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Abstract

Virtual circuits can reduce routing overheads with irregular topologies and provide

support for a mix of quality of service (QOS) requirements. Information about network

loads and traffic patterns may be used during circuit establishment to utilize network

resources more efficiently than is practical with packet routing. Most virtual circuit

schemes are static — each established virtual circuit remains unchanged until the

connection is no longer needed. In contrast, we propose the Dynamic Virtual Circuit

(DVC) mechanism, which enables existing circuits to be quickly torn down in order to

free up resources needed for other circuits or to re-establish circuits along routes that are

better suited for current network conditions. We propose a deadlock avoidance

technique, based on unconstrained routing of DVCs combined with a deadlock-free

virtual network. We present a correctness proof for the scheme, describe key aspects of

its implementation, and present performance evaluation results that explore its potential

benefits.
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1. Introduction

The routing scheme used in multicomputer or high-end cluster interconnection networks should

direct packets through the lowest latency paths from source to destination. It should take into account the

topology of the network and adapt to the current workload and resource availability to route packets

around congested or faulty areas [6, 11, 16, 21, 25, 29, 35]. However, multicomputer and cluster networks

use backpressure flow control in which packets that encounter congestion are blocked rather than

discarded. A sequence of blocked packets can form a deadlock cycle unless sufficient constraints are

imposed on packet routes and/or buffer usage [1, 5, 14, 15, 19, 28]. The routing scheme should therefore

minimize routing constraints while preserving deadlock-freedom.

The routing scheme should also minimize the overhead costs for routing and forwarding packets.

The addressing and control information that is sent with each packet should be minimized to enable

efficient utilization of link bandwidth. The processing to interpret and route each packet at each hop

should be minimized to provide low latency communication. These goals can be achieved by using

connection-based routing, in which resources are reserved in advance of communication at each switch

along the path from source to destination. This approach reduces the overhead for forwarding each

packet but introduces connection setup/teardown operations. Connection-based routing can improve

network efficiency so long as these new operations are fast or occur infrequently, e.g., for workloads in

which each connection is used by several packets [23].

Virtual circuit switching [7, 12, 23, 34] is a form of connection-based routing which provides end-

to-end connections called virtual circuits. The network’s physical resources (packet buffers, link

bandwidth, etc.) are multiplexed among active virtual circuits. Once a virtual circuit is established,

packets can be sent without the addressing and sequencing information needed in pure packet switched

networks. Packets are quickly forwarded along the virtual circuit’s network path by using a single lookup

in a small virtual channel table at each hop. This mechanism enables low overhead packet forwarding

even in networks with irregular topologies [18]. In these topologies, intermediate nodes between a source

and destination cannot use simple algorithmic routing. Instead, routing is based on large tables at each

node which are constructed at system initialization and may be changed over time to adapt to changing

traffic conditions [1, 19, 29]. With virtual circuits, the routing tables can be used during virtual circuit

establishment to determine a virtual circuit’s network path. Subsequently, packets are forwarded along

the path using the more efficient virtual circuit forwarding mechanism.

Virtual circuit switching can be a valuable extension for current and emerging cluster and I/O

interconnects. An important example is the industry standard InfiniBand architecture [1, 17], which is
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supported by major systems vendors (e.g., IBM, HP, and Dell) and operating systems (e.g., Linux, and

announced support in Microsoft Windows), and is increasingly deployed in clusters (e.g., the NASA

Columbia system, which as of November 2004 had the number two position on the TOP500 [2] list of

supercomputer sites). InfiniBand matches our system model in its use of backpressure flow control and

routing tables at each switch to support irregular topologies. In addition, one of the main communication

mechanisms provided by InfiniBand requires establishing a connection between a ‘‘queue pair’’ at a

source node and a queue pair at a destination node. However, network switches do not reserve state for

connections. Thus each packet must have routing and transport headers specifying source node and

queue pair IDs, destination node and queue pair IDs, a service level indicating the scheduling priority for

the connection, etc. If InfiniBand switches and protocols were extended to support establishment of

virtual circuits for queue pair connections, much of this information could be eliminated, improving

transmission efficiency.

Most virtual circuit schemes have the limitation that each established circuit’s route cannot be

changed until the connection is no longer needed and the circuit is torn down. This prevents adaptation to

changes in traffic patterns, and it prevents establishment of new virtual circuits once all the required

resources are assigned to existing circuits. To solve this problem we have proposed the Dynamic Virtual

Circuits (DVC) mechanism [30, 32] which combines adaptive routing and connection-based routing.

With DVCs, a portion of a virtual circuit can be torn down from an intermediate node on the circuit’s

path and later be re-established, possibly along a different route, while maintaining the virtual circuit

semantics of reliable in-order packet delivery. The DVC mechanism provides fast circuit establishment

and re-routing by using only local operations at each node. In addition, packets can proceed on new

circuit paths without waiting for end-to-end handshakes.

In this paper, we present the DVC algorithm and propose a hardware/firmware architecture for its

implementation. The challenge in devising the algorithm is to simultaneously provide fully adaptive

routing, deadlock-freedom, and the low per-hop overhead of static virtual circuit switching. Compared to

pure packet switching networks, DVC networks pose a more complicated deadlock avoidance problem

because DVCs introduce dependencies among circuit establishment and teardown operations and also

dependencies between these operations and packet buffer resources.

The main contributions of the paper are as follows. First, we present the deadlock-free DVC

algorithm. The algorithm allows virtual circuits to use any routes and imposes few constraints on packet

buffer usage. A dependency cycle-free virtual network is used to avoid packet routing deadlocks, and a

second virtual network decouples circuit manipulation and packet routing operations to avoid more
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complex deadlocks. Second, we present a description and evaluation of the hardware resources and

mechanisms needed to implement the DVC algorithm and show that the scheme is simple to implement

with modest hardware requirements. Third, a correctness proof of the DVC algorithm is presented. The

proof analyzes the system’s state space to show that each packet injected into the network using a DVC is

delivered to the DVC destination in order.

The paper is organized as follows. Section 2 reviews approaches for avoiding packet buffer

deadlocks in traditional networks. Section 3 describes Dynamic Virtual Circuit (DVC) networks.

Section 4 presents the DVC algorithm including the proposed mechanisms for avoiding deadlocks in

DVC networks. Section 5 presents a correctness argument for the scheme, and Section 6 describes

practical implementation issues. Section 7 presents simulation results that explore the potential

performance benefits of DVCs. This is done by considering limit cases, where the more sophisticated

(complex) routing possible with DVCs leads to significantly higher performance than can be achieved

with conventional packet switched networks, which typically must use simple (e.g., algorithmic) routing.

Section 8 summarizes related work in connection-based and adaptive routing.

2. Background: Packet Buffer Deadlock Avoidance

To provide deadlock-freedom in DVC networks, our solution builds on previous deadlock

avoidance techniques for traditional networks. Packet routing creates dependencies between packet

buffer resources at adjacent switches. Cycles of these dependencies can cause deadlocks which prevent

packets from making progress. A simple way to prevent deadlocks is to restrict packet routing such that

dependency cycles do not exist, for example by using Dimension Order Routing (DOR) in a mesh

network [10]. However, such restricted routing may result in poor performance because of insufficient

flexibility to route packets around congested network links or buffers.

A network can provide higher performance by using a less restricted routing function that

guarantees deadlocks are avoided despite having buffer dependency cycles. The key is to ensure that

packets can escape from any dependency cycles they encounter. This approach was generalized by

Duato, who determined necessary and sufficient conditions for deadlock-free routing in cut-through and

wormhole networks [14, 15]. Stated informally, there must be a set of packet buffers that can be reached

by packets in any buffer in the network, and this set of packet buffers acts as a deadlock-free escape path

for the delivery of blocked packets.

An escape path from dependency cycles can be provided by embedding in the network a virtual

network, consisting of a set of dedicated packet buffers, for which packet routing is free of dependency
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cycles [4, 11, 35]. For example, in the Disha scheme [4] the physical network is partitioned into two

virtual networks, one which allows fully-adaptive routing with dependency cycles, and a second which

provides a dependency cycle-free escape path. A packet that blocks in the fully-adaptive virtual network

for a timeout period becomes eligible to be transferred to the dependency cycle-free network, which is

guaranteed to deliver the packet without creating a deadlock.

In the following sections we describe the DVC algorithm. The scheme avoids packet buffer

deadlocks by using a dependency cycle-free virtual network. It also ensures that new types of

dependencies introduced by virtual circuit setup and teardown procedures cannot cause deadlocks.

3. Dynamic Virtual Circuits (DVCs)

With both static virtual circuits and DVCs, a source node initiates communication with a destination

by establishing a new virtual circuit on some path to the destination. The source node then transmits one

or more data packets over the new virtual circuit. The data packets are forwarded at each intermediate

switch with very little processing and carry only a few bits of overhead (packet header) information.

Finally, the source terminates the virtual circuit. Each source and each destination may have many virtual

circuits established at the same time.

Unlike static virtual circuits, DVCs enable any intermediate switch on a circuit’s path to tear down

the circuit for the portion of the path from the switch to the destination. The intermediate switch may

later re-establish the torn down portion of the circuit in order to forward additional data packets that

arrive. The new path chosen for the circuit may be different from the original path. For example, the

new path may be chosen because it is less congested than the original.

