
1

Non-Parametric Statistical Methodology for
Wire-length Prediction

Jennifer L. Wong, Azadeh Davoodi, Vishal Khandelwal, Ankur Srivastava, and Miodrag Potkonjak
UCLA Technical Report #050018

May 16, 2005

Abstract— We address the classic wire-length estimation prob-
lem and propose a new statistical wire-length estimation ap-
proach that captures the probability distribution function of net
lengths after placement and before routing. These types of models
are highly instrumental in formalizing a complete and consistent
probabilistic approach to design automation and design closure
where along with optimizing the pertinent cost function, the
associated prediction error is also considered.

The wire-length prediction model was developed using a com-
bination of parametric and non-parametric statistical techniques.
The model predicts not only the length of the net using input
parameters extracted from the floorplan of a design, but also
probability distributions that a net with given characteristics
after placement will have a particular length. The model is
validated using the learn-and-test and resubstitution techniques.

The model can be used for a variety of purposes, including the
generation of a large number of statistically sound and therefore
realistic instances of designs. We applied the net models to the
probabilistic buffer insertion problem and obtained substantial
improvement in net delay after routing (∼20%) when compared
to a traditional bounding box-based buffer insertion strategy.

I. I NTRODUCTION

Wire-length has become one of the most critical metrics in
physical design primarily due to the rise of the deep submicron
era. Therefore, there is a strong need for early estimation
and optimization of this design parameter. A large amount
of research has been directed towards the development of
accurate models for the estimation of this important design
objective [1], [2], [3], [4], [5]. Additionally, accurate timing
and routability estimation [6], [7] relies on these models.

Estimating the exact wire-length for each net in the circuit
is a very challenging problem. There are a large number of
different parameters and constraints, such as the bounding box
of the net, number of routing grids and the grid capacity,
and the total number of nets routed in the vicinity of the
pertinent net, that are all potentially relevant, but typically
are very hard to capture into a consistent wire-length model.
Hence, estimating an exact value for wire-length is a very
difficult problem. Similar difficulty in estimation has also been
widely recognized for other critical metrics of deep submicron
designs such as power, delay, noise immunity, and crosstalk.
Therefore, synthesis optimization is typically performed in
the presence of high degrees of estimation inaccuracy. The
optimization decisions made in such a scenario are typically
sub-optimal and often result in failure of design closure. In
order to solve this problem, a new design automation paradigm
is gaining steam in which unpredictable design objectives are

modeled probabilistically and the overall design is also opti-
mized probabilistically. For the success of such an approach,
we need accurate models which probabilistically estimate the
critical design objectives. In order to address this need, we
have developed a novel statistical modeling methodology for
capturing wire-length in the post placement pre-routing phase.

The model uses data that can be extracted once the place-
ment of the designs is completed. In order to build the wire-
length prediction model we used a combination of parametric
and non-parametric techniques [8], [9]. Since the approach to
developing the wire-length prediction model is generic and
can be applied to other early estimation tasks in synthesis,
we provide a detailed description of how the models were
derived. Although statistical techniques have demonstrated
their potential in many fields, they have rarely been used in
synthesis and CAD tools. This is surprising considering their
advantages. For example, they produce models that are both
mathematically sound and that extract the maximal possible
amount of information from the collected data. Note that non-
parametric statistical techniques are applicable on any set of
data with no prior assumptions about their distribution. Fur-
thermore, statistical techniques provide a means for evaluation
and validation of the obtained models as well as techniques
and tools for establishing intervals of confidence on the overall
model and any of its subparts. The standard and practical refer-
ences for parametric and non-parametric statistical techniques
that explain in detail many of the concepts, techniques, and
algorithms used in this paper include [10], [11], [12]. Although
our overall statistical modeling approach is new and several
steps are unique, other steps are adopted from the modern
statistical practice. Finally, it is important to emphasize that
the developed statistical model is validated both statistically
and through a driver application - buffer insertion for clock
cycle optimization.

Statistical estimation and prediction methodology and mod-
els can be used in many ways. For example, one can use the
prediction information to evaluate the suitability of a particular
floorplan for obtaining final routing where nets satisfy a par-
ticular user specified condition. For instance, the goal can be
to determine which among a number of competing floorplans
is most likely to result in a final design with a few long nets or
to minimize the overall sum of wirelengths. The models are
also a natural component of the overall probabilistic design
automation methodology. One such probabilistic algorithm is
[13] which performs buffer insertion assuming wire-lengths
which are estimated as distributions. We used our models in
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the probabilistic buffer insertion approach of [13] and obtained
massive improvements in net delay (∼20%) after routing when
compared with a traditional bounding box-based traditional
bounding box strategies [14], [15].

