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Abstract—We address the classic wire-length estimation prob- modeled probabilistically and the overall design is also opti-
lem and propose a new statistical wire-length estimation ap- mized probabilistically. For the success of such an approach,

proach that captures the probability distribution function of net we need accurate models which probabilistically estimate the

lengths after placement and before routing. These types of models __ .. - L .
are highly instrumental in formalizing a complete and consistent critical design objectives. In order to address this need, we

probabilistic approach to design automation and design closure have developed a novel statistical modeling methodology for

where along with optimizing the pertinent cost function, the capturing wire-length in the post placement pre-routing phase.

associated prediction error is also considered. The model uses data that can be extracted once the place-
The wire-length prediction model was developed using & com- ment of the designs is completed. In order to build the wire-

bination of parametric and non-parametric statistical techniques. lenath orediction model we used a combination of parametric
The model predicts not only the length of the net using input gth p P

parameters extracted from the floorplan of a design, but also and non-parametric techniques [8], [9]. Since the approach to
probability distributions that a net with given characteristics developing the wire-length prediction model is generic and
after placement will have a particular length. The model is can be applied to other early estimation tasks in synthesis,
validated using the learn-and-test and resubstitution techniques. ;. provide a detailed description of how the models were

The model can be used for a variety of purposes, including the . . .
generation of a large number of statistically sound and therefore derived. Although statistical techniques have demonstrated

realistic instances of designs. We applied the net models to the their potential in many fields, they have rarely been used in
probabilistic buffer insertion problem and obtained substantial synthesis and CAD tools. This is surprising considering their
improvement in net delay after routing (~20%) when compared advantages. For example, they produce models that are both
to a traditional bounding box-based buffer insertion strategy. mathematically sound and that extract the maximal possible
amount of information from the collected data. Note that non-
parametric statistical techniques are applicable on any set of
data with no prior assumptions about their distribution. Fur-
Wire-length has become one of the most critical metrics thermore, statistical techniques provide a means for evaluation
physical design primarily due to the rise of the deep submicramd validation of the obtained models as well as techniques
era. Therefore, there is a strong need for early estimatiand tools for establishing intervals of confidence on the overall
and optimization of this design parameter. A large amouniodel and any of its subparts. The standard and practical refer-
of research has been directed towards the developmententes for parametric and non-parametric statistical techniques
accurate models for the estimation of this important desighat explain in detail many of the concepts, techniques, and
objective [1], [2], [3], [4], [5]. Additionally, accurate timing algorithms used in this paper include [10], [11], [12]. Although
and routability estimation [6], [7] relies on these models. our overall statistical modeling approach is new and several
Estimating the exact wire-length for each net in the circugiteps are unique, other steps are adopted from the modern
is a very challenging problem. There are a large number stfatistical practice. Finally, it is important to emphasize that
different parameters and constraints, such as the bounding biox developed statistical model is validated both statistically
of the net, number of routing grids and the grid capacitgnd through a driver application - buffer insertion for clock
and the total number of nets routed in the vicinity of theycle optimization.
pertinent net, that are all potentially relevant, but typically Statistical estimation and prediction methodology and mod-
are very hard to capture into a consistent wire-length models can be used in many ways. For example, one can use the
Hence, estimating an exact value for wire-length is a veprediction information to evaluate the suitability of a particular
difficult problem. Similar difficulty in estimation has also beetiloorplan for obtaining final routing where nets satisfy a par-
widely recognized for other critical metrics of deep submicroticular user specified condition. For instance, the goal can be
designs such as power, delay, noise immunity, and crosstdtkdetermine which among a number of competing floorplans
Therefore, synthesis optimization is typically performed irs most likely to result in a final design with a few long nets or
the presence of high degrees of estimation inaccuracy. Teeminimize the overall sum of wirelengths. The models are
optimization decisions made in such a scenario are typicallyso a natural component of the overall probabilistic design
sub-optimal and often result in failure of design closure. lautomation methodology. One such probabilistic algorithm is
order to solve this problem, a new design automation paradig@8] which performs buffer insertion assuming wire-lengths
is gaining steam in which unpredictable design objectives amich are estimated as distributions. We used our models in

I. INTRODUCTION



the probabilistic buffer insertion approach of [13] and obtaineatlvantageous to consider manufactuability using approaches
massive improvements in net delayZ0%) after routing when that statistically produce designs within specified timing and
compared with a traditional bounding box-based traditionpbwer constraints often enough. In the light of such un-
bounding box strategies [14], [15]. predictabilities, a traditional deterministic approach towards

It is both interesting and important to compare this work tdesign automation often becomes incapable and obsolete.
the work of Davoodi et al [16]. In the previous work, theA deterministic approach assigns a fixed value to the cost
authors build an empirical model for estimating the produnction (like area, delay, power, wire-length) and does not
ability distribution of wirelength for all nets of a design.consider the error associated with the estimation of this cost
The model is built using intuition and insight and uses thi@inction. Hence, very little can be said about the optimality
half perimeter bounding box (HPBBOX) measurements ad the final design especially if the estimation was erroneous.
the sole prediction property. There are five major differencésis issue calls for the development of a probabilistic approach
between the previous paper and the proposed work. First, thevards design optimization. Such an approach models the
previous work developed the model using intuition, while igost functions as probability distributions and optimizes the
this work we present an approach which is directly based design probabilistically, hence maximizing the likelihood of
parametric and non-parametric statistical techniques. SecondBtisfying design constraints. A number of researchers [17],
only a single prediction parameter, HPBBOX, was used [48], [19], [20], [21] have suggested the importance of such an
the previous work, while the proposed approach uses figpproach due to the fact that estimation inaccuracies (both due
prediction variables taken from a set of fifteen proposed fabrication variability and layout unawareness) are becom-
prediction variables. In this work, we validate the accuracy @ig major bottlenecks in design closure. The main advantage
the proposed statistical models using standard resubstitut@rsuch an approach is faster design closure, better fabrication
techniques, while in the previous paper they used intuitiogield (since fabrication variability would be accounted for
based techniques for evaluation of the model. Furthermoriiring designing) and improved robustness.
the model in [16] does not detect outliers, while one of The main prerequisite for the application of a probabilis-
our primary goals is to accurately predict wires that hawec synthesis technique which considers uncertainties, is the
disproportional long length with respect to their predictioavailability of accurate prediction techniques. Currently, these
variables. Finally, and most importantly we have differenhodels are mainly built manually using deep insights into
objectives. In Davoodi et al [16] the goal is to derive #he design process. However, these non-statistical methods are
probability distribution for net lengths. Therefore, they are naoarely statistically tested for their accuracy. We propose the
concerned with the prediction of the most likely net length farse of modern statistical techniques not only to automatize the
each net, but only for the whole ensemble of the nets. On ttlevelopment of models and the selection of the most accurate
other hand, in this work the primary goal is to exactly provideodels, but also to provide sound mathematical estimates of
the probability that any given net will have a particular lengttiheir accuracy.
Therefore, these works are complementary in their objective
as well as the used derivation and validation approaches. I1l. STATISTICAL MODELING FORWIRE-LENGTH

