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Abstract

We propose the musical benches problem to model a wait-free coordination difficulty that is orthogonal
to previously studied ones such as agreement or symmetry breaking (leader election or renaming). A bench
is the usual binary consensus problem for 2 processes. Assume n + 1 processes want to sit in n benches as
follows. Each one starts with a preference, consisting of a bench and one place (left or right) in the bench
where it wants to sit. Each process should produce as output the place of the bench where it decides to sit. It
is required that no two processes sit in different places of the same bench. Upon the observance of a conflict
in one of the benches an undecided process can “abandon” its initial bench and place and try to sit in another
bench at another place.

The musical benches problem is so called because processes jump from bench to bench trying to find
one in which they may be alone or not in conflict with one another. If at most one process starts in each
bench, the problem is trivially solvable– each process stays in its place. We show that if there is just one
bench where two processes rather than one, start, the problem is wait-free unsolvable in read/write shared
memory. This impossibility establishes a new connection between distributed computing and topology, via
the Borsuk-Ulam theorem.

The musical benches problem seems like just a collection of consensus problems, where by the pigeon
hole principle at least one of them will have to be solved by two processes. Consequently, one is tempted
to try to find a bivalency impossibility proof of the FLP style. Our second result shows that there is no
such proof: We present an algoritm to solve the musical benches problem using set agreement, a primitive
stronger than read/write registers, but weaker than consensus. Thus, an FLP-style impossibility for musical
benches will imply an FLP-style impossibility of set-consensus.

The musical benches problem can be generalized by considering benches other than consensus, such as
set agreement or renaming, leading to a very interesting class of new problems.



1. Introduction

We consider an n processes asynchronous, single-write/multi-reader shared memory system, where any
number of processes may fail by crashing. A protocol in this model is wait-free: it guarantees that any pro-
cess will terminate within a fixed number of steps, independent of the level of contention and the execution
speeds of the other processes. Understanding the possibilities and limitations of this model is central to
distributed computing in general for several reasons. Impossibility results in this model translate to impossi-
bility results for a model where at most t processes can crash [9], sometimes with more powerful primitives
[21], or translate into lower bound on the round complexity of synchronous systems [14, 17]. Indeed, some
papers [24, 25] have developed unified frameworks to study synchrony, asynchrony and even partial syn-
chrony, where our wait-free model plays a central role. Furthermore, this model has been shown to have the
same computational power as other models, such as message passing when t < n/2 [2].

The fundamental problem of wait-free computation is to characterize the circumstances under which syn-
chronization problems have wait-free solutions, and to derive efficient solutions when they exist. This is a
difficult problem because one must reason about complex algorithms that operate in the presence of uncer-
tainty and partial information created by non-determinism, asynchrony, and failures. Powerful new tools
have been developed based on algebraic topology for analyzing the semantics and complexity of distributed
algorithms in a variety of models and architectures; see e.g. [18] for an historical survey and references
herein. We use such tools in this paper both to prove impossibility results and to derive algorithms.

Distributed computing theory development has been fostered by the identification of particular problems,
that capture the essence of wait-free coordination difficulties. First, consensus [13] and set agreement [11]
serve to model the difficulty of processes to converge on a small number of decisions. Other similar problems
have been identified, like approximate agreement [12], or loop agreement [23]. The problem of renaming
[3] models the opposite difficulty: breaking symmetry.

This paper proposes a new schema to model a coordination difficulty that is orthogonal to the ones de-
scribed above. It is inspired by the musical chairs game, where players march to music around a row of
chairs numbering one less than the players and scramble for places when the music stops. In our scenario
we have benches with k − 1 places for players to sit in. If at most k − 1 players want to sit in a bench,
they can easily do it. But if k or more want to sit in a bench, some must leave and look for another bench.
Assume k−1 players want to sit in each bench, except for one bench in which k players want to sit. Is there
a wait-free algorithm that allows all the players to find a bench where to sit? Indeed, we show in this paper
that this problem is related to a topological theorem which is different in nature from previously used results
such as Sperner’s lemma.