It is both interesting and important to compare this work to
the work of Davoodi et al [16]. In the previous work, the
authors build an empirical model for estimating the prob-
ability distribution of wirelength for all nets of a design.
The model is built using intuition and insight and uses the
half perimeter bounding box (HPBBOX) measurements as
the sole prediction property. There are five major differences
between the previous paper and the proposed work. First, the
previous work developed the model using intuition, while in
this work we present an approach which is directly based on
parametric and non-parametric statistical techniques. Secondly,
only a single prediction parameter, HPBBOX, was used in
the previous work, while the proposed approach uses five
prediction variables taken from a set of fifteen proposed
prediction variables. In this work, we validate the accuracy of
the proposed statistical models using standard resubstitution
techniques, while in the previous paper they used intuition-
based techniques for evaluation of the model. Furthermore,
the model in [16] does not detect outliers, while one of
our primary goals is to accurately predict wires that have
disproportional long length with respect to their prediction
variables. Finally, and most importantly we have different
objectives. In Davoodi et al [16] the goal is to derive a
probability distribution for net lengths. Therefore, they are not
concerned with the prediction of the most likely net length for
each net, but only for the whole ensemble of the nets. On the
other hand, in this work the primary goal is to exactly provide
the probability that any given net will have a particular length.
Therefore, these works are complementary in their objective
as well as the used derivation and validation approaches.

The rest of this paper is organized in the following way. In
order to provide a global view of the approach and make the
paper self-contained we start by summarizing the probabilistic
synthesis paradigm. Next, we describe our statistical modeling
procedure and present the developed wire-length estimation
model. After that the model is evaluated using both the learn-
and-test and resubstitution validation methodologies. Finally,
we present the application of our model to the task of
probabilistic buffer insertion.

II. PROBABILISTIC SYNTHESIS PARADIGMS

Automation of integrated systems is marred with estimation
inaccuracies which occur due to a combination of many
factors. Unawareness of exact layout information such as
routing, placement, and exact logic structure are among promi-
nent reasons. In addition, as technology features shrink in
deep submicron, in particular below 70nm, manufacturablity
becomes an important issue that often significantly impacts
performance and even the correctness of the design. Eco-
nomically achievable margins of tolerance are too low and
different instances of manufactured integrated circuits, even
on the same wafer, can have significantly different speed or
power consumption. Therefore, during all design phases it is

advantageous to consider manufactuability using approaches
that statistically produce designs within specified timing and
power constraints often enough. In the light of such un-
predictabilities, a traditional deterministic approach towards
design automation often becomes incapable and obsolete.
A deterministic approach assigns a fixed value to the cost
function (like area, delay, power, wire-length) and does not
consider the error associated with the estimation of this cost
function. Hence, very little can be said about the optimality
of the final design especially if the estimation was erroneous.
This issue calls for the development of a probabilistic approach
towards design optimization. Such an approach models the
cost functions as probability distributions and optimizes the
design probabilistically, hence maximizing the likelihood of
satisfying design constraints. A number of researchers [17],
[18], [19], [20], [21] have suggested the importance of such an
approach due to the fact that estimation inaccuracies (both due
to fabrication variability and layout unawareness) are becom-
ing major bottlenecks in design closure. The main advantage
of such an approach is faster design closure, better fabrication
yield (since fabrication variability would be accounted for
during designing) and improved robustness.

The main prerequisite for the application of a probabilis-
tic synthesis technique which considers uncertainties, is the
availability of accurate prediction techniques. Currently, these
models are mainly built manually using deep insights into
the design process. However, these non-statistical methods are
rarely statistically tested for their accuracy. We propose the
use of modern statistical techniques not only to automatize the
development of models and the selection of the most accurate
models, but also to provide sound mathematical estimates of
their accuracy.