The rest of this paper is organized in the following way. In PREDICTION

order to provide a global view of the approach and make they, (his section, we present a statistical approach for pre-
paper self-contained we start by summarizing the probabﬂngcting the length of a given net on a specified chip that

synthesis paradigm. Next, we describe our statistical modeliRd -haracterized using a set of features that can be rapidly
procedure and present the developed wire-length estimatigh ined after floorplanning. We begin by identifying the

model. After that the model is evaluated using both the 'earabjectives and constraints of the problem. Next we discuss
and-test and resubstitution validation methodologies. Finally, sot of net and chip features that are used as predictors

we present the application of our model to the task @f oy model. The heart of the Section is the procedure
probabilistic buffer insertion. used for the development of the wire-length prediction model.
Additionally, the three phases of the procedure (robust linear

Il. PROBABILISTIC SYNTHESIS PARADIGMS regression [8], outlier detection, and establishment of prob-

ability distribution) are discussed. We then present a model

Automation of integrated systems is marred with estimatiqg, mapping between different designs. Finally, the evaluation

inaccuracies which occur due to a cqmbmatpn of mMan the proposed models is conducted using learn-and-test and
factors. Unawareness of exact layout information such ASsubstitution techniques [9], [22], [23]

routing, placement, and exact logic structure are among promi-

nent reasons. In addition, as technology features shrink in ]

deep submicron, in particular below 70nm, manufacturablify- Problem Formulation

becomes an important issue that often significantly impactsOur primary objective is to predict the length of each net
performance and even the correctness of the design. Egiven a set of features that can be rapidly extracted from the
nomically achievable margins of tolerance are too low arftborplan of a chip. The goal is not only to predict the length,
different instances of manufactured integrated circuits, event also to quantitatively characterize the probability that the
on the same wafer, can have significantly different speed et will have a particular length after routing. Furthermore,
power consumption. Therefore, during all design phases ittlee operational constraint is to only use features that can be



extracted with low computational effort and can be rapidlgifficulty by analyzing the number of terminals from other
analyzed with statistical techniques. The final major objectivests that compete for the same routing resources - space.
is to statistically validate all obtained results and to establisfy Total number of overlapping neighbors ©V;). This
intervals of confidence on all deduced models and thgiroperty can be calculated using the procedure

parameters. Locate-Rectangle-Neighbdi(.S) (defined in the beginning of
o _ the section) and is trying to estimate the number of nets that
B. Characterization of Nets and Designs compete with a given net for routing resources.

The starting point for model development was the definition; White Space of neti (IV.S;. This predictor is a region on
of relevant features of nets that are available after placemethe design defined with respect to the bounding box (BBOX)
We used two types of features: atomic and composite. Aton@i€ net i that does not overlap with the BBOX of any other
features are ones that are directly extracted from the desigats. White space is basically the total available routing area
Composite features were created by combining atomic featuhe<grids which is not potentially shared with other nets. The
using simple rules. Most often the composite rules were ratigietric can be calculated using a strategy similar to the one
of two atomic features. used for the calculation of the previous property. The intuition

We used a state of the art commercial placement aitdsimple and clear: large white space is well correlated with
routing tool (Cadence) to collect data that is used to builkigher chances for efficient routing of the net.
our statistical models. We use the post placement informatiog Space Utilization Factor (SUF) for the neti. Con-
as input parameters for building the model for each net. Tleeptually, the SUF parameter tries to calculate the amount
objective is to identify metrics that influence the post routingf competition that exists for the routing resource for each
wire-length for each net. The basic intuition lies in the fact thatet. Assuming that the net bounding box is the available
the net length is inversely proportional to the amount of routirgrea for net routing, we try to estimate the overall degree of
area available and directly proportional to the routing hardnesempetition that exists for this area. The bounding area of a
Furthermore, a net is hard to route if its available routing aret is divided into rectilinear regions based on the number of
is being claimed by other neighboring nets. Conceptually,a¥erlapping neighbors (nets or bounding rectangles). SUF is
net is a neighbor of another net if their corresponding boundalculated
ing box overlap. Therefore, two bounding boxes are calledusing the following formula:
neighbors if they overlap. The goal is to build a statistical

model using only a small set of parameters that can be easily OVi; x A;; % P

and rapidly extracted from the placement. While computation SUF(Net;) = NT; > (— D —) @
of some features is straightforward, the computation of other RijeR(Net;) ’

parameters requires the use of several basic procedures from _ WS
computational geometry [24]. For example, procedure Locate- where P’ = ;(1 By ) 2)