The general idea is to consider a problem that is not solvable once the number of participants exceed
some threshold, k − 1. We then replicate the problem as many times as we wish, calling each replica a
bench, and wake up k − 1 processes in every bench but one, where we wake up k processes. Now we allow
processes to jump from bench to bench each trying to acquire a valid seat in one of the benches, such that all
those on the same bench comply with the bench seating requirement. For example, a (2, 3)-set agreement
bench is wait-free solvable with threshold k = 3, when there are at most 2 participants; we would wake
up 2 processes in every bench but one, where we wake up 3 processes. The generalized musical benches
conjecture is that the schema always leads to an impossible problem.

In this paper we do the first step in this direction. We take a bench of two places, with the requirement
that all that choose the same bench have to choose the same place. This corresponds to binary consensus.
We take n benches and we wake up one process per bench, aside from a single bench (apriori determined)
in which we wake up two processes, in distinct seats. For lower bounds it is sufficient to consider only
two benches (3 processes); we call this consensus instantiation of the general scheme the musical benches
problem.
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Our contributions are the following.

• The introduction of a schema that captures a new kind of distributed coordination difficulty, and the
study of the binary consensus instantiation, the musical benches problem.

• An impossibility proof showing that the musical benches problem is wait-free unsolvable in read/write
shared memory.

• This impossibility establishes a new connection between distributed computing and topology, via the
Borsuk-Ulam theorem.

• An algorithm to solve the musical benches problem using set agreement, a primitive stronger than
read/write registers, but weaker than consensus.

The 2-places musical benches problem seems like just a collection of consensus problems, and thus one
is tempted to try to find a bivalency impossibility proof of the FLP style. More precisely, by the pigeon hole
principle at least one of the benches would have to be solved by two processes, since there are more processes
than benches. Thus, two processes would have to solve consensus on that particular bench, contradicting
FLP. The algorithm in the last item is significant because it shows that no bivalency argument of this style
exists. Namely, it implies that if the musical benches problem is impossible then (3, 2)-set agreement is
impossible. Thus, the existance of such a bivalency proof would imply the celebrated (3, 2)-set agreement
impossibility [6, 26, 30]. But this impossibility requires Sperner’s lemma, a higher dimensional statement
for which no bivalency arguments are known.

The connection to a result as important as the Borsuk-Ulam theorem establishes one more significant
bridge between distributed computing and topology. The theorem is “one of the most useful tools offered
by elementary algebraic topology to the outside world” [28]. Recall that it implies Sperner’s lemma (which
is equivalent to Brouwer fixed point theorem), but not the opposite. There are several equivalent versions
of the Borsuk-Ulam theorem, the easisest to remember is illustrated in Figure 1 (from [28]), for the n = 2
dimensional case. It states that if you take a rubber ball, deflate and crumble it, and lay it flat, then there
are two points on the surface of the ball that were diametrically opposite and now are lying on top of one
another. More formally, we see in part (b) of the figure, that1 for every continuous map f : Sn → IRn, there

Figure 1. Borsuk-Ulam Theorem in 2 dimensions

exist a point x ∈ Sn such that f(x) = f(−x).
The rest of this paper is organized as follows. In Section 2 we describe formally the musical benches

problem. In Section 3 we show that it is impossible to wait-free solve in a read/write shared memory
system. In Section 4 we present the algorithm that solves it using a (2, 3)-set agreement object. Section 5
contains the conclusions.

1Where Sn is the n-dimensional unit sphere, and IRn the Euclidean space of dimension n.
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2 The Musical Benches Problem

We consider the usual asynchronous shared memory model, composed of single-writer multi-reader reg-
isters. In Section 4 we will extend the shared memory with (2, 3)-set agreement objects. We now describe
the binary-consensus musical benches problem, first intuitively and then more formally.

