique that

requires each blocked switch to query a neighbor to which it has packets. Switches

that participate in cycle detection and have full buffers are not allowed to inject any

new packets into the network until detection is complete. In response to a cycle

detection query, a switch either replies that there is no cycle, causing the algorithm

35

to terminate, or it sends back a number as a reply. The number is the maximum of

the switch’s node ID and the largest number the switch has received in the current

search for a cycle. If there is a cycle, one switch in the cycle has the highest node

ID. Eventually, this switch will transmit its node ID to answer a query, and this

node ID will loop around the entire cycle and be received by the same switch.

Such a switch that receives its own ID declares itself the leader of the cycle. The

leader sends a notification around the cycle to commit each member to perform the

deadlock recovery step, a procedure called rotation. Any member of the cycle

which has discovered in the meantime that it is not part of a deadlock may, until it

commits to rotation, cause all the switches in the cycle to cancel rotation.

If all switches in a cycle commit to rotation, then one packet in each buffer in

the cycle is rotated one hop along the cycle (without violating the routing function

by misrouting packets). This is accomplished as follows. A special ‘‘Auxiliary

Buffer’’ is reserved for use only in rotation. Upon starting rotation, the Auxiliary

Buffer is activated in each switch in the cycle. One packet at each switch in the

cycle is forwarded one hop along the cycle path and is stored in the Auxiliary

Buffer at the next switch. The rotation causes each switch in the cycle to transmit

exactly one packet, freeing a slot in the normal buffer. The rotation also causes

each switch in the cycle to receive exactly one packet, which arrives to the

Auxiliary Buffer and then is transferred to the empty slot in the normal buffer.

Finally, to complete the rotation process, the now empty Auxiliary Buffer is

deactivated at each switch in the cycle.

The rotation process or cancelling of cycle detection completes one iteration

of the algorithm. After one or more iterations, a packet may reach a switch where

36

it can be delivered or transmitted to a switch that is not part of the deadlock cycle.

This frees a slot in one of the buffers of the deadlock cycle, thus resolving the

deadlock. However, in the worst case the deadlock can persist because new

packets are injected into the cycle from switches outside the cycle. Even in this

worst case, all packets are guaranteed to be delivered eventually to their

destinations by repeated iterations of the rotation procedure. For consistency,

switches distinguish between different iterations of the deadlock detection and

resolution algorithm. Each switch maintains a sequence number, which it stamps

on outgoing requests and replies. Any requests that arrive stamped with higher

numbers than the switch’s current sequence number are queued and handled by the

switch on its subsequent iterations.

The cycle detection and deadlock resolution algorithm requires, at each

switch, a fixed amount of storage (the Auxiliary Buffer, equal to the size of one

packet) that is available even when the normal buffer is full. Further details of the

algorithm can be found in [Jaff89].

2.1.5.2. Deadlock Avoidance

In this section we summarize previous results that generalize the theory of

deadlock avoidance and subsume many of the deadlock avoidance approaches

presented for the routing algorithms described in the previous sections. These

results enable developing a wide range of adaptive routing algorithms that avoid

deadlocks by selectively restricting packet routes or the use of buffers (BVCs) at

each switch. We make use of the results presented in this section in Chapter 5

where we present an approach for deadlock avoidance in DVC networks.

37

We describe in an informal fashion the necessary and sufficient conditions for

deadlock avoidance which were formulated by Duato for virtual cut-through

networks [Duat96]. The key idea is that the use of BVCs must be restricted such

that each packet in the network can use at least one of the BVCs at a neighboring

switch as an escape route from any dependency cycles. The escape route

guarantees the packet can eventually advance.

Duato also proved similar results for wormhole networks [Duat95]. With

wormhole routing a packet may become blocked across multiple switches

simultaneously. As a result, the set of buffer dependencies is larger with wormhole

routing than with virtual cut-through. Therefore, some routing algorithms that are

deadlock-free in virtual cut-through networks can be prone to deadlock in

wormhole routing networks. We do not discuss any further the conditions for

deadlock-freedom in wormhole routing networks but instead focus on virtual cut-

through networks.

A routing algorithm can be described by a routing function denoted as R

which takes as input the current BVC that is storing a packet and the packet’s

destination node ID, and returns as output the set of BVCs at neighboring switches

to which the packet may be forwarded in one hop. In a virtual cut-through

network, Duato has shown the necessary and sufficient condition that routing

functions of this form must satisfy to guarantee deadlock-freedom. Duato

introduces the notion of a restricted routing subfunction R1, a mathematical device

used to analyze a network’s routing function R. When given the same inputs

(current BVC, destination node ID) as routing function R, a routing subfunction R1

returns a subset of the BVCs returned by R. Duato showed that a routing function

38

R is deadlock-free if and only if a routing subfunction R1 can be found that is

fully-connected (i.e., can route packets from any node to any other node) and that

acts as an escape path for packets that enter dependency cycles caused by the full

routing function R.

We denote by C the set of all BVCs that are returned by routing subfunction

R1. These BVCs are used as escape resources from dependency cycles. A BVC

can be used as an escape resource for all packets, or alternatively it can be used as

an escape resource only for packets with particular destinations.

Duato defines the extended resource dependency graph for a routing

subfunction R1 to be a graph where the vertices are the BVCs in C and the edges

are the dependencies between these BVCs that arise from using the routing

subfunction R1. In particular, there is a dependency from BVC qi to BVC qj,

where both qi and qj are members of C, if and only if a packet can arrive to qi as a

result of using the full routing function R and then subsequently can be routed in

one hop using the routing subfunction R1 to BVC qj.

There are two types of such dependencies. A direct dependency exists from

qi to qj if it is possible for a packet to use qi as an escape resource (i.e., if the

packet can arrive at qi as a result of using routing subfunction R1), and if such a

packet can subsequently be routed using R1 to qj in one hop. A direct cross

dependency exists from qi to qj if it is possible for a packet to arrive to qi by using

the full routing function R but not by using the routing subfunction R1, and if such

a packet can subsequently be routed using R1 to qj in one hop. Direct cross

dependencies cover the case where a BVC qi is an escape resource for packets with

one set of destinations, but these packets are not routed to qj according to R1,

39

hence there is no direct dependency. However, it is possible that packets with

other destinations can be routed to qi using the full routing function R, and from

there if the routing subfunction R1 can route these packets to qj, then there is a

dependency arising from R1 from qi to qj.

Duato proved that ‘‘A connected and adaptive routing function R ... is

deadlock-free iff there exists a routing subfunction R1 that is connected and has no

cycles in its extended resource dependency graph.’’ Duato derived additional

results that are specific to a subclass of the routing functions considered above.

Routing functions in the subclass take as input the packet destination and the

current node ID (as opposed to the current BVC). In this case, for deadlock

avoidance it is sufficient to ensure that the set of BVCs supplied by the routing

subfunction R1 are always supplied by R1 whenever the routing function R also

supplies them. This leads to a routing algorithm design methodology that first

allocates a set C of BVCs for a deadlock-free routing subfunction R1, and then

adds other BVCs for use only by the routing function R and not R1. The routing

function R may use the new BVCs in any manner that directs the packets

eventually to their destinations, so long as all packets in the new BVCs can be

routed in one hop to a BVC in set C.

2.2. Switch Implementations

This section briefly describes representative examples of switch

implementations for multicomputers or as standalone proof-of-concept switch

prototypes. The switches employ various routing techniques that were outlined in

the previous sections.

40

One of the earliest multicomputer switches was the Torus Routing Chip

developed at Caltech in the mid-1980s [Dall86]. This design employs wormhole

routing for 2D torus networks with Dimension Order Routing. Two BVCs per link

are provided to prevent deadlock [Dall87].

The Chaos Router Chip was developed at the University of

Washington [Kons91]. This device uses virtual cut-through and non-minimal

fully-adaptive routing. A central queue buffers packets. Packets in the central

queue are pseudo-randomly chosen for misrouting in order to prevent deadlock.

The IBM SP2 switch was designed to connect RISC System/6000 processors

together via a multistage interconnection network [Stun95]. The SP2 switch

employs buffered wormhole switching. Buffered wormhole switching is very

similar to wormhole routing. The only distinction is that each arriving message

uses a switch input buffer until the message blocks, in which case the message is

transferred to a larger central queue at the switch that is storing the head of the

message. In many cases the central queue has sufficient free space to buffer the

entire message, as with virtual cut-through. However, if the central queue has

insufficient free space for the entire packet, then the packet blocks in the multiple

switches in the network just as in wormhole routing. The network employs source

routing, in which the source node places routing flits at the beginning of each

packet to specify the entire path the packet will use to reach the destination.

Switches along the path interpret the first routing flit in the packet to determine

where to forward the packet on the next hop. A switch that uses up the information

in the first routing flit deletes that flit from the packet, in which case the following

routing flit becomes the new first routing flit and will be processed by the switch at

41

the next hop.

The SGI Spider chip was the switch used in the SGI Origin

multiprocessor [Gall97]. The switch has 4 BVCs per link, where each BVC uses a

256-byte buffer organized as Dynamically-Allocated Multi-Queue (DAMQ)

buffer [Tami88a]. The switch uses routing table lookup to route packets. The

routing tables are software-programmable and must be assigned values that avoid

deadlock. The routing tables at each switch are hierarchical: a ‘‘metatable’’

specifies routing for the high-order 5 bits of a packet’s destination address while a

‘‘local table’’ specifies routing for the low-order 4 bits of a packet’s destination

address once the packet reaches a switch with a matching high-order 5 bits. The

use of hierarchical routing reduces the size of each routing table from 512 entries

(one per destination) to 48 entries. An interesting optimization provided by the

Spider chip is that the routing tables indicate the output link a packet will use at the

next switch rather than at the current switch. This output port ID is transmitted

with the packet, allowing a switch that receives the packet to immediately initiate

crossbar arbitration for the appropriate output link and in parallel perform routing

table lookup to determine the output link the packet will use at the next switch.

Another interesting feature of the Spider chip is that it can recover from physical

transmission errors at the link level transparently to the routing algorithm and to

the packet source and destination nodes. This capability is enabled in the Spider

chip by employing a go-back-n ARQ protocol [Bert87] across each link to quickly

detect and retransmit corrupted data phits between the two endpoints of each

point-to-point link.

The final example we present is the Cray T3E switch. The Cray T3E network

42

topology is a 3-D torus. The network provides fault-tolerant minimal fully-

adaptive routing and support for fast distributed eureka and barrier

operations [Scot96b]. Each switch has 5 BVCs per link, plus one unbuffered BVC

dedicated for high-priority synchronization flits (for barriers and eurekas). Two of

the BVCs are used for deterministic routing of remote read/write requests, and two

other BVCs are used for deterministic routing of the replies. The fifth BVC is used

for minimal fully-adaptive routing with buffer dependency cycles. A packet using

a deterministic BVC may, on its next hop, transmit to another deterministic BVC

or may alternatively transmit in any profitable direction to an adaptive BVC that is

free. The routing algorithm used by the four deterministic BVCs is direction-order

routing, which derives from the Turn Model [Glas94]. Direction-order routing

orders the directionsiiiiiiii in the network (as opposed to the dimensionsiiiiiiiiii of the network).

The order chosen for the Cray T3E network is +X, +Y, +Z, -X, -Y, and -Z. This

ordering of directions removes enough turns to prevent dependency cycles. In

addition to the path specified by direction-order routing, a packet may take one

initial hop in any positive direction before following the direction-order path to the

destination. A final hop in the -Z direction may also be taken. These initial and

final hops do not introduce dependency cycles. Furthermore, they can be used to

route around faulty or missing nodes or links within a two-dimensional plane of the

network. The network uses wormhole routing except for the adaptive BVC, which

employs virtual cut-through. Using virtual cut-through for the adaptive BVC

eliminates some dependencies that would be present with pure wormhole routing

and would complicate deadlock avoidance [Duat95].

43

2.3. Connection-Based Routing

In this section we review related work on connection-based routing, in which

resources are reserved in advance of communication at each switch along the path

from source to destination. Compared to pure packet switching, connection-based

routing reduces the overhead for forwarding each packet but introduces connection

setup/teardown operations. Connection-based routing can improve network

efficiency so long as these new operations are fast or occur infrequently, e.g., for

workloads in which each connection is used by several packets [Hsu92].

In Section 2.3.1 we describe circuit switching, the most elementary form of

connection-based routing in which connection establishment reserves all the link

bandwidth along a path from a source to a destination. In Section 2.3.2 we

describe virtual circuit switching, which combines some of the advantages of

circuit switching and packet switching. In particular, virtual circuit switching

allows data transmission on an established circuit to have low routing and

sequencing overheads, similar to circuit switching, while retaining the advantage of

packet switching that each link can be time-shared at packet granularity by traffic

with different source nodes and destination nodes.

2.3.1. Circuit Switching

With circuit switching, each connection, or circuit, reserves all the bandwidth

on a network path from the source node to the destination node. Once the circuit is

established, data can be transmitted at full link bandwidth without the need to

transmit control information for routing or sequencing [Chow88]. However, the

physical links on a circuit’s path are statically allocated to the circuit throughout its

44

lifetime. Even when no information is being sent through the established circuit,

the links cannot be used for other circuits.

Circuit switching was used by the JPL Hyperswitch binary n-cube

multicomputer [Chow87, Pete88, Chow88]. In this network, each circuit is

established to transmit exactly one message of arbitrary length, and then the circuit

is torn down. The Hyperswitch uses an adaptive routing approach based on header

backtracking to establish new circuits. Similar backtracking adaptive routing

algorithms have been proposed for wormhole networks [Alle94]. With header

backtracking in the JPL Hyperswitch circuit switching network, to transmit a

message a source node injects a circuit establishing header which traverses the

network and allocates links to the new circuit until the header reaches a link which

is already allocated to another circuit. Instead of waiting for the link to be released,

the header may backtrack by one hop to the last switch it visited and try another

path. The algorithm attempts to avoid congested regions (subcubes of the

hypercube) by not retrying the dimension that was blocked until all other

dimensions have been attempted without success. The scheme provides minimal

adaptive routing in the sense that the final circuit, once it is established, is

guaranteed to use a minimal path to the destination. However, since the header

may backtrack, more switches than necessary may be visited than in a non-

backtracking minimal routing scheme. Once a circuit is established, the message is

guaranteed to reach its destination since it can use all the bandwidth on the circuit’s

path. However, there is no guarantee that circuit establishment will succeed in

finding a free path to the destination, and the header may backtrack all the way

back to the source node. Therefore, livelock is possible in which a sender may re-

45

inject the same header infinitely many times, each time unsuccessful in setting up a

path to the destination.

2.3.2. Virtual Circuit Switching

Virtual circuit switching [Bork90, Dao97, Hsu92, Tyme81] is a form of

connection-based routing which provides end-to-end connections called virtual

circuits. The network’s physical resources (packet buffers, link bandwidth, etc.)

are multiplexed among active virtual circuits, unlike with circuit switching. Once a

virtual circuit is established, packets can be sent without the addressing and

sequencing information needed in pure packet switched networks. Packets are

quickly forwarded along the virtual circuit’s network path by using a single lookup

in a small virtual channel table at each hop. This mechanism enables low overhead

packet forwarding even in networks with irregular topologies [Flin00]. In these

topologies, intermediate nodes between a source and destination cannot use simple

algorithmic routing. Instead, routing is based on large tables at each node which

are constructed at system initialization and may be changed over time to adapt to

changing traffic conditions. With virtual circuits, the routing tables can be used

during virtual circuit establishment to determine a virtual circuit’s network path.

Subsequently, packets are forwarded along the path using the more efficient virtual

circuit forwarding mechanism.

A traditional virtual circuit is static; it holds an unchanging set of resources

throughout its lifetime. Section 2.3.2.1 describes static virtual circuits in more

detail. Section 2.3.2.2 then discusses previously proposed or implemented

approaches for removing the static restrictions of virtual circuits. We also discuss

46

the advantages of Dynamic Virtual Circuits compared to these prior approaches.

2.3.2.1. Static Virtual Circuits

With virtual circuits, a source node initiates communication with a destination

by establishing a new virtual circuit on some path to the destination. The source

node then transmits one or more data packets over the new virtual circuit. The data

packets are forwarded at each intermediate switch with very little processing and

carry only a few bits of overhead (packet header) information. Finally, the source

terminates the virtual circuit. Each source and each destination may have many

virtual circuits established at the same time.

We next describe the basic steps of virtual circuit establishment and

disestablishment. Consider a virtual cut-through network composed of n x n

switches interconnected with bidirectional point-to-point links. At each switch,

one or more ports may connect the switch to one or more hosts. The switch is

input buffered with an n x n crossbar connecting the n input ports to the n output

ports.

The source host establishes a new virtual circuit by injecting a Circuit

Establishment Packet (CEP) into the network. The CEP records the virtual

circuit’s source and destination addresses, which are used to adaptively route the

CEP. For example, CEP routing may be accomplished through the use of routing

tables maintained at each switch, such as in the SGI Spider chip [Gall97].

A CEP allocates for a new virtual circuit one Routing Virtual Channel (RVC)

on each link it traverses on its path from source to destination (including the source

and destination host interface links). An RVC is an entry in a table at the switch

47

input port that is connected to the link. Each physical link is logically subdivided

into multiple RVCs. Each packet header has a field that identifies the RVC used

by the packet. At each switch, the mapping from input RVC to output RVC is

recorded in an ‘‘Input Mapping Table’’ (IMT) at the input port. The IMT is

indexed by the RVC value in the header of an arriving packet. An IMT entry

records the next hop routing information for the virtual circuit that has allocated the

RVC. This routing information consists of the switch output port and the output

RVC value to use to forward packets that are using the virtual circuit. An example

of an established virtual circuit is shown in Figure 2.2.

Process B

Process A

RVC 13

RVC 2

O

I

I

O

RVC 3 1 22
RVC 3

RVCOportValid

HOST

HOST

PIF

PIF

Figure 2.2: A virtual circuit directed from process A to process B and
traversing three switches. The circuit enters the network using the
processor interface (PIF) at the topmost switch. At the input port of the
next switch, the Input Mapping Table (IMT) specifies the output port
(Oport) and Routing Virtual Channel (RVC) ID to use for the next hop.
The circuit uses RVC 3 of the first link and RVC 2 of the second.

Note that we use the term ‘‘RVC’’ instead of the more standard ‘‘virtual

48

channel’’ to distinguish it from the same term commonly used to refer to flow-

controlled buffers that prevent deadlock and increase performance [Dall87]. As

described in Section 2.1.3, we call the latter Buffering Virtual Channels, or

‘‘BVCs’’. In contrast, ‘‘RVCs’’ simply identify virtual circuits, and they do not

require separate flow-controlled buffers.

The source may transmit one or more data packets over a new virtual circuit.

Each data packet is quickly routed at each switch, by accessing the IMT entry with

the RVC value in the packet header. The RVC value in each packet’s header is

overwritten with the output RVC value recorded in the IMT entry, and the packet is

enqueued for transmission to the next switch. The RVC number is the only

addressing information that must be transmitted with the packet. Since all packets

that use the circuit take the same path through the network, the packets arrive at the

destination in FIFO order, thus no additional sequencing information must be

transmitted with the packet. Therefore, the overhead for routing data packets with

virtual circuits is significantly reduced compared to a pure packet switching

mechanism, particularly for packets with small data payloads.

The source host terminates the virtual circuit by injecting a Circuit

Destruction Packet (CDP) into the network. The CDP traverses the circuit path,

releasing at each hop the RVC that is allocated to the virtual circuit after the data

packets that use the virtual circuit have departed the switch.

An example of a multicomputer that used virtual circuits is iWarp [Bork90].

The iWarp multicomputer was designed especially for ‘‘systolic’’ applications in

which elements of data streams are processed in a pipelined fashion across multiple

processors. The use of virtual circuits in this system was motivated by the high

49

degree of temporal locality in the traffic patterns that result from systolic

applications. That is, the traffic from each source node is directed to a small,

unchanging set of destinations. In particular, each processor in a systolic

application communicates only with processors that are immediately downstream

in the systolic pipeline, and therefore can be supported with a small number of

virtual circuits originating from each node. To support real-time requirements of

some systolic applications, iWarp provides means for each virtual circuit in iWarp

to reserve a fraction of the link bandwidth on the virtual circuit path.

An approach to connection-based routing that combines static virtual circuits

(for traffic exhibiting locality) and conventional wormhole routing (for other

traffic) was proposed by Dao, Yalamanchili, and Duato [Dao97]. In this proposal,

a source node tries to establish a static virtual circuit by injecting into the network a

circuit establishment probe. The probe is adaptively routed toward the destination;

along the way the probe may backtrack as it searches for a path with free resources

on each link. If the probe backtracks to the source node, the source either re-injects

the probe for another try or gives up on establishing a circuit, in which case it uses

conventional wormhole routing for traffic it sends to the destination. Existing

circuits are not torn down to free resources for new circuits. Nor are circuits

rerouted to adjust to congestion or faults.

50

2.3.2.2. Relaxing the Restrictions of Static Virtual Circuits

Most virtual circuit schemes have the limitation that each established circuit’s

route cannot be changed until the connection is no longer needed and the circuit is

torn down. This prevents adaptation to changes in traffic patterns, and it prevents

establishment of new virtual circuits once all the required resources are assigned to

existing circuits. To solve this problem we have proposed the Dynamic Virtual

Circuits (DVC) mechanism [Tami91, Turn98] which combines adaptive routing

and connection-based routing. In this section we present prior approaches for

combining adaptive routing and virtual circuits.

In the Codex network, each node can reroute established virtual circuits for

which the node is the virtual circuit destination [Bert87]. The policy a node uses to

determine which virtual circuits to reroute is based on global information about

link utilization and other monitored statistics. In particular, each switch

continually monitors various statistics about its communication links (e.g.,

utilization, and processing delays) and periodically broadcasts this information to

every node in the network. In this manner, each node periodically obtains

information about all the links in the network. Each node uses this information to

periodically select (pseudorandomly) some of the virtual circuits for which the

node is the destination. The node evaluates each of these selected virtual circuits to

determine whether to reroute it onto a new network path. To make this decision,

the node uses an algorithm that finds the shortest path through a weighted-edge

graph that models the network’s behavior. In this graph, each vertex corresponds

to a switch, and each edge corresponds to a network link. The weight of an edge is

computed according to a function that attempts to characterize the delay that would

51

be experienced by packets using the virtual circuit if the virtual circuit were using a

path that included the corresponding link. This function takes into account the

flow rate of the virtual circuit and also the monitoring information that is provided

periodically to the node about the corresponding link. The shortest path search

algorithm finds the path in the network that would experience the smallest increase

in delay if the virtual circuit were routed onto this path. The node reroutes the

virtual circuit onto this path if it differs from the current path used by the virtual

circuit. Rerouting of an existing virtual circuit can involve considerable delay as

the destination node sends a message to the sender node to establish the new path

for the virtual circuit. Based on the description in [Bert87], it appears that this

delay for rerouting could be eliminated by having the sender node instead of the

destination node make rerouting decisions. Either way, the scheme has the

disadvantages of not being able to reroute packets after they have left the sender

node, and the possibility of incurring long delays to release resources held by an

existing virtual circuit.

A different approach that relaxes the static nature of virtual circuits was

proposed by Hsu and Banerjee [Hsu90]. Unlike with the Codex network, in which

only destination nodes can reroute virtual circuits, this approach allows

intermediate switches on a virtual circuit path to trigger teardown of the circuit to

free resources for new virtual circuits or to re-route the circuit. This approach

proposes to add logic to support on each switch a small number of virtual circuits,

called cached circuits. A cached circuit relaxes the static restrictions of virtual

circuits; a cached circuit may be torn down in order to free up resources at an

intermediate switch. The resources may be needed, for example, to establish a new

52

cached circuit. The intermediate switch selects an existing cached circuit to be a

victim, and it sends a request to the source node of the victim circuit to tear it

down. The packets in transit from the victim’s source must progress past the

intermediate switch before the resources held by the victim circuit can be released.

Therefore, new circuit establishment may be blocked for an extended period while

packets on the victim circuit are being flushed out. In addition, if a circuit is

rerouted onto a more desirable path, the packets that are flushed out are forced to

use the original path.

Virtual circuits are used in Asynchronous Transfer Mode (ATM)

networks [De 96]. ATM supports two types of connections: virtual circuits (VCs)

and virtual paths (VPs). A VC is composed of a sequence of VPs from source to

destination. Each VP can support 216 VCs. A VC can be rerouted to improve

quality of service via a round trip exchange of control messages between the source

and destination [Cohe94]. A VP that is used by many VCs can be rerouted when a

link on its route fails. Rerouting a VP is transparent to the VCs that use it. A VP

can be rerouted onto a backup route that is either pre-defined or is selected after a

failure is detected [Kawa99, Gers99]. VP rerouting is accomplished through a

round trip exchange of control messages on the backup path between the VP

endpoints [Kawa99]. Alternatives to end-to-end VP rerouting include rerouting

only the portion of the VP between two switches that are adjacent to the failure,

and rerouting the portion of a VP from a switch that is upstream from the failure

and the VP destination. These strategies differ in the time required to reroute a VP

and in the spare bandwidth that is needed to guarantee that all VPs can be rerouted

and meet their bandwidth requirements after any single failure [Mura97, Ande94].

53

Our Dynamic Virtual Circuits (DVCs) [Tami91] proposal, described in

Chapter 3, differs from the above proposals by allowing virtual channel resources

to be quickly reallocated through local operations at a switch, avoiding the long

delays of schemes that require interactions with faraway nodes before releasing

local resources. Resource reallocation avoids blocking circuit establishment, and it

enables adaptive circuit rerouting.

2.4. ATM and IP Switch Cell Loss Reduction Techniques

In this section we review previous work in the problem area of reducing data

discarding caused by congestion in large-scale switches that support Asynchronous

Transfer Mode (ATM [De 96]) networks or IP networks. Switches in these

networks, which are intended for general-purpose networking applications,

typically do not use the backpressure flow control techniques used by the more

specialized multicomputer networks to avoid discarding packets, although it has

been suggested that similar flow control features should be provided (at least for

controlling best-effort traffic which has no performance guarantees) [Kung94].

Instead, in typical ATM or IP networks, data can continue arriving to a switch even

when the switch lacks adequate free buffer space to store the data. Data that

arrives when the switch is in this state is discarded. In Chapter 6 we propose new

techniques for reducing data loss in such switches.

An N × N ATM or IP switch consists of N input ports, N output ports, and a

switching fabric that forwards packets (called cells in ATM terminology) from

input ports to output ports. Small switches can be built with a crossbar or shared

bus organization. For cost effectiveness and high performance, large switches are

54

typically implemented with an internal switching fabric which has a multistage

indirect network topology, in which each stage consists of a number of small

switching elements (SEs) and adjacent stages are interconnected with point-to-

point links between SEs at the adjacent stages [Part94].

A primary goal in the design of such switches is to minimize the loss of cells

or packets that can result from congestion. Cell loss degrades the quality of real-

time traffic and necessitates costly retransmission of best-effort traffic. Cell loss is

measured by the Cell Loss Ratio (CLR), the ratio of the number of cells dropped by

a switch to the number of cells injected to the inputs of the switch.

Cell loss reduction techniques can be classified into two categories:

techniques that limit the traffic entering the switch, and techniques that reduce cell

losses within the switching fabric.

Techniques in the first category require cooperation between the switches and

the end points of the communication. With some techniques, the switch prevents

entry of cells (or packets, or traffic flows) based on the current state of the switch.

With connection admission control, the sender provides the switch with the Quality

of Service (QoS) requirements of a proposed new traffic flow. The QoS

requirement can specify properties such as the minimum throughput or the

maximum cell loss ratio that the switch must provide for the flow. The switch

accepts or rejects the request for establishment of the new traffic flow through the

switch on the basis of an estimate of the switch’s ability to satisfy the new

connection’s QoS requirements without violating the QoS requirements of existing

connections [Jami97]. An alternative approach that relies on implicit cooperation

with the traffic sources is Random Early Detection [Floy93], in which the switch

55

probabilistically tags or drops packets when its buffer occupancy exceeds some

threshold. For this scheme to work in preventing the switch buffers from filling

and causing much higher levels of cell loss, the source or destination nodes must

employ a congestion control mechanism such as TCP that reduces the rate of traffic

injection for a traffic flow whenever the source node detects that one of its packets

was lost or tagged in the network.

In the second category of techniques, cell losses within the multistage

switching fabric are reduced without limiting the arrival of traffic to the inputs of

the switch. These techniques include: inter-stage flow control, cell sorting and

recirculation, providing large or shared buffers in SEs, and providing alternate

paths.

Within a switching fabric, inter-stage flow control can be provided to

completely prevent the buffers of individual SEs from ever overflowing. However,

this approach simply shifts the problem of cell loss away from the switching fabric

and back to the inputs of the switch.

Unbuffered fabrics (in which SEs do not contain buffers), such as the

Starlite [Huan84] and Sunshine [Giac91] switches, reduce cell loss by adding

several extra stages, located immediately after the switch input ports, to sort and

recirculate cells. The extra stages form a Batcher sorting network [Batc68], which

bitonically sorts and recirculates cells. Cells routed to the same output port of the

switch conflict in the sorting network and are recirculated back to the inputs for

another pass if a recirculation path is available, or else are dropped. The sorted

cells are guaranteed to proceed without conflict or discarding through a multistage

banyan routing network until they reach their outputs.

56

In buffered fabrics in which each SE contains packet buffers, cell loss in an

SE can be reduced by increasing the size of internal buffers. The buffers may be

dedicated to particular SE inputs or outputs, or they may be shared. Shared buffers

utilize buffer storage more efficiently than partitioned buffers, reducing the buffer

capacity needed to achieve an acceptable cell loss ratio. This is particularly

important where the amount of buffer storage must be sufficient for handling

occasional bursts of traffic without (or with minimal) cell loss. Examples of

switching elements with shared buffers include the IBM Prizma [Denz95, Denz92],

Alcatel MPSR [Henr93, Boet90, Bann91], and, for multiprocessor interconnect, the

IBM SP1 [Stun94b, Stun94a] switch. The benefit of shared buffers comes at the

cost of increased implementation complexity. The buffer’s bandwidth must be at

least equal to the sum of the bandwidths of the SE’s links. That is typically

accomplished by reading and writing the buffer through a wide bus, which requires

input link interfaces to accumulate up to several bytes of an arriving cell before

writing, and output link interfaces to serialize the wide data read from the buffer.

Several linked lists must be managed within the shared buffer as cells are read and

written in an interleaved fashion. Virtual cut-through [Kerm79] can be

implemented to avoid store-and-forward delays under light load by bypassing the

shared buffer, at the expense of an additional crossbar and bypass logic [Stun94b].