With DVCs, circuit teardown and re-establishment from an intermediate node are fast, local

operations that completely avoid time-consuming synchronization with the circuit’s endpoints. However,

without synchronization a race condition can develop in which data packets that traverse a new path after

circuit re-establishment can arrive at the destination before older data packets on the original path. To

preserve the FIFO delivery semantics of virtual circuits, the destination reorders the arriving packets that

belong to the same circuit. As discussed below, to facilitate this packet reordering, each time a circuit is

re-established one sequence number must be sent through the network. However, the overwhelming

majority of the packets do not include sequence numbers [30]. Although the destination needs to reorder

packets when circuits are torn down and later re-established, this is a rare event; packets almost always

arrive in order. Hence, there is not need to devote resources to optimizing the performance of packet

reordering at the receiver.
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We next describe the basic steps of DVC establishment, disestablishment, and rerouting. Consider

a virtual cut-through network composed of n x n switches interconnected with bidirectional point-to-

point links. At each switch, one or more ports may connect the switch to one or more hosts. The switch

is input buffered with an n x n crossbar connecting the n input ports to the n output ports.

The source host establishes a new DVC by injecting a Circuit Establishment Packet (CEP) into the

network. The CEP records the DVC’s source and destination addresses, which are used to adaptively

route the CEP. For example, CEP routing may be accomplished through the use of routing tables

maintained at each switch, such as in the SGI Spider chip [19].

A CEP allocates for a new DVC one Routing Virtual Channel (RVC) on each link it traverses on its

path from source to destination (including the source and destination host interface links). An RVC is an

entry in a table at the switch input port that is connected to the link. Each physical link is logically

subdivided into multiple RVCs. Each packet header has a field that identifies the RVC used by the

packet. At each switch, the mapping from input RVC to output RVC is recorded in an ‘‘Input Mapping

Table’’ (IMT) at the input port. The IMT is indexed by the RVC value in the header of an arriving

packet. An IMT entry records the following information about the DVC that has allocated the RVC: the

output port, output RVC value, source and destination addresses, and sequence number.

Note that we use the term ‘‘RVC’’ instead of the more familiar ‘‘virtual channel’’ to distinguish it

from the same term commonly used to refer to flow-controlled buffers that prevent deadlock and increase

performance [10]. We call the latter Buffering Virtual Channels, or ‘‘BVCs’’. In contrast, ‘‘RVCs’’

simply identify DVCs, and they do not require separate flow-controlled buffers.

The source may transmit one or more data packets over a new virtual circuit. Each data packet is

quickly routed at each switch, by accessing the IMT entry with the RVC value in the packet header. The

RVC value in each packet’s header is overwritten with the output RVC value recorded in the IMT entry,

and the packet is enqueued for transmission to the next switch.

The source host terminates the virtual circuit by injecting a Circuit Destruction Packet (CDP) into

the network. The CDP traverses the circuit path, releasing at each hop the RVC that is allocated to the

circuit after the data packets that use the circuit have departed the switch.

With DVCs, an intermediate switch may initiate a teardown by inserting a CDP into the circuit path

at the switch input port. The switch may tear down the circuit to free up an output RVC to allocate to a

new circuit. Alternatively, it may tear down the circuit to adapt to traffic conditions by shifting the

circuit onto a lower latency path. The CDP traverses the circuit’s path until it reaches either the

destination or another switch that has also torn down the same circuit. The portion of the circuit from the
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source to the intermediate switch remains intact, unless the source or a switch along that portion of the

circuit also initiates a teardown.

A data packet that arrives on the input RVC of a torn-down DVC triggers DVC re-establishment, in

which the switch creates a new CEP from the information retained in the IMT. The CEP is routed to the

destination, allocating RVCs on the new path. There are no restrictions on when to reroute DVCs or

which new paths to take.

The adaptive rerouting of DVCs requires some packets to be stamped with sequence numbers for

reordering at the destination. Specifically, each CEP is stamped with the sequence number for the next

data packet of the circuit. Each switch along the path records the sequence number in the CEP as a circuit

is established or re-established. The switch increments the sequence number for each data packet that

subsequently arrives on the circuit.

Length (only included if < MAX)

Header

data

{Sequence No.}
[DVC Source/Destination]

RVC [BVC]

..

.

Figure 1: Packet Format. Fields in ‘‘[]’’ have the stated use only for diverted data
packets (described in Section 4.1). The sequence number field is used only for CEPs,
diverted data packets, and the next non-diverted data packet.

The general packet format is shown in Figure 1. A packet consists of a header followed by data

phits. The first phit of the header records the RVC value. An additional four bits of the RVC field

indicate packet type and whether the packet is of maximum length. If not, a length field is present in the

header. For most packets, the header consists only of the RVC field and possibly the length field. For a

minority of packets, the header includes additional fields. These additional fields are required for data

packets that are diverted onto deadlock escape paths.

4. DVCs With Deadlock Avoidance

This section shows how the mechanism for tearing down and re-establishing Dynamic Virtual

Circuits can be combined with a deadlock avoidance scheme that provides packets with an escape path

from potential deadlock cycles. Data packets that take the escape path are routed individually to their

destinations, independently of the virtual circuit paths.
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4.1. Avoiding Deadlocks Involving Data Packets

The DVC mechanism supports adaptive routing by imposing no restrictions on the choice of path

for any circuit, and by enabling circuits to be rerouted adaptively during their lifetimes onto new paths to

minimize latency and maximize throughput. The flexibility of adaptive routing comes at the cost of

possible deadlocks that involve the packet buffers. Deadlock cycles may also involve RVCs, since those

resources are contended for by the circuit establishment and disestablishment operations at a switch.

To avoid deadlocks arising from the unrestricted paths of DVCs, we embed in the physical network

two virtual networks: the primary network and the diversion network [15]. Each virtual network is

composed of one Buffering Virtual Channel (BVC) per switch input port (i.e. per link). We name the two

BVCs the primary BVC and the diversion BVC. Each is associated with a buffer (the ‘‘primary’’ and

‘‘diversion’’ buffers), which may be a FIFO buffer, or a more efficient Dynamically Allocated Multi-

Queue (DAMQ) buffer [31], or a buffer with any other organization.

The primary network supports fully-adaptive routing. This allows data packets to follow the

unconstrained paths that are assigned to virtual circuits, but it also creates dependency cycles among

packet buffers. In contrast, routing in the diversion network is constrained such that dependency cycles

do not exist (e.g., in a mesh topology, Dimension-Order Routing (DOR) could be used in the diversion

network). In addition, the diversion network can accept blocked packets from the primary network to

provide a deadlock-free escape path [15]. We say that a data packet is diverted if it takes a hop from the

primary network into the diversion network.

Whereas virtual circuit forwarding is used to route data packets in the primary virtual network,

traditional packet routing is used in the diversion network. Hence, while data packet headers in the

primary network consist of only an RVC number, headers of packets in the diversion network must

include source, destination, and sequencing information (Figure 1). When a data packet in the primary

network becomes eligible to be diverted, the switch obtains this information from the IMT entry where

this required information is recorded. To enable locating the correct IMT entry, the primary buffer retains

each packet’s input RVC value until the packet is forwarded on the output RVC. As long as diversions

are rare, the slower forwarding of diverted packets at intermediate switches and the overhead of

transmitting the larger headers of diverted packets will not significantly impact network performance.

Furthermore, if diversions are rare, small diversion buffers are sufficient (e.g., capacity of one packet).

Data packets that become blocked in the primary network can time out and become eligible to enter

the diversion network on the next hop. The routing function used for the diversion network determines

which output links the blocked packet in the primary network can take to enter the diversion network.
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The packet eventually advances, either by taking one hop on its virtual circuit path within the primary

network, or by taking one hop into the diversion network on an adjacent switch. To enable switches to

identify which virtual network an arriving packet is using, one RVC is designated as special. A data

packet arriving on this special RVC uses the diversion BVC, else it uses the primary BVC.

Since diverted data packets may arrive out of order at the destination, each diverted data packet is

stamped with a packet sequence number for use by the packet reordering at the destination. After a

packet is diverted, the next data packet on the same circuit is also stamped with a sequence number. At

each subsequent switch the non-diverted data packet visits along the circuit path, the switch reads the

sequence number and locally updates its record to account for the diverted data packets. As long as only

a minority of packets require the escape path, most of the advantages of static virtual circuits are

maintained with DVCs.

CDP3CEP1CDP1CEP2CEP3CDP2

Figure 2: Deadlock involving only control packets in three switches. Packet buffer
capacity is two packets. Each CEPi establishes a unique virtual circuit. The matching
CDPi will disestablish the circuit set up by CEPi .

4.2. Avoiding Deadlocks Involving Control Packets

Whereas data packets are diverted from their virtual circuit paths to avoid deadlock, control packets

(CEPs and CDPs) cannot deviate from virtual circuit paths. Instead, each CEP must traverse the path that

is selected for it by the network’s fully adaptive routing function, and each CDP must traverse the path

used by the virtual circuit it is disestablishing. A deadlock forms when a cycle of packet buffers fills with

CEPs and CDPs, as shown by example in Figure 2.

To avoid such deadlocks we develop a mechanism which prevents any buffer from filling with

control packets and blocking. The mechanism is derived by analyzing all possible sequences of arrivals

of control packets on a single RVC to identify the storage required for each arrival sequence. Deadlocks

are prevented by providing switches with packet buffers that are large enough to store the control packets

of the worst case sequence without filling and blocking.

We initially examine arrival sequences consisting only of control packets on a single RVC to find

the per-RVC storage requirement. Control packets arrive in alternating order (CDP, CEP, CDP, etc.) on
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an RVC. If a CDP arrives and the CEP that matches it is present at the switch without an intervening data

packet, then the CEP and CDP are deleted from the network (freeing buffer slots). If they were not

deleted, the circuit establishment and disestablishment would be wasted operations since the circuit is not

used by any data packet. Thus if the first packet in an arrival sequence is a CEP, then the CDP that

follows it causes both packets to be deleted. One other case of packet deletion is possible; a CDP is

deleted if it arrives at a switch where its circuit is already torn down as a victim. If the first packet of a

sequence is a CDP that tears down an existing circuit, then the second packet is a CEP that establishes a

new circuit. The third packet is a CDP, which matches the CEP and causes both packets to be deleted.