III. STATISTICAL MODELING FORWIRE-LENGTH

PREDICTION

In this section, we present a statistical approach for pre-
dicting the length of a given net on a specified chip that
is characterized using a set of features that can be rapidly
obtained after floorplanning. We begin by identifying the
objectives and constraints of the problem. Next we discuss
a set of net and chip features that are used as predictors
to our model. The heart of the Section is the procedure
used for the development of the wire-length prediction model.
Additionally, the three phases of the procedure (robust linear
regression [8], outlier detection, and establishment of prob-
ability distribution) are discussed. We then present a model
for mapping between different designs. Finally, the evaluation
of the proposed models is conducted using learn-and-test and
resubstitution techniques [9], [22], [23].

A. Problem Formulation

Our primary objective is to predict the length of each net
given a set of features that can be rapidly extracted from the
floorplan of a chip. The goal is not only to predict the length,
but also to quantitatively characterize the probability that the
net will have a particular length after routing. Furthermore,
the operational constraint is to only use features that can be
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extracted with low computational effort and can be rapidly
analyzed with statistical techniques. The final major objective
is to statistically validate all obtained results and to establish
intervals of confidence on all deduced models and their
parameters.

B. Characterization of Nets and Designs

The starting point for model development was the definition
of relevant features of nets that are available after placement.
We used two types of features: atomic and composite. Atomic
features are ones that are directly extracted from the design.
Composite features were created by combining atomic features
using simple rules. Most often the composite rules were ratios
of two atomic features.

We used a state of the art commercial placement and
routing tool (Cadence) to collect data that is used to build
our statistical models. We use the post placement information
as input parameters for building the model for each net. The
objective is to identify metrics that influence the post routing
wire-length for each net. The basic intuition lies in the fact that
the net length is inversely proportional to the amount of routing
area available and directly proportional to the routing hardness.
Furthermore, a net is hard to route if its available routing area
is being claimed by other neighboring nets. Conceptually, a
net is a neighbor of another net if their corresponding bound-
ing box overlap. Therefore, two bounding boxes are called
neighbors if they overlap. The goal is to build a statistical
model using only a small set of parameters that can be easily
and rapidly extracted from the placement. While computation
of some features is straightforward, the computation of other
parameters requires the use of several basic procedures from
computational geometry [24]. For example, procedure Locate-
Point-Neighbor(p, S) takes a pointp and a set of rectangles
S and calculates the subset of rectangles which overlap with
this point. Procedure Locate-Rectangle-Neighbor(R,S) takes
a rectangleR and a set of rectanglesS and calculates the
rectangles inS that overlap onR. Note that all used properties
can be rapidly computed in low polynomial time. We have
considered the following post placement properties of the nets.
π1 Number of Net Terminals. The higher the number of
terminals, most often the harder it is to route the net.
π2 Half-Perimeter Bounding Box (HPBBOX) for net i. The
HPBBOX is easy to compute and provided a lower bound on
the real wire-length. However, this property does not capture
the number of terminals well. More importantly, the bounding
box is a function of only a small set of terminals.
π3 Minimal Spanning Tree (MST). MST is calculated
using standard Kruskal’s or Prim’s algorithm. The property
captures the best case scenario for routing while considering
all terminals.
π4 Convex Hull (CHULL) of net i’s terminals. CHULL
envelopes the terminals. Many algorithms, including standard
Graham’s scan, can be used to calculate CHULL of a net.
Runtime isO(nlogn) if n is the number of net terminals.
CHULL is in a sense a generalization of HPBBOX. Both MST
and CHULL are often very strongly correlated with HPBBOX.
π5 Number of different terminals in the bounding rectangle
of the net i (NTi). This property aims to predict routing

difficulty by analyzing the number of terminals from other
nets that compete for the same routing resources - space.
π6 Total number of overlapping neighbors (OVi). This
property can be calculated using the procedure
Locate-Rectangle-Neighbor(R,S) (defined in the beginning of
the section) and is trying to estimate the number of nets that
compete with a given net for routing resources.
π7 White Space of neti (WSi. This predictor is a region on
the design defined with respect to the bounding box (BBOX)
of net i that does not overlap with the BBOX of any other
nets. White space is basically the total available routing area
in grids which is not potentially shared with other nets. The
metric can be calculated using a strategy similar to the one
used for the calculation of the previous property. The intuition
is simple and clear: large white space is well correlated with
higher chances for efficient routing of the net.
π8 Space Utilization Factor (SUF) for the net i. Con-
ceptually, the SUF parameter tries to calculate the amount
of competition that exists for the routing resource for each
net. Assuming that the net bounding box is the available
area for net routing, we try to estimate the overall degree of
competition that exists for this area. The bounding area of a
net is divided into rectilinear regions based on the number of
overlapping neighbors (nets or bounding rectangles). SUF is
calculated

using the following formula:

SUF (Neti) = NTi ∗
∑

Rij∈R(Neti)

(
OVij ∗Aij ∗ P

Bi
) (1)

whereP =
∑

∀v

(1− WSk

Bk
) (2)

where
v is the number of neighborsk which belong to regionRij ,
k 6= i,
R(Neti) is the set of all regions for the neti,
Bi is the bounding box area forNeti,
NTi is the total number of terminals in the bounding box
of the net, (these include the terminals forNeti and also
terminals of its neighbors that fall with the bounding area of
the net)
Aij is the area for regionRij in the bounding area ofNeti,
OVij is the number of nets that overlap in regionRij

(excludingNeti), and
WSk is the white space of netk which is one of the nets
(net k) that fall over regionRij .

For a netNeti the bounding box area is partitioned into
regions by the number of bounding boxes that overlap on
it (essentially regionsRij). By definition, each region must
have a net overlap of at-least one. The key intuition behind
this metric is the fact that more overlapping regions in the
bounding area of a net, implies more routing hardness. For
each regionRij we multiply the corresponding region area
Aij with the total number of nets that overlap on this region
(excluding Neti) and a parameter P. P captures the routing
hardness for the nets that fall on the same region. It is



4

calculated according to the equation above. This value is then
normalized with the bounding area ofNeti and added over
all regions. The value is then scaled with the total number of
terminals that lie in the bounding area ofNeti. This parameter
tries to capture the routing hardness for a net. Intuitively a net
will be hard to route if a lot of terminals fall in its bounding
region. Moreover if there are a lot of highly overlapped regions
in the nets bounding area, the routing will be hard too. If
the overlapping neighbors (as defined earlier) have smaller
white space (which means they are themselves congested) then
they will make the pertinent net congested too. This metric is
calculated using the following procedure. First, we identify
regions on the layout based on overlapping net bounding
boxes. This is accomplished using an iterative execution
of the procedure (defined in the beginning of the section)
Locate-Point-Neighbor(p, S) (defined in the beginning of the
section) for all grid points. Therefore, the running time of
the procedure is proportional toGridxGridyT(Locate-Point-
Neighbor), whereGridx and Gridy are the number of grid
units in thex and y directions respectively. Note that, if the
total number of grids is high, the procedure is relatively slow.
In this case, we impose a coarser grid resulting in a faster
runtime, however at the loss of accuracy. This procedure can
be followed by calculating the parameterP (see the equations
above) for all regions and summing them up for the net.
π9 Resource Competition Metric (RCM) for net i. This is
a composite property that aims to capture the congestion in
regions where neti is most likely to be routed. We consider
the set of regions,R, that is created after the bounding box
of the net is split by considering overlaps with the bounding
boxes of other nets. If we denote neighbors asneigh and
use the notation introduced for calculating SUF, the RCM is
calculated using the following formula.

∑

R(Netj)

(
Aij

Areai
−

∑

neighk ofR(Netj)

Aij

Areak
)) (3)

Recall that the regions can be identified in
GridxGridyT(Locate-Point-Neighbor) runtime and the
above parameter can be calculated for each region and added
up for the net. The key intuition behind this parameter is that
if the value Aij

Areai
is high then the neti has a larger share

of the region where as if Aij

Areak
for the neighbork is high

then that neighbor has a larger share of the region. The RCM
value for a net is proportional to its share of the available
routing area in a nets bounding rectangle.
π10 RCM for overlapping neighbors of net i. The property
is calculated using the RCM procedure. The intuition is that if
neighboring nets are very congested, they will induce higher
difficulty for routing the pertinent neti.
π11 Sum of RCMs for all neighbors of overlapping
neighbors. This complex measure enhances the scope of the
previous metrics.
π12 Amount of overlapping area with the net for all
neighboring nets. The rationale is that a higher ratio of
overlap areas indicates increased hardness to route.
π13 The number of common terminals of neighboring
nets to net i. This measure is positively correlated with the

difficulty of routing neti.
π14 Neighbor utilization factor (NUF) is defined in the
following way, wherect is the common terminals,ca is the
common area, andna is the neighbor area.