Point-Neighbor(p, S) takes a poinp and a set of rectangles

S and calculates the subset of rectangles which overlap witere

this point. Procedure Locate-Rectangle-NeighlioiS) takes v is the number of neighbork which belong to region®;;,

a rectangleR and a set of rectangleS and calculates the k # i,

rectangles ir that overlap onk. Note that all used properties[2(Net;) is the set of all regions for the nét

can be rapidly computed in low polynomial time. We havé: is the bounding box area faVet;,

considered the following post placement properties of the nef$Z; is the total number of terminals in the bounding box
71 Number of Net Terminals. The higher the number of of the net, (these include the terminals fdfet; and also
terminals, most often the harder it is to route the net. terminals of its neighbors that fall with the bounding area of
7o Half-Perimeter Bounding Box (HPBBOX) for net i. The the net)

HPBBOX is easy to compute and provided a lower bound of; is the area for regiork;; in the bounding area aVet;,

the real wire-length. However, this property does not captu¢gV;; is the number of nets that overlap in regid;;

the number of terminals well. More importantly, the boundinfexcluding Net;), and

box is a function of only a small set of terminals. WSy is the white space of net which is one of the nets
73 Minimal Spanning Tree (MST). MST is calculated (netk) that fall over regionR;;.

using standard Kruskal's or Prim’s algorithm. The property

captures the best case scenario for routing while considering=or a netNet; the bounding box area is partitioned into
all terminals. regions by the number of bounding boxes that overlap on
w4 Convex Hull (CHULL) of net i's terminals. CHULL it (essentially regionsk;;). By definition, each region must
envelopes the terminals. Many algorithms, including standandve a net overlap of at-least one. The key intuition behind
Graham’s scan, can be used to calculate CHULL of a néhis metric is the fact that more overlapping regions in the
Runtime isO(nlogn) if n is the number of net terminals.bounding area of a net, implies more routing hardness. For
CHULL is in a sense a generalization of HPBBOX. Both MSBach regionk;; we multiply the corresponding region area
and CHULL are often very strongly correlated with HPBBOXA;; with the total number of nets that overlap on this region
w5 Number of different terminals in the bounding rectangle (excluding Net;) and a parameter P. P captures the routing
of the net ¢ (NT;). This property aims to predict routinghardness for the nets that fall on the same region. It is



calculated according to the equation above. This value is theifficulty of routing neti.

normalized with the bounding area dfet; and added over w14 Neighbor utilization factor (NUF) is defined in the
all regions. The value is then scaled with the total number fdllowing way, wherec; is the common terminals;, is the
terminals that lie in the bounding area®kt;. This parameter common area, and,, is the neighbor area.

tries to capture the routing hardness for a net. Intuitively a net

will be hard to route if a lot of terminals fall in its bounding Z
region. Moreover if there are a lot of highly overlapped regions neighy of Net; @

in the nets bounding area, the routing will be hard too. If - Neighbor hardness factor (NHF)defined in the follow-
the overlapping neighbors (as defined earlier) have smal|ﬁ@ way.

white space (which means they are themselves congested) then

they will make the pertinent net congested too. This metric is Z ¢t * cq % RCM (k) (5)
calculated using the following procedure. First, we identify
regions on the layout based on overlapping net bounding . . . -
boxes. This is accomplished using an iterative execution-_rh'a Ia_st two propertles aim to quantlfy_the C_ompetltlon of
of the procedure (defined in the beginning of the sectioﬂf'ghbormg nets with the net under consideration.
Locate-Point-Neighbdp, S) (defined in the beginning of the

section) for all grid points. Therefore, the running time of- Overall Flow

the procedure is proportional @rid,Grid, T(Locate-Point-  In this Subsection, we present the overall flow of our statis-
Neighbor), whereGrid, and Grid, are the number of grid tical modeling procedure. Figure 2 summarizes the flow of the
units in thex andy directions respectively. Note that, if thedeveloped statistical modeling technique for prediction of the
total number of grids is high, the procedure is relatively slowvire-lengths of the nets. The first step is the identification
In this case, we impose a coarser grid resulting in a fastf relevant net properties. Two types of net properties are
runtime, however at the loss of accuracy. This procedure camployed. The first group consists of properties related to the
be followed by calculating the parametBr(see the equations net itself. The second group consists of metrics that aim at
above) for all regions and summing them up for the net. predicting encountered congestion during routing of a given
m9 Resource Competition Metric (RCM) for net . This is net due to the routing requirements of neighboring nets. On
a composite property that aims to capture the congestionaih properties we also applied a humber of nonlinear trans-
regions where net is most likely to be routed. We considerformations (e.g. application of logarithm function) in order to
the set of regionsR, that is created after the bounding boobtain better prediction abilities [25], [26]. Interestingly, while
of the net is split by considering overlaps with the bounding is often reported in other fields that the use of non-linear
boxes of other nets. If we denote neighborsasgh and transformations often greatly enhances accuracy of the model,
use the notation introduced for calculating SUF, the RCM fer our model and our set of properties this was not the case.

Ct * Cq

(4)

neighy, of Net;

calculated using the following formula. The second step was data collection, or feature collection.
All designs were routed using the Cadence placement and

Z ( Ay Z Aij (3) routing tool. Once the data was available, ie. actual length

A(Ne,) Area; neighi of R(Net;) Areay, of the net and property values, we started with a randomly