Therefore, in the worst case storage is required for one CDP and one CEP for each RVC. One additional

buffer slot is needed that is common to all the RVCs. This slot accommodates the arrival on any RVC of

a CDP that will be deleted along with its matching CEP. Hence an input port that supports R RVCs

requires storage for R CEPs plus (R +1) CDPs to handle arrival sequences without data packets.

CEP3U3CEP2U2U1 CEP1

Figure 3: Example deadlock involving three switches. Each Ui is an unmapped data
packet that is waiting for CEPi to establish an RVC mapping. When a CEP transmits
to the next switch, the unmapped data packet is converted into a mapped data packet.
So long as the unmapped data packets are present at the input ports, subsequent
arrivals on the primary Buffering Virtual Channel (BVC) are blocked. Therefore, the
CEPs cannot make progress, and a deadlock results.

We next consider arrival sequences that include data packets. A data packet that uses a circuit that

is currently allocated an output RVC at the switch is called ‘‘mapped’’. A mapped data packet eventually

frees its buffer slot via normal forwarding or via diversion. Therefore, including a mapped data packet in

an arrival sequence does not increase the storage required to prevent deadlock. A data packet that uses a

circuit that is not currently allocated an output RVC is called ‘‘unmapped’’. It is complex to divert an

unmapped data packet because its circuit identification information is not recorded in the IMT entry, as

with mapped data packets, but rather in a CEP that is somewhere in the packet buffer [33].

To avoid this complexity, we prohibit diverting unmapped data packets. However, this causes the

storage requirement to become unbounded because an infinite repeating pattern of packet arrivals of the

following form may arrive to a single RVC: CEP, followed by unmapped data packets, followed by CDP.

Matching CEPs and CDPs cannot be deleted because unmapped data packets intervene.
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To restore a bound on the storage requirement, we restrict each input to store at most one unmapped

data packet at a time (having a larger limit on the number of unmapped packets would also work but

would increase the storage requirements). If a data packet arrives and the Input Mapping Table lookup

reveals that the RVC is free or allocated to a different circuit, then the primary buffer asserts flow control

to block subsequent packet arrivals.

Blocking flow when an unmapped data packet arrives prevents control packets from arriving in

addition to data packets. Blocking control packets can cause deadlocks, as shown in Figure 3.

We prevent such deadlocks by introducing a new Buffering Virtual Channel (BVC) for control

packets. We call the new BVC the Control BVC. The Control BVC is the third and final BVC, in

addition to the Primary BVC and the Diversion BVC. The buffering associated with the Control BVC is

dedicated to storing control packets. Introducing the Control BVC allows control packets to arrive even

when the Primary buffer is full with data packets. The deadlock of Figure 3 does not occur since the

CEPs in the figure can all advance using the Control BVC.

Prohibiting unmapped data packets from being diverted and restricting each input port to store at

most one unmapped data packet cause the storage requirement for control packets to increase slightly

over the case with no data packets. The additional storage is common to all the RVCs at a switch input

port and can store one CDP and one CEP. This increases the storage requirement to (R +1) CEPs plus

(R +2) CDPs for an input port that supports R RVCs. The two additional control packets arrive after the

unmapped data packet and on its RVC. Appendix 1 presents an exhaustive examination of the storage

requirements for all possible packet arrival sequences. The worst case sequence of packet arrivals on the

RVC that is used by the unmapped data packet is as follows (in order of arrival): mapped data packets,

CDP 1 (will release the RVC), CEP 2 (will allocate the RVC for the next data packet), unmapped data

packet, CDP 2 (will release the RVC), and CEP 3 (will allocate the RVC for yet another circuit). Since the

unmapped data packet cannot be diverted, all four control packets in the sequence are necessary and

cannot be deleted. After this sequence of arrivals, CDP 3 may arrive which matches CEP 3. In this case,

both CDP 3 and CEP 3 are unnecessary and are deleted.

The control packets created by source hosts (as opposed to switches along the path) trigger critical

operations at the destination host. The initial CEP injected by a source to establish a new circuit causes

the destination host to allocate memory for delivering packets that use the circuit. The final CDP injected

by the source to disestablish the circuit triggers release of resources at the destination host. These control

packets may be deleted by a switch if all the data packets that use the circuit are diverted, in which case

the final CDP may catch up to the initial CEP at some switch, with no intervening data packet. To
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resolve this potential problem, the first data packet that uses a circuit replicates the information in the

initial CEP, and the final data packet of a circuit consists only of a header (no data payload). Since data

packets are never deleted, they are guaranteed to reach the destination and trigger the actions.

4.3. Algorithm for Handling Control Packets with DVCs

As described in the previous subsections, deadlock-freedom is maintained using data packet

diversion through a deadlock-free virtual network. The DVC mechanism imposes two restrictions that

simplify the algorithms and their implementations: each input port accommodates at most one unmapped

data packet at a time, and unmapped data packets cannot be diverted. Dedicated control packet buffers

are used to prevent deadlocks that include control packets. These control packet buffers are large enough

to ensure that they can never fill up and cause blocking.

The control packet buffer is organized as follows. For each RVC i , a logical queue is maintained of

the control packets in the order they will be transmitted to the next switch. The head of the logical queue

for RVC i is comprised of a queue Hi with space for one CEP and one CDP. Whenever an unmapped

data packet is present on RVC i , the tail of the logical queue is extended by a queue T* with space for one

CEP and one CDP. Queue T* is shared by all RVCs at an input port but used by only one RVC at a time.

The algorithm for managing DVCs and control packets is listed in Figure 4. Details of data packet

forwarding are not shown because the focus is on circuit manipulation. The algorithm listing shows the

key DVC control events that occur at a switch and the actions the switch takes in response. For example,

the first event shown is ‘‘Output port Z becomes free’’. The following lines 1 through 15 show how the

switch decides which next packet to transmit on output Z and the actions that are taken if the transmitted

packet is a CDP or a CEP.

The algorithm listing uses the convention that i and j refer to input RVCs, k is an output RVC, X is

an input port, and Z is an output port. Also, NX is a primary input buffer, DX is a diversion buffer, and Hi

and T* are control packet buffers.

5. Algorithm Correctness

We consider the algorithm to be correct if the following statement is true: All data packets injected

into the network on a DVC are delivered eventually to the DVC destination in the order injected.

Eventual delivery to the DVC destination is guaranteed if packets make progress (the network is

deadlock-free) and data packets are never delivered to incorrect destinations. In-order delivery is

guaranteed by attaching a sequence number to each packet that may arrive at the destination out of order.
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Conditions/Events and Actions (atomic):

1. Output port Z becomes free

1 Arbitrate access (assume RVC i of input
port X maps to RVC k of output port Z),
but also obey BVC flow control.
Arbitration priority:

2 A. a packet in some DX buffer
waiting for port Z or a mapped
packet on RVC k from buffer NX

3 B. a CEP/CDP on RVC k from head of Hi

4 when a CDP from RVC i is transmitted
on RVC k:

5 delete mapping from i to k
6 if a CEP is waiting at the head of

some Hj for RVC j {
7 set up new mapping from RVC j

to RVC k
8 }
9 if required, transfer head of

T* to Hi

10 when a CEP from input RVC i is
transmitted on output RVC k:

11 if an unmapped packet on RVC i
exists {

12 convert unmapped packet to a
mapped packet

13 unblock flow to primary input
buffer NX

14 }
15 if required, transfer head of

T* to Hi

2. CEP arrives on RVC i of input port X

16 if Hi is not full {
17 enqueue CEP at tail of Hi
18 } else {
19 place CEP at tail of T*
20 }

3. CEP at head of Hi, and RVC i does
not map to an output RVC

21 record SRC, DST in Input Mapping Table
entry for RVC i

22 output port Z <-
route(CEP’s destination field)

23 if free RVC k exists on output port Z {
24 set up mapping from i to k
25 } else if the number of RVCs on Z for

which there are CDPs at the switch is
less than the number of CEPs that are on
unmapped RVCs and are routed to output
port Z {

26 // it is necessary to select and
// teardown a victim

27 select RVC k (that reverse maps to
input RVC j != i) such that no CDP
resides at Hj

28 create CDP, place at tail of Hj

29 (note: the next data packet to
arrive on RVC j must be considered
unmapped even though RVC j stays
mapped to RVC k until the
transmission of the CDP in Hj)

30 }

4. Unmapped packet arrives on RVC i of input port X

31 block flow to primary input buffer NX
32 if Hi has no CEP {
33 create CEP using circuit

info in RVC i’s Input Mapping
Table (IMT) entry

34 place CEP at tail of Hi
35 }

5. CDP arrives on RVC i of input port X

36 if CDP is redundant {
37 delete arriving CDP
38 } else if CDP matches a CEP not

associated with an unmapped packet {
39 delete both the CEP and the

arriving CDP
40 } else if Hi not full {
41 place arriving CDP at tail of Hi
42 } else {
43 place arriving CDP at tail of T*
44 }

Figure 4: Algorithm for Handling Control Packets with DVCs

Section 5.1 below proves that network deadlocks are impossible. Section 5.2 proves that data

packets are associated with the same DVC from injection to delivery. Together with the FIFO delivery

mechanism described in Section 4, these results show the algorithm satisfies the statement of correctness.