∑

neighk ofNeti

ct ∗ ca

na
(4)

π15 Neighbor hardness factor (NHF)defined in the follow-
ing way.

∑

neighk ofNeti

ct ∗ ca ∗RCM(k) (5)

The last two properties aim to quantify the competition of
neighboring nets with the net under consideration.

C. Overall Flow

In this Subsection, we present the overall flow of our statis-
tical modeling procedure. Figure 2 summarizes the flow of the
developed statistical modeling technique for prediction of the
wire-lengths of the nets. The first step is the identification
of relevant net properties. Two types of net properties are
employed. The first group consists of properties related to the
net itself. The second group consists of metrics that aim at
predicting encountered congestion during routing of a given
net due to the routing requirements of neighboring nets. On
all properties we also applied a number of nonlinear trans-
formations (e.g. application of logarithm function) in order to
obtain better prediction abilities [25], [26]. Interestingly, while
it is often reported in other fields that the use of non-linear
transformations often greatly enhances accuracy of the model,
for our model and our set of properties this was not the case.

The second step was data collection, or feature collection.
All designs were routed using the Cadence placement and
routing tool. Once the data was available, ie. actual length
of the net and property values, we started with a randomly
selected design and built a number of prediction models. In
order to enable validation and evaluation of the statistical
models, we used only 60% of the data to build the wirelength
models. Note that it is important to have a set of data that
is disjoint for these two tasks. Further explanation of this
approach is given in [9], [11].

In Figure 1 we illustrate models built using HPBBOX, MST,
and CHULL as individual prediction properties on the IBM07
design. The x-axis of each figure represents the property
value, while the y-axis is the actual length of the net. It
was immediately apparent that each of the following three
features, bounding box (HPBBOX), minimum spanning tree
(MST), and convex hull (CHULL), predicts the length of
a majority of nets remarkably well, using a linear fit. We
used theR2 value to measure the accuracy of the feature’s
prediction ability. Specifically, theR2 value is the square of
residuals, i.e. difference between the predicted variable and
its predicted value using an individual property. Each of the
features (HPBBOX, MST, CHULL) had aR2 value above 0.85
individually. The statistical t-test indicates that the probability
that this correlation between the properties and actual net
length is accidental is less than10−16 in all three cases.
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Fig. 1. Linear fit models for HPBBOX, MST, and CHULL properties on the IBM07 design.

TABLE I

BEST REGRESSION FITS ONIBM07 FOR VARIOUS PROPERTIES.

Property Fit R2

π2 2nd 0.9099
π3 2nd 0.9012
π4 2nd 0.8492
π5 2nd 0.7024
π6 2nd 0.6984
π7 Linear 0.0001
π9 2nd 0.3434
π11 3rd 0.0944
π14 2nd 0.5279
π15 3rd 0.1105

In Table I we present the best fit regression model achieved
for each property on the IBM07 design. In the first column
we present the property, followed by the type of regression fit
applied, and in the final column the bestR2 value achieved.
Similar fits we achieved on other IBM designs. As the table
shows, none of the other properties were able to predict
wirelength as well as HPBBOX, MST, and CHULL.

While independently each of the property measures (HPB-
BOX, MST, CHULL) are strong predictors, their combination
results in only marginally better prediction. Therefore, we
decided to use the half-perimeter bounding box as the basis
of our model because of its low computational cost.

Closer examination of the data indicated that the behavior
of nets with shorter length had different properties than longer
nets. We performed analysis on the data set to determine
a boundary value for these two groups. We partitioned the
HPBBOX values using as the boundary all values between
1,000 and 9,000 at increments of 1,000. We found that the
partitioning at 6,000 grid units performed superior with respect
to all other boundaries. There is also strong indication that
6,000 is a good boundary because below 6,000 grid units we
did not observe any outlier points. Unfortunately, we were
not able to obtain convincing intuitive reason for the selected
value. Additionally, we tried to partition the data into three
groups but were not able to find more statistically sound
models than those built on the two data sets when partitioned at
6,000 grid units. The statistical t-test indicates that correlation
is significantly higher for the separated sets than for the overall
set.