) ) - _selected design and built a number of prediction models. In

Recall that the regions can be identified irder to enable validation and evaluation of the statistical
Grid, Grid, T(Locate-Point-Neighbor) - runtime and  theémodels, we used only 60% of the data to build the wirelength
above parameter can be calculated for each region and addffliels. Note that it is important to have a set of data that
up for the net, The key intuition behind this parameter is thi{ gisjoint for these two tasks. Further explanation of this
if the value ;7o- is high then the net has a larger share gpproach is given in [9], [11].
of the region where as ifj%/;k for the neighbork is high In Figure 1 we illustrate models built using HPBBOX, MST,
then that neighbor has a larger share of the region. The RGWd CHULL as individual prediction properties on the IBM07
value for a net is proportional to its share of the availablgesign. The x-axis of each figure represents the property
routing area in a nets bounding rectangle. value, while the y-axis is the actual length of the net. It
m10 RCM for overlapping neighbors of net i. The property was immediately apparent that each of the following three
is calculated using the RCM procedure. The intuition is that féatures, bounding box (HPBBOX), minimum spanning tree
neighboring nets are very congested, they will induce high@ST), and convex hull (CHULL), predicts the length of
difficulty for routing the pertinent net a majority of nets remarkably well, using a linear fit. We
711 Sum of RCMs for all neighbors of overlapping used theR? value to measure the accuracy of the feature’s
neighbors This complex measure enhances the scope of theediction ability. Specifically, the?? value is the square of
previous metrics. residuals, i.e. difference between the predicted variable and
w2 Amount of overlapping area with the net for all its predicted value using an individual property. Each of the
neighboring nets The rationale is that a higher ratio offeatures (HPBBOX, MST, CHULL) had &B? value above 0.85
overlap areas indicates increased hardness to route. individually. The statistical t-test indicates that the probability
w13 The number of common terminals of neighboring that this correlation between the properties and actual net
nets to neti. This measure is positively correlated with théength is accidental is less tha® =16 in all three cases.
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Fig. 1. Linear fit models for HPBBOX, MST, and CHULL properties on the IBMO7 design.
TABLE | 1. Feature Definition;
BEST REGRESSION FITS ONBMO7 FOR VARIOUS PROPERTIES 2. Feature Extraction;
. 9 3. Preliminary Data Exploration;
Property | Fit | R 4. Features Evaluation and Normalization
L) ond 0.9099 and Compound Feature Selection;
3 2nd | 0.9012 5. NetCharacterizatior{
T gnd 0.8492 6. Nets Categorization;
5 ond 0.7024 7. Preliminary Linear Regression on percentiles;
76 ond 0.6984 8. Outliers Detection;
77 Linear | 0.0001 9. Outliers Modeling;
o ond 0.3434 10. Final Linear Regression on percentilgs;
_— grd 0.0944 11. CDF and PDF model generation;
nd 12. Chip characterization;
T14 2 0.5279 . . . )
rd 13. Development of Mapping Function to New Designs;
715 3 0.1105 14. Evaluation and Validation;

Fig. 2. Modeling Approach Overall Flow.

In Table | we present the best fit regression model achievggrcentiles. For each percentile (in the range of 10% to 90%)
for each property on the IBMO7 design. In the first columg separate fit is obtained and validated using the t-test. Next,
we present the property, followed by the type of regression f§§ further enhances the accuracy of our model, we conduct
applied, and in the final column the beRt value achieved. an outliers detection procedure that identified a small subset
Similar fits we achieved on other IBM designs. As the tablef data that required specialized models. For this purpose we
shows, none of the other properties were able to predigdve developed a CART model [8]. Then we repeat linear
wirelength as well as HPBBOX, MST, and CHULL. regressions on the data after the outlier points were removed.

While independently each of the property measures (HPB-The next two steps were dedicated to the development
BOX, MST, CHULL) are strong predictors, their combinatiorbf a probability distribution function (PDF) and cumulative
results in only marginally better prediction. Therefore, weijstribution function (CDF) for wire-length prediction and
decided to use the half-perimeter bounding box as the bagiferchip prediction. The goal of interchip prediction is to
of our model because of its low computational cost. use global parameters of the chip in order to predict how

Closer examination of the data indicated that the behavigiatures, such as global congestion and the number of nets and
of nets with shorter length had different properties than longgdrminals, and the impact on PDFs for wire-length distribution.
nets. We performed analysis on the data set to determpgally, we conducted extensive model evaluation using learn-
a boundary value for these two groups. We partitioned thgd-test and the resubstitution procedure in order to verify that
HPBBOX values using as the boundary all values betwegie developed model is sound and no overfitting was done. In

1,000 and 9,000 at increments of 1,000. We found that thge rest of this Section, we elaborate on several key steps of
partitioning at 6,000 grid units performed superior with respegiie procedure.

to all other boundaries. There is also strong indication that

6,000 is a good boundary because below 6,000 grid units we . ,

did not observe any outlier points. Unfortunately, we werg- Outlier detection

not able to obtain convincing intuitive reason for the selected Outliers can be defined as nets that are not predicted well

value. Additionally, we tried to partition the data into threaising a given set of features without significantly changing the

groups but were not able to find more statistically sourtbmplexity of the model. We detected the outliers using the

models than those built on the two data sets when partitioneda@towing procedure. We begin by building our preliminary

6,000 grid units. The statistical t-test indicates that correlationodels. As candidates for outliers, we analyzed all points

is significantly higher for the separated sets than for the overtliat differ from their prediction by more thakh%. In our

set. experimentation, we sdt = 20%. Next, all the outlier candi-
Once the data was divided into two sets, we conducteddate points are characterized according to each property. The

linear regression-based procedure for fitting data for differes¢paration value for each property is set in such a way that it



ibm07a - Large BBOX - PDF

maximizes the ratio of outliers versus well predicted nets fc ibm07a - Large BBOX - CDF 0085
the nets above (or below) the separation value. Note, that ! f“"" 002
linear-time sweep is sufficient to find this separation value. 08 | = sors