5.1. Proof of Deadlock-Freedom

To prove the network never enters a deadlocked configuration, we examine data packets and control

packets separately. Theorem 1 below shows that diverted and mapped data packets cannot be part of a

deadlock. Theorems 2 and 3 prove that control packets make progress which in turn guarantees that

mappings are eventually provided for unmapped data packets. Together, the theorems show that every
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packet, regardless of its type, is guaranteed to make progress.

Theorem 1: Every mapped data packet in a primary buffer NX and every data packet in a diversion buffer

DX is eventually forwarded.

Proof: This follows from Duato’s sufficient condition for deadlock freedom in a virtual cut-through

packet-switching network [15]. Deadlock is avoided if there exists a set C of BVCs such that all packets

can reach set C in one hop, routing in set C reaches all destinations from all switches, and the set C is

free of buffer dependency cycles. The set of diversion buffers DX meets the definition of set C . A packet

in any primary buffer NX can enter the diversion network by taking one hop and is routed to its

destination with a routing policy that is free of dependency cycles (Section 4.1). `

Theorem 2: Control packets do not block in deadlock cycles that involve multiple switches.

Proof: Assume a deadlock involves a control packet and an entity at another switch. By examining all

possible chains of dependencies from a control packet to entities at neighboring switches, we show that

each chain includes an entity that cannot be in a deadlock cycle, contradicting the assumption.

A control packet may wait directly for one of the following five entities: a buffer slot at the next

switch, the output link, a mapped data packet at the same switch, a control packet at the same switch, or

an unmapped data packet at the same switch. We examine each entity in turn. First, dedicated control

packet buffers at the neighbor cannot be part of a multiple switch deadlock cycle because they have

sufficient capacity to avoid filling and blocking. Second, eventual access to the output link is guaranteed

for bounded length packets with virtual cut-through forwarding and starvation-free switch crossbar

scheduling. Third, mapped data packets cannot participate in deadlock cycles (Theorem 1). Fourth, all

control packets have the same set of possible dependencies to other entities, hence a dependence of one

control packet on another control packet at the same switch does not introduce the possibility for a

deadlock cycle that spans multiple switches. Fifth, a CDP may directly wait for an unmapped data packet

at the same switch and on the same RVC. In turn, the unmapped data packet waits for a CEP at the same

switch to transmit, which will cause the unmapped data packet to become mapped. The chain of

dependencies (from the CDP to the unmapped data packet to the CEP at the same switch) is equivalent to

case four above (direct dependence from one control packet to another at the same switch). `

Theorem 3: Control packets do not enter intra-switch deadlocks.

Proof Sketch: (full proof in Appendix 2). Such deadlocks would arise from cycles of dependencies

among entities within a single switch. We construct a graph of all the dependencies at a switch that

involve control packet buffers. The resulting graph is acyclic, hence intra-switch deadlock is impossible.
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The dependency graph is constructed from the control packet handling algorithm (Figure 4) and the

enumeration of buffer states in Appendix 1. The graph characterizes a mapped RVC i at some input port

X and an unmapped RVC j at some input port Y . RVCs i and j are arbitrary representatives of their

classes: mapped and unmapped RVCs, respectively. The set of all dependencies associated with these

representative RVCs captures all the dependencies associated with all mapped RVCs and all unmapped

RVCs because there are no dependencies between different RVCs in the same class. `

Theorem 4: The network is deadlock-free.

Proof: By Theorem 1, mapped data packets and diverted data packets always make progress. By

Theorems 2 and 3, control packets always make progress, hence if a switch creates a CEP to establish a

mapping for an unmapped data packet, the CEP is guaranteed to establish the mapping and transmit to the

next switch. Once that occurs, the unmapped data packet becomes a mapped data packet. Therefore, all

types of packets make progress, and the network is deadlock free. `

5.2. Correct Delivery

To complete the correctness discussion, we show that the deadlock-free network delivers each data

packet to the destination of its virtual circuit (instead of some other destination). We also show that the

destination can associate each data packet with its virtual circuit. This association is needed to deliver the

contents of a data packet to the host application to which the packet’s circuit is assigned.

The proof is based on a state transition table derived from an elaboration of the possible states of a

switch. From the perspective of some RVC i of input port X of a switch, the switch state is the

combination of the states of the buffers Hi , T* , the primary buffer NX , and the record in the IMT entry of a

mapping to an output RVC. For our purpose and from the perspective of RVC i , the state of buffers at

other input ports does not matter: the state of those buffers does not determine the destination to which a

data packet on RVC i is forwarded. The state of the diversion buffer DX is also irrelevant because

diverted data packets do not participate in circuit manipulation operations.

Appendix 3 presents in detail the elaboration of the state space as a list of sets of states, where each

set of states is classified as either ‘‘reachable’’ or ‘‘unreachable’’. Reachable states arise through error-

free operation of the switch, and the switch never enters unreachable states. A set of states is labelled

unreachable if it contradicts steps of the control packet handling algorithm (Figure 4) or basic properties

of DVCs such as the alternating arrival of CEPs and CDPs on an RVC.

To verify that the manual elaboration of the state space is complete and consistent, we wrote a

program that exhaustively generates all combinations of all values each buffer may hold. The program
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verifies that each generated state matches at least one set of states in the list and that all matching sets are

labelled identically (all reachable or all unreachable).

Using the set of reachable states and the control packet handling algorithm, we next derive the

possible state transitions. Each state is represented by the contents of Hi , T* , and two more fields that

capture the relevant state of NX and the IMT entry for RVC i . Hi can hold one CEP and one CDP on

RVC i . T* can hold one CEP and one CDP on any RVC. The state of NX and the IMT entry for RVC i

are too numerous to list exhaustively, but the relevant states are determined by the mapping status of

RVC i , and whether an unmapped packet is present at input port X . That information is represented by

using two symbols: mapi and UX . Table 1 shows the state transitions for all reachable states. The state

notation used in Table 1 is described in Figure 5 which lists the possible states of a slot for Hi and T* and

defines the symbols used in columns UX and mapi . In the state transition table, the actions that trigger a

transition are as follows: k (RVC i acquires mapping to output RVC k ), D (CDP arrives on RVC i ), E

(CEP arrives on RVC i ), U (unmapped packet arrives on RVC i ), T (transmission of packet at head of

Hi ), D ′ (CDP arrives on RVC i ′ ≠ i ), E ′ (CEP arrives on RVC i ′ ≠ i ), Ui ′ (arrival of unmapped packet on

some RVC i ′ ≠ i ), TEi ′ (transmission of CEP at head of Hi ′), and TDi ′ (transmission of CDP at head of Hi ′).

Each entry of the table is derived by tracing through the control packet handling algorithm to determine

what the next state would be given each possible action. Note that each empty entry in Table 1 means the

column’s action cannot occur in the present state for the row. For example, for rows 0–9, there is no

packet in buffer Hi . Therefore, action T, transmission of the packet at the head of Hi , cannot happen.

In some cases, two next states are indicated for some transitions, indicating that either of the two

next states may become the new present state. This is because the next state depends on the present state

of Hi ′, which is not displayed in Table 1 because it is not associated with RVC i .

Table 1 is used below to show that a packet P, which is injected on virtual circuit V, reaches the

destination of circuit V, and the host interface at the destination associates packet P with circuit V.

Theorem 5: Whenever packet P is mapped, its input RVC identifies virtual circuit V.

Proof: The proof is by induction on the distance from the virtual circuit’s source.

Basis: The theorem is true at the injecting host interface because the host transmits only one CEP

for the circuit until it is disestablished.

Induction Step: Assume the theorem is true for P at switch or host Sn (n hops from the source). We

now show the theorem is also true at the host or switch that is n +1 hops from the source (at host/switch

Sn +1). Suppose packet P is about to transmit to host/switch Sn +1’s primary BVC on RVC k . Since P is

about to transmit, P must be a mapped data packet at host/switch Sn . Therefore, the previous control
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Table 1: State Transition Table

packet on RVC k must have been a CEP that identified V.

If Sn +1 is a host instead of a switch, then the host will correctly associate packet P with virtual circuit

V. However, if Sn +1 is a switch, then there may be a danger that the CEP will be deleted before it reaches

the head of Hk . Only if the CEP reaches the head of Hk will the switch Sn +1 record the circuit

identification information for V in the IMT entry for RVC k (algorithm line 21). We will now prove that

the danger is unwarranted. The CEP will successfully reach the head of Hk at switch Sn +1.
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Figure 5: State Notation for Table 1

Switch Sn +1 may delete a CEP if a CDP arrives from Sn or is generated locally. In our scenario, a

CDP may not arrive at Sn +1 from Sn , since packet P is about to transmit from Sn . It is impossible for a

CDP to transmit ahead of a mapped data packet such as P (see arbitration priority rules in lines 1–3 of

Figure 4). Therefore, only a CDP that is generated locally at Sn +1 could trigger the deletion of the CEP.

From Table 1, we can identify all the state transitions in which a CEP is deleted upon introduction

of a CDP. That is, we can identify all present states in the table such that the column D transition takes

the switch to a next state that has one less CEP than the present state. For some of those states (10, 11,

and 14 through 21), the CEP that identifies virtual circuit V is already at the head of the logical queue

(i.e. Hk for switch Sn +1), hence the IMT entry identifies V. Even if that CEP is deleted, the information is

available when packet P arrives at switch Sn +1. The remaining qualifying states are 24, 25, 31, and 33

through 36. In those states, a CDP is present in the buffer. According to line 27 of Figure 4, the presence

of the CDP prevents the introduction of a locally-generated CDP. Therefore we conclude that it is not

possible for a locally-generated CDP to cancel the CEP before the IMT is written to identify circuit V. `

Theorem 6: If packet P is a diverted packet, then P’s header identifies circuit V.