We can think of 2-process binary consensus as a bench with two places, designated 1 and −1. Processes
p1 and p−1, wake up at places 1 and −1, respectively. In a solo execution they must return the places they
wake up in. Otherwise, in an execution where both participate, they return the same places. This consensus
task2 is impossible to solve wait-free in the read-write shared-memory model [13, 20], and trivially solvable
if at most one process wakes up. We call an instance of this problem a bench. What will happen if we add a
second bench, with places 2,−2, and wake up either process p2 at slot 2, or p−2 at slot −2, but not both? In
executions with no conflict, i.e., either p−1 or p1 wake up but not both, the participating processes return the
places they wake up in. Only if both p−1 and p1 wake up, then it is free-for-all and any participating process
can go to any seat. Is the binary-consensus 2 benches problem read-write wait-free solvable? One feels a
strong intuition (unlike in the set agreement impossibility) as to why it should not be solvable: if a process
from bench 1 jumps to bench 2, it just creates the same problem in bench 2, since we have the freedom of
who to wake up in bench 2 as to try to defeat consensus there. Indeed, the problem has no solution, but
surprisingly, we later essentially prove that this intuition is not exactly right.

The musical benches problem is formalized in terms of the usual notion of task, a one-shot decision
problem specified in terms of an input/output relation ∆. The processes start with private input values, and
must eventually decide on output values, by writing to a write-once variable. The relation ∆ specifies for
each set of (ids, input values) pairs, what are the allowed output values for each id. In our case, each id is
associated to a single input, so we may describe ∆ as follows. The i-th bench is defined by the set of input
vectors {(p−i, pi), (pi), (p−i)}, and the relation:

∆(p−i, pi) = {(−i,−i), (i, i)},
∆(p−i) = {(−i)},
∆(pi) = {(i)}.

This is illustrated in Figure 2(a). It is sometimes convenient to consider only the output values, and disregard
the processes ids, as depicted in Figure 2(b).

Figure 2. The first consensus bench

Consider an algorithm for processes p−i, pi where the first operation by a process is to write its id to
shared memory, and that includes an operation to a write-once decision variable. A process participates
in an execution if it executes its first operation. The input vector of an execution contains the ids of the

2In the more usual description of consensus there is a set of possible inputs, and a process can wake up with any of these
inputs. In our description a process has only one possible input, and different processes have different inputs. Both descriptions are
equivalent, but the one we use is more comfortable for our purposes.
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participating processes. A process decides in an execution if it writes to the decision variable, and the value
decided is the value written to the variable. The output vector of an execution contains the values decided
by the processes, or ⊥ if the process did not decide. The algorithm solves the i-th bench problem if in every
execution with input vector I , the output vector O can be extended (by replacing⊥ entries with other values)
to a vector in ∆(I), and a process that does not fail decides.

The musical benches problem of size b is also a task specified in terms of a relation ∆. The input vectors
are over {p−i, pi|1 ≤ i ≤ b}, and the output vectors over {−i, i,⊥|1 ≤ i ≤ b}. In this paper we study
the case of b = 2, as illustrated in Figure 3, disregarding ids and omitting the dotted arrows of ∆ for single
vertices, to avoid cluttering the figure. Formally, ∆ is:

Figure 3. Musical benches task

∆(p−1, p1, p2) = {(x1, x2, x3) |∀i, j, xi ∈ {1,−1, 2,−2}, xi + xj 6= 0}
∆(p1, p2) = {(1, 2)}

∆(p−1, p1) = {(−1,−1), (1, 1), (−2,−2), (2, 2)}
∆(p−1) = {(−1)}
∆(p1) = {(1)}

and so on for ∆(p−1, p1, p−2), ∆(p1, p−2), ∆(p−1, p−2), ∆(p−1, p2), ∆(p−2), and ∆(p2). Notice it in-
cludes the first bench, and a restriction of the 2nd bench that disallows p−2 and p2 participating together.