All properties with their corresponding separation value %0‘6 g
are used as inputs to the non-parametric classification a & %* g %
regression tree (CART) software [8] to provide compact cha 92 0008
0

acterization of all outliers. The CART procedure resulted in th 0

0.7 1.7 2.7 3.7

model where all nets are separated in three groups accord

to the number of terminals. The first group consisted of a Normalized Net Lengh/BBOX Normalized Net Lengin 880X

nets with two terminals, the second with three, four, and five (a) Large HPBBOX Model

terminals, and the last group contained all other nets. ibm07a - Small BBOX - CDF 0.04 . omO7a - Small BSOX - FOF
The final CART model used the following features: number o 0.035 |

of terminals, RCM of the net, RCM of overlapping neighbors, w°"5 ° Z o

total number of overlapping neighbors, and the number 0§"° Eouﬁ

common terminals for a given net. The last four features wer & %4 c |

normalized against the area of the bounding box in order t o2
achieve better separation. The overall misclassification ral o
for the detection of outliers was 6.7%. For the outlier nets 09 105 115 125 .35
we build a separate linear regression fit, that = 0.83. Normalized Net Lengh/BBOX Normalizes Net Lengir/BBOX
The t-test indicates that probability of accidental fit was less (b) Small HPBBOX Model
than 1019, clearly indicating the soundness of the modekig. 3. cumulative Distribution Function and Probability Distribution
It is interesting and important to emphasize that all outlieFsinction in IBM07 design for Cadence Router.
were corresponding to nets that were longer than standard
predictions. This phenomenon can be easily explained by tie same number of points. The total number of bins was 10.
intrinsic nature of the modeling problem. Relatively short nefhe randomly selected subset of data is used to establish new
for a given size of the half-perimeter bounding box (or MSPpercentile points for each bin containing data. All percentile
or CHULL) are those that are routed using interconnect thatpsints are normalized against the bounding box with shortest
close to their theoretically possible minimum when no otherets. The normalization is done in such a way that the average
nets cause congestion. In all designs for all values of hatfiscrepancy between the values that correspond to the identical
perimeter bounding boxes, the number of nets with thepercentile is minimized. The data is fit using polynomials
properties was relatively large. A very high RCM was the besf low degree (three and four in our experimentation). The
predictor of nets that will be routed using significantly higheprocedure is repeated a large number of times, the average
length, in particular if the number of terminals was high. value for each of percentile is calculated and fit using a least
One of the limitations of our model is that we did notinear squares approach. This process was terminated once the
explore systematically all possible predictors. Among intuitiveercentile validation method indicated that we achieved user
potential candidates are layer assignment, that may betspecified intervals of confidence for the PDF model. The same
explain some of the outliers. This direction is one of the targgtsocedure is repeated for long nets. Figures 3(a) and 3(b) show
for future research efforts intermediate and final results of the PDF derivation procedure.
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E. CDF and PDF Generation F. Interdesign Modeling

The goal of this phase is to find accurate cumulative dis- Interchip prediction is the task where the objective is
tribution (CDF) and probability distribution functions (PDF)to predict properties using models that are invariant across
for the length of a net given the size of a correspondingjfferent chips. Specifically, our goal is to predict wirelength
HPBBOX. Note that partial information about the PDF andn non-analyzed chips using properties of that chip that can
CDF is already contained in percentiles and therefore it is albe obtained after floorplanning and properties of nets and
contained in the percentile-based linear fit models. Therefoflmorplans from chips that are used in the learning phases
the starting point for the PDF derivation was the percentilef the statistical procedure. Note that our goal is to predict
models for the ratio of the wire-length versus HPBBOX as the distribution of expected wire-length for nets of the design
function of the size of the bounding box. For both small anithat are not used to build the statistical model. Therefore,
large HPBBOX data, we used a resubstitution-based techniqureee a model is built and validated for a single design, we
to obtain CDFs. Note that a PDF can be easily obtained framust establish a means for rapid re-mapping of the wirelength
a CDF using either symbolic or numeric differentiation. model to other chips.

The PDF is built using the following procedure. First a For this task, we considered the following atomic chip
subset ofk nets are randomly selected for short nets. Iproperties: {) the area of the chip;i{) the number of nets;
our experimentation, we used valde= 50%. The data is (i:i) the average and median of half-perimeter bounding box
separated in bins that are dictated by HPBBOX values. Theeas, MST, and convex hulls for all net®)(the average
size of bin was determined in such a way that all bins contaimumber of terminals per net; and)(the percentage of the



TABLE Il
" CHIP LEVEL CHARACTERISTICS FORIBM DESIGNS OBTAINED USING
CADENCE ROUTING AND PLACEMENT TOOL

number of nets with a small number of terminals (two, three
or four). The composite chip metrics included ratios of all
atomic chip properties and their simple statistical measures
h ts of | d # # #nets Total
such as moments o OV\_/ oraers. o . Bench | layers | nets Area Area Term
Table 1l shows the chip level characteristic of the designs. =[gyoza [ 8 | 11507 | 5.80E+09] L.05E-06] 44266
The first column denotes the name of the benchmark, followed 1BM01b 8 11507 | 5.72E+09 | 2.01E-06 | 44266
by the number of chip layers and the number of nets in the [BM02a | 10 | 18429 7.65E+09| 2.41E-06| 78171
benchmark. The fourth col d h | fihe 'BMO2b | 10 | 18429 | 7.31E+09| 252E-06| 78171
enchmark. The fourth column denotes the total area of the |gyvg7a | 10 | 44394 | 1.63E+10| 2.73E-06 | 164369
chip. The overall congestion of the design is denoted in the 1BM07b | 10 | 44394 | 1.55E+10| 2.87E-06 | 164369
fifth column by the total number of nets over the area of [BMO8a | 10 | 47944 1.76E+10| 2.73E-06| 198180
he desian. The final col ifies the total b f 1BMOSb | 10 | 47944 | 1.67E+10| 2.87E-06 | 198180
the design. The final column specifies the total number of |gy10a | 10 | 64227 | 2.97E+10| 2.16E-06 | 269000
terminals in the benchmark. Table Il denotes the normalized 1BM10b | 10 | 64227 | 2.82E+10| 2.28E-06 | 269000
average size of the HPBBOX, MST and CHULL for each net  |BM1la | 10 | 67016 | 2.31E+10| 2.90E-06 | 231819