Proof: By theorem 5, at the time P is diverted, the IMT entry identifies circuit V. The procedure for

diversion attaches that information to packet P’s header. After diversion, the packet header is not altered

until P is delivered. Therefore, packet P is always associated with circuit V. `

6. Implementation Issues

Efficient implementation of the DVC algorithms presented earlier requires specialized hardware

support. To demonstrate the feasibility of using DVCs, this section presents key components of a

possible implementation.
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6.1. Switch Organization

We assume an n x n switch is a single-chip device. The switch includes a processor that performs

the relatively complex yet infrequent circuit manipulation operations of the DVC algorithm. This

processor also executes higher-level routing protocols that identify low latency paths [29]. The switch

has packet buffers at each input port. Each input port X has primary buffer NX , diversion buffer DX , and

control packet buffer T*
X. The input buffers are connected to output ports through an n x n crossbar.

Each input port also has an Input Mapping Table (IMT) that records RVC mappings (Figure 6).

5

seqctlCQi
S

RVC

1 3 8 3 16

map OP OC seq

1

OSM

RVC

SRC1 DST1 seq1 SRC2 DST2 seq2

16 16 16 168 8

Figure 6: Input Mapping Table (one at
each input port). Field widths in bits are
shown.

Figure 7: Circuit Information Table
(one for each input port). Holds
information about mapped and torn
DVCs, and CEP information from
Hi .

When a data packet arrives to an input port, its RVC identifier is used to access an IMT entry. The

entry’s ‘‘map’’ field indicates whether the input RVC is mapped to an output RVC (i.e., whether a circuit

is established). If so, the ‘‘OP’’ field specifies the output port to forward the arriving packet, and the

‘‘OC’’ field specifies the output RVC value which replaces the value in the packet’s header. The input

RVC value is saved in NX with the data packet and is discarded when the packet is dequeued upon

transmission. The remaining fields of the IMT are used to keep track of control packet buffering

(Section 6.2) and FIFO sequencing (Section 6.3).

Each output port has an Output Mapping Table (OMT). The OMT is indexed by output RVC value

and indicates the status of the output RVC. Each OMT entry has 3 bits. The ‘‘map’’ bit is set when the

output RVC becomes mapped to an input RVC. It is cleared when a CDP transmits to the next switch

using that RVC, releasing the output RVC for use by a new circuit. The ‘‘victim’’ bit is set when the

circuit mapped to the output RVC is chosen as a victim for teardown. It too is cleared when the CDP

transmits to the next switch. At that point, the RVC can be mapped to an input RVC that has a CEP

waiting to establish a circuit. The ‘‘active’’ bit indicates whether the RVC has been used by any recently

transmitted packet. The switch uses the ‘‘active’’ bit to choose a victim. In particular, the ‘‘clock’’

algorithm [9], which approximates LRU, can be used to select a victim.
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The IMT and OMT are accessed for each packet and must therefore be stored in high-speed

(SRAM) memory. Other information is accessed only when packets are diverted or when circuits are

manipulated and can therefore be stored in lower speed dense (DRAM) memory. This latter information

consists of tables for routing CEPs, tables that store DVC identification and routing information (these

tables are updated upon DVC establishment and read when DVCs are rerouted), and tables used to

implement the Hi control buffers.

6.2. Control Buffer Implementation

At each input port, the algorithm in Section 4 requires the ability to store up to four control packets

(CEPs, CDPs) for one RVC (in Hi and T* ) and up to two control packets for the rest of the RVCs (in H j ).

To minimize the cost of this storage, the storage for each RVC is split into two components: CQi
S — a

frequently-accessed component stored as part of the IMT in dedicated SRAM at each port, and CQi
CEP —

an infrequently-accessed component stored in the DRAM available on the switch. The CQi
S component

consists of a compact representation of the state of the logical queue of control packets for input RVC i .

From Table 1, the logical queue of control packets for an RVC i can at any time be in one of eight states:

empty, CEP, CDP, CEP CDP, CDP CEP, CEP CDP CEP, CDP CEP CDP, CDP CEP CDP CEP. The

CQi
S field of the IMT specifies the current state as a 3-bit value. Since CDPs carry no information other

than the RVC value, the 3-bit state encoding represents all the CDPs in the queue.

The infrequently-accessed CQi
CEP component is maintained in DRAM in the Circuit Information

Table (CIT) (Figure 7). For each input RVC, there is an entry in the table with space to record the

information of two CEPs (DVC source, destination, and sequencing information). The first set of fields

(SRC 1, DST 1, and seq1) reflects the current status of the DVC and is set from the contents of the CEP that

established the current DVC. The second set of fields (SRC 2, DST 2, and seq2), if valid, corresponds to the

DVC that will replace the current DVC. This second set of fields is the storage of CQi
CEP — the CEP that

is part of Hi (Section 4.3). Storage for information from two CEPs is needed since the switch may

contain data packets on the previous DVC when the CEP for a new DVC arrives. If one or more of these

data packets needs to be diverted, the information for the previous DVC will still be needed.

Finally, a dedicated buffer for each input port provides storage for the one CEP that is part of T* .

Performance can be optimized by adding a small, fast write buffer for arriving CEPs. The switch

can access the buffer as a cache to forward CEPs quickly without incurring the DRAM access time for

writing to the CIT. A write buffer only benefits CEPs that arrive to empty Hi queues. This should be the

common case since control packets present only a light load with reasonable traffic patterns.
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The switch must transmit the control packets and data packets in a logical queue in FIFO order,

even though the packets are stored physically at the switch in various memory buffers (i.e., the primary

buffer for data packets, and the control buffers described above for control packets). Each buffer

preserves the partial order of the packets it stores from the logical queue. The partial order of mapped

data packets of a logical queue is preserved because the primary buffer maintains in FIFO order its data

packets that are destined to a single output port. The partial order of control packets in the logical queue

is recorded and maintained by using the IMT CQi
S field. Although these buffers preserve the correct

partial order of transmission, a mechanism is needed to control the total interleaved order of

transmissions from these buffers.

The total order of a logical queue is preserved by transmitting all of its mapped data packets before

any of its control packets. The mapped data packets must precede the control packets because a CDP that

precedes a mapped data packet would delete the current RVC mapping, and a preceding CEP would

establish a new mapping before the data packet is transmitted. Transmission of mapped data packets

ahead of control packets is enforced through the use of the ‘‘seqctl’’ field in the IMT (Figure 6). The

seqctl field has initial value zero and records the number of mapped data packets that are present in the

logical queue for an RVC. Control packets in the logical queue are allowed to transmit only when the

value in ‘‘seqctl’’ is zero. Mapped data packets can transmit anytime. The ‘‘seqctl’’ value is

incremented when a mapped data packet arrives at a switch on the RVC or when an unmapped data

packet on the RVC becomes mapped as a result of transmitting a CEP. The ‘‘seqctl’’ field is

decremented when a data packet that previously arrived on the RVC is either transmitted to the next

switch along its circuit or is diverted.

6.3. Sequencing and Diversion

As explained in Section 4, to support FIFO delivery, one sequence number per input RVC is

maintained in the IMT. The IMT entry ‘‘seq’’ (sequence number) field (Figure 6) is incremented

whenever a packet is transmitted whose header has no sequence number field (Figure 1). The index used

to access the IMT entry is the value of the input RVC on which the packet arrived at the switch. As

discussed in Section 6.1, this value is saved in the main data packet buffer Nx . Whenever a packet with a

sequence number is transmitted from the primary buffer, that sequence number replaces the value in the

IMT ‘‘seq’’ field.

After a data packet is diverted, the next data packet that is transmitted normally on the same circuit

is stamped with a sequence number (Section 4.1). The IMT entry’s single-bit ‘‘OSM’’ (Out of Sequence
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Mode) field is used as a flag to determine whether a data packet that is transmitted normally should be

stamped. The flag is set when a data packet is diverted. Before a data packet begins transmission to the

next switch, the OSM flag for the packet’s input RVC is read. If the flag is set, then it is cleared and the

sequence number is added to the data packet header on-the-fly as it is transmitted to the next switch.

With virtual cut-through, a packet is transmitted only if the next switch has sufficient buffer space for a

maximum size packet. Hence, lengthening the packet, following diversion, as it is transmitted, will not

cause the buffer at the next switch to overflow.

Packet diversion requires forwarding a timed-out packet to an output other than the one associated

with the logical queue storing the packet. Hence, when a packet times out, its request from the crossbar

arbiter is modified to include access to the switch output that was its original destination as well as access

to the switch output(s) on the diversion path(s). If access to the diversion network is granted first, the

packet’s RVC field is changed to indicate use of the diversion BVC, and DVC information from the IMT

and CIT is added to the header.

7. Performance Evaluation

One key advantage of DVCs is the potential for reducing overall network contention by establishing

circuits or rerouting existing circuits onto low latency paths. In most systems, traffic patterns change

dynamically, and circuits require time to adjust their paths to compensate. For a first-order evaluation of

the performance potential for DVCs with adaptive routing, we consider simpler limit cases with stable

traffic patterns and circuit placements. The actual performance of a system with DVCs will depend on

the routing and rerouting algorithms.

We consider Uniform, Transpose and Bit-Reversal traffic patterns. In all cases, we precompute the

paths used by DVCs in order to simulate ideal conditions where circuits have settled into a steady-state,

low contention configuration. We compare the performance of the resulting configuration against a

packet switched network using Dimension Order Routing (DOR), which is known to perform well for

Uniform and poorly for Transpose and Bit-Reversal patterns [21]. In our experiments, the routes for

DVCs are precomputed using a simple heuristic Bellman-Ford minimum cost path algorithm. The cost of

each link is set to an estimate of the delay experienced by packets waiting to use the link. The delay is

estimated by modeling the link as a Geo(N)/D/1 queueing system fed by packet arrivals from all DVCs

whose routes include the link. Details of this route precomputation procedure are described

elsewhere [33].