3 Impossibility of the Musical Benches Problem

Here we prove that the musical benches problem is wait-free unsolvable. For clarity we just prove the
2 benches case. Extension to any b is simple. For the proof we use the Borsuk-Ulam theorem, or rather,
its discrete version, known as Tucker’s lemma. We will need some basic topology notions, presented in the
Appendix.

Tucker’s lemma is described in [28] as follows. Let T be some (finite) triangulation of the n-dimensional
ball Bn. We call T antipodally symmetric on the boundary if the set of simplices of T contained in Sn−1 =
∂Bn is a triangulation of Sn−1 and it is antipodally symmetric; that is, if σ ⊂ Sn−1 is a simplex of T , then
−σ is also a simplex of T .

Theorem 3.1 (Tucker’s lemma) Let T be a triangulation of Bn that is antipodally symmetric on the bound-
ary. Let

λ : V (T ) −→ {1,−1, 2,−2, . . . , n,−n}

be a labeling of the vertices of T that satisfies λ(−v) = −λ(v) for every vertex v ∈ ∂Bn (that is, λ is
antipodal on the boundary). Then there exists a 1-simplex (an edge) in T that is complementary; i.e., its
two vertices are labeled by opposite numbers.
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Figure 4. Illustration of 2-dimensional Tucker’s lemma

We will only need the 2-dimensional version, illustrated in Figure 4.
A task and an algorithm solving it can be represented geometrically using topology terminology, e.g.

[22, 26]. A task specification for n + 1 processes is given by an input complex I, an output complex O,
and a relation ∆ carrying each input simplex of I to a set of n-simplexes of O. This definition has the
following operational interpretation: ∆(Sm) is the set of legal final states in executions where only certain
m + 1 processes corresponding to the vertices of Sm out of n + 1 processes participate (the rest fail without
taking any steps). A protocol solves a task if when the processes run their programs, they start with mutually
compatible input values, represented by a simplex S, communicate with one another, and eventually halt
with some set of mutually compatible output values, representing a simplex in ∆(S). The musical benches
problem of the previous section can be represented in this form by using simplices instead of vectors.

Any protocol that solves a task has an associated protocol complex P , in which each vertex is labeled with
a process id and that process’s final state, called its view. Each simplex thus corresponds to an equivalence
class of executions that “look the same” to the processes at its vertexes. For 0 ≤ m ≤ n, we understand
P(Sm) for a given Sm in the input complex to be the complex generated by all executions starting in Sm,
in which only the processes in ids(Sm) take part (the rest fail without taking any steps). If a simplex R is in
P(Sm), we say that R is reachable from Sm.

Let P be the protocol complex for a protocol. If S is an input simplex, let P(S) ⊂ P denote the
complex of final states reachable from the initial state S. Expressed in the topology notation, we can see
that a protocol solves a decision task 〈In,On,∆〉 if and only if there exists a color-preserving (i.e., process
id-preserving) simplicial map δ : P → On, called a decision map, such that for every input simplex S,
δ(P(S)) ⊂ ∆(S).

Our basic strategy is the following. We assume that we have a protocol with complex P that wait-free
solves a task 〈I,O,∆〉. As in [8] without loss of generality we can assume that P is the result of some
large enough number of iterated immediate snapshots. Let S` be an input simplex, S` the complex of its
faces, and P a protocol. For a wait-free model of computation, prior research (e.g. [5, 6, 30]) has shown
that P(S`) can be regarded as a subdivision of S`.

Assume there is an algorithm solving the musical benches problem with protocol complex P . Let T be
the input complex to the problem (illustrated in Figure 3). The next lemma shows that P(T ) is a subdivision
of T , as illustrated in the example of Figure 5.

Lemma 3.2 If T is the input complex to the musical benches problem then P(T ) is a triangulation of B2

that is antipodally symmetric on the boundary. Moreover, if λ is the labeling of the vertices of P(T ) induced
by the processes decisions, then λ is antipodal on the boundary.