Once the data was divided into two sets, we conducted a
linear regression-based procedure for fitting data for different

1. Feature Definition;
2. Feature Extraction;
3. Preliminary Data Exploration;
4. Features Evaluation and Normalization

and Compound Feature Selection;
5. Net Characterization{
6. Nets Categorization;
7. Preliminary Linear Regression on percentiles;
8. Outliers Detection;
9. Outliers Modeling;
10. Final Linear Regression on percentiles;}
11. CDF and PDF model generation;
12. Chip characterization;
13. Development of Mapping Function to New Designs;
14. Evaluation and Validation;

Fig. 2. Modeling Approach Overall Flow.

percentiles. For each percentile (in the range of 10% to 90%)
a separate fit is obtained and validated using the t-test. Next,
to further enhances the accuracy of our model, we conduct
an outliers detection procedure that identified a small subset
of data that required specialized models. For this purpose we
have developed a CART model [8]. Then we repeat linear
regressions on the data after the outlier points were removed.

The next two steps were dedicated to the development
of a probability distribution function (PDF) and cumulative
distribution function (CDF) for wire-length prediction and
interchip prediction. The goal of interchip prediction is to
use global parameters of the chip in order to predict how
features, such as global congestion and the number of nets and
terminals, and the impact on PDFs for wire-length distribution.
Finally, we conducted extensive model evaluation using learn-
and-test and the resubstitution procedure in order to verify that
the developed model is sound and no overfitting was done. In
the rest of this Section, we elaborate on several key steps of
the procedure.

D. Outlier detection

Outliers can be defined as nets that are not predicted well
using a given set of features without significantly changing the
complexity of the model. We detected the outliers using the
following procedure. We begin by building our preliminary
models. As candidates for outliers, we analyzed all points
that differ from their prediction by more thank%. In our
experimentation, we setk = 20%. Next, all the outlier candi-
date points are characterized according to each property. The
separation value for each property is set in such a way that it
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maximizes the ratio of outliers versus well predicted nets for
the nets above (or below) the separation value. Note, that a
linear-time sweep is sufficient to find this separation value.

All properties with their corresponding separation values
are used as inputs to the non-parametric classification and
regression tree (CART) software [8] to provide compact char-
acterization of all outliers. The CART procedure resulted in the
model where all nets are separated in three groups according
to the number of terminals. The first group consisted of all
nets with two terminals, the second with three, four, and five
terminals, and the last group contained all other nets.

The final CART model used the following features: number
of terminals, RCM of the net, RCM of overlapping neighbors,
total number of overlapping neighbors, and the number of
common terminals for a given net. The last four features were
normalized against the area of the bounding box in order to
achieve better separation. The overall misclassification rate
for the detection of outliers was 6.7%. For the outlier nets,
we build a separate linear regression fit, that hadR2 = 0.83.
The t-test indicates that probability of accidental fit was less
than 10−16, clearly indicating the soundness of the model.
It is interesting and important to emphasize that all outliers
were corresponding to nets that were longer than standard
predictions. This phenomenon can be easily explained by the
intrinsic nature of the modeling problem. Relatively short nets
for a given size of the half-perimeter bounding box (or MST
or CHULL) are those that are routed using interconnect that is
close to their theoretically possible minimum when no other
nets cause congestion. In all designs for all values of half-
perimeter bounding boxes, the number of nets with these
properties was relatively large. A very high RCM was the best
predictor of nets that will be routed using significantly higher
length, in particular if the number of terminals was high.

One of the limitations of our model is that we did not
explore systematically all possible predictors. Among intuitive
potential candidates are layer assignment, that may better
explain some of the outliers. This direction is one of the targets
for future research efforts

E. CDF and PDF Generation

The goal of this phase is to find accurate cumulative dis-
tribution (CDF) and probability distribution functions (PDF)
for the length of a net given the size of a corresponding
HPBBOX. Note that partial information about the PDF and
CDF is already contained in percentiles and therefore it is also
contained in the percentile-based linear fit models. Therefore,
the starting point for the PDF derivation was the percentile
models for the ratio of the wire-length versus HPBBOX as a
function of the size of the bounding box. For both small and
large HPBBOX data, we used a resubstitution-based technique
to obtain CDFs. Note that a PDF can be easily obtained from
a CDF using either symbolic or numeric differentiation.