Cell loss within the switching fabric may also be reduced by providing

alternate paths for each source-destination pair. Alternate paths balance load,

thereby decreasing the probability that traffic bursts overflow SE buffers.

Alternate paths can be provided by adding extra switching stages to a single-path

switch. In some cases this is done without changing the raw internal bandwidth of

57

the switch. For example, the Bene
v
s topology [Bene64] has twice the number of

stages as a single-path banyan topology, providing enough alternate paths to route

simultaneous flows from all the inputs through an arbitrary permutation without

conflict. Alternate paths can also be provided through internal bandwidth

expansion, which adds extra links or SEs to switching stages. That approach

reduces cell loss by further reducing the peak load per SE output. For example,

Dilated Butterflies or Multibutterflies add extra links to a standard butterfly banyan

topology to provide alternate paths [Leig92]. The Alcatel Multi-Path Self-Routing

Switch combines both approaches by adding both an extra stage and also extra SEs

to each stage, creating a large number of alternate paths with low peak load per

SE [Henr93].

Finally, some techniques mitigate the negative impact of cell loss by using

higher-level protocols. For example, cells marked as low priority can be chosen

for discard ahead of higher priority cells. For TCP/IP traffic over ATM networks,

Early Packet Discard [Roma95] can be used to reduce packet loss.

2.5. Summary

Several routing schemes have been developed for multicomputer and cluster

interconnection networks that use packet switching, in which data is partitioned

into bounded sized packets which are routed individually through the network.

Routing schemes can be fixed-path or adaptive, in which case packets have a

choice of multiple paths to reach their destinations. With the use of backpressure

flow control that prevents packets from being discarded as a result of congestion,

fixed-path and adaptive routing algorithms may be susceptible to packet buffer

58

deadlocks. Several approaches have been developed to eliminate deadlocks. One

approach, deadlock detection and resolution, imposes minimal restrictions on

packet routing and packet buffer usage at the expense of incurring occasional

deadlocks which trigger a separate mechanism for detecting the deadlocks and

removing them. An alternative approach is deadlock avoidance in which some

restrictions are placed on routing and buffer usage to eliminate the possibility that

deadlocks can arise. Several schemes have used variations of packet buffer

deadlock avoidance. This approach was generalized by Duato [Duat96, Duat95]

who identified that deadlocks are avoidable so long as any packets that encounter a

resource dependency cycle are guaranteed to have an escape path from the cycle.

Connection-based routing, in which resources are reserved at each switch

along a path from source to destination prior to communication, can be more

efficient than packet switching in terms of the overhead for routing and processing

packets at each hop. The most basic type of connection-based routing is circuit

switching which reserves the entire link bandwidth along the path for a connection

to provide extremely low overhead for data forwarding at the expense of high

resource allocation costs. Static virtual circuits combine the advantages of circuit

switching and packet switching. However, most virtual circuit schemes are static,

holding an unchanging set of resources throughout their lifetime, thereby reducing

potential throughput and precluding the use of adaptive routing for a circuit after it

is established. Some proposed mechanisms allow the endpoints of virtual circuits

to re-route the virtual circuits upon failure or congestion, at the expense of time-

consuming and bandwidth-consuming end-to-end coordination. The new

mechanism described in Chapter 3, Dynamic Virtual Circuits, removes the static

59

restrictions of virtual circuits by allowing any node in the middle of a circuit to

make a local decision to break it and later re-establish it as needed.

In general-purpose ATM and IP networks composed of large-scale switches, a

key challenge is reducing the loss of data because of buffer overflows within the

switch. Techniques to reduce cell or packet loss either limit the traffic entering a

switch, or reduce cell losses within the scalable switching fabric that is built into

the switch. Chapter 6 investigates the use of adaptive routing and connection-

based routing techniques within a large-scale switch to reduce the incidence of cell

discarding.

60

Chapter Three

Dynamic Virtual Circuits: Overview

In this chapter, we present a high-level overview of our proposed Dynamic

Virtual Circuits (DVC) mechanism. The DVC mechanism enables multicomputer

and cluster interconnection networks to combine the benefits of connection-based

routing and adaptive routing. Unlike with traditional static virtual circuits, the

establishment of each new Dynamic Virtual Circuit is guaranteed, even when there

are no free Routing Virtual Channels (RVCs) on a desired link. Resources

allocated to idle DVCs are reassigned to active DVCs as needed.

The DVC mechanism overcomes the limitations of prior approaches for

combining adaptive routing and connection-based routing (these approaches are

described earlier in Section 2.3.2.2). In particular, with the DVC mechanism, any

switch along the path of an existing virtual circuit can tear down the circuit and re-

establish it on a new path by using fast, local operations that do not involve costly

delays for coordination with remote nodes. Thus DVCs avoid delays caused by

waiting for disestablishment requests to be processed through a circuit source node

or destination node. With DVCs, an intermediate switch can tear down the portion

of a circuit from itself to the destination node while leaving intact the portion of the

circuit from the source node to the intermediate switch. Any packet that is using

the torn down circuit and subsequently arrives to the intermediate switch causes the

switch to initiate re-establishment of the torn circuit in order to forward the arriving

packet.

With the DVC mechanism, if a particular circuit becomes slow or blocked,

61

due to congestion or failure, a node can make a local decision to break the circuit

and re-establish it using an operational, less congested route. Adaptation can occur

quickly since: (1) it is not necessary to wait for the source node to reroute the

circuit, and (2) as the circuit is being re-established, busy RVCs that are needed

along the new path are released quickly.

The following sections describe the basic techniques and switch hardware

support for establishing, disestablishing, and rerouting DVCs. We significantly

extend these techniques in the subsequent chapters in order to eliminate deadlocks

that can arise in DVC networks. Deadlocks can arise both from packet buffer

dependencies and from communication dependencies caused by the introduction of

virtual circuit manipulation operations.

3.1. Tearing Down and Re-Establishing Circuits

In the simplest case, the Dynamic Virtual Circuits mechanism is identical to

the static virtual circuits mechanism which was described in Section 2.3.2.1. When

a Circuit Establishment Packet (CEP) arrives at a switch input port, the switch

invokes a routing algorithm to determine the desired output port to use to forward

the packet. In networks that have a regular network topology (e.g., k -ary n -cube),

the routing algorithm can use simple arithmetic operations to determine an

appropriate output port [Chen90]. In contrast, for irregular networks, a more

complex scheme based on large routing tables may be used [Taji77]. If there is a

free RVC on the desired output port, this RVC can be allocated to the new circuit.

The Input Mapping Table (IMT) at the switch input port is modified to indicate a

new mapping from the input RVC used by the arriving packet to the desired output

62

port and the newly allocated output RVC. After a switch establishes a mapping for

a new DVC, the switch will correctly route any arriving data packets that use the

new DVC. Once the circuit is no longer needed, the source node injects a Circuit

Destruction Packet (CDP) which traverses the circuit path and releases all the RVC

resources that were allocated to the circuit.

With traditional static virtual circuits mechanisms, establishment of a new

virtual circuit will fail if a CEP arrives at a switch and is routed to a link which

does not have any free RVCs (i.e., if all the RVCs of the desired output link are

already allocated to existing circuits). In contrast, the Dynamic Virtual Circuits

mechanism is able to successfully establish a connection even in this case. With

the DVC mechanism, the switch selects one of the established DVCs on the desired

link as a victim for temporary destruction in order to release and reassign the RVC

resource that is currently held by the victim. Ideally, the victim DVC is the circuit

whose next arriving packet will arrive at the switch at the furthest time in the

future. Once a victim is selected, the switch generates and sends a Circuit

Destruction Packet (CDP) for the victim circuit. The CDP is marked as

nonterminal to inform the destination node that the circuit is being torn down

temporarily from an intermediate node, as opposed to permanently from the source

node. After the generated CDP is transmitted on the output link, the CEP can be

transmitted to establish the new DVC.

When a CEP arrives at a switch to establish a DVC, the switch records the

addressing information for the new circuit (e.g., it records the destination node ID)

for use in case the circuit must be re-established at some later time. When a data

packet arrives at a switch using a DVC that the switch has previously torn down,

63

the switch retrieves the destination node ID which was originally recorded for the

torn circuit and initiates re-establishment of the circuit as follows. The switch

performs routing to determine an appropriate output port to use to re-establish the

torn circuit. Then the switch creates a CEP, updates the mapping tables, and

transmits the CEP to re-establish the circuit on a new path to the destination. Once

the CEP is transmitted to the next switch, the data packet that triggered the circuit

re-establishment, and any future data packets that use the same circuit, can be

transmitted along the new path without waiting for any coordination.

Figure 3.1 shows an example of DVC establishment. The figure shows a

single switch as it progresses through four steps of circuit establishment.

In Step 1 of Figure 3.1, a CEP arrives to the left input port to establish a new

circuit. The switch processes the addressing information in the CEP and

determines the CEP should be routed to the top output port. Suppose that all the

RVCs of the top output port are already reserved for currently established DVCs.

In this case, the switch selects one of these DVCs as a victim for teardown. The

selected victim is shown in the figure as the circuit traversing the switch from the

bottom input port to the top output port. A data packet (D) which is using the

victim circuit is shown queued at the bottom link’s input buffer waiting for

transmission through the top output port.

In Step 2 of Figure 3.1, the switch creates a CDP to tear down the victim

circuit. The CDP is also used to flush from the switch any data packets that are

using the victim circuit. The CDP is thus enqueued in the input buffer at the

bottom input port behind any data packets that are already enqueued. The switch

marks as ‘‘unmapped’’ the IMT entry for the victim circuit’s RVC at the bottom

64

4)3)

2)1)

CEP CEP

CDP
D

CEP

CDP

D

CEP

D

Figure 3.1: Example: DVC Establishment (no free RVCs).
CEP = Circuit Establishment Packet
CDP = Circuit Destruction Packet
D = Data Packet

input port. This ensures that future data packets that arrive on this RVC will

trigger the switch to initiate re-establishment of the victim circuit.

In Step 3 of Figure 3.1, the victim circuit’s data packet is flushed from the

switch by transmitting it to the neighbor. After that occurs, the CDP can be

transmitted. As the CDP leaves the switch, the RVC at the output port that was

held by the victim circuit is released.

In Step 4 of Figure 3.1, the switch allocates the released RVC to the new

circuit by recording a new mapping in the IMT entry at the left input port. The

new mapping indicates that the RVC used by the CEP at the left input port is

mapped to the top output port and the just-released RVC of the top output link.

Next, the CEP that is establishing the new circuit can be transmitted using the top

65

output port and the newly-allocated RVC.

The subsequent arrival at the switch of any data packet that is using the torn

victim will result in an IMT lookup that returns the ‘‘unmapped’’ status for the

input RVC. This causes the switch to initiate circuit re-establishment, a process

similar to normal circuit establishment except that the switch must generate a new

CEP using the addressing information that was recorded upon the previous

establishment of the victim circuit.

The above description of the DVC mechanism is accurate at a high level of

abstraction, but it is also a simplified description. In reality, multiple input ports

and output ports operate and interact concurrently at each switch. Care must be

taken to prevent components of the switch from entering inconsistent states due to

improper ordering of events or from becoming stuck forever waiting for each other

to complete some operation. We discuss these issues further in Section 3.3.

3.2. Maintaining Packet Ordering with DVCs

Although DVCs provide most of the advantages and overcome the difficulties

of static virtual circuits, they do not guarantee physicaliiiiiii FIFO packet arrival at the

destination as with static virtual circuits. For example, a circuit that has been torn

down from an intermediate switch may be re-established on a different path before

the nonterminal CDP reaches the destination. In that case, the packets on the re-

established branch of the circuit arrive at the destination before all the packets on

the torn-down branch arrive. Since proper packet ordering is vital, some

mechanism must be provided to allow the destination host to determine the order in

which packets were sent by the source host. We describe two mechanisms that can

66

be used for this purpose. One mechanism is based on recording packet sequence

numbers for each circuit at each switch. The second mechanism is based on using

logical timestamps to distinguish different branches of the same circuit.

With the packet sequence number mechanism, for each circuit that is

established at a switch, a packet count register records how many packets have

arrived at the switch using the circuit. A sliding window protocol can be used to

bound the maximum value of the packet counters. Also stored at each intermediate

switch is other information needed to uniquely identify the particular DVC, such as

source and destination node and process IDs. When a circuit is re-established, the

packet count at the switch that is initiating the re-establishment is attached to the

CEP along with the information that was originally used to establish the circuit

(source process ID, destination process ID, etc.). The destination host accepts

packets on re-established circuits only after its local packet counter indicates that

all previous packets have already been received. Any packets that cannot be

accepted are buffered at the destination host interface until they can be accepted.

The main disadvantage of this scheme is that it requires hardware at each input port

to record and increment the packet counter values.

The alternative timestamp mechanism avoids the need to update a packet

counter for each arriving packet. The mechanism requires only a small amount of

information to uniquely identify branches, and it updates circuit information at the

intermediate switch only when a circuit is re-established or disestablished from that

intermediate switch. Because the circuit information is rarely updated, it is not

necessary to store it on-chip or provide dedicated hardware for updating. Each

switch maintains a count of the number of nonterminal circuit destructions it has

67

initiated. This count serves as a logical timestamp that, in conjunction with the

identifier of the switch where the circuit was broken, uniquely identifies the circuit

destruction event. The counter has to be sufficiently large (40-64 bits) so that there

would be no danger of the counter ‘‘wrapping around’’ leading to possible

incorrect packet ordering. When the torn down DVC is to be re-established, the

stored destruction timestamp and the switch identifier are attached to the generated

CEP. At the destination, whenever a circuit branch CEP arrives, a matching circuit

branch CDP must be found with the same timestamp and switch identifier values.

The only such CDP is the one terminating the branch to be ordered just prior to the

CEP’s branch.

3.3. DVC Implementation: Overview

In this section we describe the basic hardware/firmware architecture that can

be used to implement the DVC mechanism. This description includes the

sequencing of low-level operations that are needed for the architecture to support

establishing DVCs, forwarding packets on established DVCs, tearing down DVCs,

and re-establishing torn DVCs. In Chapters 4 and 5, we describe further hardware

requirements that are needed to eliminate deadlocks in DVC networks.

Figure 3.2 shows a multicomputer node with a host processor, local memory

used by the host processor, a switch, and a special routing processor with its

memory. The routing processor is a general-purpose processor which is used as a

dedicated controller to perform some of the infrequent but complex operations that

are needed to support DVCs. Frequent operations, such as routing and forwarding

of a data packet on an established circuit, are handled entirely within the switch,

68

mem

processor

Switch

memory
local

cache

processor
routing

Figure 3.2: A multicomputer node.

using dedicated hardware. The routing processor handles tasks such as initiating

circuit destruction, re-establishing a circuit, updating of global routing

tables [Taji77], and resolution of deadlocks (Chapter 4). With current generation

VLSI technology, it is possible to integrate the routing processor and its memory

on the same chip with the communication switch.

To support DVCs, information which must be accessed for each data packet

as it arrives or departs the switch is stored in lookup tables that are provided at

switch input ports and output ports (see Figures 3.3 and 3.4 below). Less

frequently accessed information can be stored in the private memory of the routing

processor. The tables in the routing processor’s memory may include the

following:

g Circuit Information Table (CIT): Contains one entry per input RVC at the

switch. The entry identifies all the routing information required to re-establish

a torn DVC. The information in a table entry is attached to a CEP that is

generated to re-establish a torn circuit. If the timestamp mechanism is used to

69

handle re-ordering at the destination, then the timestamp value for a circuit can

be stored in the corresponding entry.

g Inverse Output Mapping Table (INV): Contains one entry per output RVC from

the switch. The table provides the inverse of the mapping provided by the

Input Mapping Tables. Each entry maps an output RVC to the corresponding

input port and input RVC. The mappings are recorded upon circuit

establishment. Each entry also contains a single reserved bit, which the

Routing Processor sets when the circuit is selected as a victim and resets when

the teardown is completed. A circuit for which the reserved bit is set cannot be

selected again as a victim. This rule is used to prevent redundant teardowns of

a single circuit.

g Routing Table : Describes the routing function. Many organizations are

possible. For example, the routing table may contains one entry for each

possible destination node ID. Each entry contains the output port on the

estimated shortest delay path to a destination node. This table is accessed

during circuit establishment and can be updated dynamically [Taji77].

In addition to the tables above, for DVCs that originate at a node, the node

maintains a single Source Table, which maps logical DVC identifiers to RVC IDs

for the first hop of the DVCs (i.e., from the host to the local switch). At each

switch, for DVCs whose destination is the node, there is a single Destination Table,

which maintains the information (CEP and CDP timestamps) necessary for

ordering packets arriving over different paths of the same DVC. Each packet

originating from a node requires one access to the node’s Source Table. Each

packet delivered to the node requires one access to the Destination Table. Hence,

70

the switch’s processor interface must support fast access to these tables.

As a concrete example, suppose a switch is implemented on a single chip and

consists of four input ports, four output ports, a central crossbar, a Processor

Interface (PIF) to the host processor, and the Routing Processor Interface (RPI).

Each input or output port consists of a set of data signals (e.g., a data bus that is

eight-bits wide) and one or more flow control signals. The input port uses a flow

control signal to stop the output port from sending data when, for example, the

buffer at the input port becomes full. The RPI translates read and write requests by

the routing processor to both read/write operations on storage elements inside the

switch and commands affecting the behavior of its modules. The RPI also fields

interrupt requests raised by modules and passes them on to the routing processor.

3.3.1. Input Port Hardware and Operation

When a packet arrives to a switch input port, it is placed in the input buffer

and routed to determine the desired output port. Once the packet reaches the head

of the buffer, the buffer makes a request to the switch crossbar for a connection to

the desired output port. After the request is granted, the packet is removed from

the buffer and sent through the crossbar and the output port to the neighboring

switch.

Figure 3.3 shows a possible block diagram of the hardware located at each

input port of a hypothetical switch that supports the DVC mechanism. There are

four main components in the figure: a Synchronizer [Tami88b], a Dynamically-

Allocated Multi-Queue (DAMQ) input buffer to store arriving packets [Tami88a],

an Auxiliary Buffer, and an Input Mapping Table (IMT). The DAMQ buffer has

71

Routing Processor BusFlow
Control

Flow
Control

Generation

Routing Processor Data Bus

Routing Processor Addr Bus

Routing Processor Ctrl Bus

2

55

5

3

8

8

ready

data insync

detection
CDP

Buffer
Auxiliary

DAMQ

map OP RVC
RVC

RVC

Invalidate

Interrupt

to crossbar switchstart bit detect

request

Table
Input Mapping

Port
Input

MUX

done

8
8

8

8

8

8

MUX

Figure 3.3: Input port routing hardware.

internal linked lists which allow separate forwarding for packets that are waiting

for different output ports. This feature allows DAMQ buffers to avoid head-of-line

blocking which limits network performance with the use of FIFO buffers. The

Synchronizer produces data (8-bits wide in this example) synchronized to the local

clock signal. These signals are input to both the DAMQ buffer, which is the main

packet buffer at the input port, and to the Auxiliary Buffer, which is a much

smaller FIFO buffer and normally stores a copy of the first several bytes of the

most recent packet arriving through the input port. In normal operation, as packets

arrive they are placed in both the DAMQ buffer and the Auxiliary Buffer. In

addition, the RVC value in the header of each incoming packet is forwarded to the

Input Mapping Table for lookup. If the lookup references a mapped entry, the

header is modified to contain the output RVC ID, and the new header is latched

into the DAMQ buffer. If the access references an unmapped entry, the Input

72

Mapping Table raises an interrupt for the routing processor and causes the DAMQ

buffer control to use the flow control line to stop traffic into the input port. A

packet arriving on an input RVC that has no mapping is either a Circuit

Establishment Packet or a packet arriving on a circuit that has been disestablished

from this switch. In either case, routing processor intervention is required and

incoming packet flow must be stopped.

The DAMQ buffer normally takes its input from the output of the

Synchronizer, but it can also take its input either from the Auxiliary Buffer or from

a packet buffer located at the RPI via the routing processor data bus. The DAMQ

input comes from the RPI when, for example, the routing processor needs to insert

a CDP into the circuit. The DAMQ input comes from the Auxiliary Buffer in order

to accept a CEP that was held in the buffer while the corresponding IMT entry was

being set up. Flow from the input port is halted when the input to the DAMQ

buffer is taken from one of the other sources. Packets arriving on the input port

would otherwise be lost.

In some cases, the routing processor requires information contained in the

body of an arriving packet. For example, when a CEP arrives, the header byte

indicates the input RVC, and subsequent bytes of the packet indicate the packet’s

destination. To access these bytes, the routing processor can read the Auxiliary

Buffer whenever it is not being written by the input port.

To tear down a victim circuit, the routing processor generates a CDP and

enqueues it in the DAMQ buffer at the input port used by the victim circuit. In

contrast, a CDP that arrives to an input port from a remote node can be handled

without the intervention of the routing processor. To support fast handling of

73

CDPs at the input port, an Invalidate input signal is added to the Input Mapping

Table. This signal causes the table lookup to mark the entry referenced as

unmapped. Arrival of a CDP automatically triggers this operation.

3.3.2. Output Port Hardware and Operation

Output Port

6

all_mapped

p
a
m

e
s
u

r
t
p

CDP
detect

MUX

control

5

5

5

5
2

Register
Victim

Routing Processor Control Bus

Routing Processor Address Bus
Routing Processor Data Bus

K
C
O
L
C

C
I
G
O
L

R
E
D
O
C
N
E

from crossbar switch

header strobe

enable
map

enable
use

r/w
hh

Interrupt

3

3

MUX

Figure 3.4: Output port logic. Invalidates circuits and picks victim
output RVCs.

Figure 3.4 shows a block diagram of the hardware at each output port. The

hardware consists of a table and logic for picking victim RVCs. The Output Port

Table (OPT) is used to keep track of mapped and unmapped output RVCs and to

maintain output RVC use information. The figure shows an example with 32

entries in the OPT, one per output RVC. The OPT is normally accessed when

packets arrive at the output port from the crossbar — the entry corresponding to the

RVC number of the packet is updated. In addition, the table is accessed by the

routing processor when a DVC is established. Each table entry consists of two bits:

map and use. The map bit specifies whether the output RVC is allocated to an

established circuit. The use bit indicates whether a packet has been sent on the

74

corresponding output port recently.

The information in the Output Port Table drives the circuit that selects a

victim when there is a need to find a free RVC for use in establishing or re-

establishing a DVC through the output port. The victim selection module is a

combinational circuit that continuously computes the victim output RVC ID. The

victim RVC ID is placed in the Victim Register, which can be read by the routing

processor. If there are any unmapped output RVCs (i.e., RVCs not allocated to

established circuits), these are picked by the victim selection logic. If all the output

RVCs are allocated to established DVCs, one of those RVCs is picked and the

corresponding DVC is disestablished, starting from this switch. The ‘‘clock’’

replacement algorithm, commonly used for page replacement in virtual

memory [Corb68], is used to pick the victim established DVC.

3.3.3. Sequencing of Switch Operations

Some of the operations performed by the switch involve several sequential

steps. Proper ordering of events is crucial for avoiding inconsistent states. For

example, in order to establish a new DVC, it is sometimes necessary to tear down

an existing DVC to free an output RVC. A straightforward but incorrect procedure

for performing this operation would have the routing processor reset the map bit for

the victim RVC at both the IMT and at the OPT as soon as a victim is selected.

Then, the routing processor would create a CDP and send it directly out the output

port. Once the CDP is sent, the pending circuit establishment request would be

fulfilled.

The procedure above is wrong because there may be packets that are using the

75

victim circuit and that are enqueued in the DAMQ buffer at the input port used by

the victim circuit. If the mapping tables are changed and the CDP is sent before

these enqueued packets exit the switch, the packets will be forwarded out the same

output port and output RVC as the packets on the new circuit being established,

thus mixing packets of different circuits. Also, one of the enqueued packets may

be a CDP, rendering the creation of a CDP by the routing processor redundant.

The correct procedure incorporating these considerations is shown in

Figure 3.5. This figure shows the sequence of low-level operations required when

a data packet arrives. If the IMT entry is unmapped, the routing processor must

re-establish the DVC to the circuit’s destination. As shown in step 2 of Figure 3.5,

the routing processor accesses the Circuit Information Table (Section 3.3) to

determine the destination node ID for the data packet. Next, in steps 3 and 4, the

routing processor picks a victim output RVC for use in the new DVC. To do this,

it reads the Victim Register, which contains the selected RVC ID as well as the

corresponding map bit. The routing processor then checks the Inverse Output

Mapping Table, stored in its private memory, to ensure that this RVC is not already

reserved for tear down. If the Inverse Mapping Table indicates that the selected

RVC is reserved, the routing processor reads the Victim Register again to get a

different victim.

Assuming that the output port table entry for the chosen victim is valid (i.e.,

the test in step 5 succeeds), the following procedure correctly tears down the victim

circuit and re-establishes the circuit for the data packet:

1. The victim input port, IP′, and its input RVC ID, IC′, are read from the Inverse

Output Mapping Table. The routing processor writes a command to the switch

76

OC = Output RVC
OP = Output Port
IC = Input RVC
IP = Input Port
RP = Routing Processor
INV = Inverse Mapping Table
OPT = Output Port Table
IMT = Input Mapping Table

?
OC reserved

victim
4.

OC ← OP victim reg
3.

to get output port OP
dst, accesses Route Table
2. stop IP, RP reads packet

?
bit set

OC map
victim

5.

IC′ ← INV[OP,OC].chan
IP′ ← INV[OP,OC].port
6. reserve OC

port IP′
7. stop input

entry mapped?
IMT[IP′,IC′]

8.

IP′ on IC′
9. insert CDP at

port IP′
restart input
10. if IP′ ≠ IP,

unmapped
OPT[OP,OC]
interrupt RP,
sent out OP,
11. when CDP

unreserve OC

OPT[OP,OC].map←true

IMT[IP,IC].chan←OC

12. IMT[IP,IC].port←OP

y

y

n

IP on IC
13. insert CEP at

input RVC IC
on input port IP and
0. data packet arrives

n
entry mapped?
1. IMT[IP,IC]

n

y

enqueue pkt in DAMQ
16. IMT lookup to

n

y

mapping table
14. set inverse

data in bus
Aux Buf to
15. direct pkt in

Figure 3.5: Handling of dataiiii packets arriving at an input port.

which causes it to assert the flow control signal to stop packet flow from the

neighbor switch to the victim input port (steps 6 and 7).

2. If the IMT entry corresponding to the victim circuit is valid, this means that no

disestablishment of the victim circuit is in progress at the local switch. If this is

the case, the routing processor creates and enqueues a CDP at the victim input

port DAMQ buffer and restarts packet flow (steps 8 through 10);

3. At this point (between steps 10 and 11), while the CDP is waiting for its turn in

77

the DAMQ buffer, the routing processor returns to its normal mode of waiting

for interrupts from the switch. When the CDP is finally sent from the DAMQ

buffer through the crossbar to an output port, the routing processor is

interrupted again by the output port logic (step 11);

4. At this point the victim circuit has been torn down, freeing the victim output

RVC for use by the DVC being re-established. The routing processor sets up

the mapping tables for this DVC, creates a CEP, and inserts the CEP at the data

packet’s input port. Once this is done, the data packet can be directed to the

DAMQ buffer (steps 12 through 16).

3.4. Summary

The Dynamic Virtual Circuits mechanism combines the benefits of adaptive

routing and traditional static virtual circuits. The DVC mechanism minimizes the

addressing and control information sent with each packet and the latency for packet

forwarding at each switch. Unlike static virtual circuits, DVCs can adapt to

congestion or failures in the system by allowing switches to make local decisions

regarding the possible need to reroute the circuit through a different physical path.

This chapter described the basic techniques for allowing circuits to be broken and

reestablished while maintaining the semantics of traditional virtual circuits.

An overview was presented of the hardware necessary to support DVCs in the

context of a complete communication coprocessor for multicomputer nodes.

Dedicated hardware is used on-chip to handle the critical frequent case, while a

routing processor is used for more complex but less frequent tasks.

The next two chapters describe techniques for eliminating deadlocks in DVC

78

networks. Chapter 4 describes a technique that uses deadlock detection and

resolution, and Chapter 5 presents an alternative technique that uses deadlock

avoidance. These two chapters additionally describe extensions to the

hardware/firmware architecture that was described in this chapter that are needed

in order to eliminate deadlocks in DVC networks.

79

Chapter Four

Deadlock Detection and Resolution
in DVC Networks

In this chapter, we present a scheme for deadlock detection and resolution in

multicomputer or cluster interconnection networks that use the DVC mechanism.

The proposed scheme enables virtual circuits to be established on any network path

from source to destination without imposing constraints for deadlock avoidance. In

this scheme, a switch initiates a distributed deadlock detection procedure whenever

packets stored in buffers at the switch fail to make progress in a timeout period,

indicating the possibility of deadlock. If the deadlock detection procedure can

identify a cycle of blocked resources in the network that constitutes a potential

deadlock, then a deadlock resolution procedure is initiated that enables blocked

packets in the cycle to make progress.

The scheme proposed in this chapter is an extension of a scheme developed

by Jaffe and Sidi for deadlock detection and recovery in packet switching

networks [Jaff89, Cido87]. In particular, we extend the original scheme to enable

deadlock resolution in networks where switches use input buffers. In the original

scheme, each switch is assumed to have a central buffer which it uses to store each

arriving packet. This system model is not appropriate for high-performance

multicomputer and cluster interconnection networks, for which it is generally more

efficient to use separate buffers at each switch input port [Tami92].

We provide additional extensions to the original scheme to handle new types

of dependencies which are introduced by the circuit manipulation operations in

80

DVC networks. The original scheme was not designed to take into account these

new dependencies.

In Section 4.1, we briefly review the original deadlock detection and

resolution scheme of Jaffe and Sidi for centrally-buffered packet switching

networks. Section 4.2 presents our extensions to the original scheme for networks

composed of switches that use packet buffers at each input port instead of central

buffers. Section 4.3 describes the new types of dependencies which are introduced

by the DVC mechanism. In addition, it presents a complete scheme for detecting

and resolving deadlocks in a network with DVCs. In Section 4.4, we present a

performance evaluation of the scheme. A detailed cycle-by-cycle simulation

model of a network employing our deadlock detection and resolution scheme was

implemented on a multi-threaded, object-oriented, event-driven simulation

environment. We have used this simulation model to validate the correctness of

the scheme and to evaluate its performance.

4.1. Deadlock Resolution in Centrally Buffered Packet Switching Networks

The original scheme proposed by Jaffe and Sidi in [Jaff89] can be used to

detect and resolve deadlocks in packet switching networks that have the following

properties: each switch uses a central buffer to store in-transit packets (as opposed

to using input or output buffers); all network links are bidirectional; and the routing

algorithm used in the network leads packets eventually to their destinations for

delivery. When a central buffer becomes full and remains so for some time

without transmitting any packets, it is possible there is a deadlock. When a switch

decides it may be in a deadlock, it initiates execution of a distributed algorithm

81

which determines if there is a cycle of switches with full buffers, constituting a

potential deadlock. In addition to finding all actual deadlock cycles, the algorithm

may find cycles that are only temporary, in which the buffers are advancing slowly.