For our simulation experiments, packet size is 32 phits, and switches have DAMQ primary input
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buffers. For DVC simulations, there is also a diversion buffer of capacity 32 phits. The results for DOR

and routed DVCs are shown for equal total input buffer capacity, which for DVCs is the sum of the

primary input buffer capacity plus 32 phits for the diversion buffer. The interval between packet

creations has a geometric distribution. At each switch, the crossbar arbitration policy gives priority to the

packet that has resided longest at the switch. The performance metrics are the average latency, the

average node throughput and the normalized throughput. Packet latency is defined as the number of

cycles from when the first byte of a packet is generated at a sender to when it leaves the network.

Normalized throughput expresses throughput as a fraction of the network bisection bandwidth.

With DVCs, a packet is diverted if it is blocked at the head of the queue at a switch and the timeout

expires. If the timeout interval is too short, packets will be diverted unnecessarily. If the timeout interval

is too long, it will take longer to resolve deadlocks. To evaluate the impact of this effect on performance,

our evaluation includes simulations for a variety of timeout values.

7.1. Transpose Traffic Pattern

The transpose traffic pattern sends all packets across the diagonal of the mesh; packets from the

source at row i column j are sent to the destination at row j column i . Nodes along the diagonal only

forward packets; they do not produce or consume any packets of their own. For this traffic pattern,

Figure 8 shows the latency versus throughput for an 8 × 8 mesh, with input buffer capacity 64, 96, and

288 phits.

These results show that for all levels of buffer capacity, the maximum throughput achieved with

DVCs is about twice that achieved with DOR. With DOR, only the horizontal incoming links of the

switches along the diagonal are utilized. With routed DVCs, both the vertical and horizontal incoming

links of the diagonal are utilized with approximately equal traffic loads assigned to each link. The results

also show that the impact of increasing the buffer capacity is higher latency, not higher throughput.

Throughput does not increase for either DOR or routed DVCs because it is limited by the bandwidth of

saturated links along the mesh diagonal. Finally, the results show that using DVCs with long timeouts for

packet diversion results in higher maximum throughput than using short timeouts. Short timeouts

increase the frequency of packet diversions, which for the transpose traffic pattern occur before the packet

crosses the diagonal, the congested point in the network. Since diverted packets use DOR, they can only

use the horizontal incoming links of switches on the diagonal. Hence packet diversions shift traffic from

the vertical to the horizontal incoming links at the diagonal. These traffic imbalances reduce

performance, thus in this case longer timeouts which minimize packet diversions are better.
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Figure 9 shows the fraction of traffic diverted versus normalized throughput for the DVC network

with input buffer capacity of 96 phits. For low and medium network loads, as the load increases, the

fraction of diverted packets increases. However, past a certain point, the fraction of diverted packets

decreases as the load increases. The reason for this is that at these high loads the increase in network

throughput is mostly for the subset of circuits using low-contention routes. Other circuits and their

diversion paths are saturated and their throughput does not increase as the applied load increases. For the

low-contention circuits no diversion occurs so more packets get through the network without a

corresponding increase in the number of diverted packets.

The performance of a distributed application is often limited by the performance of its slowest

member rather than by the aggregate throughput available to the application. For example, an application

whose nodes communicate via the transpose traffic pattern may occasionally need to synchronize to

ensure that all sending nodes are in a known state. If some flow is particularly slow, progress of nodes

associated with this flow will be impeded and the progress of all other nodes will be throttled upon

synchronization. Hence, it is useful to evaluate the fairness of the system by comparing the throughputs

achieved by individual senders.

Figure 10 shows the raw (not normalized) throughput achieved by each source node in the 8 × 8

mesh using the transpose traffic pattern. The throughputs from each sender are displayed, sorted to be

monotonic (the first eight sources are along the diagonal and do not generate packets). Throughputs for

routed DVCs and DOR are displayed as separate curves. Since fairness in a network decreases as the load

increases, comparison of the fairness of the two policies should be done at the same average node

throughput. In Figure 10, average node throughput for DOR is at its maximum, 0.233, and average node

throughput for routed DVCs is 0.242. Since unfairness increases with average node throughput, the result

in Figure 10 is biased slightly in favor of DOR, yet the routed DVCs achieve far greater uniformity of

sender throughput than does DOR. As we increase applied load further, the routed DVCs policy also

becomes unfair, but only at much higher levels of average node throughput than can be achieved with

DOR. This is demonstrated in Figure 11, which shows throughput fairness at saturation, in which each

source constantly tries to inject packets.

7.2. Bit-Reversal Traffic Pattern

The bit-reversal traffic pattern sends messages from each source xn −1xn −2
. . . x 0yn −1yn −2

. . . y 0 to

destination y 0y 1
. . . yn −1x 0x 1

. . . xn −1. Figure 12 shows latency versus throughput on an 8 × 8 mesh, for

total input buffer capacity 64, 96 and 288 phits. The reported throughput is normalized to the bisection
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bandwidth, the upper bound on throughput for the bit-reversal traffic pattern.

The results for bit-reversal show that, as with transpose traffic, routed DVCs significantly

outperforms DOR and there is no advantage to increasing the buffer size. Unlike with transpose traffic

the latency-throughput results with bit-reversal traffic are nearly independent of the diversion timeout

value. With bit-reversal traffic, diverted packets do not necessarily follow poor paths that increase

congestion.

Figure 13 shows the fraction of traffic diverted versus throughput with total input buffer capacity 96

phits. These results show, as with transpose, that increasing timeout values greatly reduce the fraction of

traffic diverted. Since diverted packets are handled less efficiently than packets on DVCs, these results

and the transpose traffic results indicate that long timeout values should be used.

7.3. Uniform Traffic Pattern

For uniform traffic in a square mesh, DOR distributes load evenly across the links that comprise the

network bisection and thus should perform well. In contrast, some adaptive routing schemes tend to steer

more traffic toward the center of the network, causing congestion [27].

Figure 14 shows latency versus throughput for uniform traffic with total input buffer capacity 64

and 288 phits. The results show that the performance of routed DVCs is close to that of DOR. Unlike

transpose and bit-reversal traffic, with uniform traffic the use of larger buffers improves performance.

Increasing the buffer capacity increases the number of flows that can be represented at any instant by the

packets that are present at a switch. Larger buffers are therefore more helpful for uniform traffic with

O (N 2) flows than for the previous traffic patterns which have only O (N ) flows (one from each source

node). Performance also improves with the use of smaller timeout values which effectively increase the

useful buffer capacity by enabling more packets to take advantage of the 32 phit diversion buffers. With

large buffers (288 phits), routed DVCs and DOR have nearly identical performance.

For routed DVCs with short timeouts, as the applied load increases beyond saturation the network

throughput decreases slightly. This may occur because congestion in the primary virtual network causes

a larger number of packets to enter the diversion virtual network which has limited buffering and

therefore limited throughput.
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7.4. The Impact of Network Size

For a larger mesh network of size 16 × 16 and the same traffic patterns as used previously,

Figures 15, 16 and 17 show latency versus throughput, and Figures 18, 19 and 20 show the fraction of

traffic diverted versus normalized throughput. For non-uniform traffic, the results show that routed

DVCs significantly outperform DOR, but the performance difference is smaller than on the 8 × 8 mesh.

With the larger network, packets travel longer distances, and there are more opportunities for delays and

deadlocks. Hence, the fraction of packets diverted tends to be larger than on the 8 × 8 mesh, resulting in

more of the traffic facing congestion as with DOR.
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Figure 8: Transpose traffic: Latency vs.
Normalized Throughput.

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1.0

Fraction
Diverted

Normalized Throughput

f. . . . . Timeout=5

f.
. . . .f.

. . . .f.
. . . .f.

. . . .f. . . . .f. . . .f. .f. . .f. .f. .f..f. .f..f. . .f

∗. . . . . Timeout=40

∗. . . . .∗. . . . .∗. . . . .∗. . . . .∗. . . . .∗. . . . .∗. .
.
.∗. . .∗. .∗. .∗. .∗. .∗∗. . .∗

×. . . . . Timeout=80

×. . . . .×. . . . .×. . . . .×. . . . .×. . . . .×. . . .×. . .×. . . .×. . .×. .×. .×. .××. . .×

Figure 9: Transpose traffic: Fraction of Traffic
Diverted vs. Normalized Throughput. Total
input buffer capacity = 96 phits.
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Figure 12: Bit-Reversal traffic: Latency vs.
Normalized Throughput.
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Figure 13: Bit-Reversal traffic: Fraction of
Traffic Diverted vs. Normalized Throughput.
Total input buffer capacity = 96 phits.
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Figure 14: Uniform traffic: Latency vs.
Normalized Throughput.
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Figure 15: 16 × 16 Transpose traffic: Latency
vs. Normalized Throughput. Total input
buffer capacity = 64 phits.
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Figure 16: 16 × 16 Bit-Reversal traffic: Latency
vs. Normalized Throughput. Total input
buffer capacity = 64 phits.
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Figure 17: 16 × 16 Uniform traffic: Latency vs.
Normalized Throughput. Total input buffer
capacity = 64 phits.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fraction
Diverted

Normalized Throughput

f. . . Timeout=5

f. . . . .f. . . . .f. . . . .f. . . . .f. . .f. .f. .f. . .f. .f. .ffff

∗. . . Timeout=40

∗. . . . .∗. . . . .∗. . . . .∗. . . . .∗. . . . .∗. . .∗. .∗. . .∗. .∗. .∗∗∗ ∗

Figure 18: 16 × 16 Transpose traffic: Fraction of
Traffic Diverted vs. Normalized Throughput.
Total input buffer capacity = 64 phits.
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Figure 19: 16 × 16 Bit-Reversal traffic: Fraction
of Traffic Diverted vs. Normalized
Throughput. Total buffer capacity = 64 phits.
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Figure 20: 16 × 16 Uniform traffic: Fraction of
Traffic Diverted vs. Normalized Throughput.
Total input buffer capacity = 64 phits.
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8. Related Work

In this section we describe related work on connection-based routing for multicomputers or high-

end cluster networks, and existing techniques for virtual circuits to support adaptive routing and circuit

rerouting. We compare these approaches to our proposed Dynamic Virtual Circuits.