Sketch of Proof First notice that |T | ∼= B2. Then, as mentioned above previous results imply that P(T )
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Figure 5. A 1-round protocol subdividing the musical benches input complex

can be regarded as a subdivision of T , and hence as a triangulation of B2. The boundary corresponds to
executions with no conflict in bench 1, thus the problem specification implies that on a face (pi, pj) in the
boundary processes return i and j, respectively. Since we take the same number of iterations on each face
we can easily see that the triangulation is antipodally symmetric on the boundary of P(T ). 2

Theorem 3.3 There is no wait-free solution to the musical benches problem.

Proof: It follows from Lemma 3.2 that we can apply Theorem 3.1 and conclude that there is an edge in
P(T ) that is complementary. Thus, its two vertices are labeled by opposite numbers, which means there is an
execution where two processes decide opposite numbers, violating the musical benches problem consensus
requirement.

4 Solving the musical benches problem with more powerful primitives

We have seen that the binary-consensus musical benches problem is wait-free unsolvable in read/write
shared memory. We show here that this impossibility implies the wait-free impossibility of solving (2, 3)-set
agreement in read/write shared memory [6, 26, 30]. We prove this by presenting an algorithm that solves the
musical benches problem using a shared memory extended with (2, 3)-set agreement objects. Our algorithm
is described for the case of two benches (3 processes) since our main motivation is proving that no bivalency
argument in the FLP style [13] exists for the musical benches. We know that the impossibility of (2, 3)-set
agreement cannot be proven without reference to the 2-connectivity of P for 3 processes [6, 26, 30].

A (2, 3)-set agreement object can be accessed by 3 processes, and the object returns to a process one of
the ids of a process that invoked it, such that at most 2 different ids are returned by the object. We assume
w.l.o.g. that if a process pi gets back from the object pj , then pj gets back itself, pj [6].

The musical benches protocol appears in Figure 7. It accesses a single (2, 3)-set agreement object. The
main idea is to create a “hole” inside the immediate snapshots subdivision (of Figure 5), and we do this by
doing participating set protocol [7] and sending all those stuck at level 3, to a (2, 3)-set agreement object. A
winner process that gets back its own id from the object stays at level 3. A loser, that gets back a different
id, continues down to level 2 and proceeds with the participating set protocol. Since if all 3 are stuck at level
3, then at least one will lose, and we create the hole by preventing the formation of the all-see-all simplex in
the center of the subdivision.

The code invokes a decision function f that takes as input a final view of a process and produces a
decision value; it is specified in the Appendix. The corresponding protocol complex appears in Figure 6,
together with the decision function f on each one of the final views. A process pi computes its view, the
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pair (Si, viewi), by executing the protocol code, and it produces its decision value by applying f to its view
(in the last line of the code).

The protocol works as follows. Local variables are subindexed by the process ids, and shared variables
are not subindexed. The first part of the protocol is the Participating Set protocol of [7] for the case of 3
levels, except that it accesses a set agreement object. A process pi computes in this part a set of ids Si, such
that

1. For all i, i ∈ Si.

2. For all i, j, either Si ⊆ Sj or Sj ⊆ Si.

3. For all i, j, if i ∈ Sj then Si ⊆ Sj .

4. There are at most two indices i, j such that |Si| = |Sj | = 3.

The first three are the requirements of the participating set problem in [7]. Sets satisfying these properties
correspond to the subdivided simplex in either side of Figure 5 (i.e., spanned by the corners p−1, p1, p2

or p−1, p1, p−2). The 4-th property is achieved through the set agreement object, invoked by pi with the
operation setAg(i). It has the effect of removing the simplex in the center of the subdivision (impossible
that the three processes produce sets of size 3), and leaving just its boundary (at most two processes may
produce sets of size 3). In the second part of the protocol only processes with sets of size 3 participate, and
they compute the viewi variables, which have the effect of subdividing this boundary. The following simple
lemma implies that the complex of Figure 6 corresponds to the computed views (Si, viewi).