Once the algorithm finds a cycle, the switches in the cycle initiate a deadlock

resolution procedure called rotation. In rotation, one dedicated buffer at each

switch in the cycle is introduced for temporary use. Each switch in the cycle uses

the new buffer to forward exactly one packet one hop along the cycle. After a

rotation is complete, the dedicated buffers are removed from use. Each rotation

guarantees packet progress, and it may break a deadlock. If packets remain

blocked in buffers after rotation, a new iteration of the cycle detection algorithm

begins. The algorithm has low overhead, as it uses link bandwidth primarily by

sending control messages over links that are otherwise blocked and unable to be

used by normal packets.

Further details of this deadlock detection and resolution algorithm are

presented in Section 2.1.5.1 and in reference [Jaff89]. In the remainder of this

chapter we show how this algorithm can be modified for use in a network with an

input-buffered switch model and with the Dynamic Virtual Circuits mechanism.

4.2. Deadlock Resolution in Input-Buffered Packet Switching Networks

We extend the original algorithm to enable deadlock detection and resolution

in networks where each switch uses input buffers instead of the central buffers

assumed for the original algorithm [Jaff89]. Our approach is to derive from the

physical network an equivalent virtual network which has all the properties

required by the original algorithm. The switches in the physical network execute a

82

procedure that emulates use of the original deadlock detection and resolution

algorithm in the equivalent virtual network. All deadlocks in the physical network

are detected and resolved, because this procedure detects and resolves the

corresponding deadlocks in the equivalent virtual network.

The virtual network is described as a graph. Each node in the graph

represents a virtual switch which uses a central buffer to store packets. Each

virtual switch corresponds to a distinct switch input buffer in the physical network.

The central buffer of a virtual switch is assigned the same capacity as the

corresponding input buffer in the physical network. Each edge in the virtual

network describes a virtual link between two virtual switches. An edge

corresponds to a unique hop in the physical network that can be taken between an

input buffer at one physical switch to an input buffer at a neighboring physical

switch. Specifically, a directed edge is provided in the virtual network from a first

virtual switch to a second virtual switch if and only if a packet in the input buffer

corresponding to the first virtual switch can take a single hop to reach the input

buffer corresponding to the second virtual switch.

This construction of the virtual network ensures that each hop taken by a

packet in the physical network (virtual network) corresponds to exactly one hop

taken by the packet in the counterpart virtual network (physical network).

Therefore, input buffers in the physical network are in a deadlock if and only if the

central buffers of the corresponding virtual switches in the virtual network are in a

deadlock. Furthermore, each step taken by packets when resolving the deadlock in

one network corresponds to exactly one step in the other network. We guarantee

that all deadlocks in the physical network are detected and resolved by executing a

83

procedure that emulates use of the original deadlock detection and resolution

algorithm in the equivalent virtual network.

Formally, the physical network can be described as an undirected graph

G = (V , E). V = {vi }, i =0,1,2,...,N −1 represents the set of N physical switches.

E is a set of undirected edges, where each edge represents a physical bidirectional

link between two neighboring switches. The link between switches vi and v j is

represented as the edge eij = e ji = {vi , v j } ∈ E . At switch vi , the input buffer for

link eij has capacity Cij for storing packets.

The virtual network G ′ = (V ′, E ′) is constructed from the physical network G

as follows. Each virtual switch in V ′ corresponds to a unique input buffer in

physical network G . Virtual switch v ′ij corresponds to the input port, at switch vi ,

for link e ji from neighbor switch v j . Therefore,

V ′ = {v ′ij }, ∀ i ,j such that e ji ∈ E.

Virtual switch v ′ij uses a central packet buffer with capacity Cij , matching the

capacity of the corresponding input buffer in the physical network.

Each edge in E ′ is a directed edge represented as an ordered pair of virtual

switches. Each edge in E ′ corresponds to a unique hop in the physical network

from an input buffer at one switch to an input buffer at an adjacent switch. If vi

and v j are neighbor switches, i.e., eij = e ji ∈ E , then each input buffer at vi

(except the input buffer for link e ji) can send a packet in one hop to the input

buffer for link eij at switch v j . Therefore,

E ′ = {(v ′im , v ′ ji)}, ∀ i ,j ,m such that eij ∈ E , eim ∈ E , and m ≠ j.

For a simple example of constructing the virtual network from a physical

84

A

B

C

D

E

S1

S2

S3 S4

S5

S6

Figure 4.1: Partial physical network.

E

D

C

B

A

Figure 4.2: Partial virtual network.

network, consider the partial physical network shown in Figure 4.1. In this

physical network, some of the input buffers are labeled with capital letters.

Consider input buffer C at physical switch S4. This input buffer can receive only

packets that are sent from switch S3. Furthermore, input buffers A and B are the

only buffers in S3 that can buffer packets to be sent through S3’s crossbar switch to

buffer C. Once a packet is buffered at C, it may be sent through switch S4’s

crossbar switch to either switch S5 or switch S6. If sent to S5, the packet is

85

buffered at D. If sent to S6, the packet is buffered at E. Part of the virtual network

corresponding to the physical network of Figure 4.1 is shown in Figure 4.2. Here,

each virtual switch is labeled with the same capital letter used to identify the

corresponding physical input port buffer in Figure 4.1. All the inputs and outputs

of virtual switch C are shown, along with the fan-in and fan-out of virtual switches

A, B, D, and E. Virtual switches A and B can send packets to virtual switch C,

which in turn can send to virtual switches D and E, which is the same behavior as

the corresponding physical input port buffers. Note that, although not shown in

Figure 4.2, virtual switch A can also send to the virtual switch corresponding to a

physical input buffer in switch S2, and similarly virtual switch B can send to a

virtual switch corresponding to an input buffer in S1. The key point is that since

the virtual network consists of switches that use central buffering, it can be used for

deadlock resolution as long as it conforms in all other ways to the original

algorithm’s system model.

The only difference between the two models is that the deadlock resolution

algorithm requires control messages to be able to travel in either direction over a

link, whereas the edges in the virtual network graph are unidirectional. To correct

for this difference, we add the following edges to the virtual network graph for the

exclusive use of control messages that travel opposite to the direction of packet

flow:

{(v ′ ji , v ′im)}, ∀ i ,j ,m such that eij ∈ E , eim ∈ E , and m ≠ j.

In effect, this makes all the links in the virtual network bidirectional, at least for

control packets. These reverse edges can be added to the virtual network since

each reverse edge connects two virtual switches that correspond to input ports at

86

adjacent switches in the physical network. Sending control packets on additional

edge (v ′ ji , v ′im) in the virtual network graph corresponds in the physical network

to sending the message on link eij ∈ E in the direction from switch v j to switch vi

(the physical link is bidirectional). For example, referring to Figures 4.1 and 4.2,

one of the reverse virtual edges that we add is from virtual switch C to virtual

switch A. To send control packets along this new virtual edge, in the physical

network a control message will be sent on the bidirectional link from switch S4 to

switch S3. The message will contain information that identifies the message

source as virtual switch C and the message destination as virtual switch A. Switch

S3 will use this information to determine how to interpret the control message in

the context of the deadlock detection and resolution algorithm.

It is straightforward to execute the original resolution algorithm as though it

were running on the virtual network instead of directly on the physical network.

The original deadlock resolution algorithm uses sequence numbers on each control

message to distinguish different iterations of the algorithm. Each switch maintains

a sequence number that indicates its count of which iteration it is performing. With

input buffering, it is necessary to maintain multiple independent sequence

numbers, one for each virtual switch mapped to the physical switch (i.e., a

sequence number is needed for each input port). Also, it is necessary to send along

with each control message enough information to identify for the receiver which

virtual switch created the message. This is simply an input port number in the

physical network. In the case of control messages that traverse the reverse

direction of a link in the virtual network, the destination virtual switch must be

identified as well, since the destination could correspond to any of the input ports

87

at the destination physical switch. Whether this information is present depends on

the type of the control message, since all messages of a single type travel in the

same direction along virtual network links. Finally, the set of state variables stored

at each switch in the original algorithm must be allocated for each virtual switch

mapped to a single physical switch (i.e., for each input port).

This section dealt with one fundamental difference between Dynamic Virtual

Circuit networks and the network model assumed by the original deadlock

resolution algorithm. We showed how to derive from the physical network an

equivalent virtual network which is structurally equivalent to the network model of

the original deadlock resolution algorithm. By running the algorithm on each

virtual switch instead of on each physical switch, the model differences are

reconciled. These extensions are sufficient to detect and resolve deadlocks in

networks that use pure packet switching. For networks that use the DVC

mechanism, however, additional dependencies must be handled, as we describe in

the next section.

4.3. Deadlock Resolution With Dynamic Virtual Circuits

The use of Dynamic Virtual Circuits instead of pure packet switching

introduces new dependencies which can cause deadlocks that do not correspond to

cycles in the virtual network graph. As a result, these deadlocks cannot be handled

by simple cycle detection and rotation. In this section we describe the new

dependencies introduced by the DVC mechanism and present extensions to the

deadlock detection and resolution algorithm to handle the new dependencies.

In a pure packet switching system, a packet can be blocked because the packet

88

buffer at the next switch is full. If FIFO packet buffers are used, ‘‘head of line’’

(HOL) blocking can cause a packet directed to one output port to be blocked

waiting for a packet ahead of it in the queue which is directed to a different output

port. In a DVC system, a packet can additionally be blocked because it is

unmapped and requires an output Routing Virtual Channel (RVC) to be allocated

to it before it can proceed. In order to allocate an RVC, the switch may have to

tear down another virtual circuit from a different input port than the unmapped

packet. In this case, there is a new dependency from the input port that stores the

unmapped packet to a second input port (at the same physical switch) which stores

the Circuit Destruction Packet (CDP) that is introduced to tear the victim circuit.

Since the virtual network graph has no edges between virtual switches

corresponding to different input ports at the same physical switch, the new

dependency maps to a dependency in the virtual network between virtual switches

that are not neighbors. As a result, there can be a deadlock cycle that does not

involve a cycle of virtual switches in the virtual network’s topology. Thus, this

dependency introduced by the DVC mechanism violates the deadlock model

assumed for the cycle detection and rotation procedures in the original algorithm of

Jaffe and Sidi [Jaff89].

The following sections present a solution for detecting and resolving

deadlocks in a DVC environment. Section 4.3.1 describes in detail the new

dependencies introduced by the DVC mechanism. In addition, Section 4.3.1

presents a technique for avoiding deadlocks in DVC networks for the special case

in which the underlying routing algorithm does not have buffer dependency cycles.

For the general case of a DVC network in which the routing algorithm can

89

introduce buffer dependency cycles, Section 4.3.2 presents our extensions to the

deadlock detection mechanism, and Section 4.3.3 presents our extensions to the

deadlock resolution mechanism.

4.3.1. Deadlock Avoidance in DVC Networks with Dependency Cycle-Free

Routing

In a pure packet switching network, if the routing algorithm does not

introduce buffer dependency cycles, then the network is deadlock-free. DVC

networks should also have this property, because it allows dispensing with

deadlock detection and resolution operations when dependency cycle-free routing

algorithms are used, and because it reduces the number and probability of deadlock

scenarios when the routing algorithm does have dependency cycles. However, new

dependencies introduced by unmapped data packets create the danger of deadlocks

in DVC networks even with dependency cycle-free routing policies such as

dimension-order routing in a mesh. To completely avoid deadlocks in such an

environment, we must guarantee that the new dependencies cannot persist

indefinitely. As described below, this can be done by guaranteeing that the CDPs

created to tear victim circuits will be sent eventually.

For a specific example of the problem, consider a DVC network in which

switches have FIFO input port buffers. Figure 4.3 shows an example deadlock

scenario with two switches in a DVC network. In this figure, two unmapped data

packets, U 1 and U 2, are waiting in Auxiliary Buffers for RVCs to be allocated to

them. As described earlier in Section 3.3.1, the Auxiliary Buffer is a buffer which

holds at most one packet and is used for holding an unmapped data packet until a

90

valid circuit can be established for it. When the Auxiliary Buffer is occupied, other

packets are prevented from arriving at the input port from the physical neighbor

switch. Once unmapped data packets are given valid circuits, they can be

enqueued in the input port FIFO buffer. CDP 1 is created to free an RVC for U 1.

U 1 cannot proceed until CDP 1 proceeds; this is the new dependency introduced by

the DVC mechanism. Similarly, at the other switch, U 2 waits for CDP 2.

AUX

U1

CDP1

AUX

U2

P1

CDP2

P2

FIFOFIFO

Figure 4.3: Deadlock with FIFO buffers

CDP 1 is blocked by P 1 ahead of it in the FIFO buffer. Similarly, CDP 2 is

blocked by P 2. P 1 and P 2 are blocked by U 2 and U 1, respectively. Because of the

‘‘head of line’’ (HOL) blocking of the FIFO buffers, no packet shown in the figure

can advance, and there is a deadlock in the physical network that does not

correspond to a cycle in the virtual network.

One way to avoid this problem is to ensure that the new dependency never

arises. A mechanism requiring hardware support could be employed which ensures

that the circuit chosen for destruction is not being used by any packets currently in

the switch. This removes the requirement that the CDP created to tear down the

circuit needs to be appended to an input buffer at a different input port. Instead,

91

the CDP can be forwarded directly out the appropriate output port without waiting

for other packets at the switch. By eliminating the new dependency between non-

neighbor virtual switches, the network remains deadlock-free. The drawback of

this approach is that it requires extensive hardware support for keeping track of

how many packets at the switch are using each virtual circuit, and for ensuring that

victim selection is restricted to selecting virtual circuits for which no packets are

present at the switch. In general, such a virtual circuit may not exist, if the number

of RVCs on a link is less than the number of packets that can be buffered at a time

at a switch. Therefore, this approach requires disallowing such configurations.

We take a different approach that avoids this hardware complexity and allows

any circuit to be chosen as victim (hence, the new dependency may exist). In this

approach, we replace the FIFO buffers with Dynamically Allocated Multi-Queue

Buffers (DAMQ Buffers) [Tami92], which use multiple internal queues in each

buffer to eliminate HOL blocking. The use of DAMQ buffers renders the new

dependency merely temporary. For example, if the FIFO buffers in Figure 4.3

were replaced with DAMQ buffers, then the CDPs in the figure would not be

blocked by packets P 1 and P 2 (i.e., there would be no HOL blocking). The

unmapped packets would still have to wait for the CDPs at different input ports to

be transmitted, but with DAMQ buffers, that is equivalent to waiting for the buffer

at the next switch to have free space, which is no different than in the case of pure

packet switching. Thus, deadlock is avoided when dependency cycle-free routing

is used as long as the CDP can be placed into a free slot in the the DAMQ buffer at

the victim circuit’s input port.

If the DAMQ buffer is full when the CDP is created, there are two

92

possibilities. If the DAMQ buffer has no packets for the CDP’s desired output

port, then no packets in the DAMQ buffer are using the victim circuit. Therefore,

in this case the CDP bypasses the DAMQ buffer and is transmitted directly to the

output link, eliminating the new dependency between the two input buffers at the

same switch. The other case is where the DAMQ buffer is full and does have

packets for the same output port that is desired by the CDP. In this case, the CDP

must wait for all of these packets to be transmitted, because some of these packets

may be using the victim circuit. Thus, the CDP is buffered in fixed-sized queues of

the Routing Processor’s private memory that are reserved for extending the storage

of the DAMQ buffers. One Routing Processor queue is maintained for each

internal queue of the DAMQ buffer. The packets in the Routing Processor’s queue

wait to be inserted at the end of the DAMQ buffer when it frees space. Before the

CDP (or any other packet) is placed in the appropriate Routing Processor queue,

the corresponding input port is blocked from receiving additional packets from the

neighbor switch. Flow from the neighbor is resumed only after all the Routing

Processor’s queues for the input port are empty and the DAMQ buffer has free

space. With this mechanism, transmission of the CDP depends once again only on

the eventual availability of the buffer at the next switch. Therefore, the

dependency between the two input buffers at the same switch is only temporary,

and deadlock is avoided.

The storage required for the Routing Processor’s queues is determined by the

worst case scenario in which all n input ports of a switch have unmapped packets

to send. Then, there are at most n CDPs created by the local switch to release

RVCs, and there are at most n CEPs created to establish or re-establish the

93

mappings for the unmapped packets. If the routing algorithm is dependency

cycle-free, then the only packets that will be stored in the Routing Processor’s

queues are these locally created CDPs and CEPs. As a result, these queues must

have sufficient capacity to store 2n packets.

The techniques described in this section eliminates all deadlocks if the routing

algorithm does not have cyclic dependencies. With more general routing

algorithms, deadlocks involving DVC dependencies can still occur. The following

sections describe techniques for detecting deadlocks and for resolving them by

breaking the extra DVC dependencies and then performing cycle rotation.

4.3.2. Deadlock Detection Phase

Deadlock detection is similar for networks with DVCs and for networks with

pure packet switching. With packet switching, the deadlock detection phase is

triggered when buffers are full and block for some time. With DVCs, the buffers

need not be full since deadlocks can occur due to DVC dependencies. Therefore,

deadlock detection begins when a buffer is found whose packets have not made

progress recently. The second step is to discover a cycle of blocked buffers whose

packets are waiting for one another to advance. That is accomplished by executing

a distributed algorithm in which switches send control messages to their immediate

neighbors. Hardware support is necessary to send control messages even when

packet buffers are full.

Identification of a blocked buffer, the first step of deadlock detection, is

accomplished by having the switch periodically check whether some buffer in the

switch has become blocked since the last check. A status bit is associated with

94

each buffer in the switch. Periodically, the switch sets the status bit for each buffer

that contains a packet and then allows a waiting period to elapse. During the

waiting period, whenever a packet is moved from a buffer, the status bit associated

with the buffer is cleared, to indicate that the buffer is not blocked. Once the

waiting period elapses, the switch checks the status bits. Any that are still set must

belong to buffers whose packets have not been able to move during the waiting

interval. The first such buffer found is declared to be ‘‘Blocked.’’

Once a blocked buffer is found, the deadlock detection algorithm is triggered.

A blocked buffer may be caused by a deadlock or by ordinary processing or

queuing delays. An output port for which a packet in the blocked buffer is waiting

is chosen as the next hop along a suspected deadlock cycle. The algorithm

proceeds with cycle detection by sending a TEST control message out that port. A

separate flow control mechanism is required to send control messages, since often

when control messages are sent the receiving input ports are unable to receive

normal traffic (perhaps because they are in a deadlock). One way to accommodate

the control messages is to use the Auxiliary Buffer to store them during execution

of deadlock detection. A switch that detects its input port is blocked causes any

packet in the Auxiliary Buffer to be brought into the Routing Processor’s private

memory, thereby freeing space in the Auxiliary Buffer for control messages. To

regulate the flow of control messages, two flow control signals could be used on

each communication link. They indicate to the neighbor whether regular packets

or control messages can be transmitted. Alternatively, dedicated flow control

signals can be omitted by transmitting flow control information on the data lines as

piggybacked information on packets going in the opposite direction. For this to

95

work it must be possible to transmit the flow control information even when the

receiving input port is unable to receive and buffer packets.

One possible outcome of cycle detection is the failure to locate a cycle, in

which case there is no deadlock and the algorithm terminates. The other possible

outcome is that a cycle is found, in which case cycle rotation is committed to by all

members of the cycle, and rotation can then proceed.

4.3.3. Cycle Rotation: Handling DVC Dependencies

In this section, we present two approaches to cycle rotation in a DVC

environment. In the first approach, described in Section 4.3.3.1, some specific

RVCs are reserved for breaking DVC dependencies for deadlock rotation. Packets

arriving on these reserved RVCs are handled specially in a relatively slow

procedure. The advantages of this scheme are that it can be implemented mostly in

software by a Routing Processor attached to each switch in the network that also

controls the complex circuit manipulation operations. Also, the scheme does not

require any additional functionality at the receiving host interface over what is

already necessary for DVC processing. In the second approach, described in

Section 4.3.3.2, unmapped packets that are rotated have additional bytes attached

to them (growing their length) to provide: 1) addressing information allowing the

packet to be forwarded via pure packet switching to the destination, and

2) sequencing information that allows the endpoint receiving node to properly

order the packet within the stream of packets on its virtual circuit. Compared to

the first approach, this alternative scheme has the advantages of simplicity and

speed but requires extra storage in the input buffers of each switch and extra

96

complexity at the receiving host interface because the scheme introduces a new

packet type that the interface must process.

4.3.3.1. Rotating Unmapped Packets Using a Dedicated RVC

In the first approach we present for cycle rotation in DVC networks, each

switch maintains one dedicated RVC at each output port which is used during

rotation to break the DVC dependencies, which would otherwise block rotation. In

cycle rotation, each unmapped packet that needs to be rotated can allocate the

dedicated RVC instead of waiting for circuit teardown to free up a normal RVC.

After rotation, the dedicated RVC is freed so that it can be used in a subsequent

rotation of some other unmapped packet. In the following discussion of this

technique, the terms ‘‘virtual switch’’ and ‘‘input port’’ are used interchangeably.

When a virtual switch detects that it is the leader of a deadlock cycle, it

executes the procedure in Figure 4.4 to prepare to perform rotation. The procedure

sets a virtual switch state variable, mode, to indicate that the virtual switch is

preparing for rotation. The procedure disables normal flow of packets from the

physical neighbor switch to the input port, and disables circuit manipulation

operations that would interfere with the state of the input port. These are left

disabled until cycle rotation is aborted or complete. If there is a packet in the input

port Auxiliary Buffer, it is transferred to the ‘‘Alternate Auxiliary Buffer’’ in the

Routing Processor’s private memory. Finally, the virtual switch sends a CYCLE

control message to the next virtual switch in the cycle. Each other virtual switch

along the detected deadlock cycle executes the same procedure of Figure 4.4 upon

receiving a CYCLE control message.

97

mode := CYCLE_MODE
disable packet flow from physical neighbor into the input port
active := active + 1 ; disables circuit operations
if currently unmapped packet is in the Auxiliary Buffer {

transfer packet to Alternate Auxiliary Buffer
}
send a CYCLE control message to successor switch
in the detected deadlock cycle

Figure 4.4: Procedure executed by a virtual switch to prepare for rotation

CYCLE messages traverse the entire ring. When the leader switch receives a

CYCLE message, all switches in the cycle have prepared for rotation. The leader

then proceeds to select and forward a packet to the next switch in the cycle.

The packet chosen by the virtual switch for forwarding is the one that is first

in line to be sent to the successor from the input port. The buffers for an input port

are checked for packets in the following order: the DAMQ buffer, the queue in

Routing Processor private memory that extends the DAMQ buffer, and the

Alternate Auxiliary Buffer. If no packet is found, then a ‘‘dummy’’ packet is

rotated to the next switch, where it is discarded.

If the switch finds a packet to rotate, it executes the procedure shown in

Figure 4.5. A mapped packet is rotated using the normal packet forwarding

mechanism. The procedure for rotating an unmapped packet is more complicated.

An unmapped packet is assigned to use the dedicated RVC on the output port

before it is rotated. A CEP is created to allocate the RVC for the packet, and a

CDP is allocated to free it. If the unmapped packet is itself a CEP, then only the

CDP is created; likewise if the unmapped packet is a CDP, then only the CEP is

created. The created CEP and CDP each contain the current switch ID and a

‘‘timestamp’’. As described in Section 3.2, this information allows the destination

98

node to sequence packets that belong to the same flow in FIFO order. Each switch

maintains a local timestamp value, which is incremented after each circuit

destruction event and after each conversion of an unmapped packet to a sequence

of packets that uses the dedicated RVC. Incrementing the timestamp value in this

manner ensures that these are uniquely identifiable events; a CEP and CDP with

matching teardown ID and timestamp values must be consecutive packets in the

circuit stream, even if they do not arrive consecutively or even in the logically

correct order [Tami91]. The resulting group of packets (CEP, data packet, and

CDP) is then forwarded.

if packet is mapped {
rotate it to successor switch

} else {
allocate the dedicated RVC to the packet
if packet is a CEP initializing a new circuit {

record address information in Circuit Destruction Table
if packet is not a CEP {

create a CEP to establish mapping
rotate CEP

}
rotate the packet
if packet is not a CDP {

create a CDP to release mapping
rotate the CDP

}
timestamp := timestamp + 1

}

Figure 4.5: Packet rotation procedure using dedicated RVC

Creating and forwarding a CEP and a CDP to rotate an unmapped data packet

introduces the possibility of unbounded growth in the number of packets in the

network. To prevent this, the network treats the three packets as an atomic group

of packets. The group travels uninterrupted on each hop toward the destination. If

the group becomes part of a subsequent deadlock, it will be rotated as a single unit,

without triggering the creation of new CEPs or CDPs.

99

On each rotation a switch participates in, a group of up to three new packets

enters the switch, and a group of up to three packets leaves the switch. The total

number of such packet groups that are present in the switch cannot increase in a

series of rotations. At worst, each rotation results in no change in the total number

of packet groups present, and on some rotations the number of groups may go

down if a dummy packet is rotated in. Since the number of packet groups present

in the switch before deadlock first occurs is bounded, and on each rotation the

number of packet groups does not increase, the storage requirement for this

mechanism is finite and equal to the capacity needed for normal operation plus the

extra capacity needed to hold a CEP and a CDP for each packet when the storage

for normal operation is depleted.

To treat rotated groups of up to three packets as a single unit, each switch that

receives such a group forwards it on the dedicated RVC of the appropriate output

port. The packet scheduling mechanism in the switch (i.e., the crossbar arbitration)

must ensure that once a packet is transmitted on the dedicated RVC, the same input

is granted exclusive access to the output until it transmits a CDP on the dedicated

RVC. During normal operation, whenever a packet is received on the dedicated

RVC, the Routing Processor is interrupted and the packet is placed in the Routing

Processor private memory allocated for that virtual channel. Once a CDP arrives

using the dedicated RVC, all the packets stored for the RVC are routed to an output

port, are allocated the dedicated RVC on that output port, and then enqueued for

transmission. The procedure for handling the arrival of each rotated packet P is

summarized in Figure 4.6.

When a virtual switch that has committed to perform rotation receives a

100

if P is a dummy packet {
discard P

} else if P uses the dedicated RVC {
transfer P to Routing Processor private memory
while P is not a CDP {

wait for a new packet P to rotate in
transfer new P to Routing Processor private memory

}
determine output port OP for the saved packets
map saved packets to the OP’s dedicated RVC
enqueue packets in DAMQ buffer or in DAMQ buffer extension

} else if P is mapped or there is a CEP waiting to map P {
if P and the Alternate Auxiliary Buffer packet AAB are
of the same virtual circuit {

enqueue AAB packet in DAMQ buffer or extension
}
enqueue P in DAMQ buffer or extension

} else {
if P and the AAB packet are of the same virtual circuit {

allocate the dedicated RVC to AAB
create CEP and/or CDP for AAB
enqueue CEP, AAB, and CDP in DAMQ buffer or extension

}
allocate the dedicated RVC to P
create CEP and/or CDP for P
enqueue CEP, P, and CDP in DAMQ buffer or extension

}
active := active - 1 ; normal operation if active=0

Figure 4.6: Handling rotated packet arrival with the dedicated RVC
approach

rotated packet from the predecessor virtual switch in the cycle, it checks whether it

is the leader of the cycle. If so, then the rotation will be complete after the virtual

switch handles the rotated packet or packet group according to the procedure in

Figure 4.6. Otherwise, the virtual switch is not the leader and must rotate one of its

packets or packet groups to the successor virtual switch in the cycle by executing

the procedure in Figure 4.5. To maximize concurrency in the distributed rotation

procedure, the virtual switch executes the procedure in Figure 4.5 before it invokes

the procedure in Figure 4.6 to handle the arriving rotated packets.

101

4.3.3.2. Rotating Unmapped Packets Using a New Packet Type

An efficient alternative to the dedicated RVC technique described in the

previous section is to introduce a new packet type that is routed using pure packet

switching and which is used to break DVC dependencies upon rotation. An

unmapped packet that needs to be rotated is first converted into this new packet

type by adding a few bytes to the header. The new bytes identify the packet as

being of the new type and also contain the same information (circuit addressing

information, teardown switch ID, logical timestamp) that is present in CEPs

created in the dedicated RVC technique. The Auxiliary Buffer needs to be made

large enough to hold the maximum sized packet that is modified in this manner. In

addition, in normal operation the flow control signaling must not allow a packet to

be sent to the neighbor until that neighbor’s DAMQ buffer has sufficient space to

store a maximum sized packet that has been converted to this new type. The

procedure for handling a rotated packet P with this technique is shown in

Figure 4.7.

With this technique, there is no need for a special RVC, there is no need to

create new CEPs and CDPs to handle unmapped packets, and the procedure for

handling rotated packets is simplified compared to the procedure in Figure 4.6.

However, hardware support is required to handle the new packet type.

102

if P is a dummy packet {
discard P

} else if P is of the new packet type {
determine output port needed by P
enqueue P in DAMQ buffer or extension

} else if P is mapped or there is a CEP waiting to map P {
if P and the Alternate Auxiliary Buffer packet AAB are
of the same virtual circuit {

enqueue AAB in DAMQ buffer or extension
}
enqueue P in DAMQ buffer or in DAMQ buffer extension

} else {
;; P is unmapped and not of the new packet type
if P and AAB are of the same virtual circuit {

convert AAB to the new packet type
enqueue AAB in DAMQ buffer or extension

}
convert P to the new packet type
enqueue P in DAMQ buffer or DAMQ buffer extension

}
active := active - 1 ; enables normal operation if active=0

Figure 4.7: Handling rotated packet arrival with the new packet type
approach

4.4. Performance Evaluation

To investigate the behavior of our deadlock detection and resolution scheme

for DVC networks, we developed a simulation testbed which provides cycle-level

emulation of the algorithm described in this chapter. The simulator models the

details of packet forwarding and circuit manipulation when deadlocks do not occur,

but it makes the simplifying assumption that control messages sent by the switches

executing the deadlock detection and resolution algorithm do not interfere with

ordinary traffic. Each control message traverses a physical link in a fixed 16 clock

cycles. This assumption is justified since control messages in a reasonable system

are at most a small fraction of the overall traffic, and furthermore many control

messages are sent over links that are not usable by ordinary packets because of the

103

congestion that triggers the deadlock detection algorithm. For the latter control

messages, the simplifying assumption made for the simulator has no effect on the

measured performance.