; h desian. Th - lzed against th IBM1lb | 10 | 67016 | 2.19E+10| 3.06E-06 | 231819
or each design. The statistics are normalized against the area \gyi2a | 10 | 67739 | 3448410 | 1.97E-06| 284398

of the chip. IBM12b | 10 | 67739 | 3.26E+10| 2.08E-06 | 284398
In the first phase of the work, we statistically developed TABLE IlI
a wirelength prediction model for an individual design. A FLOORPLAN METRICS FORIBM DESIGNS

statistical model was feasible due to the large number of

sample points (tens of thousands), however for interdesign Bench | HPBBOX | MST | CHULL

; ; e ie fimi IBMOla | 1.30E-06 | 9.01E-07| 1.08E-06
modeling the number of available designs is limited. Therefore IBMO1b | 128E.06 | 8.85E-07 | 107E-06
sound statistical practice strongly suggests not to attempt to IBMO2a | 6.44E-07 | 1.39E-06| 2.03E-06
build a statistical model on such a small dataset. It is for IBMO2b | 1.63E-06 | 6.67E-07 | 1.43E-06

; ; ; ; P, IBMO7a | 5.25E-07 | 6.08E-07 | 6.39E-07
this reason we present an interdesign model built on intuition IBMO7b | 7.38E-07 | 5.46E-07 | 6 34E07
and consequently solely test the accuracy of the model using IBMOSa | 4.79E-07 | 6.06E-07 | 6.00E-07
statistical techniques. Note, that validation of the model is IBMO8b | 6.46E-07 | 4.93E-07| 6.20E-07

; ; ; - IBM10a | 3.33E-07 | 3.91E-07 | 4.13E-07
p0§5|ble in this case because resubstitution reuses sample IBM10b | 2.12E-07 | 350E-07 | 4 10E-07
points. IBM1la | 3.35E-07 | 3.80E-07 | 3.99E-07

We denote bye; and ¢, the overall congestion of designs :Emgb 2-(5)%5-8; i-%g-g; g-(l)S;E-g;
. . . a . - . - X -
¢ and j measured by the normalized sum of convex hull IBM12b | 4.00E-07 | 4.70E-07 | 5.02E-07

area for each design divided by the total area of the design.
Furthermore, we denote by L; and NL; the number of
layers used in designsand j. Our model indicates that the
length of the net in design (L;) can be calculated usinginterchip models. Nevertheless, the application of the learn-
the length of the net with the same HPBBOX in design and-test procedure on the interchip model indicates very high
(L) using the following formulal; = L; %% *(%)048, This consistency, strongly implying that different designs follow
model is built using least linear squares data fitting approa¥ry similar distributions of the wire-lengths for nets charac-
[27]. We built this model using a randomly selected subset trized by the selected features.
four designs. The model was validated against the remaining/Ve have applied the learn-and-test validation technique to
designs, as well as by using the resubstitution procedurebﬁgh trend modeling and outlier identification. In both cases,
explained in the next Subsection. for single chip models, we obtained predictions with 3%
In order to illustrate the goodness of fit for the interdesigaccuracy for more than 96% of instances.
model in Table IV we present the accuracy of prediction for Resubstitution is the technique that effectively resamples
the IBMO7 model built using three measures (HPBBOX, MSthe available data in order to ensure that overfitting is not
CHULL) on other IBM designs. The first column indicates théonducted. It was applied to modeling at both levels of
predicted design, while the other three columns present tstractions: interchip and intrachip. We created 100 different

R? error for models built using the HPBBOX, MST, CHULL subsets of data using uniform random sampling of the data.
properties respectively. For the interchip modeling, we selected 70% of the data for

each subset and built a separate model using the developed
, o procedure. The percentile analysis indicates that for all results,
G. Evaluation and Validation the interval of confidence is less thar8% with a probability
The last step of the modeling procedure was dedicatedhtigher than 97%. For the interchip modeling, we selected a
the evaluation of the accuracy of the developed models. \Wendom subset that contained between three and five designs.
followed two paradigms: learn-and-test and resubstitution [22)e repeated this procedure 100 times.
[23], [9]. In the case of the former procedure, we selected Any time when we do not know the outcome with complete
a subset of nets for building the model. This procedure wasrtainty, there are two parameters that characterize our knowl-
properly applicable only on modeling done on a single desigagdge about the outcome. The first one is what kind of errors are
since the total number of available designs was too smalbssible at all to happen. That component is captured by the
statistically for sound application of this type of analysis ogsize of the interval of confidence that indicates the amplitude




TABLE IV
ACCURACY OFIBMO7.A INTERCHIP MODEL FOR PREDICTION OHBM
DESIGNS
R2- all data | HPBBOX | MST | CHULL
IBMO1.a 0.86312 | 0.87510| 0.82344

indicate the value of expected length for percentiles that differ
by 10% increments. Tables V and VI present the parameters
of the models and the obtaindef values. They indicate that

the square of residuals is consistently high. The t-test indicates

IBMOL.b 0.84481 | 0.85810| 0.80891 that for both sets, the probability of accidental coincidence is
IBM02.a 0.77496 | 0.94100| 0.89040 less than10~18. Therefore, it is clear that the model is both
IBMO2.b | 0.77986 | 0.89390 0.88873 theoretically and practically sound.

IBMO7.b 0.86292 | 0.83272| 0.79524 I

IBMOS.a 0.91627 | 094573| 086103 As can bg seen from the tgble:, the varlab|llty of the
IBM08.b 0.92660 | 0.96585| 0.83922 net lengths is well captured as indicated by the high value
IBM10.2 | 096559 | 0.97846) 0.88373 of the R? coefficient, in particular for the small HPBBOX
IBM10.b 0.95707 | 0.96343| 0.86071 . L ;
IBM11.a 0.92939 | 0.92134| 0.83882 model. There are two main reasons why it is much easier to
IBM11.b 0.92241 | 0.91774| 0.83383 accurately predict short nets. The first one is that there are
IBM12.a 0.88990 | 0.89081 | 0.80354 nifi