The PDF is built using the following procedure. First a
subset ofk nets are randomly selected for short nets. In
our experimentation, we used valuek = 50%. The data is
separated in bins that are dictated by HPBBOX values. The
size of bin was determined in such a way that all bins contain

(a) Large HPBBOX Model

(b) Small HPBBOX Model

Fig. 3. Cumulative Distribution Function and Probability Distribution
Function in IBM07 design for Cadence Router.

the same number of points. The total number of bins was 10.
The randomly selected subset of data is used to establish new
percentile points for each bin containing data. All percentile
points are normalized against the bounding box with shortest
nets. The normalization is done in such a way that the average
discrepancy between the values that correspond to the identical
percentile is minimized. The data is fit using polynomials
of low degree (three and four in our experimentation). The
procedure is repeated a large number of times, the average
value for each of percentile is calculated and fit using a least
linear squares approach. This process was terminated once the
percentile validation method indicated that we achieved user
specified intervals of confidence for the PDF model. The same
procedure is repeated for long nets. Figures 3(a) and 3(b) show
intermediate and final results of the PDF derivation procedure.

F. Interdesign Modeling

Interchip prediction is the task where the objective is
to predict properties using models that are invariant across
different chips. Specifically, our goal is to predict wirelength
on non-analyzed chips using properties of that chip that can
be obtained after floorplanning and properties of nets and
floorplans from chips that are used in the learning phases
of the statistical procedure. Note that our goal is to predict
the distribution of expected wire-length for nets of the design
that are not used to build the statistical model. Therefore,
once a model is built and validated for a single design, we
must establish a means for rapid re-mapping of the wirelength
model to other chips.

For this task, we considered the following atomic chip
properties: (i) the area of the chip; (ii) the number of nets;
(iii) the average and median of half-perimeter bounding box
areas, MST, and convex hulls for all nets (iv) the average
number of terminals per net; and (v) the percentage of the



7

number of nets with a small number of terminals (two, three,
or four). The composite chip metrics included ratios of all
atomic chip properties and their simple statistical measures
such as moments of low orders.

Table II shows the chip level characteristic of the designs.
The first column denotes the name of the benchmark, followed
by the number of chip layers and the number of nets in the
benchmark. The fourth column denotes the total area of the
chip. The overall congestion of the design is denoted in the
fifth column by the total number of nets over the area of
the design. The final column specifies the total number of
terminals in the benchmark. Table III denotes the normalized
average size of the HPBBOX, MST and CHULL for each net
for each design. The statistics are normalized against the area
of the chip.

In the first phase of the work, we statistically developed
a wirelength prediction model for an individual design. A
statistical model was feasible due to the large number of
sample points (tens of thousands), however for interdesign
modeling the number of available designs is limited. Therefore
sound statistical practice strongly suggests not to attempt to
build a statistical model on such a small dataset. It is for
this reason we present an interdesign model built on intuition
and consequently solely test the accuracy of the model using
statistical techniques. Note, that validation of the model is
possible in this case because resubstitution reuses sample
points.

We denote byci and cj the overall congestion of designs
i and j measured by the normalized sum of convex hull
area for each design divided by the total area of the design.
Furthermore, we denote byNLi and NLj the number of
layers used in designsi and j. Our model indicates that the
length of the net in designi (Li) can be calculated using
the length of the net with the same HPBBOX in designj
(Lj) using the following formulaLi = Lj

NLj

NLi
∗( Ci

Cj
)0.48. This

model is built using least linear squares data fitting approach
[27]. We built this model using a randomly selected subset of
four designs. The model was validated against the remaining
designs, as well as by using the resubstitution procedure as
explained in the next Subsection.

In order to illustrate the goodness of fit for the interdesign
model in Table IV we present the accuracy of prediction for
the IBM07 model built using three measures (HPBBOX, MST,
CHULL) on other IBM designs. The first column indicates the
predicted design, while the other three columns present the
R2 error for models built using the HPBBOX, MST, CHULL
properties respectively.

G. Evaluation and Validation

The last step of the modeling procedure was dedicated to
the evaluation of the accuracy of the developed models. We
followed two paradigms: learn-and-test and resubstitution [22],
[23], [9]. In the case of the former procedure, we selected
a subset of nets for building the model. This procedure was
properly applicable only on modeling done on a single design,
since the total number of available designs was too small
statistically for sound application of this type of analysis on

TABLE II

CHIP LEVEL CHARACTERISTICS FORIBM DESIGNS OBTAINED USING

CADENCE ROUTING AND PLACEMENT TOOL.