The particular network simulated is a two dimensional square mesh of 36

nodes. Extensive simulation revealed that with fixed-path routing policies that

exhibit many dependency cycles, deadlocks are extremely rare under light load, but

under heavier load deadlocks are plentiful. Under heavy load, the deadlock

resolution algorithm is unable to resolve deadlocks faster than new packets are

injected into the network to cause new deadlocks. Therefore, once the first

deadlock occurs, and cycle rotation begins, the network remains forever in

‘‘deadlock mode,’’ continually rotating packets around detected deadlock cycles.

Since deadlock detection and rotation is relatively slow compared to normal

operation, the resulting network latency is high and throughput is very low. The

conclusion of these investigations is that for deadlock resolution to be effective, the

traffic conditions that give rise to deadlocks must be infrequent.

To further investigate the behavior of this deadlock resolution technique, a

traffic pattern was devised to cause deadlocks only occasionally. In these

experiments, the routing algorithm is set so that all destination nodes except two

are reached via row-first routing. The two remaining nodes are reached via

column-first routing. The two remaining nodes are at opposite corners of the mesh,

with one node at row 2 column 5, and the other node at row 5 column 2. Most of

the time, the destination distribution is uniform, and the load is light (using only

10% of the mesh’s bisection bandwidth). However, periodically, a burst of traffic

lasting for 10000 clock cycles at high load (60% of bisection bandwidth) and a

104

non-uniform destination distribution occurs. The destination distribution is chosen

so as to make deadlocks very likely. In particular, the two nodes at the opposite

corners that are routed column-first send all their injected packets to each other

(column-first), and the nodes at the other two corners (at row 2 column 2, and at

row 5 column 5) send all of their injected packets to each other. As shown in

Figure 4.8, this results in a cyclic traffic pattern that makes deadlock very likely

during the burst. Note that since all nodes route to the two corner nodes column-

first, other deadlocks besides the cycle shown in the figure can occur in this

system.

row 2

row 5

col 2 col 5

Figure 4.8: Mesh with cyclic routing pattern

Once the burst of heavy deadlock-prone traffic is over, deadlocks persist in

the network until the deadlock resolution algorithm can clear the network of

enough packets that normal operation can proceed. Figure 4.9 shows the time

required after the burst period ends to completely recover from the effects of the

burst, versus the number of clock cycles between subsequent checks by each

routing processor for input ports that are not making progress.

The graph shows that for both very large and very small timeout periods,

105

Recovery Time
[Clocks]

Timeout [Clocks]
0 500 1000 1500

0

5000

10000

15000

Figure 4.9: Recovery time versus timeout period

recovery time is long. With a long timeout period, recovery time is long because

deadlocks can persist for a long time before the detection algorithm is triggered by

a timeout. Packets can be blocked in deadlock for a long time without the system

making any attempt to force them to advance through cycle rotation.

Understanding why small timeout values cause long recovery times requires more

explanation.

Figure 4.10 shows the average number of times over ten runs of ten bursts

each that switches declare themselves blocked and later return to an unblocked

state without first participating in a cycle rotation. These switches declare they are

blocked, participate in the deadlock detection algorithm, and then find that they are

not in a deadlock because they are able to send a packet before identifying a

106

Number of
Failed Cycle
Detections

Timeout [Clocks]
0 500 1000 1500

0

1000

2000

3000

4000

5000

Figure 4.10: Number of failed cycle detection attempts versus timeout

deadlock cycle.

The frequency of such failed detection attempts has an effect on the time

needed to discover deadlocks because of its impact on the range of ‘‘sequence

numbers’’ in simultaneous use in the network by switches participating in the

detection and resolution algorithm. The algorithm uses sequence numbers to

distinguish between different iterations. This prevents deadlock cycles from being

missed due to the arrival of obsolete information [Jaff89]. This means that for a

deadlock cycle to be detected, all the switches in the deadlock cycle must agree on

the current sequence number. As the graph shows, when the timeout value is very

low, switches time out frequently without detecting a deadlock. This happens

because transient congestion that does not constitute deadlock is likely to cause

107

timeouts when the timeout value is small. Each timeout causes the node that timed

out to increment its local sequence number by one. Because switches are timing

out at random times and incrementing their sequence numbers at different rates,

once a deadlock happens, the switches in the deadlock cycle can have significantly

different sequence numbers and therefore require a time-consuming

synchronization. When the timeout period is long, many fewer failed deadlock

cycle detections occur. Those that do occur are mostly at switches that are in

deadlock but are not in the deadlock cycles at the ‘‘core’’ of the deadlocks. The

switches must wait for the deadlock cycles to be rotated before they can advance.

With larger timeouts, since failed attempts are rare, the sequence numbers of the

switches in actual deadlocks are relatively close together when deadlock detection

begins, resulting in lower synchronization costs.

4.5. Summary

Schemes that prevent deadlocks in buffered packet networks restrict the use

either of buffer resources or of network routes, whereas deadlock detection and

recovery enables maximum flexibility in the use of network resources. Based on a

scheme for recovering from deadlocks in centrally-buffered packet switching

networks, this chapter presented a technique for deadlock detection and resolution

in a network using input-buffered switches and the Dynamic Virtual Circuits

mechanism. Input buffers are accommodated by mapping the physical network to

an equivalent virtual network that uses central buffering.

Dynamic Virtual Circuits support efficient adaptive routing in networks of

arbitrary topology. However, the DVC mechanism introduces a new class of

108

buffer dependencies not present with conventional packet switching. These

additional buffer dependencies have the potential for causing deadlocks. We have

shown how to design the mechanism such that when the underlying packet routing

algorithm does not exhibit buffer dependency cycles, the new DVC dependencies

do not cause deadlocks. Furthermore, with general routing, modifications to the

deadlock resolution algorithm and packet handling procedures were presented that

remove the new dependencies that would prevent cycle rotation.

We investigated the performance of deadlock resolution. As expected,

networks tend not to deadlock under light load even when there is the potential for

deadlocks. However, under constant heavy load with cyclic routing dependencies,

deadlocks can be frequent. In this case, deadlock resolution cannot remove packets

from deadlock cycles faster than they are replenished by the introduction of new

packets, and the resulting performance is poor. If the traffic injected into the

network gives rise to deadlocks only occasionally, recovery occurs and normal

operation can proceed. For a scenario with only occasional deadlocks, we

investigated the effect on recovery time of varying how long a node is blocked

before it initiates detection. Both very small and very large timeouts were found to

cause the longest recovery times, because of synchronization overhead with small

timeouts and long periods of no activity with large timeouts.

The conclusion from the performance evaluation is that deadlocks must be

rare in order for this deadlock detection and resolution mechanism to have

acceptable performance. If traffic patterns and loads are such that deadlocks are

frequent, then the mechanism is not able to clear the deadlocks quickly enough to

maintain high throughput. In contrast, if deadlocks are rare events (for example,

109

caused by a link failure or by intermittent large packet storms), then the mechanism

can recover from deadlock in about ten thousand clock cycles. The mechanism is

sensitive to the timeout value used to trigger deadlock detection. In our

experiments, recovery time varied by up to a factor of two for reasonable timeouts

less than 1000 clock cycles.

110

Chapter Five

Deadlock Avoidance in DVC Networks

In this chapter, we present and evaluate a deadlock avoidance scheme for

networks that use the Dynamic Virtual Circuits mechanism. The deadlock

avoidance scheme enables virtual circuits to be established (or re-established)

along any network path from source to destination, without the possibility of

deadlock. Compared to the deadlock detection and resolution scheme for DVC

networks that was presented in Chapter 4, the deadlock avoidance scheme provides

better performance at high load because deadlock cannot occur. The scheme

places minimal restrictions on path and buffer usage to avoid deadlock. Only a

small fraction of the packets in the network are subject to these restrictions, while

the vast majority of packets are forwarded along the unconstrained paths of virtual

circuits. With this approach, the DVC mechanism retains the advantages of routing

flexibility and efficient utilization of bandwidth and packet buffer resources.

In Section 5.1, we present our proposed deadlock avoidance scheme for DVC

networks. The approach uses a dependency cycle-free virtual network to avoid

packet routing deadlocks. In addition, to avoid more complex deadlocks that could

arise from the dependencies introduced by circuit establishment and teardown

operations, the scheme uses a second virtual network to decouple circuit

manipulation and packet routing operations. In Section 5.2, we present a

correctness proof of the DVC algorithm with deadlock avoidance. The proof

analyzes the system’s state space to show that each packet injected into the

network using a DVC is delivered to the DVC destination in order. In Section 5.3,

111

we present a description and evaluation of the hardware resources and mechanisms

needed to implement the DVC algorithm with deadlock avoidance and show that

the scheme is simple to implement with modest hardware requirements. In

Section 5.4, we present simulation results that explore the potential performance

benefits of DVCs using the deadlock avoidance scheme. This is done by

considering limit cases, where the more sophisticated (complex) routing possible

with DVCs leads to significantly higher performance than can be achieved with

conventional packet switched networks, which typically must use simple (e.g.,

algorithmic) routing.

5.1. Scheme for Avoiding Deadlocks in DVC Networks

The DVC mechanism supports adaptive routing by imposing no restrictions

on the choice of path for any circuit, and by enabling circuits to be rerouted

adaptively during their lifetimes onto new paths to minimize latency and maximize

throughput. The flexibility of adaptive routing comes at the cost of possible

deadlocks that involve the packet buffers. Deadlock cycles may also involve

RVCs, since those resources are contended for by the circuit establishment and

disestablishment operations at a switch.

This section shows how the mechanism for tearing down and re-establishing

Dynamic Virtual Circuits can be combined with a deadlock avoidance scheme that

provides packets with an escape path from potential deadlock cycles. Data packets

that take the escape path are routed individually to their destinations, independently

of the virtual circuit paths.

In this chapter, we assume that packet ordering is maintained for adaptively

112

rerouted DVCs with the use of the packet sequence number mechanism described

earlier in Section 3.2. With this mechanism, some packets are stamped with

sequence numbers for reordering at the destination. Specifically, each CEP is

stamped with the sequence number for the next data packet of the circuit. Each

switch along the path records the sequence number in the CEP as a circuit is

established or re-established. The switch increments the sequence number for each

data packet that subsequently arrives on the circuit.

Length (only included if < MAX)

Header

data

{Sequence No.}
[DVC Source/Destination]

RVC [BVC]

..

.

Figure 5.1: Packet Format. Fields in ‘‘[]’’ have the stated use only for
diverted data packets (described in Section 5.1.1). The sequence
number field is used only for CEPs, diverted data packets, and the next
non-diverted data packet.

The general packet format is shown in Figure 5.1. A packet consists of a

header followed by data phits. The first phit of the header records the RVC value.

An additional four bits of the RVC field indicate packet type and whether the

packet is of maximum length. If not, a length field is present in the header. For

most packets, the header consists only of the RVC field and possibly the length

field. For a minority of packets, the header includes additional fields. These

additional fields are required for data packets that are diverted onto deadlock

escape paths, as we describe next.

113

5.1.1. Avoiding Deadlocks Involving Data Packets

To avoid deadlocks arising from the unrestricted paths of DVCs, we embed in

the physical network two virtual networks: the primary network and the diversion

network [Duat96]. Each virtual network is composed of one Buffering Virtual

Channel (BVC) per switch input port (i.e. per link). We name the two BVCs the

primary BVC and the diversion BVC. Each is associated with a buffer (the

‘‘primary’’ and ‘‘diversion’’ buffers), which may be a FIFO buffer, or a more

efficient Dynamically Allocated Multi-Queue (DAMQ) buffer [Tami92], or a

buffer with any other organization.

The primary network supports fully-adaptive routing. This allows data

packets to follow the unconstrained paths that are assigned to virtual circuits, but it

also creates dependency cycles among packet buffers. In contrast, routing in the

diversion network is constrained such that dependency cycles do not exist (e.g., in

a mesh topology, Dimension-Order Routing (DOR) could be used in the diversion

network). In addition, the diversion network can accept blocked packets from the

primary network to provide a deadlock-free escape path [Duat96]. We say that a

data packet is diverted if it takes a hop from the primary network into the diversion

network.

Whereas virtual circuit forwarding is used to route data packets in the primary

virtual network, traditional packet routing is used in the diversion network. Hence,

while data packet headers in the primary network consist of only an RVC number,

headers of packets in the diversion network must include source, destination, and

sequencing information (Figure 5.1). When a data packet in the primary network

becomes eligible to be diverted, the switch obtains this information from the IMT

114

entry where this required information is recorded. To enable locating the correct

IMT entry, the primary buffer retains each packet’s input RVC value until the

packet is forwarded on the output RVC. As long as diversions are rare, the slower

forwarding of diverted packets at intermediate switches and the overhead of

transmitting the larger headers of diverted packets will not significantly impact

network performance. Furthermore, if diversions are rare, small diversion buffers

are sufficient (e.g., capacity of one packet).

Data packets that become blocked in the primary network can time out and

become eligible to enter the diversion network on the next hop. The routing

function used for the diversion network determines which output links the blocked

packet in the primary network can take to enter the diversion network. The packet

eventually advances, either by taking one hop on its virtual circuit path within the

primary network, or by taking one hop into the diversion network on an adjacent

switch. To enable switches to identify which virtual network an arriving packet is

using, one RVC is designated as special. A data packet arriving on this special

RVC uses the diversion BVC, else it uses the primary BVC.

Since diverted data packets may arrive out of order at the destination, each

diverted data packet is stamped with a packet sequence number for use by the

packet reordering at the destination. After a packet is diverted, the next data packet

on the same circuit is also stamped with a sequence number. At each subsequent

switch the non-diverted data packet visits along the circuit path, the switch reads

the sequence number and locally updates its record to account for the diverted data

packets. As long as only a minority of packets require the escape path, most of the

advantages of static virtual circuits are maintained with DVCs.

115

CDP3CEP1CDP1CEP2CEP3CDP2

Figure 5.2: Deadlock involving only control packets in three switches.
Packet buffer capacity is two packets. Each CEPi establishes a unique
virtual circuit. The matching CDPi will disestablish the circuit set up
by CEPi .

5.1.2. Avoiding Deadlocks Involving Control Packets

Whereas data packets are diverted from their virtual circuit paths to avoid

deadlock, control packets (CEPs and CDPs) cannot deviate from virtual circuit

paths. Instead, each CEP must traverse the path that is selected for it by the

network’s fully adaptive routing function, and each CDP must traverse the path

used by the virtual circuit it is disestablishing. A deadlock forms when a cycle of

packet buffers fills with CEPs and CDPs, as shown by example in Figure 5.2.

To avoid such deadlocks we develop a mechanism which prevents any buffer

from filling with control packets and blocking. The mechanism is derived by

analyzing all possible sequences of arrivals of control packets on a single RVC to

identify the storage required for each arrival sequence. Deadlocks are prevented by

providing switches with packet buffers that are large enough to store the control

packets of the worst case sequence without filling and blocking.

We initially examine arrival sequences consisting only of control packets on a

single RVC to find the per-RVC storage requirement. Control packets arrive in

alternating order (CDP, CEP, CDP, etc.) on an RVC. If a CDP arrives and the CEP

116

that matches it is present at the switch without an intervening data packet, then the

CEP and CDP are deleted from the network (freeing buffer slots). If they were not

deleted, the circuit establishment and disestablishment would be wasted operations

since the circuit is not used by any data packet. Thus if the first packet in an arrival

sequence is a CEP, then the CDP that follows it causes both packets to be deleted.

One other case of packet deletion is possible; a CDP is deleted if it arrives at a

switch where its circuit is already torn down as a victim. If the first packet of a

sequence is a CDP that tears down an existing circuit, then the second packet is a

CEP that establishes a new circuit. The third packet is a CDP, which matches the

CEP and causes both packets to be deleted. Therefore, in the worst case storage is

required for one CDP and one CEP for each RVC. One additional buffer slot is

needed that is common to all the RVCs. This slot accommodates the arrival on any

RVC of a CDP that will be deleted along with its matching CEP. Hence an input

port that supports R RVCs requires storage for R CEPs plus (R +1) CDPs to handle

arrival sequences without data packets.

We next consider arrival sequences that include data packets. A data packet

that uses a circuit that is currently allocated an output RVC at the switch is called

‘‘mapped’’. A mapped data packet eventually frees its buffer slot via normal

forwarding or via diversion. Therefore, including a mapped data packet in an

arrival sequence does not increase the storage required to prevent deadlock. A data

packet that uses a circuit that is not currently allocated an output RVC is called

‘‘unmapped’’. It is complex to divert an unmapped data packet because its circuit

identification information is not recorded in the IMT entry, as with mapped data

packets, but rather in a CEP that is somewhere in the packet buffer.

117

To avoid this complexity, we prohibit diverting unmapped data packets.

However, this causes the storage requirement to become unbounded because an

infinite repeating pattern of packet arrivals of the following form may arrive to a

single RVC: CEP, followed by unmapped data packets, followed by CDP.

Matching CEPs and CDPs cannot be deleted because unmapped data packets

intervene.

To restore a bound on the storage requirement, we restrict each input to store

at most one unmapped data packet at a time (having a larger limit on the number of

unmapped packets would also work but would increase the storage requirements).

If a data packet arrives and the Input Mapping Table lookup reveals that the RVC

is free or allocated to a different circuit, then the primary buffer asserts flow

control to block subsequent packet arrivals.

Blocking flow when an unmapped data packet arrives prevents control

packets from arriving in addition to data packets. Blocking control packets can

cause deadlocks, as shown in Figure 5.3.

We prevent such deadlocks by introducing a new Buffering Virtual Channel

(BVC) for control packets. We call the new BVC the Control BVC. The Control

BVC is the third and final BVC, in addition to the Primary BVC and the Diversion

BVC. The buffering associated with the Control BVC is dedicated to storing

control packets. Introducing the Control BVC allows control packets to arrive

even when the Primary buffer is full with data packets. The deadlock of Figure 5.3

does not occur since the CEPs in the figure can all advance using the Control BVC.

Prohibiting unmapped data packets from being diverted and restricting each

input port to store at most one unmapped data packet cause the storage requirement

118

CEP3U3CEP2U2U1 CEP1

Figure 5.3: Example deadlock involving three switches. Each Ui is an
unmapped data packet that is waiting for CEPi to establish an RVC
mapping. When a CEP transmits to the next switch, the unmapped
data packet is converted into a mapped data packet. So long as the
unmapped data packets are present at the input ports, subsequent
arrivals on the primary Buffering Virtual Channel (BVC) are blocked.
Therefore, the CEPs cannot make progress, and a deadlock results.

for control packets to increase slightly over the case with no data packets. The

additional storage is common to all the RVCs at a switch input port and can store

one CDP and one CEP. This increases the storage requirement to (R +1) CEPs plus

(R +2) CDPs for an input port that supports R RVCs. The two additional control

packets arrive after the unmapped data packet and on its RVC. Sections 5.1.2.1

and 5.1.2.2 present an exhaustive examination of the storage requirements for all

possible packet arrival sequences. The worst case sequence of packet arrivals on

the RVC that is used by the unmapped data packet is as follows (in order of

arrival): mapped data packets, CDP 1 (will release the RVC), CEP 2 (will allocate the

RVC for the next data packet), unmapped data packet, CDP 2 (will release the

RVC), and CEP 3 (will allocate the RVC for yet another circuit). Since the

unmapped data packet cannot be diverted, all four control packets in the sequence

are necessary and cannot be deleted. After this sequence of arrivals, CDP 3 may

arrive which matches CEP 3. In this case, both CDP 3 and CEP 3 are unnecessary and

are deleted.

119

The control packets created by source hosts (as opposed to switches along the

path) trigger critical operations at the destination host. The initial CEP injected by

a source to establish a new circuit causes the destination host to allocate memory

for delivering packets that use the circuit. The final CDP injected by the source to

disestablish the circuit triggers release of resources at the destination host. These

control packets may be deleted by a switch if all the data packets that use the

circuit are diverted, in which case the final CDP may catch up to the initial CEP at

some switch, with no intervening data packet. To resolve this potential problem,

the first data packet that uses a circuit replicates the information in the initial CEP,

and the final data packet of a circuit consists only of a header (no data payload).

Since data packets are never deleted, they are guaranteed to reach the destination

and trigger the actions.

In order to demonstrate in a rigorous fashion how much buffer space is

required for the control BVC to avoid deadlock cycles involving control packets,

the following subsections present an enumeration of all possible sequences of

packet arrivals on one RVC of a switch input port. We assume in this analysis that

for an extended period, competition with data packets for link bandwidth prevents

any of the control packets that arrive from being transmitted to the next switch.

The control packets that arrive to the switch must be accommodated by the switch

input buffers. Otherwise, the switch would block the arrival of subsequent control

packets, a condition we wish to avoid in order to guarantee that inter-switch

deadlocks involving control packets cannot form. The arrival sequences are

partitioned into two major classes: sequences that contain no data packets, and

sequences that contain data packets.

120

5.1.2.1. Cases Without Data Packets

We first consider all arrival sequences (on a single RVC) that lack data

packets. The empty sequence (no arrivals at all) is a trivial example. In that case,

no buffer space is required to accommodate the sequence. Non-empty arrival

sequences without data packets begin with the arrival of either a CEP or a CDP.

If a CEP arrives first, then the next arriving control packet on the same RVC

can only be a CDP that matches the CEP. When the CDP arrives, the switch

identifies both the CDP and the CEP ahead of it as unnecessary, and both packets

are deleted. We write the arrival sequence as follows (from first arrival to last):

CEP [CDP]. The square brackets mean the arrival of the packet inside the brackets

causes both that packet and the last packet in the sequence to be dropped. Only

buffer storage for the CEP is required in this case, since the CDP is dropped as it

arrives.

If a CDP (call it CDP 1) arrives first in the sequence, then the next arriving

control packet on the same RVC is CEP 2 for a new circuit. CDP 1 will release the

RVC upon transmission, and then CEP 2 will try to allocate it and set up a new

mapping. After CEP 2 arrives, the next arrival would be CDP 2, which matches CEP 2.

Both packets are unnecessary and are dropped. The sequence is thus the following:

CDP 1 CEP 2 [CDP 2]. The maximum buffer requirement in this case is storage for the

first CDP and the CEP.

To summarize, the maximum control packet storage required for arrival

sequences without data packets is 1 CDP and 1 CEP for each RVC. Next we

examine the arrival sequences that include data packets.

121

5.1.2.2. Cases With Data Packets

There are three categories of arrival sequences (on a single RVC) that include

data packets: sequences with data packets that are all mapped; sequences with data

packets that are all unmapped; and sequences with a mixture of mapped and

unmapped packets. We show that the sequences with unmapped data packets pose

the greatest demand on control packet buffer storage.

Consider the arrival sequences with data packets, all of which are mapped. A

data packet is mapped if it is on a circuit that has allocated the RVC. The RVC is

allocated by the CEP that precedes the data packet. The RVC is allocated when the

CEP transmits to the next switch. Therefore, if a data packet is mapped, the CEP

ahead of it is stored at some different switch or has been delivered to the

destination. Since by our assumption control packets are unable to transmit

downstream for a long time, if a control packet arrives in the sequence ahead of a

data packet, then the control packet is present when the data packet arrives.

Therefore, the data packet is unmapped, not mapped. That implies that each arrival

sequence in this category begins with a sequence of data packets that are followed

by a sequence of control packets. Having data packets strictly at the front of the

arrival sequence does not change the storage requirement for the control packets at

the tail of the sequence. Hence again storage is required for one CDP and CEP on

each RVC. The worst case arrival sequence is the following, where M 1
...Mn are

mapped data packets: M 1
...Mn CDP 1 CEP 2 [CDP 2].

We now consider arrival sequences on one RVC that include data packets, all

unmapped. When the first unmapped data packet arrives, flow on the primary

BVC is blocked, preventing subsequent arrivals of data packets. Control packets

122

can still arrive after the data packet.

Suppose the first packet that arrives in the sequence is a CEP. Then, if a CDP

follows it, both are deleted. Otherwise, the data packet would follow the CEP. In

that case, the sequence that requires the most buffering is the following: CEP 1 U

CDP 1 CEP 2 [CDP 2]. U in the sequence is the unmapped data packet. The control

packet storage required is a single CEP in addition to the usual per-RVC

requirement of one CEP and one CDP.

If the first packet in the sequence were a data packet instead of a CEP, then

the switch would generate a CEP and insert it ahead of the data packet. Thus this

case is equivalent to the previous case and has the same storage requirement.

If a CDP (call it CDP 0) were the first packet in the sequence, then the worst

case sequence is CDP 0 followed by the sequence from the previous case. That is,

the sequence is the following: CDP 0 CEP 1 U CDP 1 CEP 2 [CDP 2]. The storage

requirement is one CDP and one CEP in addition to the usual per-RVC storage

requirement.

Finally, we consider arrival sequences that include both mapped and

unmapped data packets. By the same reasoning as for sequences with only mapped

data packets, the mapped data packets in the sequences in the current category

must precede all other packets in the sequence. Again, the presence of the mapped

data packets does not affect the storage required for control packets. The worst

case sequence is the following: M 1
...Mn CDP 0 CEP 1 U CDP 1 CEP 2 [CDP 2].

123

5.1.3. Algorithm for Handling Control Packets with DVCs

As described in the previous sections, deadlock-freedom is maintained using

data packet diversion through a deadlock-free virtual network. The DVC

mechanism imposes two restrictions that simplify the algorithms and their

implementations: each input port accommodates at most one unmapped data packet

at a time, and unmapped data packets cannot be diverted. Dedicated control packet

buffers are used to prevent deadlocks that include control packets. These control

packet buffers are large enough to ensure that they can never fill up and cause

blocking.

The control packet buffer is organized as follows. For each RVC i , a logical

queue is maintained of the control packets in the order they will be transmitted to

the next switch. The head of the logical queue for RVC i is comprised of a queue

Hi with space for one CEP and one CDP. Whenever an unmapped data packet is

present on RVC i , the tail of the logical queue is extended by a queue T* with space

for one CEP and one CDP. Queue T* is shared by all RVCs at an input port but

used by only one RVC at a time.

The algorithm for managing DVCs and control packets is listed in Figure 5.4.

Details of data packet forwarding are not shown because the focus is on circuit

manipulation. The algorithm listing shows the key DVC control events that occur

at a switch and the actions the switch takes in response. For example, the first

event shown is ‘‘Output port Z becomes free’’. The following lines 1 through 15

show how the switch decides which next packet to transmit on output Z and the

actions that are taken if the transmitted packet is a CDP or a CEP.

The algorithm listing uses the convention that i and j refer to input RVCs, k is

124

an output RVC, X is an input port, and Z is an output port. Also, NX is a primary

input buffer, DX is a diversion buffer, and Hi and T* are control packet buffers.

Conditions/Events and Actions (atomic):

1. Output port Z becomes free

1 Arbitrate access (assume RVC i
of input port X maps to RVC k
of output port Z), but also
obey BVC flow control.
Arbitration priority:

2 A. a packet in some DX
buffer waiting for port Z
or a mapped packet on
RVC k from buffer NX

3 B. a CEP/CDP on RVC k from
head of Hi

4 when a CDP from RVC i is
transmitted on RVC k:

5 delete mapping from i to k
6 if a CEP is waiting at the

head of some Hj for RVC j {
7 set up new mapping from

RVC j to RVC k
8 }
9 if required, transfer head

of T* to Hi

10 when a CEP from input RVC i is
transmitted on output RVC k:

11 if an unmapped packet on
RVC i exists {

12 convert unmapped packet
to a mapped packet

13 unblock flow to primary
input buffer NX

14 }
15 if required, transfer head

of T* to Hi

2. CEP arrives on RVC i of input port X

16 if Hi is not full {
17 enqueue CEP at tail of Hi
18 } else {
19 place CEP at tail of T*
20 }

3. CEP at head of Hi, and RVC i does
not map to an output RVC

21 record SRC, DST in Input
Mapping Table entry for
RVC i

22 output port Z <-
route(CEP’s destination field)

23 if free RVC k exists on output
port Z {

24 set up mapping from i to k
25 } else if the number of RVCs on Z

for which there are CDPs at the
switch is less than the number of
CEPs that are on unmapped RVCs
and are routed to output port Z {

26 // it is necessary to select and
// teardown a victim

27 select RVC k (that reverse maps to
input RVC j != i) such that no CDP
resides at Hj

28 create CDP, place at tail of Hj

29 (note: the next data packet to
arrive on RVC j must be considered
unmapped even though RVC j stays
mapped to RVC k until the
transmission of the CDP in Hj)

30 }

4. Unmapped packet arrives on RVC i of input port X

31 block flow to primary input buffer NX
32 if Hi has no CEP {
33 create CEP using circuit

info in RVC i’s Input Mapping
Table (IMT) entry

34 place CEP at tail of Hi
35 }

5. CDP arrives on RVC i of input port X

36 if CDP is redundant {
37 delete arriving CDP
38 } else if CDP matches a CEP not

associated with an unmapped packet {
39 delete both the CEP and the

arriving CDP
40 } else if Hi not full {
41 place arriving CDP at tail of Hi
42 } else {
43 place arriving CDP at tail of T*
44 }

Figure 5.4: Algorithm for Handling Control Packets with DVCs

125

5.2. Algorithm Correctness

We consider the algorithm to be correct if the following statement is true: All

data packets injected into the network on a DVC are delivered eventually to the

DVC destination in the order injected. Eventual delivery to the DVC destination is

guaranteed if packets make progress (the network is deadlock-free) and data

packets are never delivered to incorrect destinations. In-order delivery is

guaranteed by attaching a sequence number to each packet that may arrive at the

destination out of order.

Section 5.2.1 below proves that network deadlocks are impossible.

Section 5.2.2 proves that data packets are associated with the same DVC from

injection to delivery. Together with the FIFO delivery mechanism described in

Section 5.1, these results show the algorithm satisfies the statement of correctness.

5.2.1. Proof of Deadlock-Freedom

To prove the network never enters a deadlocked configuration, we examine

data packets and control packets separately. Theorem 1 below shows that diverted

and mapped data packets cannot be part of a deadlock. Theorems 2 and 3 prove

that control packets make progress which in turn guarantees that mappings are

eventually provided for unmapped data packets. Together, the theorems show that

every packet, regardless of its type, is guaranteed to make progress.

Theorem 1: Every mapped data packet in a primary buffer NX and every data

packet in a diversion buffer DX is eventually forwarded.

Proof: This follows from Duato’s sufficient condition for deadlock freedom in a

virtual cut-through packet-switching network [Duat96]. Deadlock is avoided if

126

there exists a set C of BVCs such that all packets can reach set C in one hop,

routing in set C reaches all destinations from all switches, and the set C is free of

buffer dependency cycles. The set of diversion buffers DX meets the definition of

set C . A packet in any primary buffer NX can enter the diversion network by taking

one hop and is routed to its destination with a routing policy that is free of

dependency cycles (Section 5.1.1). `

Theorem 2: Control packets do not block in deadlock cycles that involve multiple

switches.