BML2.b 0.92017 | 0.93565 | 083707 significantly more short nets than long nets and, therefore,

the statistical model can be developed using a much larger
number of samples. The second reason is that short nets
usually have significantly fewer terminals, simple structure,
of error that is expected. Unfortunately in the majority ofnd can leverage on relatively small areas of white space in
situations, we are not able to provide tight bounds on erragseir vicinity. For longer wires, we see that the prediction of
that would be of significant interest to the designer. Therefofats that are almost as short as their lower bound indicated
in these situations we use a second parameter, the probabiifythe HPBBOX is more accurate than nets that are long. For
that the outcomes come out of the range specified by tfs Jong nets, the model relies on the CART model presented
interval Of Conﬁdence. ObViOUSly, |f the interval Of Conﬁdencﬁ'] the previous Section that has Very h|gh Consistency_ The
is very tight (small in terms of percentage range) and thART model-based removal of nets that are predicted to be
probability that the outcome will be within that range, th&jgnificantly longer than the HPBBOX-bound, improves the
prediction model is highly accurate. Specifically, the intervat2 for all percentiles to above the 0.95 level, essentially
of confidence +/- 10% indicates that we are considerifgatching the accuracy of the model for short nets. The CART
the percentage of outcomes that will be within 10% of oufodel correctly identifies very long nets with accuracy better
prediction and the probability of 86% indicates that in leshan 90%. More importantly, less than 1% of nets longer than
than 14% of the cases that will not happen. This relativelso than indicated by the HPBBOX linear regression-model
lower probability was the direct consequence of the fact th@atnot detected by the CART model. Finally, note that no short

from a statistical point of view relatively few designs wergets (with HPBBOX value less than 6,000 in either the x or
available. Nevertheless, the percentile analysis [9], [11], [2§]direction) were identified as outliers.

strongly validates the approach and indicates that the statistical

trends have less than a one in billion chance of occuring on TABLE V
accident. LINEAR REGRESSIONFIT PARAMETERS AND R2 FOR SMALL HPBBOX
OF IBMO7 DESIGN. COEFFICIENTSa, b, AND ¢ ARE USED FOR THE
IV. STATISTICAL WIRE-LENGTH PDFAND CDF MODELS QUADRATIC MODEL OF THE FORMaz? + bz + c.

In this section, we present the obtained statistical wire- 'F‘?e'\r/'feﬁ”; Small HPBBO); Linear Regress“’r]‘%';"c’de's
length model. We present the parameters of the model, ob- 5 9Ea-09 AT 101758 S5
tained PDF and CDF, and summarizg the model_ gvgluation 80 OE-10 5E-05 10686 0.9762
results. Although we present a single final model, it is impor- 70 2E-10 6E-05 11175 0.9184
tant to emphasize that the procedure presented in the previous gg :iE:gg gE:gg i-g‘l‘gi 8-82%
Section resulted in a large number of competitive models that 40 2E-09 3E-05 10055 0.9876
differed relatively little with respect to their accuracy and 30 1E-09 6E-06 1.0160 0.9854
i : ; 20 9E-10 1E-05 1.0038 0.8049
interval of confidence. The model that we present was mainly 0 1E09 36-06 10023 09702

selected due to its low conceptual complexity and through the
use of a set of features that can be rapidly extracted from the
post-placement designs. Figure 3(a) and 3(b) show a cumulative distribution function
The prediction abilities of the model are illustrated if{CDF) and a probability distribution function (PDF) for short
Figures 4(a)-5(b). The demonstration example used for thad long nets. The x-axis indicates the normalized discrepancy
development of the model is IBMO7. It is important tcagainst the most likely values. Again, the continuous line
emphasize that the model was actually developed using oimgicates the prediction provided by the model and each plot
60% of randomly selected nets. Figures 4(a) and 4(b) show fh&nt corresponds to the length of the nets in a particular
normalized net length with respect to HPBBOX for differenhalf-perimeter bounding box bin selected by the resubstitution
sizes of HPBBOX. The continuous lines in these two figurggocedure. From the PDF figures we can conclude that the
indicate the prediction models for small and large HPBBOXajority of nets are routed using a wire-length that is close to
respectively. The bottom line corresponds to 10% percenttleeoretical minimum and that longer nets are statistically rare.
and the top line to 90% percentile value. All other lines We evaluated the accuracy and consistency of the PDF and
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Fig. 4. Linear Regression Model for IBMO7 design using Cadence Router: (a) Large HPBBOX Model (B) Small HPBBOX Model

TABLE VI
LINEAR REGRESSIONFIT PARAMETERS AND R? FORLARGE HPBBOX
OF IBMO7 DESIGN. COEFFICIENTSa, b, AND ¢ ARE USED FOR THE
QUADRATIC MODEL OF THE FORMaz2 + bz + c.
IBMO7a - Large HPBBOX Linear Regression Models

It is easy to see that there exists a close correspondence and
high correlation between data in the two figures, except for
a small subset of bins in the true data that have statistical
anomalies due to the specifics of the actual design.

wile b ¢ R2 An important question is to what extent the developed
90 | BE.11L_SE.06 15944 0.7185 models and methodology are applicable to different types of
80 | -1E-11 7E-06 1.3948 0.6268 designs and different set of floorplanning and routing tools.
70 | -2E-11  8F-06 12767  0.6890 Unfortunately, it is difficult to address this question without

60 | -5E-11 9E-06 1.1828 0.7460 " - : o :

50 | -3E-11 7E-06 1.1383 0.8111 comprehensive statistical studies. Our expectation is that while
40 | -3E-11 6E-06 1.0981 0.8655 models are not directly applicable, they can be relatively easily
30 | -2E-11  SE-06 1.0720  0.9109 retargeted to other design and tool scenarios, in particular if
20 | -3E-11 5E-06 1.047§ 0.9033 : . L

10 | -3E-11  5E-06 1.0135 0.8862 alternative statistical methods and tools are used for derivation

and validation of new models.