Lemma 4.1 Let the views (Si, viewi) be the vertices of a complex C. A simplex of C contains a set of vertices
if they can be ordered such that both their Si’s and their viewi’s are ordered by containment. This complex
C is well defined.

The correctness of the MB protocol follows from this lemma, by proving that the decision function f
does not produce a complementary edge, something that is easily verified in Figure 6 (and noting that on the
boundary of C a process always decides its own id).

Theorem 4.2 The MB protocol solves the musical benches problem.

5 Conclusions

We have introduced a scheme that models a new coordination difficulty, the generalized musical benches
problem, that can be instantiated with any problem, which we call a bench, that is solvable for k − 1
participants, and is not solvable once the number of participants is at least k, for some threshold k. We have
conjectured that the generalized musical benches problem is unsolvable for any such instantiation.

In this paper we studied the musical benches problem, which is the case obtained by using binary, (−1, 1),
consensus benches. Recall that the consensus problem is impossible to wait-free solve in the read-write
shared-memory model [13, 20]. It is solvable if we add a new possible output place, 2, which is allowed
to be returned in a non-solo execution (e.g. [27, 29]). The “Ambiguity of Choosing” of [10] says that in
the solvable version there exists an execution in which one process is “sitting” in one of two places, and
like Heisenberg’s uncertainty principle we cannot predict where it will appear, and hence the impossibility
of solving the problem without place 2. We have seen the problem is unsolvable if we also add place −2
and wake up either process p2 at slot 2, or p−2 at slot −2. The intuition behind this impossibility is more
evident to us, than the impossibility of solving wait-free 3-processes 2-set agreement [6, 26, 30]. Processes
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Figure 6. The Musical Benches Protocol complex using (2, 3)-Set Agreement

p1 and p−1 can resolve their differences only by at least one of them moving to the second bench. But then
if (w.lo.g.) one of them moves to place 2, we wake up p−2. Now we are almost at the mirror situation. To
resolve the conflict at the second bench we would like to choose the place of a process in the first bench
which might have stayed there, but this tantamount to 2-process consensus! It is then surprising that the
two bench impossibility problem is based on Borsuk-Ulam, a theorem more difficult to prove than Sperner’s
lemma, and not on a traditional bivalency argument.

In the “complement” to consensus benches, which we call 2-renaming benches (based on the renaming
problem [3]), we have again two benches with places 1,−1, 2,−2. Processes p1 and p−1 both may wake
up at bench 1, while p2 and p−2 wake up at the second bench, in place 2 or −2, respectively. We wake up
either p2 or p−2, but not both. In executions in which not both p1 and p−1 participate, processes return the
place they woke up at. Else, all processes return distinct chairs. Again the intuition is evident. Processes p1

and p−1 cannot resolve their differences in the first bench [5, 22, 26]. W.l.o.g at least one of them goes to
the second bench, say place 2. We then wake up p2, and have a mirror situation. We have an impossibility
proof for this problem, similar to the one presented in this paper. But it is intriguing to find a single “meta-
proof” that applies to both the renaming and the consensus instantiations of the generalized musical benches
problem.

We showed that the impossibility of the musical benches problem implies the impossibility of 3-processes
2-set agreement, while the impossibility of renaming implies the impossibility of 4-musical-benches. This
puts the two problems somewhere between set agreement and renaming. Which is another step in under-
standing the R/W implementation relation between the set of R/W unsolvable tasks [15].
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Initially:
level[j] := 4 and id[j] := ⊥ for j ∈ {1, 2, 3}; OKi := false; viewi = ∅;
begin MB protocol(pi)

repeat
level[i] := level[i]− 1;
for j = 1 to 3 do leveli[j] := level[j] end for
Si := {j : leveli[j] ≤ level[i], j ∈ {1, 2, 3}};
if |Si| = 3 then (* level[i] = 3 *)

ansi := setAg(i);
if ansi = i then OKi := true

end if
else (* level[i] < 3 or |Si| < 3 *)