Proof: Assume a deadlock involves a control packet and an entity at another

switch. By examining all possible chains of dependencies from a control packet to

entities at neighboring switches, we show that each chain includes an entity that

cannot be in a deadlock cycle, contradicting the assumption.

A control packet may wait directly for one of the following five entities: a

buffer slot at the next switch, the output link, a mapped data packet at the same

switch, a control packet at the same switch, or an unmapped data packet at the

same switch. We examine each entity in turn. First, dedicated control packet

buffers at the neighbor cannot be part of a multiple switch deadlock cycle because

they have sufficient capacity to avoid filling and blocking. Second, eventual

access to the output link is guaranteed for bounded length packets with virtual cut-

through forwarding and starvation-free switch crossbar scheduling. Third, mapped

data packets cannot participate in deadlock cycles (Theorem 1). Fourth, all control

packets have the same set of possible dependencies to other entities, hence a

dependence of one control packet on another control packet at the same switch

does not introduce the possibility for a deadlock cycle that spans multiple switches.

127

Fifth, a CDP may directly wait for an unmapped data packet at the same switch and

on the same RVC. In turn, the unmapped data packet waits for a CEP at the same

switch to transmit, which will cause the unmapped data packet to become mapped.

The chain of dependencies (from the CDP to the unmapped data packet to the CEP

at the same switch) is equivalent to case four above (direct dependence from one

control packet to another at the same switch). `

Theorem 3: Control packets do not enter intra-switch deadlocks.

Proof: Such deadlocks arise from dependency cycles within a single switch. We

construct a graph of all the dependencies at a switch that involve control packet

buffers. We show that the resulting graph is acyclic. Therefore, intra-switch

deadlock is impossible.

From the algorithm listing and the enumerations of buffer states in

Section 5.1.2.1 and Section 5.1.2.2, we can construct the dependency graph shown

in Figure 5.5. The graph shows all possible dependencies for the buffers associated

with two input RVCs: a mapped RVC i at input port X , and an unmapped RVC j at

input port Y . Input ports X and Y are at the same switch. RVC i is mapped to RVC

k of output port Z .

RVCs i and j are arbitrary representatives of their classes: mapped and

unmapped RVCs, respectively. The set of all possible dependencies associated

with these representative RVCs completely characterizes all the dependencies

associated with all mapped RVCs and all unmapped RVCs. That is because it

turns out that mapped RVCs have local dependencies only to packets associated

with unmapped RVCs, and unmapped RVCs have local dependencies only to

packets associated with mapped RVCs.

128

Each vertex of the dependency graph is labeled with a 3-tuple (α, β, γ).

Component α specifies a buffer slot. Component β specifies the type of packet

occupying the buffer slot. The packet may be a CDP, a CEP, a mapped data packet

(denoted ‘‘M’’), or an unmapped data packet (denoted ‘‘U’’). Component γ =TRUE

if the input RVC used by the packet is mapped to an output RVC. Otherwise,

γ =FALSE .

A directed arc from vertex (α1, β1, γ1) to (α2, β2, γ2) represents a potential

dependency. The packet in buffer slot α1 of type β1 whose RVC mapping status is

γ1 may be blocked by the packet in buffer slot α2 of type β2 whose RVC mapping

status is γ2.

Ui

Hk or T*
Z

M

Ui

TRUE)
CEP,

3. (Head T*
X,

TRUE)
CDP,

2. (Tail Hi,

TRUE)
CEP,

1. (Head Hi,

Hk or T*
Z

M

FALSE)
CEP,

4. (Head Hj,

FALSE)
CDP,

5. (Tail Hj,

FALSE)
CEP,

6. (Head T*
Y,

Uj

TRUE)
CDP,

7. (Head Hi,

TRUE)
CEP,

8. (Tail Hi,

TRUE)
CDP,

9. (Head T*
X,

TRUE)
CEP,

10. (Tail T*
X,

Figure 5.5: Buffer dependency graph for mapped RVC i and unmapped
RVC k.

Figure 5.5 shows buffers Hi and T* at input port X (vertices 1–3 and 7–10),

and buffer H j at input port Y (vertices 4–6). Output RVC k is on output port Z , and

129

buffers Hk and T*
Z are at the neighbor switch.

The symbol Ui represents an unmapped data packet on RVC i that resides in

primary buffer NX . Similarly, U j represents an unmapped data packet on RVC j at

input port Y . Each unmapped packet waits for the transmission of a CEP in order

to be converted into a mapped data packet. The CEP resides in the H buffer for the

unmapped packet’s RVC. Note that Ui is unmapped even though RVC i is mapped

to RVC k ; according to lines 10–12 of the algorithm listing in Figure 5.4, Ui will be

converted to a mapped data packet simultaneously with the next CEP transmission

on output RVC k from buffer Hi .

To construct the graph, consider the packet at the head of Hi . It may be either

a CEP or a CDP. Recall that Hi is the head of the logical queue of control packets

for RVC i . Vertices 1–3 show the logical queue for RVC i if a CEP is at the head

of Hi . If a CDP is at the head, then vertices 7–10 apply. In both cases, each packet

not at the head of Hi depends only on the packet immediately ahead in the logical

queue. Thus each of vertices 2, 3, and 8–10 has only one outgoing arc directed to

the packet immediately ahead in the logical queue.

For the unmapped RVC j , the only packet that can be at the head of H j is a

CEP to establish a new mapping. The logical queue for RVC j is shown in vertices

4–6. Again, each packet not at the head of the queue depends on the packet

immediately ahead.

To complete construction of the graph, we examine the dependencies for each

packet at the head of a logical queue (vertices 1, 4, and 7). First we examine

vertices 1 and 7. Since RVC i is mapped to RVC k , the packet at the head of Hi

blocks waiting for all mapped data packets on RVC i to be flushed out of the

130

switch. That dependency corresponds to the arrows from vertices 1 and 7 to the

symbol M . By theorem 1, mapped packets eventually make progress. Hence the

arrows to symbol M cannot be part of a deadlock cycle. Once all the mapped data

packets have left, the packet at the head of Hi waits for access to output port Z for

transmission. At the next switch, the packet will be either discarded or else

deposited in Hk or T*
Z. We represent that in the graph by the arrows from vertices 1

and 7 to the symbols Hk and T*
Z. Since those buffers are at a different switch, that

dependency cannot cause intra-switch deadlock.

Finally, consider vertex 4. The CEP at the head of H j is blocked from

transmission until a mapping can be established from RVC j to an output RVC.

Establishing a mapping may first require that an existing mapping be disestablished

(algorithm lines 26–30). In that case, the CEP blocks waiting for a CDP on a

mapped RVC to transmit and free up an output RVC. This explains the potential

dependencies from vertex 4 to vertices 2 and 7.

By inspection, the buffer dependency graph of Figure 5.5 is acyclic.

Therefore, there can be no intra-switch deadlocks involving control packets. `

Theorem 4: The network is deadlock-free.

Proof: By Theorem 1, mapped data packets and diverted data packets always make

progress. By Theorems 2 and 3, control packets always make progress, hence if a

switch creates a CEP to establish a mapping for an unmapped data packet, the CEP

is guaranteed to establish the mapping and transmit to the next switch. Once that

occurs, the unmapped data packet becomes a mapped data packet. Therefore, all

types of packets make progress, and the network is deadlock free. `

131

5.2.2. Correct Delivery

To complete the correctness discussion, we show that the deadlock-free

network delivers each data packet to the destination of its virtual circuit (instead of

some other destination). We also show that the destination can associate each data

packet with its virtual circuit. This association is needed to deliver the contents of

a data packet to the host application to which the packet’s circuit is assigned.

The proof is based on a state transition table derived from an elaboration of

the possible states of a switch. From the perspective of some RVC i of input port

X of a switch, the switch state is the combination of the states of the buffers Hi , T* ,

the primary buffer NX , and the record in the IMT entry of a mapping to an output

RVC. For our purpose and from the perspective of RVC i , the state of buffers at

other input ports does not matter: the state of those buffers does not determine the

destination to which a data packet on RVC i is forwarded. The state of the

diversion buffer DX is also irrelevant because diverted data packets do not

participate in circuit manipulation operations.

To derive the state transition table, we first elaborate the state space of a

switch as a list of sets of states, where each set of states is classified as either

‘‘reachable’’ or ‘‘unreachable’’. Reachable states arise through error-free

operation of the switch, and the switch never enters unreachable states. A set of

states is labeled unreachable if it contradicts steps of the control packet handling

algorithm (Figure 5.4) or basic properties of DVCs such as the alternating arrival of

CEPs and CDPs on an RVC.

Table 5.1 describes the state space of a switch. In the table, each row

identifies a set of states. Each state is represented by the contents of Hi , T* , and

132

two more fields that capture the relevant state of primary input buffer NX and the

IMT entry for RVC i . Hi can hold one CEP and one CDP on RVC i . T* can hold

one CEP and one CDP on any RVC. The state of NX and the IMT entry for RVC i

are too numerous to list exhaustively, but the relevant states are determined by the

mapping status of RVC i , and whether an unmapped packet is present at input port

X . That information is represented by using two symbols: mapi and UX . The state

notation used in Table 5.1 is described in Figure 5.6 which lists the possible states

of a slot for Hi and T* and defines the symbols used in columns UX and mapi . In

addition, the symbol ‘‘d’’ in Table 5.1 means ‘‘don’t care’’.

Each set of states in Table 5.1 is labeled as either ‘‘reachable’’ or

‘‘unreachable’’. Reachable states may arise through error-free operation of the

switch. In contrast, the switch never enters unreachable states.

The ‘‘comment’’ column explains the unreachable states. ‘‘Non-FIFO’’

means the state corresponds to a non-FIFO configuration of the buffers (e.g. the

head slot of Hi is empty but the tail slot is full). ‘‘T/U inconsistent’’ means the

unmapped packet and the contents of buffer T* are not using the same RVC

(Section 5.1.3). ‘‘Consecutive CEPs’’ and ‘‘consecutive CDPs’’ refers to states

that violate the alternating order of CEPs and CDPs on a single RVC. ‘‘U implies

CEP’’ refers to states in which an unmapped data packet is present but there is no

CEP to establish a mapping for it. That condition is impossible because of

lines 10–15 and 32–35 of Figure 5.4. Note that there is a small time window in

which an unmapped packet can be present before the CEP for it has been created,

but this is a transient state that quickly resolves. We ignore such transient states in

our analysis.

133

iii
Hi T*N Reach head tail head tail UX mapi commentii

1 F − CEP d d d d non-FIFOiii
2 F − CDP d d d d non-FIFOiii
3 F d d − CEP ∨ CDP d d non-FIFOiii
4 F d d − CEP′ ∨ CDP′ d d non-FIFOiii
5 F d − CEP ∨ CDP d d d non-FIFOiii
6 F d d CEP ∨ CDP d i′ ∨ − d T/U inconsistentiii
7 F d d d CEP ∨ CDP i′ ∨ − d T/U inconsistentiii
8 F d d CEP′ ∨ CDP′ d i ∨ − d T/U inconsistentiii
9 F d d d CEP′ ∨ CDP′ i ∨ − d T/U inconsistentiii

10 F CEP CEP d d d d consecutive CEPsiii
11 F d d CEP CEP d d consecutive CEPsiii
12 F d CEP CEP d d d consecutive CEPsiii
13 F d CDP CDP d d d consecutive CDPsiii
14 F d d CDP CDP d d consecutive CDPsiii
15 F CDP CDP d d d d consecutive CDPsiii
16 F d d CDP′ CDP′ d d consecutive CDPsiii
17 T − − − − − ∨ i′ diii
18 F − ∨ CDP − ∨ CDP d d i d U implies CEPiii
19 T − − CEP′ − i′ diii
20 T − − CDP′ − i′ diii
21 T − − CDP′ CEP′ i′ diii
22 T CEP − − − − ∨ i diii
23 T CEP − − − i′ diii
24 T CEP − CEP′ − i′ diii
25 T CEP − CDP′ − i′ diii
26 T CEP − CDP′ CEP′ i′ diii
27 F CEP CDP d d − ∨ i′ d CDP cancels CEPiii
28 T CEP CDP − ∨ CEP − i diii
29 F CEP CDP CEP CDP d d CDP cancels CEPiii
30 F CDP d d d d F CDP must be mappediii
31 T CDP − − − − ∨ i′ Tiii
32 T CDP − CEP′ ∨ CDP′ − i′ Tiii
33 T CDP − CDP′ CEP′ i′ Tiii
34 T CDP CEP − − d Tiii
35 T CDP CEP CEP′ ∨ CDP′ − i′ Tiii
36 T CDP CEP CDP′ CEP′ i′ Tiii
37 T CDP CEP CDP − ∨ CEP i Tiii
38 F d d CEP′ CEP′ ∨ CDP′ i′ d symmetry w/RVC iic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 5.1: Switch State Space

To verify that the manual elaboration of the state space is complete and

consistent, we wrote a program that exhaustively generates all combinations of all

values each buffer may hold. The program verifies that each generated state

matches at least one set of states in the list and that all matching sets are labeled

134

ii
Hi and T* T* only UX mapiii

- empty CDP′ CDP on RVC i′ ≠ i - no unmapped packet
CDP CDP on RVC i CEP′ CEP on RVC i′ ≠ i i

T
one unmapped packet
on RVC i is in NX

(note: NX may hold at
most one unmapped
packet)

RVC i is mapped to
an output RVC k,
which also means that
NX may store mapped
data packets from
RVC i.

i′ Fthe unmapped packet
is on some RVC i′ ≠ i

RVC i is unmapped,
which means any
mapped packets in NX

did not arrive on RVC
i.iic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 5.6: State Notation for Table 5.1 and Table 5.2

identically (all reachable or all unreachable).

Using the set of reachable states and the control packet handling algorithm,

we can derive all the possible state transitions. Table 5.2 shows the state

transitions for all reachable states. The actions that can trigger a transition are as

follows: k (RVC i acquires mapping to output RVC k), D (CDP arrives on RVC i),

E (CEP arrives on RVC i), U (unmapped packet arrives on RVC i), T

(transmission of packet at head of Hi), D ′ (CDP arrives on RVC i ′ ≠ i), E ′ (CEP

arrives on RVC i ′ ≠ i), Ui ′ (arrival of unmapped packet on some RVC i ′ ≠ i), TEi ′

(transmission of CEP at head of Hi ′), and TDi ′ (transmission of CDP at head of Hi ′).

Each entry of the table is derived by tracing through the control packet handling

algorithm to determine what the next state would be given each possible action.

Note that each empty entry in Table 5.2 means the column’s action cannot occur in

the present state for the row. For example, for rows 0–9, there is no packet in

buffer Hi . Therefore, action T, transmission of the packet at the head of Hi , cannot

happen.

In some cases, two next states are indicated for some transitions, indicating

that either of the two next states may become the new present state. This is

135

ii
Present State Action/Next Stateii

ID Hi cc T* cc UXmapi k D E U T D′ E′ Ui′ TEi′ TDi′ii
0 − − − − −F 0 10 12 0 0 2 0 0ii
1 − − − − −T 26 1 1 3 1 1ii
2 − − − − i′ F 2 14 2,6 4 0 2ii
3 − − − − i′ T 27 3,7 5 1 3ii
4 − − CEP′ − i′ F 4 16 2 0ii
5 − − CEP′ − i′ T 28 3 1ii
6 − − CDP′ − i′ F 6 18 6 8 2ii
7 − − CDP′ − i′ T 29 7 9 3ii
8 − − CDP′ CEP′ i′ F 8 20 6 4ii
9 − − CDP′ CEP′ i′ T 30 7 5ii

10 CEP − − − −F 11 0 12 10 10 14 10 10ii
11 CEP − − − −T 0 13 1 11 11 15 11 11ii
12 CEP − − − i F 13 22 12 12 12 12ii
13 CEP − − − i T 23 1 13 13 13 13ii
14 CEP − − − i′ F 15 2 14 16 10 14ii
15 CEP − − − i′ T 3 3 15 17 11 15ii
16 CEP − CEP′ − i′ F 17 4 14 10ii
17 CEP − CEP′ − i′ T 5 5 15 11ii
18 CEP − CDP′ − i′ F 19 6 18 20 14ii
19 CEP − CDP′ − i′ T 7 7 19 21 15ii
20 CEP − CDP′ CEP′ i′ F 21 8 18 16ii
21 CEP − CDP′ CEP′ i′ T 9 9 19 17ii
22 CEP CDP − − i F 23 22 24 22 22 22 22ii
23 CEP CDP − − i T 23 25 26 23 23 23 23ii
24 CEP CDP CEP − i F 25 22 24 22 24 24ii
25 CEP CDP CEP − i T 23 31 25 23 25 25ii
26 CDP − − − −T 26 31 32 0 26 26 27 26 26ii
27 CDP − − − i′ T 27 33 2 27,29 28 26 27ii
28 CDP − CEP′ − i′ T 28 34 4 27 26ii
29 CDP − CDP′ − i′ T 29 35 6 29 30 27ii
30 CDP − CDP′ CEP′ i′ T 30 36 8 29 28ii
31 CDP CEP − − − T 26 32 10 31 31 33 31 31ii
32 CDP CEP − − i T 37 12 32 32 32 32ii
33 CDP CEP − − i′ T 27 14 33,35 34 31 33ii
34 CDP CEP CEP′ − i′ T 28 16 33 31ii
35 CDP CEP CDP′ − i′ T 29 18 35 36 33ii
36 CDP CEP CDP′ CEP′ i′ T 30 20 35 34ii
37 CDP CEP CDP − i T 37 38 22 37 37 37 37ii
38 CDP CEP CDP CEP i T 37 24 38 38 38 38iicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 5.2: State Transition Table

136

because the next state depends on the present state of Hi ′, which is not displayed in

Table 5.2 because it is not associated with RVC i .

Table 5.2 is used below to show that a packet P, which is injected on virtual

circuit V, reaches the destination of circuit V, and the host interface at the

destination associates packet P with circuit V.

Theorem 5: Whenever packet P is mapped, its input RVC identifies virtual circuit

V.

Proof: The proof is by induction on the distance from the virtual circuit’s source.

Basis: The theorem is true at the injecting host interface because the host

transmits only one CEP for the circuit until it is disestablished.

Induction Step: Assume the theorem is true for P at switch or host Sn (n hops

from the source). We now show the theorem is also true at the host or switch that

is n +1 hops from the source (at host/switch Sn +1). Suppose packet P is about to

transmit to host/switch Sn +1’s primary BVC on RVC k . Since P is about to transmit,

P must be a mapped data packet at host/switch Sn . Therefore, the previous control

packet on RVC k must have been a CEP that identified V.

If Sn +1 is a host instead of a switch, then the host will correctly associate

packet P with virtual circuit V. However, if Sn +1 is a switch, then there may be a

danger that the CEP will be deleted before it reaches the head of Hk . Only if the

CEP reaches the head of Hk will the switch Sn +1 record the circuit identification

information for V in the IMT entry for RVC k (algorithm line 21). We will now

prove that the danger is unwarranted. The CEP will successfully reach the head of

Hk at switch Sn +1.

137

Switch Sn +1 may delete a CEP if a CDP arrives from Sn or is generated locally.

In our scenario, a CDP may not arrive at Sn +1 from Sn , since packet P is about to

transmit from Sn . It is impossible for a CDP to transmit ahead of a mapped data

packet such as P (see arbitration priority rules in lines 1–3 of Figure 5.4).

Therefore, only a CDP that is generated locally at Sn +1 could trigger the deletion of

the CEP.

From Table 5.2, we can identify all the state transitions in which a CEP is

deleted upon introduction of a CDP. That is, we can identify all present states in

the table such that the column D transition takes the switch to a next state that has

one less CEP than the present state. For some of those states (10, 11, and 14

through 21), the CEP that identifies virtual circuit V is already at the head of the

logical queue (i.e. Hk for switch Sn +1), hence the IMT entry identifies V. Even if

that CEP is deleted, the information is available when packet P arrives at switch

Sn +1. The remaining qualifying states are 24, 25, 31, and 33 through 36. In those

states, a CDP is present in the buffer. According to line 27 of Figure 5.4, the

presence of the CDP prevents the introduction of a locally-generated CDP.

Therefore we conclude that it is not possible for a locally-generated CDP to cancel

the CEP before the IMT is written to identify circuit V. `

Theorem 6: If packet P is a diverted packet, then P’s header identifies circuit V.

Proof: By theorem 5, at the time P is diverted, the IMT entry identifies circuit V.

The procedure for diversion attaches that information to packet P’s header. After

diversion, the packet header is not altered until P is delivered. Therefore, packet P

is always associated with circuit V. `

138

5.3. Implementation Issues

Efficient implementation of the DVC algorithms presented earlier requires

specialized hardware support. To demonstrate the feasibility of using DVCs, this

section presents key components of a possible implementation.

5.3.1. Switch Organization

We assume an n × n switch is a single-chip device. The switch includes a

processor that performs the relatively complex yet infrequent circuit manipulation

operations of the DVC algorithm. This processor also executes higher-level

routing protocols that identify low latency paths [Taji77]. The switch has packet

buffers at each input port. Each input port X has primary buffer NX , diversion

buffer DX , and control packet buffer T*
X. The input buffers are connected to output

ports through an n × n crossbar.

Each input port also has an Input Mapping Table (IMT) that records RVC

mappings (Figure 5.7).

5

seqctlCQi
S

RVC

1 3 8 3 16

mapOP OC seq

1

OSM

RVC

SRC1 DST1 seq1 SRC2 DST2 seq2

16 16 16 168 8

Figure 5.7: Input Mapping Table
(one at each input port). Field
widths in bits are shown.

Figure 5.8: Circuit Information
Table (one for each input port).
Holds information about mapped
and torn DVCs, and CEP
information from Hi .

When a data packet arrives to an input port, its RVC identifier is used to access an

139

IMT entry. The entry’s ‘‘map’’ field indicates whether the input RVC is mapped

to an output RVC (i.e., whether a circuit is established). If so, the ‘‘OP’’ field

specifies the output port to forward the arriving packet, and the ‘‘OC’’ field

specifies the output RVC value which replaces the value in the packet’s header.

The input RVC value is saved in NX with the data packet and is discarded when the

packet is dequeued upon transmission. The remaining fields of the IMT are used to

keep track of control packet buffering (Section 5.3.2) and FIFO sequencing

(Section 5.3.3).

Each output port has an Output Mapping Table (OMT). The OMT is indexed

by output RVC value and indicates the status of the output RVC. Each OMT entry

has 3 bits. The ‘‘map’’ bit is set when the output RVC becomes mapped to an

input RVC. It is cleared when a CDP transmits to the next switch using that RVC,

releasing the output RVC for use by a new circuit. The ‘‘victim’’ bit is set when

the circuit mapped to the output RVC is chosen as a victim for teardown. It too is

cleared when the CDP transmits to the next switch. At that point, the RVC can be

mapped to an input RVC that has a CEP waiting to establish a circuit. The

‘‘active’’ bit indicates whether the RVC has been used by any recently transmitted

packet. The switch uses the ‘‘active’’ bit to choose a victim. In particular, the

‘‘clock’’ algorithm [Corb68], which approximates LRU, can be used to select a

victim.

The IMT and OMT are accessed for each packet and must therefore be stored

in high-speed (SRAM) memory. Other information is accessed only when packets

are diverted or when circuits are manipulated and can therefore be stored in lower

speed dense (DRAM) memory. This latter information consists of tables for

140

routing CEPs, tables that store DVC identification and routing information (these

tables are updated upon DVC establishment and read when DVCs are rerouted),

and tables used to implement the Hi control buffers.

5.3.2. Control Buffer Implementation

At each input port, the algorithm in Section 5.1 requires the ability to store up

to four control packets (CEPs, CDPs) for one RVC (in Hi and T*) and up to two

control packets for the rest of the RVCs (in H j). To minimize the cost of this

storage, the storage for each RVC is split into two components: CQi
S — a

frequently-accessed component stored as part of the IMT in dedicated SRAM at

each port, and CQi
CEP — an infrequently-accessed component stored in the DRAM

available on the switch. The CQi
S component consists of a compact representation

of the state of the logical queue of control packets for input RVC i . From

Table 5.2, the logical queue of control packets for an RVC i can at any time be in

one of eight states: empty, CEP, CDP, CEP CDP, CDP CEP, CEP CDP CEP, CDP

CEP CDP, CDP CEP CDP CEP. The CQi
S field of the IMT specifies the current

state as a 3-bit value. Since CDPs carry no information other than the RVC value,

the 3-bit state encoding represents all the CDPs in the queue.

The infrequently-accessed CQi
CEP component is maintained in DRAM in the

Circuit Information Table (CIT) (Figure 5.8). For each input RVC, there is an

entry in the table with space to record the information of two CEPs (DVC source,

destination, and sequencing information). The first set of fields (SRC 1, DST 1, and

seq1) reflects the current status of the DVC and is set from the contents of the CEP

that established the current DVC. The second set of fields (SRC 2, DST 2, and seq2), if

141

valid, corresponds to the DVC that will replace the current DVC. This second set

of fields is the storage of CQi
CEP — the CEP that is part of Hi (Section 5.1.3).

Storage for information from two CEPs is needed since the switch may contain

data packets on the previous DVC when the CEP for a new DVC arrives. If one or

more of these data packets needs to be diverted, the information for the previous

DVC will still be needed.

Finally, a dedicated buffer for each input port provides storage for the one

CEP that is part of T* .

Performance can be optimized by adding a small, fast write buffer for arriving

CEPs. The switch can access the buffer as a cache to forward CEPs quickly

without incurring the DRAM access time for writing to the CIT. A write buffer

only benefits CEPs that arrive to empty Hi queues. This should be the common

case since control packets present only a light load with reasonable traffic patterns.

The switch must transmit the control packets and data packets in a logical

queue in FIFO order, even though the packets are stored physically at the switch in

various memory buffers (i.e., the primary buffer for data packets, and the control

buffers described above for control packets). Each buffer preserves the partial

order of the packets it stores from the logical queue. The partial order of mapped

data packets of a logical queue is preserved because the primary buffer maintains

in FIFO order its data packets that are destined to a single output port. The partial

order of control packets in the logical queue is recorded and maintained by using

the IMT CQi
S field. Although these buffers preserve the correct partial order of

transmission, a mechanism is needed to control the total interleaved order of

transmissions from these buffers.

142

The total order of a logical queue is preserved by transmitting all of its

mapped data packets before any of its control packets. The mapped data packets

must precede the control packets because a CDP that precedes a mapped data

packet would delete the current RVC mapping, and a preceding CEP would

establish a new mapping before the data packet is transmitted. Transmission of

mapped data packets ahead of control packets is enforced through the use of the

‘‘seqctl’’ field in the IMT (Figure 5.7). The seqctl field has initial value zero and

records the number of mapped data packets that are present in the logical queue for

an RVC. Control packets in the logical queue are allowed to transmit only when

the value in ‘‘seqctl’’ is zero. Mapped data packets can transmit anytime. The

‘‘seqctl’’ value is incremented when a mapped data packet arrives at a switch on

the RVC or when an unmapped data packet on the RVC becomes mapped as a

result of transmitting a CEP. The ‘‘seqctl’’ field is decremented when a data

packet that previously arrived on the RVC is either transmitted to the next switch

along its circuit or is diverted.

5.3.3. Sequencing and Diversion

As explained in Section 5.1, to support FIFO delivery, one sequence number

per input RVC is maintained in the IMT. The IMT entry ‘‘seq’’ (sequence

number) field (Figure 5.7) is incremented whenever a packet is transmitted whose

header has no sequence number field (Figure 5.1). The index used to access the

IMT entry is the value of the input RVC on which the packet arrived at the switch.

As discussed in Section 5.3.1, this value is saved in the main data packet buffer Nx .

Whenever a packet with a sequence number is transmitted from the primary buffer,

143

that sequence number replaces the value in the IMT ‘‘seq’’ field.

After a data packet is diverted, the next data packet that is transmitted

normally on the same circuit is stamped with a sequence number (Section 5.1.1).

The IMT entry’s single-bit ‘‘OSM’’ (Out of Sequence Mode) field is used as a flag

to determine whether a data packet that is transmitted normally should be stamped.

The flag is set when a data packet is diverted. Before a data packet begins

transmission to the next switch, the OSM flag for the packet’s input RVC is read.

If the flag is set, then it is cleared and the sequence number is added to the data

packet header on-the-fly as it is transmitted to the next switch. With virtual cut-

through, a packet is transmitted only if the next switch has sufficient buffer space

for a maximum size packet. Hence, lengthening the packet, following diversion, as

it is transmitted, will not cause the buffer at the next switch to overflow.

Packet diversion requires forwarding a timed-out packet to an output other

than the one associated with the logical queue storing the packet. Hence, when a

packet times out, its request from the crossbar arbiter is modified to include access

to the switch output that was its original destination as well as access to the switch

output(s) on the diversion path(s). If access to the diversion network is granted

first, the packet’s RVC field is changed to indicate use of the diversion BVC, and

DVC information from the IMT and CIT is added to the header.

144

5.4. Performance Evaluation

One key advantage of DVCs is the potential for reducing overall network

contention by establishing circuits or rerouting existing circuits onto low latency

paths. In most systems, traffic patterns change dynamically, and circuits require

time to adjust their paths to compensate. For a first-order evaluation of the

performance potential for DVCs with adaptive routing, we consider simpler limit

cases with stable traffic patterns and circuit placements. The actual performance of

a system with DVCs will depend on the routing and rerouting algorithms.

We consider Uniform, Transpose and Bit-Reversal traffic patterns. In all

cases, we precompute the paths used by DVCs in order to simulate ideal conditions

where circuits have settled into a steady-state, low contention configuration. We

compare the performance of the resulting configuration against a packet switched

network using Dimension Order Routing (DOR), which is known to perform well

for Uniform and poorly for Transpose and Bit-Reversal patterns [Glas94].

Transpose and Bit-Reversal traffic patterns are shown in a small mesh in

Figure 5.9.

Transpose Bit Reversal

Figure 5.9: Non-uniform traffic patterns

For our simulation experiments, packet size is 32 phits, and switches have

145

DAMQ primary input buffers. For DVC simulations, there is also a diversion

buffer of capacity 32 phits. The results for DOR and routed DVCs are shown for

equal total input buffer capacity, which for DVCs is the sum of the primary input

buffer capacity plus 32 phits for the diversion buffer. The interval between packet

creations has a geometric distribution. At each switch, the crossbar arbitration

policy gives priority to the packet that has resided longest at the switch. The

performance metrics are the average latency, the average node throughput and the

normalized throughput. Packet latency is defined as the number of cycles from

when the first byte of a packet is generated at a sender to when it leaves the

network. Normalized throughput expresses throughput as a fraction of the network

bisection bandwidth.