An approach to connection-based routing that combines static virtual circuits (for traffic exhibiting

locality) and conventional wormhole routing (for other traffic) was proposed by Dao, Yalamanchili, and

Duato [12]. In this proposal, a source node tries to establish a static virtual circuit by injecting into the

network a circuit establishment probe. The probe is adaptively routed toward the destination; along the

way the probe may backtrack as it searches for a path with free resources on each link. If the probe back-

tracks to the source node, the source either re-injects the probe for another try or gives up on establishing

a circuit, in which case it uses conventional wormhole routing for traffic it sends to the destination.

Existing circuits are not torn down to free resources for new circuits. Nor are circuits rerouted to adjust to

congestion or faults.

A different approach that relaxes the static nature of virtual circuits was proposed by Hsu and Ban-

erjee [22]. They proposed adding logic to support on each switch a small number of virtual circuits,

called cached circuits. A cached circuit relaxes the static restrictions of virtual circuits; a cached circuit

may be torn down in order to free up resources at an intermediate switch. The resources may be needed,

for example, to establish a new cached circuit. The intermediate switch selects an existing cached circuit

to be a victim, and it sends a request to the source node of the victim circuit to tear it down. The packets

in transit from the victim’s source must progress past the intermediate switch before the resources held by

the victim circuit can be released. Therefore, new circuit establishment may be blocked for an extended

period while packets on the victim circuit are being flushed out. In addition, the packets being flushed

out are forced to take the existing path of the victim circuit, which may no longer be a desirable path

because of the possible prior onset of congestion or faults.

Virtual circuits are used in Asynchronous Transfer Mode (ATM) [13]. ATM supports two types of

connections: virtual circuits (VCs) and virtual paths (VPs). A VC is composed of a sequence of VPs from

source to destination. Each VP can support 216 VCs. A VC can be rerouted to improve quality of service

via a round trip exchange of control messages between the source and destination [8]. A VP that is used

by many VCs can be rerouted when a link on its route fails. Rerouting a VP is transparent to the VCs that

use it. A VP can be rerouted onto a backup route that is either pre-defined or is selected after a failure is

detected [24, 20]. VP rerouting is accomplished through a round trip exchange of control messages on the

backup path between the VP endpoints [24]. Alternatives to end-to-end VP rerouting include rerouting
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only the portion of the VP between two switches that are adjacent to the failure, and rerouting the portion

of a VP from a switch that is upstream from the failure and the VP destination. These strategies differ in

the time required to reroute a VP and in the spare bandwidth that is needed to guarantee that all VPs can

be rerouted and meet their bandwidth requirements after any single failure [26, 3].

Our Dynamic Virtual Circuits (DVCs) [30] proposal differs from the above proposals by allowing

virtual channel resources to be quickly reallocated through local operations at a switch, avoiding the long

delays of schemes that require interactions with faraway nodes before releasing local resources. Resource

reallocation avoids blocking circuit establishment, and it enables adaptive circuit rerouting.

9. Conclusion

In this paper, we presented the algorithms and hardware/firmware architecture for Dynamic Virtual

Circuits (DVCs), a novel technique that enables multicomputer and cluster interconnection networks to

combine the benefits of connection-based routing and adaptive routing. In particular, DVCs reduce link

bandwidth overheads and packet processing delays at switches compared to pure packet switching

networks. A Dynamic Virtual Circuit can be established on any path from source to destination without

the possibility of deadlocks involving packet buffer resources or virtual circuit manipulation operations.

Unlike prior approaches, DVCs can be rerouted dynamically through the use of fast operations at any

switch along a virtual circuit’s path without requiring costly delays for coordination with remote nodes.

It is practical to implement the DVC mechanism, which has only modest hardware requirements and

applies to networks with arbitrary topologies. Emerging interconnect standards such as InfiniBand could

be extended to support DVCs, which fit well with the semantics of InfiniBand end-to-end queue pairs

connections and could be used to improve transmission efficiency for InfiniBand network fabrics.

To guarantee deadlock-freedom in DVC networks, our solution decouples data packet routing and

circuit manipulation operations. To enable data packets to use unconstrained virtual circuit paths, we

leverage the existing approach from packet switching networks of allowing data packets that encounter

buffer dependency cycles to transition to a dependency cycle-free virtual network, the diversion network.

To avoid deadlocks involving circuit manipulation operations, we present a new approach, based on an

analysis of control packet arrival sequences, which guarantees that control packets cannot experience

blocking across switches. We use an elaboration of the state space of a switch to develop correctness

arguments showing that the DVC algorithms ensure the network is deadlock-free and that data packets

are delivered to correct destinations. Our performance evaluation results show that with virtual circuits,

global routing optimization is possible and provides performance superior to fixed routing. Furthermore,
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the results show that the use of deadlock-free escape paths is sufficiently infrequent to preserve the

bandwidth efficiencies of the DVC mechanism.

For future investigation, an interesting and important question is how DVCs behave with shifting

traffic patterns. In particular, there are many alternatives for choosing when and how to reroute existing

circuits. Other future investigations could focus on extending DVCs to provide advanced functionalities

including improved fault tolerance and multicast capabilities.
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Appendix 1: Packet Arrival Sequences

In order to demonstrate in a rigorous fashion how much buffer space is required for the control BVC

to avoid deadlock cycles involving control packets, the following subsections present an enumeration of

all possible sequences of packet arrivals on one RVC of a switch input port. We assume in this analysis

that for an extended period, competition with data packets for link bandwidth prevents any of the control

packets that arrive from being transmitted to the next switch. The control packets that arrive to the switch

must be accommodated by the switch input buffers. Otherwise, the switch would block the arrival of

subsequent control packets, a condition we wish to avoid in order to guarantee that inter-switch deadlocks

involving control packets cannot form. The arrival sequences are partitioned into two major classes:

sequences that contain no data packets, and sequences that contain data packets.

Cases Without Data Packets

We first consider all arrival sequences (on a single RVC) that lack data packets. The empty

sequence (no arrivals at all) is a trivial example. In that case, no buffer space is required to accommodate

the sequence. Non-empty arrival sequences without data packets begin with the arrival of either a CEP or

a CDP.

If a CEP arrives first, then the next arriving control packet on the same RVC can only be a CDP that

matches the CEP. When the CDP arrives, the switch identifies both the CDP and the CEP ahead of it as

unnecessary, and both packets are deleted. We write the arrival sequence as follows (from first arrival to

last): CEP [CDP]. The square brackets mean the arrival of the packet inside the brackets causes both that

packet and the last packet in the sequence to be dropped. Only buffer storage for the CEP is required in

this case, since the CDP is dropped as it arrives.

If a CDP (call it CDP 1) arrives first in the sequence, then the next arriving control packet on the

same RVC is CEP 2 for a new circuit. CDP 1 will release the RVC upon transmission, and then CEP 2 will

try to allocate it and set up a new mapping. After CEP 2 arrives, the next arrival would be CDP 2, which

matches CEP 2. Both packets are unnecessary and are dropped. The sequence is thus the following: CDP 1
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CEP 2 [CDP 2]. The maximum buffer requirement in this case is storage for the first CDP and the CEP.

To summarize, the maximum control packet storage required for arrival sequences without data

packets is 1 CDP and 1 CEP for each RVC. Next we examine the arrival sequences that include data

packets.

Cases With Data Packets

There are three categories of arrival sequences (on a single RVC) that include data packets:

sequences with data packets that are all mapped; sequences with data packets that are all unmapped; and

sequences with a mixture of mapped and unmapped packets. We show that the sequences with unmapped

data packets pose the greatest demand on control packet buffer storage.

Consider the arrival sequences with data packets, all of which are mapped. A data packet is mapped

if it is on a circuit that has allocated the RVC. The RVC is allocated by the CEP that precedes the data

packet. The RVC is allocated when the CEP transmits to the next switch. Therefore, if a data packet is

mapped, the CEP ahead of it is stored at some different switch or has been delivered to the destination.

Since by our assumption control packets are unable to transmit downstream for a long time, if a control

packet arrives in the sequence ahead of a data packet, then the control packet is present when the data

packet arrives. Therefore, the data packet is unmapped, not mapped. That implies that each arrival

sequence in this category begins with a sequence of data packets that are followed by a sequence of

control packets. Having data packets strictly at the front of the arrival sequence does not change the

storage requirement for the control packets at the tail of the sequence. Hence again storage is required for

one CDP and CEP on each RVC. The worst case arrival sequence is the following, where M 1
...Mn are

mapped data packets: M 1
...Mn CDP 1 CEP 2 [CDP 2].

We now consider arrival sequences on one RVC that include data packets, all unmapped. When the

first unmapped data packet arrives, flow on the primary BVC is blocked, preventing subsequent arrivals

of data packets. Control packets can still arrive after the data packet.