APPLICATION OF STATISTICAL WIRE-LENGTH MODEL

. o V
CDF using the resubstitution procedure. We generated 100 10 PROBABILISTIC BUFFER INSERTION

different subsets that contain 60% of initial data and build the

PDF and CDF wire-length model. For a hundred randomly In this section, we describe an application of the presented
selected points their PDF and CDF values were recorded {gire-length model. The common underlying idea is to demon-
each of the resubstitution models. The non-parametric intergatate the superiority of statistical estimation and probabilistic
of confidence was calculated for each point and for the overgjptimization over the traditional deterministic approach to

probability and cumulative distribution functions. The analysigesign automation. In order to accomplish this objective, we

indicates that with a probability larger than 96% the model igoplied the developed statistical models to the probabilistic
accurate withinrt=7%. It is interesting to note that the intervabuffer insertion problem.

of confidence was sharper for the CDF than for the PDF, mostThe buffer insertion problem can be formally stated in the
likely as a consequence of the CDF integrating discrepancigfiowing way. Given the fan-out wiring tree with parasitic
of the PDF. resistances and capacitances, wire-lengths, potential buffer
Finally, Figures 5(a) and 5(b) show a 3-dimensional repecations, sink required times, sink capacitive loads and a
resentation of histograms that are formed by selecting bifiglay constraint at the driving gate, the problem is to place
according to their ratio of normalized net length versus HPBuffers into the tree such that the required arrival time at the
BOX and the size of HPBBOX on the other axis. The z-axigput of the driving gate is maximum. We also consider the
indicates instead of the conventional number of nets whieiptimization of the number of buffers used to satisfy the delay
belong to a particular bin, the logarithm of this value in ordegonstraint.
to provide better visual insight in to the distribution of wire- The buffer insertion problem was formalized by [28] and
lengths of the net for all lengths. The data in Figure 5(a) wasodels the fan-out wiring tree as a set of distributed RC
collected after using the Cadence routing tool. The data sections. The Elmore delay model [29] is used to compute
Figure 5(b) is generated using the developed prediction modble delay of such a wiring tree.
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TABLE VI
POSTROUTING COMPARISON: PROB. VS HPBBOX BASED BUFFER
INSERTION ONIBMO8 DESIGN.

A detailed methodology for using this modeling effort in
buffer insertion is as follows. First the design needs to be
placed for generating the wire-length models. Then these

. e . . Probabilistic HPBBOX
models need to be used in a probabilistic buffer insertion Delay (ps) | # Buffer || Delay (ps)| # Buffer
framework. This buffering technique assumes that the place- “Nem T 1367.03 31 1546 .91 24
ment locations of buffers have already been fixed (note that Net2 865.32 23 983.67 19
traditional Van Ginneken approach for buffer insertion makes =~ Net3 || 690.46 42 141311 40

. : . L . . Net4 || 1563.21 19 1798.33 16
a similar assumption). This optimization effort is following by Net5 || 2375.49 27 2892.47 20
routing.

In order to estimate the parasitics for each wire segment we

need to determine the exact wire-lengths. Now let us SUPPQfgsigns. The model was validated using both learn-and-test
that this optimization is being performed during timeplace 5nd resubstitution evaluation techniques.

modeduring which the exact wire-length is not available. The e proposed net length models have a large range of
only available information is about the bounding box of thgypjicanility in emerging probabilistic approaches to design

nets. Using the placement information we can generate f&omation that are rapidly gaining acceptance. We demon-
probability distributions of individual wire segments (throughrated the effectiveness of our model through extensive ex-

the modeling effort presented earlier) of the wiring tree angkrimentation with state of the art commercial and academic
perform buffer insertion probabilistically. Khandelwal et aligg)s.

[13] proposed such a probabilistic approach to buffer insertion.
For brevity, we omit the details of that algorithm. We ran
probabilistic buffer insertion on a placed net (placed using
Cadence Qplace) and also traditional buffer insertion [28}1] J. Davis, V. De, and J. D. Meindl, “A stochastic wire-length distribution

assuming bounding box as the net length estimate. After buffer for gigascale integration (gsi)-part ii: Applications to clock frequency,
power dissipation, and chip size estimatiofZEE Transactions on

insertion, the entire circuit was routed and the net delay was giecyon Devicesvol. 45, no. 3, pp. 590-597, 1998.
computed using real wire delay values. [2] J. Dambre, P. Verplaetse, D. Stroobandt, and J. Van Campenhout,

Table VII compares the post routing net deIays from prob- “Getting more out of donath’'s hierarchical model for interconnect
prediction,” in International workshop on System-level Interconnect

abilistic and traditional buffer insertion. It can be seen that o jiciion 2002, pp. 9-16.
post routing, the probabilistic approach produces significantlg] M. M.-S. B. Hu, “Wire length prediction based clustering and its
better results (average of 21% reduction in delay) than a application in placement,” inEEE Design Automation Conference

. N . 2003, pp. 800-806.
boundlng box based approach |nd|cat|ng the effectiveness ﬁ D. Stroobandt, “Multi-terminal nets do change conventional wire length

our models and also the superiority of a probabilistic approach. distribution models,” ininternational Workshop on System Level Inter-
connect Prediciton2001, pp. 41-48.
[5] ——, “A priori system-level interconnect prediction: Rent's rule and
VI. CONCLUSION wire length distribution models,” itnternational workshop on System-
. .. . level interconnect predictiqr2001, pp. 3-21.
We have built a compact statistical model that pl’edICtS th%] A. B. Kahng and X.Xu, “Accurate pseudo-constructive wirelength and
probability that a given net will have a particular wire-length.  congestion estimation,” iACM International Workshop on System-Level

The model is characterized using a small set of parameterﬁ Interconnect Prediction2003, pp. 61—68. o
hat i tracted f the desian’s fl | Th r{? R. G. Wood and R. Rutenbar, “Fpga routing and routability estimation
that are easily extracted irom the design’s floorplan. The run-" ;5 poolean satisfiability,JEEE Transactions on VLSVol. 6, no. 2, pp.

time of the model is less than one second even for the largest 222-231, 1998.
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