With DVCs, a packet is diverted if it is blocked at the head of the queue at a

switch and the timeout expires. If the timeout interval is too short, packets will be

diverted unnecessarily. If the timeout interval is too long, it will take longer to

resolve deadlocks. To evaluate the impact of this effect on performance, our

evaluation includes simulations for a variety of timeout values.

5.4.1. Intelligent Flow-Based Routing

To precompute the paths used by DVCs, we use a simple heuristic placement

algorithm which produces a set of virtual circuit routes that results in low

contention, subject to the constraint that all virtual circuits follow paths of

minimum hop count. Our heuristic technique places virtual circuits sequentially;

the order of virtual circuit placement affects the final outcome. For each circuit,

the heuristic selects a path using the well-known Bellman-Ford algorithm for

146

foreach virtual circuit {
start at virtual circuit’s DST
search outward from DST until reaching SRC
PlaceFlow(SRC, DST);

}

PlaceFlow(SRC,DST):
minD[I] <- infinity for all input ports I in network
unmark all nodes
execute_list <- {DST}
while SRC not at head of execute_list {

NODE <- head of execute_list
remove head of execute_list from execute_list
PROC(NODE);

}
PROC(SRC);

END PlaceFlow.

PROC(NODE):
foreach input port I of NODE {

MinOut[I] <- k, where output port k minimizes
(MinD[neighborIPk] + Delay[I,k]),
neighborIPk is the input port
at NODE’s neighbor connected to output port k,
and Delay[I,k] is the delay estimated from
the queuing model if the new flow were
placed from input port I to output port k

minD[I] <- MinD[neighborIPMinOut[I]] + Delay[I,k]
}
mark NODE
Append unmarked neighbors of NODE to execute_list

END PROC.

Figure 5.10: Routing Procedure

finding paths with minimal cost. The cost of each link is set to an estimate of the

delay that would be experienced by packets waiting to use the link.

The delay for a link is estimated by modeling the link as a Geo(N)/D/1

queuing system fed by packet arrivals from all DVCs whose routes include the

link. Each n ×n switch is modeled by n Geo(N)/D/1 queues, one for each output

link. Feeding the j th Geo(N)/D/1 queue are n −1 traffic sources, representing the

traffic from n −1 input ports through output port j . The traffic from the i th input

port to output port j is represented by a flow f (i , j) with geometric interarrival time

distribution and rate equal to the sum of the rates of all placed virtual circuits

traversing from input port i to output port j . We use a numerical software package

147

to evaluate the mean occupancy of each queue. We use this value as the link cost,

since queue occupancy is proportional to the average waiting time for the link

(assuming non-blocking links).

To ensure that the resulting paths have minimum hop count, the path finding

algorithm starts at the virtual circuit destination and searches toward the source on

all paths, one hop at a time. When the source is reached, the minimum cost path of

minimum hop count is located. The overall procedure is detailed in Figure 5.10.

5.4.2. Transpose Traffic Pattern

The transpose traffic pattern sends all packets across the diagonal of the mesh;

packets from the source at row i column j are sent to the destination at row j

column i . Nodes along the diagonal only forward packets; they do not produce or

consume any packets of their own. For this traffic pattern, Figure 5.11 shows the

latency versus throughput for an 8 × 8 mesh, with input buffer capacity 64, 96, and

288 phits.

These results show that for all levels of buffer capacity, the maximum

throughput achieved with DVCs is about twice that achieved with DOR. With

DOR, only the horizontal incoming links of the switches along the diagonal are

utilized. With routed DVCs, both the vertical and horizontal incoming links of the

diagonal are utilized with approximately equal traffic loads assigned to each link.

The results also show that the impact of increasing the buffer capacity is higher

latency, not higher throughput. Throughput does not increase for either DOR or

routed DVCs because it is limited by the bandwidth of saturated links along the

mesh diagonal. Finally, the results show that using DVCs with long timeouts for

148

0

100

200

300

400

500

600

0 0.2 0.4 0.6 0.8 1

Latency

Normalized Throughput
a) Total Input Buffer Capacity = 64 Phits

f. Timeout=5

f.f.f.f.f.f.
. . .f.

.
.f.
. . .f.

.f. .f. .f. .f. .f

∗. Timeout=40

∗.∗.∗.∗.∗. . . .∗. . . .∗. . .∗. . . .∗. . .∗. .∗. .∗. .∗∗

×. Timeout=80

×.×.×.×.×. . . .×. . . .×. . .×. . . .×. . .×. .×. .×. .×. .×

∆. DOR

∆.∆.
.
.
.
.
.
.
.∆.
.
.
.
.
.
.
.∆.
.
.
.
.∆.
.
.∆.
.∆.
.∆.
.∆..∆∆
∆∆∆

0

200

400

600

800

0 0.2 0.4 0.6 0.8 1

Latency

Normalized Throughput
b) Total Input Buffer Capacity = 96 Phits

f. Timeout=5

f.f.f.f.f.f.
.

. .f.
.
.
.f.
.
. .f.

.f. .ff. .ff

∗. Timeout=40

∗.∗.∗.∗.∗.∗.∗. . . .∗.∗. . .∗. .∗. .∗. .∗∗

×. Timeout=80

×.×.×.×.×.×. . . .×.
. . .×.×. . .×. .×. .×. .××

∆. DOR

∆.∆.
.
.
.
.
.
.
.∆.
.
.
.
.
.
.
.∆.
.
.
.
.∆.
.
.∆.
.∆.
.∆.
.∆∆∆∆∆∆

0

500

1000

1500

2000

0 0.2 0.4 0.6 0.8 1

Latency

Normalized Throughput
c) Total Input Buffer Capacity = 288 Phits

f. Timeout=5

f.f.f.f.f.f.
.
.
.
.f.
.
.
.
.f.
.
.
.
.f.
..f.

.fff. .f

∗. Timeout=40

∗.∗.∗.∗.∗.∗.∗.∗..
.
.
.
.∗.
.
.∗. .∗∗ . .∗∗

×. Timeout=80

×.×.×.×.×.×.
.×.

.
.
.×.
.×.

.
.×. .×. .×. .××

∆. DOR

∆.∆.
.
.
.
.
.
.
.
.∆.
.
.
.
.
.
.
.
.∆.
.
.
.
.∆.
.
.∆.
.∆.
.∆. .∆.

.∆∆∆∆∆

Figure 5.11: Transpose traffic: Latency vs. Normalized Throughput.

packet diversion results in higher maximum throughput than using short timeouts.

Short timeouts increase the frequency of packet diversions, which for the transpose

traffic pattern occur before the packet crosses the diagonal, the congested point in

the network. Since diverted packets use DOR, they can only use the horizontal

incoming links of switches on the diagonal. Hence packet diversions shift traffic

from the vertical to the horizontal incoming links at the diagonal. These traffic

149

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1.0

Fraction
Diverted

Normalized Throughput

f. Timeout=5

f.
. . . .f.

. . . .f.
. . . .f.

. . . .f.f. . . .f. .f. . .f. .f. .f..f. .f..f. . .f

∗. Timeout=40

∗.∗.∗.∗.∗.∗.∗. .
.
.∗. . .∗. .∗. .∗. .∗. .∗∗. . .∗

×. Timeout=80

×.×.×.×.×.×. . . .×. . .×. . . .×. . .×. .×. .×. .××. . .×

Figure 5.12: Transpose traffic: Fraction of Traffic Diverted vs.
Normalized Throughput. Total input buffer capacity = 96 phits.

imbalances reduce performance, thus in this case longer timeouts which minimize

packet diversions are better.

Figure 5.12 shows the fraction of traffic diverted versus normalized

throughput for the DVC network with input buffer capacity of 96 phits. For low

and medium network loads, as the load increases, the fraction of diverted packets

increases. However, past a certain point, the fraction of diverted packets decreases

as the load increases. The reason for this is that at these high loads the increase in

network throughput is mostly for the subset of circuits using low-contention routes.

Other circuits and their diversion paths are saturated and their throughput does not

increase as the applied load increases. For the low-contention circuits no diversion

occurs so more packets get through the network without a corresponding increase

in the number of diverted packets.

The performance of a distributed application is often limited by the

performance of its slowest member rather than by the aggregate throughput

available to the application. For example, an application whose nodes

communicate via the transpose traffic pattern may occasionally need to

150

0

0.2

0.4

0.6

0.8

1

0 20 40 60

Throughput

Sender

f. . Adaptive

f. .f. .f. .f. .f. .f. .f. .f.
.
.
.
.
.f. .f

a. . DOR

a. .a. .a. .a. .a. .a. .a. .a. .a. .a. .a. .a. .a. .a. .a. .a. .a. .a.
.a. .a. .a. .a. .a. .a. .a. .a.

..a. .a. .a. .a. .a. .a. .a. .a. .a. .a.
.
.
.a. .a. .a. .a. .a. .a. .a. .a. .a. .a. .a. .a.

.

.
.
.
.
.a. .a. .a. .a. .a. .a. .a. .a. .a. .a. .a. .a.

.a. .a.
.
.
.
.
.a. .a

Figure 5.13: Transpose traffic: Throughput fairness. Throughput vs.
sender, sorted. Total input buffer capacity = 64 phits. Average node
throughput = 0.241 for DOR (48.2% normalized), 0.242 for routed
DVCs (48.4% normalized).

0

0.2

0.4

0.6

0.8

1

0 20 40 60

Throughput

Sender

f. . Adaptive

f. .f. .f. .f. .f. .f. .f. .f.
.
.
.
.f. .f.

.f.
.f. .f.

.f. .f. .f.
.f. .f. .f. .f. .f.

..f. .f.
.f. .f. .f. .f. .f. .f. .f.

.
.f. .f. .f.

.f. .f. .f. .f.
.
.
.
.
.
.
.f. .f. .f. .f. .f. .f. .f

a. . DOR

a. .a. .a. .a. .a. .a. .a. .a. .a. .a. .a. .a. .a. .a. .a. .a. .a. .a.
.a. .a. .a. .a. .a. .a. .a. .a.

..a. .a. .a. .a. .a. .a. .a. .a. .a. .a.
.
.
.a. .a. .a. .a. .a. .a. .a. .a. .a. .a. .a. .a.

.

.
.
.
.
.a. .a. .a. .a. .a. .a. .a. .a. .a. .a. .a. .a. .a. .a.

.

.

.

.

.

.

.

.

.

.

.

.a. .a

Figure 5.14: Transpose traffic: Throughput fairness at saturation.
Throughput vs. Sender, sorted. Total input buffer capacity = 288 phits.
Average node throughput = 0.24 for DOR (48% normalized), 0.47 for
routed DVCs (94% normalized)

synchronize to ensure that all sending nodes are in a known state. If some flow is

particularly slow, progress of nodes associated with this flow will be impeded and

the progress of all other nodes will be throttled upon synchronization. Hence, it is

useful to evaluate the fairness of the system by comparing the throughputs

achieved by individual senders.

Figure 5.13 shows the raw (not normalized) throughput achieved by each

151

source node in the 8 × 8 mesh using the transpose traffic pattern. The throughputs

from each sender are displayed, sorted to be monotonic (the first eight sources are

along the diagonal and do not generate packets). Throughputs for routed DVCs

and DOR are displayed as separate curves. Since fairness in a network decreases

as the load increases, comparison of the fairness of the two policies should be done

at the same average node throughput. In Figure 5.13, average node throughput for

DOR is at its maximum, 0.233, and average node throughput for routed DVCs is

0.242. Since unfairness increases with average node throughput, the result in

Figure 5.13 is biased slightly in favor of DOR, yet the routed DVCs achieve far

greater uniformity of sender throughput than does DOR. As we increase applied

load further, the routed DVCs policy also becomes unfair, but only at much higher

levels of average node throughput than can be achieved with DOR. This is

demonstrated in Figure 5.14, which shows throughput fairness at saturation, in

which each source constantly tries to inject packets.

5.4.3. Bit-Reversal Traffic Pattern

The bit-reversal traffic pattern sends messages from each source

xn −1xn −2
. . . x 0yn −1yn −2

. . . y 0 to destination y 0y 1
. . . yn −1x 0x 1

. . . xn −1. Figure 5.15 shows

latency versus throughput on an 8 × 8 mesh, for total input buffer capacity 64, 96

and 288 phits. The reported throughput is normalized to the bisection bandwidth,

the upper bound on throughput for the bit-reversal traffic pattern.

The results for bit-reversal show that, as with transpose traffic, routed DVCs

significantly outperforms DOR and there is no advantage to increasing the buffer

size. Unlike with transpose traffic the latency-throughput results with bit-reversal

152

0

200

400

600

800

1000

0 0.2 0.4 0.6 0.8 1

Latency

Normalized Throughput
a) Total Input Buffer Capacity = 64 Phits

f. Timeout=5

f.f.f.f.f. . . .f. . . .f.
. .f.

. . .f.
.f. .f. .fff

a. Timeout=10

a.a.a.a.a. . . .a.
. . .a.

. .a.
. . .a.

.a. .a. .aaa

+. Timeout=20

+.+.+.+.+. . . .+. . . .+.
. .+.

. . .+.
.+. .+. .+++

∗. Timeout=40

∗.∗.∗.∗.∗. . . .∗. . . .∗. .
.∗. .

.∗. .∗. .∗∗∗∗

×. Timeout=80

×.×.×.×.×. . . .×. . . .×.
. .×.

.
.×.

.×.
.××××

∆. DOR

∆.∆.
.
.
.
.
.
.
.∆.
.
.
.
.
.
.
.
.
.
.∆.
.
.
.∆.
.∆.
.∆..∆.
.∆.
.∆.
.∆∆∆
∆

0

200

400

600

800

1000

1200

0 0.2 0.4 0.6 0.8 1

Latency

Normalized Throughput
b) Total Input Buffer Capacity = 96 Phits

f. Timeout=5

f.f.f.f.f.f.
. . .f.

. .f.
. . .f.

. .f.
.f. .fff

a. Timeout=10

a.a.a.a.a.a.
. . .a.

. .a.
.

.
.a.
. .a.

.a.
.a..aa

+. Timeout=20

+.+.+.+.+.+.
. . .+.

.
.+.
.
.

.+.
. .+.

.+. .+. .++

∗. Timeout=40

∗.∗.∗.∗.∗.∗. . . .∗. .
. .∗. .

.
.∗..

.∗..∗∗∗
∗

×. Timeout=80

×.×.×.×.×.×.×.
. . .×.

.
.
.
.×.
..×.
.××××

∆. DOR

∆.∆.
.
.
.
.
.
.
.∆.
.
.
.
.
.
.
.
.
.
.
.
.
.∆.
.
.
.∆.
.∆.
.∆..∆.
.∆.
.∆.
.∆∆∆∆

0

1000

2000

3000

0 0.2 0.4 0.6 0.8 1

Latency

Normalized Throughput
c) Total Input Buffer Capacity = 288 Phits

f. Timeout=5

f.f.f.f.f.f.
. . . .f.

.
.f.
. . . .f.

.
.
.f. .f. .ff

f

a. Timeout=10

a.a.a.a.a.a.
. . . .a.

. .a.
. .

. .a.
.
.
.a.

.a.
.a.
.aa

+. Timeout=20

+.+.+.+.+.+.
.
.
.
.+.
. . .+.

.
.
.
.+.
.
.
.+.
.+..+++

∗. Timeout=40

∗.∗.∗.∗.∗.∗. .
.
.
.∗. .

.
.∗. .

.
.
.∗..
.
.
.∗..∗.
.∗∗∗

×. Timeout=80

×.×.×.×.×.×.
. .

. .×.
. . .×.

.
.
.
.
.×.
.
.
.
.×.
.××××

∆. DOR

∆. . . .∆.
.
.
.
.
.
.
.∆.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.∆.
.
.∆.
.∆∆∆
.
.
.∆.
.∆..∆∆∆∆

Figure 5.15: Bit-Reversal traffic: Latency vs. Normalized Throughput.

traffic are nearly independent of the diversion timeout value. With bit-reversal

traffic, diverted packets do not necessarily follow poor paths that increase

congestion.

153

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1

Fraction
Diverted

Normalized Throughput

f. . . Timeout=5

f.
.f.

.f.
.f.

.f.
. . . .f.

. . .f.
. .f.

. . .f.
.f. .f. .f..ff. .f

a. . . Timeout=10

a.
.a.

.a.
.a.

.a.
.a.

. . .a.
. . .a.

. . .a.
. .a. .a. .aaa. .a+. . . Timeout=20

+.+.+.
. . . .+.

.+.
.
.
.
.
.+.
. .

. .
.+.
.
.
.+.
.
.
.
.+.

.+. .+. .+++. .+
∗. . . Timeout=40

∗.∗.∗.∗.∗.∗..
.
.
.
.
.∗..

.
.
.∗..

.
.
.
.∗. .∗∗∗∗∗. .∗

×. . . Timeout=80

×.×.×.×.×.×. . . .×.
. .×.

.
.
.
.×.

.×..××××. .×

Figure 5.16: Bit-Reversal traffic: Fraction of Traffic Diverted vs.
Normalized Throughput. Total input buffer capacity = 96 phits.

Figure 5.16 shows the fraction of traffic diverted versus throughput with total

input buffer capacity 96 phits. These results show, as with transpose, that

increasing timeout values greatly reduce the fraction of traffic diverted. Since

diverted packets are handled less efficiently than packets on DVCs, these results

and the transpose traffic results indicate that long timeout values should be used.

5.4.4. Uniform Traffic Pattern

For uniform traffic in a square mesh, DOR distributes load evenly across the

links that comprise the network bisection and thus should perform well. In

contrast, some adaptive routing schemes tend to steer more traffic toward the

center of the network, causing congestion [Pert92].

Figure 5.17 shows latency versus throughput for uniform traffic with total

input buffer capacity 64 and 288 phits. The results show that the performance of

routed DVCs is close to that of DOR. Unlike transpose and bit-reversal traffic,

with uniform traffic the use of larger buffers improves performance. Increasing the

154

0

200

400

600

800

1000

0 0.2 0.4 0.6 0.8 1

Latency

Normalized Throughput
a) Total Input Buffer Capacity = 64 Phits

f. Timeout=5

f.f.f.f.f. . . .f. . . .f. . .f.
. . .f.

.f.

.f.

.fff

∗. Timeout=40

∗.∗.∗.∗.∗. . . .∗. . . .∗. . .∗. .
.∗..∗.
.∗..∗∗∗

×. Timeout=80

×.×.×.×.×.
. . .×.

.
.×.
.×.
..×.
.×..××
××

∆. DOR

∆.∆.∆.∆.∆.∆.∆.
. . . .∆.

.
.
.
.
.∆.
.
.∆.
.∆..∆∆
∆

0

500

1000

1500

2000

0 0.2 0.4 0.6 0.8 1

Latency

Normalized Throughput
b) Total Input Buffer Capacity = 288 Phits

f. Timeout=5

f.f.f.f.f.f. . . .f. . . .f.
.f.

.
.
.
.
.
.
.
.
.f.
.
.
.
.f.
.
.f.
.f..f

∗. Timeout=40

∗.∗.∗.∗.∗.∗. . . .∗. . . .∗.∗..
.
.
.
.
.
.
.
.
.∗..
.
.∗..
.∗..∗∗×. Timeout=80

×.×.×.×.×.×. . . .×. . . .×.
.
.
.
.
.
.
.
.
.
.
.×.
.
.
.
.
.
.
.
.
.
.×.

.
.×.
.××..×

∆. DOR

∆.∆.∆.∆.∆.∆.∆. . . .∆.
.
.
.
.
.
.
.
.
.
.
.
.
.∆.
.
.
.
.
.
.
.
.
.∆.
.∆.

.∆∆

Figure 5.17: Uniform traffic: Latency vs. Normalized Throughput.

buffer capacity increases the number of flows that can be represented at any instant

by the packets that are present at a switch. Larger buffers are therefore more

helpful for uniform traffic with O (N 2) flows than for the previous traffic patterns

which have only O (N) flows (one from each source node). Performance also

improves with the use of smaller timeout values which effectively increase the

useful buffer capacity by enabling more packets to take advantage of the 32 phit

diversion buffers. With large buffers (288 phits), routed DVCs and DOR have

nearly identical performance.

For routed DVCs with short timeouts, as the applied load increases beyond

saturation the network throughput decreases slightly. This may occur because

155

congestion in the primary virtual network causes a larger number of packets to

enter the diversion virtual network which has limited buffering and therefore

limited throughput.

5.4.5. The Impact of Network Size

For a larger mesh network of size 16 × 16 and the same traffic patterns as used

previously, Figures 5.18, 5.19 and 5.20 show latency versus throughput, and

Figures 5.21, 5.22 and 5.23 show the fraction of traffic diverted versus normalized

throughput. For non-uniform traffic, the results show that routed DVCs

significantly outperform DOR, but the performance difference is smaller than on

the 8 × 8 mesh. With the larger network, packets travel longer distances, and there

are more opportunities for delays and deadlocks. Hence, the fraction of packets

diverted tends to be larger than on the 8 × 8 mesh, resulting in more of the traffic

facing congestion as with DOR.

0

200

400

600

800

1000

1200

0 0.2 0.4 0.6 0.8 1

Latency

Normalized Throughput

f. Timeout=5

f.f.f.f.f.
.
.
.
.
.
.f.
.
.f.

.f.
. .f.

.f.
.f. .f.

.ff

∗. Timeout=40

∗.∗.∗.∗.∗.∗..
.
.
.
.∗..

.∗. .
.∗. .∗. .∗..∗∗∗

∆. DOR

∆.∆.
.
.
.
.
.
.
.
.
.∆.
.
.
.
.
.
.
.
.∆.
.
.
.
.∆.
.
.∆.
.∆.
.∆.
.∆.
.∆..∆∆∆∆

Figure 5.18: 16 × 16 Transpose traffic: Latency vs. Normalized
Throughput. Total input buffer capacity = 64 phits.

156

0

200

400

600

800

1000

1200

1400

1600

1800

0 0.2 0.4 0.6 0.8 1

Latency

Normalized Throughput

f. . . Timeout=5

f.f.f.f.f.
.
.
.
.f.
.
.
.
.f.
.
.
.f.
.
.f.
.f.
.ffff

∗. . . Timeout=40

∗.∗.∗.∗.∗..
.
.
.
.
.∗.
.
.
.∗..

.
.∗.
.∗∗∗∗∗

×. . . Timeout=80

×.×.×.×.×.
.
.
.
.
.×.
.
.
.×.
.
.
.×.
.×××××

∆. . . DOR

∆.∆.
.
.
.
.
.
.
.
.
.
.
.∆.
.
.
.
.
.
.
.∆.
.
.
.∆.
.
.∆.
.
.∆.
.∆.
.∆∆∆
∆∆

Figure 5.19: 16 × 16 Bit-Reversal traffic: Latency vs. Normalized
Throughput. Total input buffer capacity = 64 phits.

0

200

400

600

800

1000

0 0.2 0.4 0.6 0.8 1

Latency

Normalized Throughput

f. Timeout=5

f.f.f.f.f.f.
. . . .f.

.
.
.
.
.f.
.
.
.
.
.
.
.f.
.
.
.f.
.
.f.
.f.
.f.
.f∗. Timeout=40

∗.∗.∗.∗.∗.∗.∗. .
.
.
.∗..
.
.
.
.
.
.∗..

.
.
.∗..

.∗.
.∗..∗.
.∗

×. Timeout=80

×.×.×.×.×.
.×.

.
.
.
.×.
.
.
.×.
.
.
.
.
.×.
.
.
.×.
.
.×.
.×.
.××

∆. DOR

∆.∆.∆.∆.∆.∆.∆.
.
.
.
.
.
.∆.
.
.
.
.
.
.
.
.
.
.∆.
.
.
.∆.
.∆.
.∆..∆.

.
.∆

Figure 5.20: 16 × 16 Uniform traffic: Latency vs. Normalized
Throughput. Total input buffer capacity = 64 phits.

157

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fraction
Diverted

Normalized Throughput

f. . . Timeout=5

f.f.f.f.f. . .f. .f. .f. . .f. .f. .ffff

∗. . . Timeout=40

∗.∗.∗.∗.∗.∗. . .∗. .∗. . .∗. .∗. .∗∗∗ ∗

Figure 5.21: 16 × 16 Transpose traffic: Fraction of Traffic Diverted vs.
Normalized Throughput. Total input buffer capacity = 64 phits.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fraction
Diverted

Normalized Throughput

f. . . Timeout=5

f.f.
.f.

. . . .f.f. . .f.
.f.

.f.
.ffffff

∗. . . Timeout=40

∗.∗.∗.∗.∗..
.
.
.
.∗..

.∗..
.∗∗∗∗∗∗

×. . . Timeout=80

×.×.×.×.
.×.

.
.
.
.
.×.
..×.

.××××××

Figure 5.22: 16 × 16 Bit-Reversal traffic: Fraction of Traffic Diverted vs.
Normalized Throughput. Total buffer capacity = 64 phits.

158

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fraction
Diverted

Normalized Throughput

f. . . Timeout=5

f.
.f.

.f.
.f.

. . . .f.f.f.
. .f.
.

.
.f.

.f.
.ffff

∗. . . Timeout=40

∗.∗.∗.∗.∗.∗. .
.
.
.
.
.∗..

.
.
.
.∗..
.
.
.
.∗..

.∗..∗∗∗∗×. . . Timeout=80

×.×.×.×.×.
.
. .

.
.×.
.
.
.
.
.
.
.×.
.
.
.
.
.×.
.
.
.
.×.
..×.

.××××

Figure 5.23: 16 × 16 Uniform traffic: Fraction of Traffic Diverted vs.
Normalized Throughput. Total input buffer capacity = 64 phits.

5.5. Summary

In this chapter, we presented a deadlock avoidance scheme for DVC

networks. The scheme enables each Dynamic Virtual Circuit to be established on

any path from source to destination without the possibility of deadlocks involving

packet buffer resources or virtual circuit manipulation operations. To guarantee

deadlock-freedom in DVC networks, our solution decouples data packet routing

and circuit manipulation operations. To enable data packets to use unconstrained

virtual circuit paths, we leverage the existing approach from packet switching

networks of allowing data packets that encounter buffer dependency cycles to

transition to a dependency cycle-free virtual network, the diversion network. To

avoid deadlocks involving circuit manipulation operations, we develop a new

approach, based on an analysis of control packet arrival sequences, which

guarantees that control packets cannot experience blocking across switches.

We presented correctness arguments showing that the DVC algorithms ensure

the network is deadlock-free and that data packets are delivered to correct

159

destinations. The arguments are based on an elaboration of the state space of a

switch and the possible state transitions that are allowed by the DVC algorithm.

We presented a hardware/firmware architecture for the implementation of the

DVC mechanism with deadlock avoidance. Our analysis shows that the hardware

requirements to implement this scheme are modest, enabling practical

implementation. Our performance evaluation results show that with virtual

circuits, global routing optimization is possible and provides performance superior

to fixed routing. Furthermore, the results show that the use of deadlock-free escape

paths is sufficiently infrequent to preserve the bandwidth efficiencies of the DVC

mechanism.

160

Chapter Six

Reducing Cell Loss in Low Complexity
Multi-Path Multistage Switching Fabrics

As described in the previous chapters, the DVC mechanism enables efficient

communication by establishing a connection which is routed onto a low latency

network path from a source to a destination. To investigate whether similar

approaches can be useful in the context of a network switch, we evaluate in this

chapter the potential performance benefits of explicitly routing selected flows

through a large-scale ATM or IP switch. These benefits may motivate the

development of mechanisms that enable some flows to use efficient connections,

such as virtual circuits, established on selected paths through a network switch.

Modern network switches enable the creation of high-speed multiservice

networks that simultaneously support real-time (deadline sensitive) and best-effort

traffic [Turn86, Part94]. Multiservice networks eliminate redundant costs of

building and operating multiple single-service networks, and large, scalable

switches provide low cost per port and convenient central management.

An N × N ATM or IP switch consists of N input ports, N output ports, and a

switching fabric that forwards packets or cells from input ports to output ports.

Small switches can be built with a crossbar or shared bus organization. For cost

effectiveness and high performance, large switches are typically implemented with

a multistage organization, in which each stage consists of a number of switching

elements (SEs) [Part94].

A key goal in the design of such switches is to minimize the loss of cells or

161

packets. Cell loss degrades the quality of real-time traffic and necessitates costly

retransmission and congestion control throttling of best-effort traffic [Jaco88].

Cell loss is the result of conflicting demands by multiple cells for access to

resources, such as communication links or buffer space.

The existing techniques for reducing cell loss, which we surveyed earlier in

Section 2.4, fall into two categories. Some techniques limit the arrival of traffic

from other switches or sources to the switch inputs. Other techniques reduce cell

loss within the switching fabric without limiting the arrival of traffic to the switch.

An important sub-category of the second category is the use of multi-path

switches, in which multiple paths are provided in the switching fabric for each

source-destination pair. The use of multi-path switches enables load balancing and

the reduction of the intensity of cell bursts that can cause buffer overrun and hence

cell loss. Multiple paths can be provided by adding extra switching stages,

sometimes called ‘‘distribution’’ stages, to a minimal banyan network that alone

provides only one route from each input to each output. We refer to this minimal

banyan network as the routing network since it can route cells from any input to

any output.

The focus of this chapter is on the effective management of a low-cost subset

of multi-path switches, those with only a single additional stage for providing

alternate paths. Specifically, we evaluate the potential benefits of alternate switch

configuration and traffic management schemes for reducing cell loss in these

switches processing a mix of real-time and best-effort traffic. The switching fabric

configurations we consider differ in the manner in which the single extra stage is

attached to the routing stages. The management policies we consider differ in the

162

control of the routes that cells use to traverse the switch. We measure the relative

performance of policies that explicitly route some flows onto single paths and

policies that uniformly distribute all traffic over all available paths.

The chapter is organized as follows. Section 6.1 gives an overview of the

switch design issues that we investigate in this chapter. Section 6.2 characterizes

the impact on CLR of traffic load, buffer capacity, and the location of conflicts.

Section 6.3 uses the characterization for the evaluation of switch configurations

and routing policies.

6.1. Switch Design Considerations and Performance Metrics

The multistage switching fabrics under consideration are composed of small

n × n , output-queued switching elements (SEs), such as the AT&T T7650 Phoenix

ATM Switch Element [Low97] or the Fujitsu MB86680B switching element

[Fuji94]. In keeping with our focus on low complexity switches, we assume the

switching elements do not distinguish between real-time and best-effort traffic in a

multiservice network. Hence, all traffic contends for switch resources (buffer

space and link bandwidth) with equal priority. The output buffers are first-in first-

out queues with random tie-breaking for simultaneous arrivals. The topology is a

butterfly network consisting of logn N stages of N /n SEs per stage, plus one

additional distribution stage before the logn N routing stages. The distribution

stage provides n paths through the fabric for each input-output pair (Figures 6.10

and 6.11 in Section 6.3.1 show two examples of switching fabrics that satisfy our

topology requirements). The link bandwidth between adjacent stages of the

switching fabric equals the combined bandwidth of the inputs to the switch, i.e., we

163

assume the switching fabric does not provide bandwidth expansion in which the

switching fabric would have higher bandwidth than the switch provides externally.