Suppose the first packet that arrives in the sequence is a CEP. Then, if a CDP follows it, both are

deleted. Otherwise, the data packet would follow the CEP. In that case, the sequence that requires the

most buffering is the following: CEP 1 U CDP 1 CEP 2 [CDP 2]. U in the sequence is the unmapped data

packet. The control packet storage required is a single CEP in addition to the usual per-RVC requirement

of one CEP and one CDP.

If the first packet in the sequence were a data packet instead of a CEP, then the switch would

generate a CEP and insert it ahead of the data packet. Thus this case is equivalent to the previous case
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and has the same storage requirement.

If a CDP (call it CDP 0) were the first packet in the sequence, then the worst case sequence is CDP 0

followed by the sequence from the previous case. That is, the sequence is the following: CDP 0 CEP 1 U

CDP 1 CEP 2 [CDP 2]. The storage requirement is one CDP and one CEP in addition to the usual per-RVC

storage requirement.

Finally, we consider arrival sequences that include both mapped and unmapped data packets. By

the same reasoning as for sequences with only mapped data packets, the mapped data packets in the

sequences in the current category must precede all other packets in the sequence. Again, the presence of

the mapped data packets does not affect the storage required for control packets. The worst case sequence

is the following: M 1
...Mn CDP 0 CEP 1 U CDP 1 CEP 2 [CDP 2].

Appendix 2: Intra-Switch Deadlock Freedom

Theorem 3: Control packets do not enter intra-switch deadlocks.

Proof: Such deadlocks arise from dependency cycles within a single switch. We construct a graph of all

the dependencies at a switch that involve control packet buffers. We show that the resulting graph is

acyclic. Therefore, intra-switch deadlock is impossible.

From the algorithm listing and the enumeration of buffer states in Appendix 1, we can construct the

dependency graph shown in Figure 21. The graph shows all possible dependencies for the buffers

associated with two input RVCs: a mapped RVC i at input port X , and an unmapped RVC j at input port

Y . Input ports X and Y are at the same switch. RVC i is mapped to RVC k of output port Z .

RVCs i and j are arbitrary representatives of their classes: mapped and unmapped RVCs,

respectively. The set of all possible dependencies associated with these representative RVCs completely

characterizes all the dependencies associated with all mapped RVCs and all unmapped RVCs. That is

because it turns out that mapped RVCs have local dependencies only to packets associated with

unmapped RVCs, and unmapped RVCs have local dependencies only to packets associated with mapped

RVCs.

Each vertex of the dependency graph is labeled with a 3-tuple (α, β, γ). Component α specifies a

buffer slot. Component β specifies the type of packet occupying the buffer slot. The packet may be a

CDP, a CEP, a mapped data packet (denoted ‘‘M’’), or an unmapped data packet (denoted ‘‘U’’).

Component γ =TRUE if the input RVC used by the packet is mapped to an output RVC. Otherwise,

γ =FALSE .
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A directed arc from vertex (α1, β1, γ1) to (α2, β2, γ2) represents a potential dependency. The packet in

buffer slot α1 of type β1 whose RVC mapping status is γ1 may be blocked by the packet in buffer slot α2 of

type β2 whose RVC mapping status is γ2.
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Figure 21: Buffer dependency graph for mapped RVC i and unmapped RVC k.

Figure 21 shows buffers Hi and T* at input port X (vertices 1–3 and 7–10), and buffer H j at input

port Y (vertices 4–6). Output RVC k is on output port Z , and buffers Hk and T*
Z are at the neighbor

switch.

The symbol Ui represents an unmapped data packet on RVC i that resides in primary buffer NX .

Similarly, U j represents an unmapped data packet on RVC j at input port Y . Each unmapped packet

waits for the transmission of a CEP in order to be converted into a mapped data packet. The CEP resides

in the H buffer for the unmapped packet’s RVC. Note that Ui is unmapped even though RVC i is

mapped to RVC k ; according to lines 10–12 of the algorithm listing in Figure 4, Ui will be converted to a

mapped data packet simultaneously with the next CEP transmission on output RVC k from buffer Hi .

To construct the graph, consider the packet at the head of Hi . It may be either a CEP or a CDP.

Recall that Hi is the head of the logical queue of control packets for RVC i . Vertices 1–3 show the

logical queue for RVC i if a CEP is at the head of Hi . If a CDP is at the head, then vertices 7–10 apply.

In both cases, each packet not at the head of Hi depends only on the packet immediately ahead in the

logical queue. Thus each of vertices 2, 3, and 8–10 has only one outgoing arc directed to the packet

immediately ahead in the logical queue.

For the unmapped RVC j , the only packet that can be at the head of H j is a CEP to establish a new
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mapping. The logical queue for RVC j is shown in vertices 4–6. Again, each packet not at the head of

the queue depends on the packet immediately ahead.

To complete construction of the graph, we examine the dependencies for each packet at the head of

a logical queue (vertices 1, 4, and 7). First we examine vertices 1 and 7. Since RVC i is mapped to RVC

k , the packet at the head of Hi blocks waiting for all mapped data packets on RVC i to be flushed out of

the switch. That dependency corresponds to the arrows from vertices 1 and 7 to the symbol M . By

theorem 1, mapped packets eventually make progress. Hence the arrows to symbol M cannot be part of a

deadlock cycle. Once all the mapped data packets have left, the packet at the head of Hi waits for access

to output port Z for transmission. At the next switch, the packet will be either discarded or else deposited

in Hk or T*
Z. We represent that in the graph by the arrows from vertices 1 and 7 to the symbols Hk and T*

Z.

Since those buffers are at a different switch, that dependency cannot cause intra-switch deadlock.

Finally, consider vertex 4. The CEP at the head of H j is blocked from transmission until a mapping

can be established from RVC j to an output RVC. Establishing a mapping may first require that an

existing mapping be disestablished (algorithm lines 26–30). In that case, the CEP blocks waiting for a

CDP on a mapped RVC to transmit and free up an output RVC. This explains the potential dependencies

from vertex 4 to vertices 2 and 7.

By inspection, the buffer dependency graph of Figure 21 is acyclic. Therefore, there can be no

intra-switch deadlocks involving control packets. `

Appendix 3: Switch State Space

Table 2 describes the state space of a switch. In the Table, each row identifies a set of states. The

notation for states is identical to the description in Section 5.2 except that the symbol ‘‘d’’ is ‘‘don’t

care’’.

Each set of states is labelled as either ‘‘reachable’’ or ‘‘unreachable’’. Reachable states may arise

through error-free operation of the switch. In contrast, the switch never enters unreachable states.

The ‘‘comment’’ column explains the unreachable states. ‘‘Non-FIFO’’ means the state

corresponds to a non-FIFO configuration of the buffers (e.g. the head slot of Hi is empty but the tail slot

is full). ‘‘T/U inconsistent’’ means the unmapped packet and the contents of buffer T* are not using the

same RVC (Section 4.3). ‘‘Consecutive CEPs’’ and ‘‘consecutive CDPs’’ refers to states that violate the

alternating order of CEPs and CDPs on a single RVC. ‘‘U implies CEP’’ refers to states in which an

unmapped data packet is present but there is no CEP to establish a mapping for it. That condition is

impossible because of lines 10–15 and 32–35 of Figure 4. Note that there is a small time window in
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Hi T*N Reach head tail head tail UX mapi commentiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 F − CEP d d d d non-FIFOiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
2 F − CDP d d d d non-FIFOiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
3 F d d − CEP ∨ CDP d d non-FIFOiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
4 F d d − CEP′ ∨ CDP′ d d non-FIFOiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
5 F d − CEP ∨ CDP d d d non-FIFOiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
6 F d d CEP ∨ CDP d i′ ∨ − d T/U inconsistentiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
7 F d d d CEP ∨ CDP i′ ∨ − d T/U inconsistentiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
8 F d d CEP′ ∨ CDP′ d i ∨ − d T/U inconsistentiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
9 F d d d CEP′ ∨ CDP′ i ∨ − d T/U inconsistentiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

10 F CEP CEP d d d d consecutive CEPsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
11 F d d CEP CEP d d consecutive CEPsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
12 F d CEP CEP d d d consecutive CEPsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
13 F d CDP CDP d d d consecutive CDPsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
14 F d d CDP CDP d d consecutive CDPsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
15 F CDP CDP d d d d consecutive CDPsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
16 F d d CDP′ CDP′ d d consecutive CDPsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
17 T − − − − − ∨ i′ diiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
18 F − ∨ CDP − ∨ CDP d d i d U implies CEPiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
19 T − − CEP′ − i′ diiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
20 T − − CDP′ − i′ diiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
21 T − − CDP′ CEP′ i′ diiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
22 T CEP − − − − ∨ i diiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
23 T CEP − − − i′ diiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
24 T CEP − CEP′ − i′ diiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
25 T CEP − CDP′ − i′ diiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
26 T CEP − CDP′ CEP′ i′ diiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
27 F CEP CDP d d − ∨ i′ d CDP cancels CEPiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
28 T CEP CDP − ∨ CEP − i diiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
29 F CEP CDP CEP CDP d d CDP cancels CEPiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
30 F CDP d d d d F CDP must be mappediiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
31 T CDP − − − − ∨ i′ Tiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
32 T CDP − CEP′ ∨ CDP′ − i′ Tiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
33 T CDP − CDP′ CEP′ i′ Tiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
34 T CDP CEP − − d Tiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
35 T CDP CEP CEP′ ∨ CDP′ − i′ Tiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
36 T CDP CEP CDP′ CEP′ i′ Tiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
37 T CDP CEP CDP − ∨ CEP i Tiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
38 F d d CEP′ CEP′ ∨ CDP′ i′ d symmetry w/RVC iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 2: Switch State Space

which an unmapped packet can be present before the CEP for it has been created, but this is a transient

state that quickly resolves. We ignore such transient states in our analysis.