OKi := true
end if

until |Si| ≥ level[i] and OKi;
(* end of participating set section *)
if |Si| = 3 then

id[i] := i;
for j = 1 to 3 do idi[j] := id[j] end for
viewi := {j : idi[j] 6= ⊥, j ∈ {1, 2, 3}};

end if
decide f(Si, viewi)
end protocol

Figure 7. Musical Benches Protocol using (2, 3)-Set Agreement (for process pi)
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A Appendix: Topology Notions

The unit ball {x ∈ IRd : ‖ x ‖≤ 1} is denoted by Bd, while Sd−1 = {x ∈ IRd : ‖ x ‖= 1} is the
(d− 1)-dimensional unit sphere.

A simplex is a set of vertices, a complex is a set of simplexes closed under containment. The dimension
d of a simplex σ is one less than its number of vertices, and is said to be a d-simplex, sometimes denoted
σd. A subset of a simplex is called a face. It is sometimes convenient to assume a simplex σ is embedded
in Euclidean space. For this its vertices are supposed to be affinely independent, and σ is the convex hull
of its vertices. The union of all embedded simplices in a comlex C, called the polyhedron of C, is denoted
|C|, and can be regarded as the (point-set) union of the simplexes in C. The boundary of an n-simplex is the
subcomplex of σn obtained by deleting the single n-dimensional simplex and retaining all its faces.

A triangulation of a topological space X is a complex C such that X ∼= |X|, namely with homeomorphic
spaces. The simplest triangulation of the sphere Sn−1 is the boundary of an n-simplex.

A vertex map carries vertices of one complex to vertices of another. A simplicial map is a vertex map
that preserves simplexes, that is, it sends a set of vertices that form a simplex into a (possibly smaller) set of
vertices that also form a simplex. In distributed computing we often consider properly colored complexes,
where each vertex has associed a color, namely a process id, and no two vertices of the same simplex have the
same id. For example, the complex in Figure 5 is colored. A simplicial map on properly colored complexes
is color preserving if it associates vertexes of the same color. Notice that a color-preserving map preserves
dimension.

A complex σ(K) is a subdivision of a complex K if:

• each simplex in σ(K) is contained in a simplex in K, and

• each simplex of K is the union of finitely many simplexes in σ(K).

Note that |K| = |σ(K)|. If ~s is a point in |K|, the carrier of ~s, denoted carrier(~s,K), is the unique smallest
T ∈ K such that ~s ∈ T . As an example, the complex in Figure 5 is a subdivision of the complex in the left
side of Figure 3.

B Appendix: Decision Function of the Protocol

The MB protocol of Figure 7 uses a decision function f that is implicitly defined in Figure 6, by putting
a number besides each vertex. Here we describe it explicitly by writing what is the view of the vertex, and
what the value of f on that view (Si, viewi).

1. f(Si, viewi) = −2 if |Si| = 2 and i = −1.

2. f(Si, viewi) = −1 if |Si| = 2 and i = 1. Otherwise:

3. f(Si, viewi) = i if |Si| ≤ 2. Otherwise:

4. f(Si, viewi) = −2 if −2 ∈ Si. Otherwise:
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5. f(Si, viewi) = 1 if viewi = {−1}.

6. f(Si, viewi) = 2 if viewi = {−1, 1}.

7. f(Si, viewi) = −1 if viewi = {1}.

8. f(Si, viewi) = −1 if viewi = {1, 2} and i = 1.

9. f(Si, viewi) = −2 if viewi = {1, 2} and i = 2.

10. f(Si, viewi) = −2 if viewi = {2}.

11. f(Si, viewi) = −2 if viewi = {−1, 2} and i = −1.

12. f(Si, viewi) = 1 if viewi = {−1, 2} and i = 2.
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