A key performance metric for a switch is the Cell Loss Ratio (CLR), which is

the ratio of the number of cells dropped by the switch to the number of cells

injected into the switch. Cell loss is caused by bursts of arrivals of cells to a buffer

within the switching fabric, causing the buffer to become full. Cells that

subsequently arrive to the full buffer are discarded.

One way to reduce cell loss is to provide multiple paths through the switch.

Multiple paths can be used to reduce the number and severity of flow conflicts

which can cause buffer overflow and cell loss. Alternate paths are provided by

adding distribution stages to the switching fabric.

For switching fabrics that have only a single distribution stage, a design issue

that affects the CLR is the manner in which the distribution stage is connected to

the first stage of the minimal banyan network. The configuration of this

interconnection determines the precise set of alternate paths through the switching

fabric. Therefore, this configuration also determines the locations in the switching

fabric where flows can encounter resource contention that can lead to cell loss. For

example, a distribution stage using the standard butterfly configuration has the

property that if any of the alternate paths for two flows conflict, then all their

alternate paths conflict. This can potentially lead to a high CLR. In Section 6.3.1,

we investigate whether different configurations can be used which result in fewer

conflicts between alternate paths, leading to a lower CLR.

Another key design issue that affects CLR is the routing policy that is used to

exploit the alternate paths through the switching fabric. There are two basic

164

approaches: oblivious distribution, and explicit routing of flows onto single paths.

With oblivious distribution, the distribution stage uniformly distributes the

cells of each flow across all the alternate paths. To implement this policy, the

distribution stage simply cycles through the set of all possible switch settings,

causing cells to be distributed onto the alternate paths without being examined and

routed in the distribution stage. Oblivious distribution reduces the magnitude of

traffic bursts that a single heavy flow can apply to any buffer in the routing

network. However, a disadvantage of oblivious distribution is that alternate paths

for two different flows can conflict in the routing network, leading to cell loss.

The alternative to oblivious distribution is to route flows onto individual

paths. In many cases, routing can be used to avoid conflicts by directing flows

onto paths that are not used by other flows, thus potentially reducing CLR

compared to the use of oblivious distribution. To determine the potential benefits

of this approach, in Section 6.3.2 we evaluate and compare oblivious distribution to

an idealized policy that routes some flows onto single paths.

6.2. Characterizing Cell Losses in Multistage Switches

Effective configuration and management of multistage switching fabrics

require an understanding of the key factors that determine the CLR. In

Section 6.2.1 we use simulations to characterize the impact of three such factors:

traffic load, buffer size, and the location of conflicts for resources between traffic

flows. Since the result of interest is the rate of rare events (cell losses), simulations

that produce statistically significant results are time-consuming — some taking

several days on a modern workstation. This makes it impractical to evaluate a

165

wide range of switch configurations, routing policies, and traffic patterns. In order

to overcome this limitation, we use the characterization from Section 6.2.1 to

approximate CLR for numerous configurations that have not been directly

simulated. The approximation technique is presented in Section 6.2.2.

We adopt the common modeling assumption that traffic arriving at the first

stage of the multistage switch has memoryless, Bernoulli arrival [Four97, Desm91].

Even with the assumption of Bernoulli arrival to the switch inputs, non-initial

stages have different arrival distributions (determined by the departure process of

cells from the previous switching stage). Hence, a simple Geo/D/1 Markov model

of a single queue can be applied to evaluate cell loss in the initial stage, but not in

subsequent stages. Therefore, we take the approach of employing discrete-event

simulation to obtain cell loss statistics in the multistage case. Each simulation run

covers 1010 simulated cycles, where a cell entirely arrives to or departs from an SE

in a single cycle. Therefore, the simulation provides meaningful CLR values down

to about 10−7 or 10−8.

6.2.1. Simulation-Based Characterization of Factors Determining the CLR

The key factors that determine the CLR are traffic load, buffer size, and the

locations where traffic flows contend for resources in the switching fabric. We use

simulation to measure cell loss in each stage of a fabric under uniform traffic, and

under non-uniform traffic that consists of a mix of real-time and best-effort flows

(appropriate for multiservice networks).

To characterize the impact of the three factors listed above on cell loss, we

evaluated two switches under a uniform traffic workload: a 2×2 switch composed

166

inputs outputs

Figure 6.1: 16×16 butterfly switching fabric, 2×2 SEs, no distribution
stage. Provides exactly one path between each switch input and each
switch output.

of a single 2×2 SE, and a 16×16 switch composed of four stages of 2×2 SEs

interconnected in a butterfly topology without a distribution stage (Figure 6.1).

For the 2×2 switch, the simulation results in Figure 6.2 show how CLR varies

with the capacity of each output buffer and with the applied load. The applied load

is the utilization of the external inputs to the switch. The results show that CLR

increases rapidly with applied load, since at high load more cells are present in the

167

1e-13
1e-12
1e-11
1e-10
1e-09
1e-08
1e-07
1e-06
1e-05

0.0001
0.001
0.01
0.1

1

CLR

load
50 60 70 80 90 100

f
f

f
f

f
f

f

g

g

g

g

g

g

g

×

×

×

×
×

×
×

a

a

a

a

a

a

a

|

|

|

|

|

|

∗

∗

∗

∗

∗
∗

∆

∆

∆

∆

∆

f

f

f

f

a

a

a

a

f B=10
g B=12
× B=14
a B=16
| B=18
∗ B=20
∆ B=22
f B=24
a B=26

Figure 6.2: CLR versus load, 2×2 SE, uniform traffic, B is output buffer
capacity in cells.

1e-13
1e-12
1e-11
1e-10
1e-09
1e-08
1e-07
1e-06
1e-05

0.0001
0.001
0.01
0.1

1

CLR

load
50 60 70 80 90 100

− − − − −

+
+

+
+

+

f

f

f
f

f

f

f

f

f
f

g

g

g

g

g

×

×

×

×

a

a

a

a

|

|

|

∗

∗

∗

∆

∆

∆

− B=4
+ B=6
f B=8
f B=10
g B=12
× B=14
a B=16
| B=18
∗ B=20
∆ B=22

Figure 6.3: CLR versus load, 16×16 switch, 2×2 SEs, no distribution
stage, uniform traffic. B is output buffer capacity in cells.

network contending for link and buffer resources. The results also show that CLR

decreases as buffer capacity is increased. With larger buffers, more intense bursts

of arriving cells are required before a buffer will overflow and drop subsequent

168

cells.

Figure 6.3 presents simulation results for a 16×16 multistage switch. With

such a switch, the CLR is much higher than for a single 2×2 switching element

(Figure 6.2). For the same buffer capacity per switching element and the same

applied load, the 16×16 switch might be expected to have a cell loss ratio that is a

factor of four higher than for the 2×2 switch, since in the 16×16 switch each cell

traverses four 2×2 switching elements (one in each stage). However, by comparing

Figures 6.3 and 6.2, we observe that the cell loss ratios differ by a much larger

factor, as much as two orders of magnitude. This difference cannot be caused by

increased losses in the initial stage of the 16×16 switch, since the SEs in the initial

stage and the 2×2 switch experience statistically identical traffic (Bernoulli arrival

with uniform source and destination distribution). Therefore, the huge difference

in overall cell loss is caused by higher cell loss in the non-initial stages of the 16×16

switch.

Figure 6.4 breaks down the cell loss ratio in the 16×16 switch by stage

number. The graph shows that compared to the initial stage (stage number 0),

subsequent stages experience significantly higher cell loss, especially in the

operating region of practical interest, where the CLR is below 10−6 [Suzu92,

Henr93]. Since buffer overflow leading to cell loss is caused by traffic burstiness

(when applied load is less than 100%), we conclude that the statistical arrival

process of cells to non-initial stages has higher burstiness than the Bernoulli arrival

process to the initial stage. From Figure 6.4, we observe also that the largest

increase in cell loss is from the initial stage to the next stage, whereas all

subsequent stages have much smaller increases. Therefore, most of the increase in

169

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

CLR

stage number
0 1 2 3

a

a
a a

f

f
f f

×.×.×.×

f.f.f.f

a.a.a.a

|

| | |

a L=70 B=10
f L=70 B=14
×. . . . L=90 B=10
f. . . . L=90 B=14
a. . . . L=90 B=20
| L=90 B=24

Figure 6.4: CLR versus stage number, uniform traffic, 16×16 switch,
2×2 SEs, no distribution stage, L=traffic load, B is output buffer
capacity in cells.

burstiness is contributed by the handling of cells in the initial stage.

In addition to considering cell loss with uniform traffic, we have also

examined non-uniform traffic scenarios and obtained similar results. The non-

uniform traffic patterns considered consist of a few heavy real-time flows

combined with a relatively light load of uniformly distributed best-effort traffic.

These scenarios may be reasonable for a workgroup or department sharing a switch

in which most of the traffic consists of delay insensitive traffic (e.g., file transfers,

e-mail), while for example a few heavy real-time flows deliver high-resolution

digital video streams to a few desktops. We select traffic load levels such that the

combined applied load does not overload the capacity of any internal link of the

switching fabric. This constraint is consistent with the use of end-to-end

congestion control which would throttle best-effort traffic in scenarios where links

are overloaded [Jaco88].

170

To characterize the impact on CLR of the location of conflicts, suppose that

two real-time flows of equal load (30% each, or 25% each) contend for a single

output of an SE in the initial stage of a multistage switching fabric. In addition,

suppose this traffic is combined with uniformly distributed background traffic

contributing an applied load of 30%. Figure 6.5 shows the results of the simulation

of a single SE under such non-uniform traffic to analyze the cell losses that occur

at the site of contention. The results show that CLR increases with applied load,

and decreases as buffer capacity is increased, similar to the CLR behavior under

pure uniform traffic.

10 15 20 25 30

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

CLR
(RTF only)

bufsize

×.×.×.×.×.×

×
×

×
×

×
×

f.f.f.f..........f

f

f

f

f

×. . . 30% load rtf0
× 30% load rtf1

f. . . 25% load rtf0
f 25% load rtf1

Figure 6.5: CLR versus buffer capacity, 2×2 switch (one 2×2 SE), two
conflicting independent equally loaded real-time flows, rtf0 and rtf1.
Results are shown for real-time flows with load 30% each, and for
real-time flows with load 25% each. Uniform background traffic load
= 30%.

Figure 6.6 shows a similar scenario for a multistage switch. Two independent

real-time flows of equal load (30%, 25%, 20%, or 15% each) conflict in the second

stage of a multistage switching fabric, along with a uniform background traffic of

171

Figure 6.6: Traffic pattern for Figure 6.7. 4×4 switch, 2×2 SEs, no
distribution stage. Two independent, equally loaded real-time flows
conflict in the second stage.

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

CLR
(RTF only)

B
10 15 20 25

×.×.×.×.×.×.×.×

×
×

×
×

×
×

×
×

f.f.f.f.f.f.f.f

f
f

f
f

f

f
f

g.......g........g

g

g

g

g

.̀̀

`

`

×. .30% load rtf0
× 30% load rtf1
f. .25% load rtf0
f 25% load rtf1

g. .20% load rtf0
g 20% load rtf1
.̀ .15% load rtf0
` 15% load rtf1

Figure 6.7: CLR versus output buffer capacity B, 4×4 switch, 2×2 SEs,
no distribution stage, two equally loaded independent real-time flows
conflict in the second stage. Uniform background traffic load = 30%.

load 30%. The cell loss ratio experienced by the two real-time flows when there is

a 30% uniform background traffic is shown in Figure 6.7. All the cell loss events

that occurred in these simulations were in the second stage where the real-time

flows conflict.

Comparing Figures 6.7 and 6.5 reveals that for any particular buffer size and

real-time flow load (with 30% background traffic), there are always fewer losses

when the real-time flows conflict in the first stage. The difference is most

172

significant (more than an order of magnitude) when loss ratios for both scenarios

are low and therefore within the range of practical interest. For example, when

each real-time flow has load 25% and the output buffer capacity is 18 cells, the

single-stage switch has a loss ratio of about 4×10−8 while the two-stage switch has a

loss ratio of about 3×10−6.

6.2.2. Extrapolation Technique

The results above can be used to quickly estimate CLR in multistage switches

for numerous configurations that have not been directly simulated. The approach

is based on the observation that when a traffic pattern is applied to each stage, the

result is that losses from one stage to the next increase the most from the initial

stage to the second stage. We collect, in advance, a set of simulation results for

different patterns to determine what is the cell loss ratio when conflicts occurs in

the second stage. We also use the Markov model to determine what the cell loss

ratio would be for similar patterns of flow contention in the initial stage. If we plot

the multiplicative factor by which CLR increases from the first to the second stage

against the CLR in the first stage, we obtain a curve that can be interpolated to

provide a first-order estimate of cell loss for a variety of traffic conditions.

Figure 6.8 plots the scale-up factor determined through simulation for a 4×4

two-stage butterfly switch with 2×2 SEs that have 8 buffer slots per output port.

The scale factor is plotted against CLR in the first stage. Figure 6.9 shows the

same results as Figure 6.8 except for a two-stage 16×16 switch consisting of 4×4

SEs. In each figure, one curve shows how the scale-up factor for uniform traffic

grows, as applied load is varied. The other two curves show scale-up factor for

173

non-uniform traffic patterns with fixed uniform background traffic rate of 30% and

10%, respectively. For each curve, several non-uniform traffic scenarios were

simulated and plotted onto one curve. The simulated scenarios differed not only in

the applied loads of the real-time flows, but also in the number of real-time flows

contending for a single output queue. Scenarios with from 1 to 4 contending flows

were simulated for each curve. The smoothness of the non-uniform traffic curves

in Figures 6.8 and 6.9 suggests that the scale-up factor is somewhat insensitive to

the exact number of flows and their individual applied load levels.

scale
factor

1st stage CLR

0
2
4
6
8

10
12
14
16
18
20
22
24

1e-11 1e-09 1e-07 1e-05 0.001 0.1

a

a

a

aa a a
a a

×

×

×
× ×

× ×
× × ×

××××

f

f

f

f
f

× realtime + 30% uni
a realtime + 10% uni
f uniform

Figure 6.8: Scale factor (ratio of CLR in 2nd stage to CLR in 1st stage)
vs. 1st stage CLR, 4×4 switch, 2×2 SEs, no distribution stage, output
buffer capacity = 8.

From these results we observe that the increase in CLR from first to second

stage is greater for switches with 2×2 SEs than for switches with 4×4 SEs. This is

because an output queue of a first stage 4×4 SE experiences more arrival burstiness

than does an output queue of a first stage 2×2 SE. In particular, with 4×4 SEs, as

many as four cells may arrive each cycle to an output queue, whereas only two

174

scale
factor

1st stage CLR

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6

1e-11 1e-09 1e-07 1e-05 0.001 0.1

a

a
a a

aa
aa aaa a a aa a

×
×

×

×
××

×
×× ×××

× ××

×

××

×

××

f
f

f

f

f
f

× realtime + 30% uni
a realtime + 10% uni
f uniform

Figure 6.9: Scale factor (ratio of CLR in 2nd stage to CLR in 1st stage)
vs. 1st stage CLR, 16×16 switch, 4×4 SEs, no distribution stage, output
buffer capacity = 8.

cells may arrive to an output queue of the 2×2 SE. Given the higher burstiness in

the traffic to the first stage 4×4 SE output queue, the relative increase in CLR from

first to second stage due to the burstiness of the departure process from the first

stage is more pronounced in the 2×2 SE case.

The data in Figure 6.8 and 6.9 can be used to estimate loss ratios under a wide

variety of traffic conditions without performing time-consuming simulations. The

technique estimates CLR in a SE of a non-initial stage of a multistage switch in a

three step process. The first step is to invoke a Markov model of an initial stage SE

output queue, using as inputs the flow rates of the traffic flows routed to the non-

initial stage SE output queue under study. The second step is to correct for the fact

that the Markov model does not give the correct CLR, since the traffic to the non-

initial stage does not have Bernoulli arrival. To make the correction, we select the

curve from Figure 6.9 and 6.8 with the same background uniform load as the actual

175

traffic and interpolate along that curve to get a scaling factor for the CLR value

returned by the analytical model. Finally, we multiply that CLR value by the

scaling factor to obtain an estimate of the actual CLR experienced by traffic at the

SE under study.

Using several example cases, we have compared the CLR results obtained

with this extrapolation technique to the CLR results obtained through simulation.

We used this comparison to verify that the extrapolation technique is accurate to

within a factor of two for the traffic patterns considered, which is sufficient

accuracy for our purposes.

6.3. Evaluation of Multistage Switch Design Options

There are two basic approaches to using the capabilities of a multi-path switch:

distributing the cells of each flow among the available paths into multiple subflows

or using one of the available paths for all the cells of a particular flow. For both

approaches a key factor in determining switch performance is the number of

alternate paths for each source-destination pair. The specific routes of the alternate

paths are another key factor since they can impact the probability of resource

conflicts between cells of different paths.

As discussed earlier, an extra distribution stage can be added to a multistage

switch in order to provide multiple paths between every input and output. One of

the ways of using the multiple paths to reduce cell loss is to distribute heavy real-

time flows into two or more subflows, thus reducing contention in the routing

stages prior to the final stage. At the final stage, the split subflows merge back

together and exit the switch. In large switches with many routing stages, or in

176

switches with heavy background traffic, losses in the output stage due to merging

subflows of a single flow can overwhelm any advantage due to supporting multiple

paths. Therefore, we exclude that possibility by assuming in the following that the

SEs in the output switching stage are special parts with buffers that are sufficiently

larger than the standard SEs comprising the other stages so that any contribution of

the output stage to the overall CLR is negligible.

6.3.1. Evaluation of Distribution Stage Interconnection Alternatives

The interconnection of the distribution stage to the initial routing stage

determines the specific routes of alternate paths through the multistage switching

fabric. These routes determine the locations in the switching fabric where flows

will conflict and cause cell loss. This fact motivates an evaluation of whether some

interconnections between the distribution stage and the routing stages may be

preferable to others, specifically, preferable to the standard butterfly

interconnection. For this evaluation, we use the routing policy of oblivious

distribution to exploit the alternate paths. With this policy, each flow is uniformly

divided into lighter weight ‘‘subflows’’ across all the alternate paths.

We compare the expected cell loss with two distribution stage configurations:

a butterfly configuration and an alternative configuration that reduces cell losses

when subflows contend in certain routing stages. For particular example settings

of traffic and switch parameters, we also examine the probability that arriving

flows satisfy CLR requirements.

Suppose an N × N switching fabric has logn N stages of n ×n SEs connected in

a butterfly configuration. Then the logn N stages provide exactly one route for each

177

source-destination pair. If we prepend a single distribution stage to this fabric, then

each source-destination pair will have alternate paths through the switch.

The SEs and links in routing stages prior to the output switching stage

partition into n distinct subnetworks, as shown in Figure 6.10 (for n =2). For each

source-destination pair, providing exactly one alternate path through each

subnetwork guarantees that the n subflows of a common flow do not conflict

before reaching the output switching stage. Distribution stage configurations with

this property connect the n outputs of each SE to all n subnetworks.

One such distribution stage configuration is the butterfly interconnection that

is identical to the interconnection to the output switching stage. With this

configuration, all n subnetworks handle identical traffic patterns. If the subflows

of two flows conflict in one subnetwork, then their counterpart subflows in the n −1

other subnetworks also conflict. The conflicts occur in the same routing stage in

all n subnetworks. This is illustrated by example in Figure 6.10.

Suppose an alternative distribution stage configuration could be found that

guarantees that within certain routing stages, dual conflicts never occur. This

alternative would seem to be desirable, as it is the configuration that would most

reduce the cell losses in the presence of conflict in those stages. Some pairs of

flows would improve their CLR by a factor of n , since the subflows would conflict

in only one subnetwork rather than in n . An example of such a configuration is

shown in Figure 6.11. If two subflows of two different flows conflict in routing

stage 0 of one subnetwork, their counterparts in the other subnetwork encounter

two distinct SEs in routing stage 0 and therefore do not conflict. For larger

switches, it is possible to extend this idea to prevent dual conflicts in multiple (but

178

stage
distribution

stage 2
routing

stage 1
routing

stage 0
routing

Figure 6.10: Butterfly-connected distribution stage. 8×8 switch, 2×2
SEs, 3 routing stages, one distribution stage. The distribution stage is
connected to the routing stages using a butterfly interconnection.
Example: two subflows conflict in routing stage 0 in both subnetworks.

Figure 6.11: Alternative distribution stage configuration. 8×8 switch,
2×2 SEs, 3 routing stages, one distribution stage. The distribution
stage is connected to the routing stage such that two flows cannot
conflict in the first stage of both subnetworks of the routing part of the
switch. Example: two subflows conflict in the top subnetwork but do
not conflict in the bottom subnetwork.

not all) routing stages.

To understand the basic trade-offs between the butterfly configuration

(Figure 6.10) and the alternative configuration (Figure 6.11), we examine their cell

179

loss for simple traffic patterns consisting of a pair of flows. There is a trade-off

between two factors: 1) under some traffic patterns that result in two subflow

conflicts with the butterfly configuration, there will be only one conflict (in the

same stage) with the alternative configuration, and 2) under some traffic patterns

that result in no subflow conflicts with the butterfly configuration, there will be one

conflict with the alternative configuration. It can be shown that the number of

patterns included under item 1 above is the same as the number of patterns under

item 2. For the first set of patterns, the butterfly configuration results in twice the

CLR of the alternative. For the second set of patterns, there are no conflicts, and

thus a CLR of 0, with the butterfly configuration. However, with the alternative

configuration, the CLR is the same as the CLR for this configuration under the first

set of patterns. Based on these considerations, it can be shown that the expected

value of the CLR for the two configurations is the same.

Despite the discussion above, the two configurations are not equally desirable

under all traffic conditions and CLR requirements. We illustrate this with a

particular example setting of switch and traffic parameters. We obtain the

probability distributions of CLR with the two configurations. The distributions

indicate which configuration provides the highest probability of meeting specific

CLR requirements.

To obtain the probability distribution of CLR, we generated all ‘‘feasible’’

traffic patterns consisting of a mix of two real-time flows, each with load 40%, and

a uniform background traffic with load 30%. Feasible traffic patterns are those that

apply less than 100% load on each source and destination. We assume that all

feasible patterns are equally likely. The traffic patterns are applied to the switches

180

of Figures 6.10 and 6.11. The extrapolation procedure of Section 6.2.2 is used to

obtain estimates of CLR for the real-time flows. Figure 6.12 shows the CLR

cumulative probability distribution. Restricting the real-time traffic to only two

flows at a time does not change the fundamental trade-offs involved when more

flows are allowed, but its simplicity enables a clear interpretation of the shape of

the probability distribution. One consequence of using only two flows is that the

simulated switch must be fairly small (8×8) in order to observe non-negligible

probabilities of cell loss. Our studies of larger switches and more flows yield

results that are consistent with those presented here.

1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

P[CLR ≤ X]

CLR

0

0.2

0.4

0.6

0.8

1

f
f

f
f
f

f

a
a

a
a

a
a

f butterfly
a alternative

Figure 6.12: CLR cumulative probability distribution for the butterfly
and alternative distribution stage configurations. 8×8 switch, 2×2 SEs,
30% background uniform traffic plus two real-time flows of rate 40%
each, output buffer capacity = 8. The sources and destinations of the
real-time flows are randomly varied to generate the distribution.

From Figure 6.12, we observe several discontinuities. Each discontinuity

corresponds to a set of flow pairs that exhibit a unique conflict pattern and have the

same CLR. For example, when the two flows do not conflict at any SE output, a

181

loss ratio of 10−7 results. The size of each jump indicates the size of the

corresponding set of flow pairs. For example, 62% of flow pairs in the butterfly

configuration have no conflicts, compared to only 56% of flow pairs in the

alternative configuration.

With the particular parameters chosen for this example, the figure indicates

which configuration has the higher probability of satisfying particular CLR

requirements. For example, if the maximum acceptable CLR is in the range of 10−7

to just less than 10−5, the butterfly configuration has higher probability of satisfying

the requirement. However, in a narrow range starting from 10−5, the alternative

configuration is preferable. In general, the best configuration is highly dependent

on the switch and traffic parameters, and on the CLR requirements.

6.3.2. Routing Versus Distribution

A key motivation of our work is to evaluate the potential benefits of adaptive

routing for multi-mode traffic in multi-path multistage switches. In this context,

adaptive routing means that for each flow one of the possible paths is chosen such

that the overall performance of the switch is optimized. We assume idealized

conditions that allow: 1) optimal choices to be made between distributing or

routing each individual flow, and 2) optimal choice of route for the routed flows.

Specifically, we assume global knowledge of the characteristics and destinations of

all the flows that need to be handled by the switch. While such global knowledge

is typically not available, our results provide an upper bound on the possible

benefits of adaptive routing.

With a butterfly interconnection of the distribution stage to the rest of the

182

switch, we evaluate an ideal optimal policy, where each flow is either routed or

distributed in order to minimize the CLR. The optimal choice is made by using the

extrapolation technique to predict CLR for all distribution and routing choices

exhaustively, and then selecting the best outcome. These results are compared

with the policy of always distributing all the flows (Section 6.3.1).

Whether routing flows results in a net reduction in the CLR depends on a

trade-off between two opposing effects. Routing can be used to place real-time

flows on paths that do not conflict, thus reducing cell losses resulting from

contention between these heavily loaded flows. However, routing concentrates all

the load of a flow on a single path instead of distributing it uniformly across the n

possible paths. Thus, using routed flows instead of distribution results in n times

the load on each SE link that is used by a flow. Therefore, using routed flows

increases cell loss caused by increased contention between each heavy flow and the

uniform background traffic.

Figure 6.13 shows the potential benefits of the idealized optimal routing

policy (the curve labeled ‘‘routing’’) compared to the policy of oblivious

distribution (the curve labeled ‘‘distribution’’). The same method and traffic

patterns as in Section 6.3.1 are used to generate the distribution of CLR among the

traffic patterns for the two policies. The results show that use of the optimal

routing policy can reduce the worst case CLR by nearly an order of magnitude

(from CLR = 10−4 with oblivious distribution to CLR = 1.6×10−5 with optimal

routing). For patterns with low CLR, there are no conflicts even with the

distribution policy, so the optimal policy is to distribute all the flows (routing flows

could lead to higher contention with the background traffic). A cell loss ratio

183

1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

P[CLR ≤ X]

CLR

0

0.2

0.4

0.6

0.8

1

f
f

f
f
f

f

a

a

a
f distribution
a routing

no conflict

same src SE, diff dst SE
same src SE, same dst SE
1st stage merge, diff dst SE

1st stage merge, same dst SE

2nd stage merge

Figure 6.13: CLR distribution, for routing and for full multiple path
distribution. 8×8 switch, 2×2 SEs, background traffic load 30% plus 2
real-time flows with load 40% and randomly varying source and
destination, output buffer capacity = 8.

above 10−5 occurs under the distribution policy for patterns that result in conflicts

between the real-time flows. If the background traffic load is reduced from 30% to

10%, as shown in Figure 6.14, the benefits of the optimal policy are increased.

Specifically, the results show that the worst-case CLR is reduced by more than two

orders of magnitude compared with the distribution policy. The trade-off between

routing and distribution shifts in favor of routing since contention between a real-

time flow and the background traffic is less likely to cause cell loss with lighter

levels of background load.

184

1e-121e-111e-101e-091e-081e-071e-061e-050.00010.001 0.01 0.1 1

P[CLR ≤ X]

CLR

0

0.2

0.4

0.6

0.8

1

f
f

f

f

f

a

a

a

f distribution
a routing

2nd stage merge

1st stage merge

same src SE, same dst SE
same src SE, diff dst SE

no conflict

Figure 6.14: CLR distribution, for routing and for full multiple path
distribution. 8×8 switch, 2×2 SEs, background traffic load 10% plus 2
real-time flows with load 40% and randomly varying source and
destination, output buffer capacity = 8.

6.4. Summary

In this chapter, we investigated routing techniques for reducing the cell loss

ratio (CLR) in a large-scale ATM or IP switch by adding a single distribution stage

to a multistage switching fabric handling a mix of real-time and best-effort traffic.

For a switching fabric composed of n ×n switching elements, the distribution stage

provides n alternate paths between each switch input and output. The alternate

paths can be used to route each high-bandwidth real-time flow on a non-conflicting

path, or each flow can be distributed uniformly across the n alternate paths,

reducing the maximum load on any path. Compared to a switch with unique

input-output paths, a switch with alternate paths can be used to dramatically reduce

the cell loss ratio. For example, consider a traffic pattern consisting of a mix of

185

best-effort traffic at load 30% combined with two real-time flows, each with load

40%. If the paths of the real-time flows conflict in the switching fabric, an SE

output link in the switching fabric will be saturated, causing an output queue in the

SE to overflow and resulting in very high cell loss ratios (tens of percent) for the

real-time flows. Routing the flows on non-conflicting alternate paths or

distributing each flow uniformly across alternate paths results in a dramatic

reduction in the CLR to acceptable levels.

For the multi-path switch using oblivious distribution of traffic flows, we have

investigated the potential benefits of alternative ways to connect the distribution

stage to the first routing stage of the switching fabric. With the butterfly

interconnection, if flows that are distributed across all n alternate paths conflict on

one path, then they conflict on all n paths. We evaluate an alternative

configuration which also provides n alternate paths but avoids several cases in

which flows would conflict on all n paths. Our analysis shows that although the

alternative configuration reduces cases of multiple conflicts, it introduces cases of

single conflicts that are not present with the butterfly configuration. As a result,

the butterfly and alternative interconnections have the same average level of cell

loss if all possible pairs of flows are equally likely traffic patterns. However, our

evaluation results also show that for the specific types of traffic patterns that we

considered, the alternative interconnection can provide a slightly higher probability

than the butterfly interconnection of satisfying maximum bounds on the CLR, for a

narrow range of CLR values.

To investigate the potential for using adaptive routing in the multi-path switch

to reduce the CLR, we evaluated the performance of an idealized policy that can

186

make optimal choices between distribution and routing of the real-time flows. The

results show that in comparison to oblivious distribution, this optimal routing

policy can reduce the worst-case CLR by one or two orders of magnitude in the

operating range of practical interest. These results indicate that routing of flows

through multi-path multistage switches can be a useful design option in an

environment where the pattern of real-time flows is known or can be inferred.

187

Chapter Seven

Summary and Conclusions

Continuing improvements in semiconductor technology are increasing the

speed and number of transistors on a chip. As a result, microprocessors that form

the processing building blocks of future parallel systems will be capable of

generating and consuming increasingly heavy traffic loads. Interconnection

networks supporting parallel systems must also increase in performance in order to

avoid becoming the performance bottleneck. To meet this challenge,

interconnection networks can also take advantage of the increasing number and

speed of transistors on a chip to implement complex functionality in networking

hardware that improves communication performance. In this dissertation, we

proposed a mechanism, called Dynamic Virtual Circuits (DVCs), that

accomplishes this goal.

The DVC mechanism combines the best features of adaptive routing and

connection-based routing for multicomputer or cluster interconnection networks.

With DVCs, the use of network bandwidth is optimized by minimizing the

addressing and control information sent with each packet and the latency of

forwarding packets through each intermediate switch. Unlike static virtual circuits,

the DVC mechanism enables the network to adapt to changing traffic conditions by

allowing any intermediate switch on a circuit’s path to reroute the circuit. Unlike

prior approaches to combining the benefits of adaptive routing and connection-

based routing, with the DVC mechanism switches can reroute circuits quickly by

using fast local operations without suffering long delays for coordination with

188

remote nodes. The DVC mechanism provides high performance routing in

arbitrary topologies, thus allowing a single switch architecture to apply to multiple

systems.

We presented an overview of the hardware necessary to support DVCs in the

context of a communication coprocessor for scalable parallel systems. Dedicated

hardware (switching and SRAM-based packet buffers) is used to handle most

packets, while a programmable routing processor with DRAM is used to perform

the more complex and less frequent circuit manipulation operations.

We described the basic techniques used by switches to break DVCs and

adaptively re-establish them on arbitrary paths. In order to maintain the semantics

of traditional virtual circuits while supporting fully-adaptive rerouting of circuits,

the few packets that can arrive out of sequence at the destination are stamped with

sequencing and addressing information. Since only a small fraction of the packets

must carry this information, DVCs preserve the low per-hop processing and

bandwidth overheads of traditional static virtual circuits.

We presented two approaches for eliminating deadlock in a DVC system:

deadlock detection and resolution, and deadlock avoidance. Both approaches were

designed to handle complex dependency cycles that include both packet buffer

resources and dependencies arising from the circuit manipulation operations which

manage Routing Virtual Channel (RVC) resources.

With deadlock detection and resolution, routing is unrestricted, as is the use of

most buffer resources. In the absence of deadlock, such flexibility leads to

efficient utilization of system resources, and thus to high performance. If deadlock

occurs, a mechanism is invoked that identifies the deadlock cycle and temporarily

189

introduces additional buffer resources into the cycle to enable forward progress in a

deadlock resolution procedure called rotation. Our scheme is based on a deadlock

detection and resolution scheme originally developed for packet switching

networks where switches use central queues to store packets. We present

extensions that enable the scheme to be used in multicomputer and cluster

networks, which typically use input-buffered switches. We present additional

extensions that enable the scheme to be used in DVC networks. In particular, two

alternative mechanisms were proposed for solving the problem of rotating

unmapped data packets that are blocked waiting for RVC resources to be assigned

to a new circuit. One approach reserves a single RVC for use by unmapped

packets during rotation, whereas the second approach introduces a new packet type

that operates as in packet switching. The approaches present a trade-off between

the low hardware complexity of the first approach and the higher performance of

the second approach.

Our proposed deadlock avoidance scheme for DVC networks allows virtual

circuits to be established on any path without the possibility of deadlock.

Compared to the deadlock detection and resolution scheme, the deadlock

avoidance scheme places additional, minimal restrictions on buffer usage to avoid

deadlocks. In particular, deadlocks are prevented by introducing a virtual network,

called the diversion network, which provides an escape path for any packets that

encounter buffer dependency cycles in the primary virtual network. For CDP and

CEP control packets which are used to establish and teardown virtual circuits,

diversion from virtual circuit paths is not allowed, and therefore an additional

mechanism is needed to prevent deadlocks involving these control packets. Our

190

solution decouples control packets from data packets by providing an additional

virtual network for exclusive use by control packets. The virtual network for

control packets is provided with sufficient buffer capacity to guarantee that control

packets never block waiting for a buffer slot to free at the next switch. We

developed a complete DVC-based communication scheme that uses deadlock

avoidance and presented correctness arguments to prove that the network is

deadlock-free and that all packets are delivered to the correct virtual circuit

destinations. We also analyzed the hardware requirements for implementing this

mechanism and showed that the requirements are modest. Although in comparison

to static virtual circuits, the DVC mechanism requires more packet buffer storage

at each switch, most of the additional storage is for the control packet virtual

network, which is accessed only when circuits are established, torn down, or

rerouted. Therefore, this storage may reside in the Routing Processor’s private

DRAM without significantly degrading overall performance.

The experimental evaluation of the two approaches to deadlock elimination

revealed that deadlock avoidance is preferable to the deadlock resolution approach

that we investigated. Although deadlocks are rare, they will occur occasionally in

systems with unrestricted routing policies. Since deadlock recovery is typically a

relatively slow operation, it is likely that under heavy load the system will

persistently introduce new packets into existing deadlock cycles faster than the

resolution mechanism can remove them. In contrast, with deadlock avoidance,

data packets can be diverted into a virtual network that requires pure packet

switching with a restricted routing function to avoid deadlock. In our experiments,

diversion is rare and therefore does not negate the bandwidth efficiency of

191

connection-based routing.

We examined the application of adaptive routing to a networking environment

different from multicomputers or cluster interconnection networks. The focus of

this investigation was to determine the potential of adaptive routing to exploit

multiple paths to reduce cell or packet loss in the switching fabrics that support

large ATM or IP switches. The study examined a low-cost class of switching

fabrics in which only a single extra stage is added to a minimal banyan topology in

order to provide alternate paths. Under a load that consists of light background

traffic and a small number of heavy real-time flows, the alternate paths can be used

to significantly reduce the peak load on switch resources, thus reducing worst case

cell loss. Several different approaches to utilizing the multiple paths of the switch

were considered. We considered alternative ways to interconnect the extra stage to

the rest of the switching fabric to provide different sets of alternate paths. We

evaluated the impact of these different interconnections on cell loss. In addition,

we compared traffic management policies for using the alternate paths. In

particular, we compared oblivious distribution of the real-time flows to optimal

routing of these flows. For the traffic patterns that were evaluated, the results

showed that routing of the real-time flows can significantly reduce worst-case cell

loss compared to oblivious distribution.

There are several possible directions for future research that extends the

results in this dissertation. An interesting and important question is how DVCs

behave with shifting traffic patterns. In particular, there are many alternatives for

choosing when and how to reroute existing circuits. In addition, there may be

opportunities to develop policies for optimizing the performance of the DVC

192

mechanism. For example, when a switch becomes close to running out of free

RVCs on an output link, it may be worthwhile to proactively tear down some

existing circuits in anticipation of new circuit establishment requests. Depending

on workload properties, such a policy might be able to reduce the latency for

establishing new circuits by reducing the probability that a new circuit

establishment will have to wait for a victim circuit to be torn down.

Other future investigations could focus on extending DVCs to provide useful

advanced functionalities. For example, the DVC mechanism could be extended to

provide improved support for fault tolerance. When a link or switch along a virtual

circuit’s path fails, the circuit can be rerouted to avoid the failure. Since packets

can be lost when components fail, one challenge is to provide mechanisms in the

switching fabric to restore lost packets efficiently, without involving source or

destination nodes. Other techniques are needed in the switching fabric for reducing

the overhead of rerouting several circuits when a failed component is shared by the

circuits. For example, to avoid introducing large bursts of CEPs and CDPs in the

network when a component fails, switches may regulate the rate at which they

reroute circuits around failures. As another example of advanced functionality,

DVCs could be extended to support multicast capabilities in which a circuit is

established as a tree in the network that connects a source node to multiple

destination nodes, minimizing the duplicated transmission of packets that must be

sent from the source to all the destinations. As a final example, the DVC

mechanism could be extended to provide support for quality of service guarantees

for individual circuits. For example, mechanisms could be developed to provide

some circuits with bandwidth guarantees. An important challenge is to provide

193

performance guarantees despite the possibility of operations that could reduce the

performance for a circuit, such as circuit teardown by an intermediate switch or

diversion of some packets of the circuit onto different paths to avoid deadlock.

One possible approach could be to avoid selecting high-priority circuits for

teardown and for packet diversions, thus increasing the ability of the network to

satisfy the performance requirements for these circuits.

194

Bibliography

[Agar99] A. Agarwal, R. Bianchini, D. Chaiken, F. T. Chong, K. L. Johnson,

D. Kranz, J. Kubiatowicz, B.-H. Lim, K. Mackenzie, and D. Yeung,

‘‘The MIT Alewife Machine,’’ Proceedings of the IEEE

87(3)(March 1999).

[Alle94] J. D. Allen, P. T. Gaughan, D. E. Schimmel, and S. Yalamanchili,

‘‘Ariadne-an adaptive router for fault-tolerant multicomputers,’’

21st Annual International Symposium on Computer Architecture,

pp. 278-88 (April 1994).

[Ande94] J. Anderson, B. T. Doshi, S. Dravida, and P. Harshavardhana, ‘‘Fast

Restoration of ATM Networks,’’ IEEE Journal on Selected Areas

in Communications 12(1) pp. 128-138 (January 1994).

[Ande95] T. E. Anderson, D. E. Culler, and D. A. Patterson, ‘‘A case for

NOW (Networks of Workstations),’’ IEEE Micro 15(1) pp. 54-64

(February 1995).

[Anja95] K. V. Anjan and T. M. Pinkston, ‘‘An efficient, fully adaptive

deadlock recovery scheme: DISHA,’’ Proceedings 22nd Annual

International Symposium on Computer Architecture, pp. 201-10

(22-24 June 1995).

[Atha88] W. C. Athas and C. L. Seitz, ‘‘Multicomputers: Message-Passing

Concurrent Computers,’’ Computer 21(8) pp. 9-24 (August 1988).

[Awer89] B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg, ‘‘Compact

195

distributed data structures for adaptive routing,’’ RJ 6701, IBM,

Almaden Research Center (February 1989).

[Bann91] T. R. Banniza, G. J. Eilenberger, B. Pauwels, and Y. Therasse,

‘‘Design and Technology Aspects of VLSI’s for ATM Switches,’’

IEEE Journal on Selected Areas in Communications 9(8) pp. 1255-

1264 (October 1991).

[Batc68] K. E. Batcher, ‘‘Sorting Networks and Their Applications,’’

Proceedings AFIPS Spring Joint Conference 32 pp. 307-314

(1968).

[Bene64] V. Benes, ‘‘Permutation Groups, Complexes, and Rearrangeable

Multistage Connecting Networks,’’ Bell System Technical Journal

43 pp. 1619-1640 (July 1964).

[Bert87] D. Bertsekas and R. Gallager, Data Networks, Prentice Hall (1987).

[Bode95] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L.

Seitz, J. N. Seizovic, and W.-K. Su, ‘‘Myrinet -- a Gigabit-per-

Second Local Area Network,’’ IEEE Micro 15(1) pp. 29-36

(February 1995).

[Boet90] B. Boettle and M. A. Henrion, ‘‘Alcatel ATM Switch Fabric and Its

Properties,’’ Electrical Communication 64(2/3) pp. 156-165 (1990).

[Bold97] K. Bolding, M. Fulgham, and L. Snyder, ‘‘The case for chaotic

adaptive routing,’’ IEEE Transactions on Computers 46(12) pp.

1281-1292 (December 1997).

[Bork90] S. Borkar, R. Cohn, G. Cox, T. Gross, H. T. Kung, M. Lam, M.

196

Levine, B. Moore, W. Moore, C. Peterson, J. Susman, J. Sutton, J.

Urbanski, and J. Webb, ‘‘Supporting Systolic and Memory

Communication in iWarp,’’ 17th Annual International Symposium

on Computer Architecture, pp. 70-81 (May 28-31, 1990).

[Chen90] M.-S. Chen, K. G. Shin, and D. D. Kandlur, ‘‘Addressing, Routing,

and Broadcasting in Hexagonal Mesh Multiprocessors,’’ IEEE

Transactions on Computers 39(1) pp. 10-18 (January 1990).

[Chie92] A. A. Chien and J. H. Kim, ‘‘Planar-Adaptive Routing: Low-cost

Adaptive Networks for Multiprocessors,’’ 19th Annual

International Symposium on Computer Architecture, pp. 268-277

(May 1992).

[Chie95] A. A. Chien and J. H. Kim, ‘‘Planar-Adaptive Routing: Low-cost

Adaptive Networks for Multiprocessors,’’ Journal of the

Association for Computing Machinery 42(1) pp. 91-123 (January

1995).

[Chow87] E. Chow, H. Madan, and J. Peterson, ‘‘A Real-Time Adaptive

Message Routing Network for the Hypercube Computer,’’

Proceedings of the Real-Time Systems Symposium, pp. 88-96

(December 1987).

[Chow88] E. Chow, H. Madan, J. Peterson, D. Grunwald, and D. Reed,

‘‘Hyperswitch Network for the Hypercube Computer,’’ 15th

Annual International Symposium on Computer Architecture, pp.

90-99 (May 1988).

[Cido87] I. Cidon, J. M. Jaffe, and M. Sidi, ‘‘Local Distributed Deadlock

197

Detection by Cycle Detection and Clustering,’’ IEEE Transactions

on Software Engineering SE-13(1) pp. 3-14 (January 1987).

[Cohe94] R. Cohen, ‘‘Smooth Intentional Rerouting and its Applications in

ATM Networks,’’ IEEE INFOCOM’94, pp. 1490-1497 (June

1994).

[Corb68] F. J. Corbato, ‘‘A Paging Experiment with the MULTICS System,’’

Project MAC Memo MAC-M-384, MIT, Cambridge, MA (July

1968).

[Dall86] W. J. Dally and C. L. Seitz, ‘‘The Torus Routing Chip,’’

Distributed Computing 1(4) pp. 187-196 (October 1986).

[Dall87] W. J. Dally and C. L. Seitz, ‘‘Deadlock-Free Message Routing in

Multiprocessor Interconnection Networks,’’ IEEE Transactions on

Computers C-36(5) pp. 547-553 (May 1987).

[Dall93] W. J. Dally and H. Aoki, ‘‘Deadlock-Free Adaptive Routing in

Multicomputer Networks Using Virtual Channels,’’ IEEE

Transactions on Parallel and Distributed Systems 4(4) pp. 466-475

(April 1993).

[Dao97] B. V. Dao, S. Yalamanchili, and J. Duato, ‘‘Architectural support

for reducing communication overhead in multiprocessor

interconnection networks,’’ Third International Symposium on

High-Performance Computer Architecture, pp. 343-52 (1-5 Feb.

1997).

[De 96] M. De Prycker, Asynchronous Transfer Mode: Solution for

198

Broadband ISDN (3rd edition), Prentice Hall, New York (1996).

[Denz92] W. E. Denzel, A. P. J. Engbersen, I. A. Iliadis, and G. A. Karlsson,

‘‘A Highly Modular Packet Switch for Gb/s Rates,’’ International

Switching Symposium 1992 2 pp. 236-240 (October 1992).

[Denz95] W. E. Denzel, A. P. J. Engbersen, and I. A. Iliadis, ‘‘A Flexible

Shared-Buffer Switch for ATM at Gb/s Rates,’’ Computer

Networks and ISDN Systems 27(4) pp. 611-624 (January 1995).

[Desm91] E. Desmet, B. Steyaert, H. Bruneel, and G. H. Petit, ‘‘Tail

Distributions of Queue Length and Delay in Discrete-Time

Multiserver Queueing Models, Applicable in ATM Networks,’’

Queueing, Performance and Control in ATM (Proceedings of the

Thirteenth International Teletraffic Congress), pp. 1-6 (June 1991).

[Duat95] J. Duato, ‘‘A Necessary And Sufficient Condition For Deadlock-

Free Adaptive Routing In Wormhole Networks.,’’ IEEE

Transactions on Parallel and Distributed Systems 6(10) pp. 1055-

1067 (October 1995).

[Duat96] J. Duato, ‘‘A necessary and sufficient condition for deadlock-free

routing in cut-through and store-and-forward networks,’’ IEEE

Transactions on Parallel and Distributed Systems 7(8) pp. 841-54.

(August 1996).

[Duat98] J. Duato, ‘‘Deadlock avoidance and adaptive routing in

interconnection networks,’’ Proceedings of the Sixth Euromicro

Workshop on Parallel and Distributed Processing, pp. 359-364

(21-23 Jan. 1998).

199

[Duni05] T. H. Dunigan, J. S. Vetter, J. B. White, and P. H. Worley,

‘‘Performance Evaluation of the Cray X1 Distributed Shared-

Memory Architecture,’’ IEEE Micro 25(1) pp. 30-40 (Jan-Feb

2005).

[Flin00] J. Flinch, M. P. Malumbres, P. Lopez, and J. Duato, ‘‘Performance

Evaluation of a New Routing Strategy for Irregular Networks with

Source Routing,’’ 14th Int’l Conf on Supercomputing, pp. 34-43

(2000).

[Floy93] S. Floyd and V. Jacobson, ‘‘Random Early Detection Gateways for

Congestion Avoidance,’’ IEEE/ACM Transactions on Networking

1(4) pp. 397-413 (August 1993).

[Four97] J.-M. Fourneau, L. Mokdad, and N. Pekergin, ‘‘Bounding the Loss

Rates in a Multistage ATM Switch,’’ Computer Performance

Evaluation, Modelling Techniques and Tools: 9th International

Conference Proceedings, pp. 193-205 (June 1997).

[Fuji94] Fujitsu, ‘‘MB86680B ATM Switch Element (Self Routing

Element),’’ Product Literature, (May 1994).

[Gall97] M. Galles, ‘‘Spider: A High-Speed Network Interconnect,’’ IEEE

Micro 17(1) pp. 34-39 (January/February 1997).

[Gers99] A. Gersht and A. Shulman, ‘‘Architecture for Restorable Call

Allocation and Fast VP Restoration in Mesh ATM Networks,’’

IEEE Transactions on Communications 47(3) pp. 397-403 (March

1999).

200

[Giac91] J. N. Giacopelli, J. J. Hickey, W. S. Marcus, W. D. Sincoskie, and

M. S. Littlewood, ‘‘Sunshine: A High Performance Self-Routing

Broadband Packet Switch Architecture,’’ IEEE Journal on Selected

Areas in Communications 9(8) pp. 1289-1298 (October 1991).

[Glas92] C. J. Glass and L. M. Ni, ‘‘The Turn Model for Adaptive Routing,’’

19th Annual International Symposium on Computer Architecture,

pp. 278-287 (May 1992).

[Glas94] C. J. Glass and L. M. Ni, ‘‘The Turn Model for Adaptive Routing,’’

Journal of the Association for Computing Machinery 41(5) pp.

874-902 (September 1994).

[Henr93] M. A. Henrion, G. L. Eilenberger, G. H. Petit, and P. H. Parmentier,

‘‘A Multipath Self-Routing Switch,’’ IEEE Communications

Magazine 31(4) pp. 46-52 (April 1993).

[Hilb89] P. A. J. Hilbers and J. J. Lukkien, ‘‘Deadlock-free message routing

in multicomputer networks,’’ Distributed Computing, (3) pp. 178-

186 (1989).

[Hsu90] J.-M. Hsu and P. Banerjee, ‘‘Hardware Support for Message

Routing in a Distributed Memory Multicomputer,’’ 1990

International Conference on Parallel Processing, (August 1990).

[Hsu92] J.-M. Hsu and P. Banerjee, ‘‘Performance measurement and trace

driven simulation of parallel CAD and numeric applications on a

hypercube multicomputer,’’ IEEE Transactions on Parallel and

Distributed Systems 3(4) pp. 451-464 (July 1992).

201

[Huan84] A. Huang and S. Knauer, ‘‘STARLITE: A Wideband Digital

Switch,’’ GLOBECOM ’94, pp. 121-125 (November 1984).

[Jaco88] V. Jacobson, ‘‘Congestion Avoidance and Control,’’ ACM

SIGCOMM, pp. 314-329 (Aug 1988).

[Jaff89] J. M. Jaffe and M. Sidi, ‘‘Distributed Deadlock Resolution in

Store-and-Forward Networks,’’ Algorithmica 4(3) pp. 417-436

(1989).

[Jami97] S. Jamin, P. B. Danzig, S. J. Shenker, and L. Zhang, ‘‘A

Measurement-Based Admission Control Algorithm for Integrated

Services Packet Networks (extended version),’’ IEEE/ACM

Transactions on Networking 5(1) pp. 56-70 (February 1997).

[Kawa99] R. Kawamura and H. Ohta, ‘‘Architectures for ATM Network

Survivability and Their Field Deployment,’’ IEEE Communications

Magazine 37(8) pp. 88-94 (August 1999).

[Kerm79] P. Kermani and L. Kleinrock, ‘‘Virtual Cut Through: A New

Computer Communication Switching Technique,’’ Computer

Networks 3(4) pp. 267-286 (September 1979).

[Kim97] J. H. Kim, Z. Liu, and A. A. Chien, ‘‘Compressionless Routing: A

Framework For Adaptive and Fault-Tolerant Routing,’’ IEEE

Transactions on Parallel and Distributed Systems 8(3) pp. 229-244

(March 1997).

[Kons90a] S. Konstantinidou, ‘‘Adaptive, Minimal Routing in Hypercubes,’’

6th MIT Conference on Advanced Research in VLSI, pp. 139-153

202

(1990).

[Kons90b] S. Konstantinidou and L. Snyder, ‘‘The Chaos Router: A Practical

Application of Randomization in Network Routing,’’ 2nd Annual

ACM Symposium on Parallel Algorithms and Architectures, pp.

21-30 (July 1990).

[Kons91] S. Konstantinidou and L. Snyder, ‘‘Chaos router: architecture and

performance,’’ 18th Annual International Symposium on Computer

Architecture, pp. 212-221 (May 1991).

[Kung94] H. T. Kung, T. Blackwell, and A. Chapman, ‘‘Credit-Based Flow

Control for ATM Networks: Credit Update Protocol, Adaptive

Credit Allocation and Statistical Multiplexing,’’ SIGCOMM ’94

24(4) pp. 101-114 (August 1994).

[Lang82] C. R. Lang, ‘‘The extension of object-oriented languages to a

homogeneous concurrent architecture,’’ 5014:TR:82, California

Institute of Technology, Pasadena, CA (1982).

[Laud97] J. Laudon and D. Lenoski, ‘‘The SGI Origin: a ccNUMA Highly

Scalable Server.,’’ 24th Annual International Symposium on

Computer Architecture, pp. 241-251 (May 1997).

[Leig92] F. T. Leighton and B. M. Maggs, ‘‘Fast Algorithms for Routing

Around Faults in Multibutterflies and Randomly-Wired Splitter

Networks,’’ IEEE Transactions on Computers 41(5) pp. 578-587

(May 1992).

[Lind91] D. H. Linder and J. C. Harden, ‘‘An Adaptive and Fault Tolerant

203

Wormhole Routing Strategy for k-ary n-cubes,’’ IEEE Transactions

on Computers 40(1) pp. 2-12 (January 1991).

[Low97] Y. L. Low and R. C. Frye, ‘‘Signal Integrity and Power Distribution

System Analyses for a 4x4 ATM Switch MCM,’’ IEEE

International Conference on Multichip Modules, pp. 278-283

(April 1997).

[McQu80] J. M. McQuillan, I. Richer, and E. C. Rosen, ‘‘The New Routing

Algorithm for the ARPANET,’’ IEEE Transactions on

Communications COM-28(5) pp. 711-719 (May 1980).

[Metc76] R. M. Metcalfe and D. R. Boggs, ‘‘Ethernet: Distributed Packet

Switching for Local Computer Networks,’’ Communications of the

ACM 19(7) pp. 395-404 (July 1976).

[Mura97] K. Murakami and H. S. Kim, ‘‘Comparative Study on Restoration

Schemes of Survivable ATM Networks,’’ IEEE INFOCOM’97, pp.

345-352 (April 1997).

[Ngai87] J. Y. Ngai and C. L. Seitz, ‘‘A Framework for Adaptive Routing,’’

5246:TR:87, California Institute of Technology, Computer Science

Department (July 16, 1987).

[Ngai89a] J. Y. Ngai and C. L. Seitz, ‘‘A FrWork for Adaptive Routing in

Multicomputer Networks,’’ Symposium on Parallel Algorithms and

Architectures, pp. 2-9 (June 1989).

[Ngai89b] J. Y. Ngai, ‘‘A Framework for Adaptive Routing in Multicomputer

Networks,’’ Computer Science Technical Report 89-09, California

204

Institute of Technology, Pasadena, CA (May 1989).

[Noak93] M. D. Noakes, D. A. Wallach, and W. J. Dally, ‘‘The J-Machine

Multicomputer: An Architectural Evaluation,’’ 20th Annual

International Symposium on Computer Architecture, pp. 224-235

(May 16-19, 1993).

[Part94] C. Partridge, Gigabit networking, Addison-Wesley, Reading, MA

(1994).

[Pert92] M. J. Pertel, ‘‘A Critique of Adaptive Routing,’’ Computer Science

Technical Report 92-06, California Institute of Technology,

Pasadena, CA (June 1992).

[Pete88] J. Peterson, E. Chow, and H. Madan, ‘‘A High-Speed Message-

Driven Communication Architecture,’’ International Conference on

Supercomputing, pp. 355-366 (July 1988).

[Petr02] F. Petrini, W.-C. Feng, A. Hoisie, S. Coll, and E. Frachtenberg,

‘‘The Quadrics Network: High-Performance Clustering

Technology,’’ IEEE Micro 22(1) pp. 46-57 (February 2002).

[Pifa91] G. D. Pifarré, L. Gravano, S. A. Felperin, and J. L. C. Sanz,

‘‘Fully-Adaptive Minimal Deadlock-Free Packet Routing in

Hypercubes, Meshes, and Other Networks,’’ 3rd Annual ACM

Symposium on Parallel Algorithms and Architectures, (June 1991).

[Roma95] A. Romanow and S. Floyd, ‘‘Dynamics of TCP Traffic Over ATM

Networks,’’ IEEE Journal on Selected Areas in Communications

13(4) pp. 633-641 (May 1995).

205

[Scot96a] S. L. Scott, ‘‘Synchronization and Communication in the T3E

Multiprocessor,’’ 7th International Conference on Architectural

Support for Programming Languages and Operating Systems, pp.

26-36 (October 1996).

[Scot96b] S. L. Scott and G. M. Thorson, ‘‘The Cray T3E Network: Adaptive

Routing in a High Performance 3D Torus,’’ HOT Interconnects IV,

(August 1996).

[Shin87] K. G. Shin and M.-S. Chen, ‘‘Performance Analysis of Distributed

Routing Strategies Free of Ping-Pong-Type Looping,’’ IEEE

Transactions on Computers C-36(2) pp. 129-137 (February 1987).

[Stun94a] C. B. Stunkel, M. M. Denneau, B. J. Nathanson, D. G. Shea, P. H.

Hochschild, M. Tsao, B. Abali, D. J. Joseph, and P. R. Varker,

‘‘Architecture and implementation of Vulcan,’’ Proceedings Eighth

International Parallel Processing Symposium, pp. 268-274 (26-29

April 1994).

[Stun94b] C. B. Stunkel, D. G. Shea, D. G. Grice, P. H. Hochschild, and M.

Tsao, ‘‘The SP1 High-Performance Switch,’’ Proceedings of the

Scalable High-Performance Computing Conference, pp. 150-157

(May 1994).

[Stun95] C. B. Stunkel, D. G. Shea, B. Abali, M. G. Atkins, C. A. Bender, D.

G. Grice, P. Hochschild, D. J. Joseph, B. J. Nathanson, R. A. Swetz,

F. Stucke, M. Tsao, and P. R. Varker, ‘‘The SP2 High-Performance

Switch,’’ IBM Systems Journal 34(2) pp. 185-204 (1995).

[Sull77] H. Sullivan and T. R. Brashkow, ‘‘A large scale homogeneous

206

machine,’’ Proceedings of the 4th Annual Symposium on Computer

Architecture, pp. 105-124 (1977).

[Suzu92] H. Suzuki and F. A. Tobagi, ‘‘Fast Bandwidth Reservation Scheme

with Multi-Link and Multi-Path Routing in ATM Networks,’’ IEEE

INFOCOM ’92 Vol. 3 pp. 2233-2240 (May 1992).

[Taji77] W. D. Tajibnapis, ‘‘A Correctness Proof of a Topology Information

Maintenance Protocol for a Distributed Computer Network,’’

Communications of the ACM 20(7) pp. 477-485 (July 1977).

[Tami88a] Y. Tamir and G. L. Frazier, ‘‘High-Performance Multi-Queue

Buffers for VLSI Communication Switches,’’ 15th Annual

International Symposium on Computer Architecture, pp. 343-354

(May 1988).

[Tami88b] Y. Tamir and J. C. Cho, ‘‘Design and Implementation of High-

Speed Asynchronous Communication Ports for VLSI

Multicomputer Nodes,’’ International Symposium on Circuits and

Systems, pp. 805-809 (June 1988).

[Tami91] Y. Tamir and Y. F. Turner, ‘‘High-Performance Adaptive Routing

in Multicomputers Using Dynamic Virtual Circuits,’’ 6th

Distributed Memory Computing Conference, pp. 404-411 (April

1991).

[Tami92] Y. Tamir and G. L. Frazier, ‘‘Dynamically-Allocated Multi-Queue

Buffers for VLSI Communication Switches,’’ IEEE Transactions

on Computers 41(6) pp. 725-737 (June 1992).

207

[Turn86] J. S. Turner, ‘‘Design of an Integrated Services Packet Network,’’

IEEE Journal on Selected Areas in Communications SAC-4(8) pp.

1373-1380 (November 1986).

[Turn98] Y. F. Turner and Y. Tamir, ‘‘Connection-Based Adaptive Routing

Using Dynamic Virtual Circuits,’’ International Conference on

Parallel and Distributed Computing and Systems, pp. 379-384

(October 1998).

[Turn05] Y. F. Turner and Y. Tamir, Deadlock-Free Connection-Based

Adaptive Routing with Dynamic Virtual Circuits. submitted for

publication May 2005.

[Tyme81] L. Tymes, ‘‘Routing and flow control in TYMNET,’’ IEEE

Transactions on Communication COM-29 pp. 392-398 (1981).

[Venk96] A. K. Venkatramani, T. M. Pinkston, and J. Duato, ‘‘Generalized

theory for deadlock-free adaptive wormhole routing and its

application to Disha Concurrent,’’ The 10th International Parallel

Processing Symposium, pp. 815-21 (15-19 April 1996).

208