# # #nets Total
Bench layers nets Area Area Term

IBM01a 8 11507 5.89E+09 1.95E-06 44266
IBM01b 8 11507 5.72E+09 2.01E-06 44266
IBM02a 10 18429 7.65E+09 2.41E-06 78171
IBM02b 10 18429 7.31E+09 2.52E-06 78171
IBM07a 10 44394 1.63E+10 2.73E-06 164369
IBM07b 10 44394 1.55E+10 2.87E-06 164369
IBM08a 10 47944 1.76E+10 2.73E-06 198180
IBM08b 10 47944 1.67E+10 2.87E-06 198180
IBM10a 10 64227 2.97E+10 2.16E-06 269000
IBM10b 10 64227 2.82E+10 2.28E-06 269000
IBM11a 10 67016 2.31E+10 2.90E-06 231819
IBM11b 10 67016 2.19E+10 3.06E-06 231819
IBM12a 10 67739 3.44E+10 1.97E-06 284398
IBM12b 10 67739 3.26E+10 2.08E-06 284398

TABLE III

FLOORPLAN METRICS FORIBM DESIGNS.

Bench HPBBOX MST CHULL

IBM01a 1.30E-06 9.01E-07 1.08E-06
IBM01b 1.28E-06 8.85E-07 1.07E-06
IBM02a 6.44E-07 1.39E-06 2.03E-06
IBM02b 1.63E-06 6.67E-07 1.43E-06
IBM07a 5.25E-07 6.08E-07 6.39E-07
IBM07b 7.38E-07 5.46E-07 6.34E-07
IBM08a 4.79E-07 6.06E-07 6.00E-07
IBM08b 6.46E-07 4.93E-07 6.20E-07
IBM10a 3.33E-07 3.91E-07 4.13E-07
IBM10b 4.12E-07 3.50E-07 4.10E-07
IBM11a 3.35E-07 3.80E-07 3.99E-07
IBM11b 3.51E-07 3.97E-07 4.19E-07
IBM12a 4.07E-07 4.75E-07 5.07E-07
IBM12b 4.00E-07 4.70E-07 5.02E-07

interchip models. Nevertheless, the application of the learn-
and-test procedure on the interchip model indicates very high
consistency, strongly implying that different designs follow
very similar distributions of the wire-lengths for nets charac-
terized by the selected features.

We have applied the learn-and-test validation technique to
both trend modeling and outlier identification. In both cases,
for single chip models, we obtained predictions with 3%
accuracy for more than 96% of instances.

Resubstitution is the technique that effectively resamples
the available data in order to ensure that overfitting is not
conducted. It was applied to modeling at both levels of
abstractions: interchip and intrachip. We created 100 different
subsets of data using uniform random sampling of the data.
For the interchip modeling, we selected 70% of the data for
each subset and built a separate model using the developed
procedure. The percentile analysis indicates that for all results,
the interval of confidence is less than±3% with a probability
higher than 97%. For the interchip modeling, we selected a
random subset that contained between three and five designs.
We repeated this procedure 100 times.

Any time when we do not know the outcome with complete
certainty, there are two parameters that characterize our knowl-
edge about the outcome. The first one is what kind of errors are
possible at all to happen. That component is captured by the
size of the interval of confidence that indicates the amplitude
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TABLE IV

ACCURACY OF IBM07.A INTERCHIP MODEL FOR PREDICTION OFIBM

DESIGNS.

R2- all data HPBBOX MST CHULL

IBM01.a 0.86312 0.87510 0.82344
IBM01.b 0.84481 0.85810 0.80891
IBM02.a 0.77496 0.94100 0.89040
IBM02.b 0.77986 0.89390 0.88873
IBM07.b 0.86292 0.83272 0.79524
IBM08.a 0.91627 0.94573 0.86103
IBM08.b 0.92660 0.96585 0.83922
IBM10.a 0.96559 0.97846 0.88373
IBM10.b 0.95707 0.96343 0.86071
IBM11.a 0.92939 0.92134 0.83882
IBM11.b 0.92241 0.91774 0.83383
IBM12.a 0.88990 0.89081 0.80354
IBM12.b 0.92917 0.93565 0.83707

of error that is expected. Unfortunately in the majority of
situations, we are not able to provide tight bounds on errors
that would be of significant interest to the designer. Therefore
in these situations we use a second parameter, the probability
that the outcomes come out of the range specified by the
interval of confidence. Obviously, if the interval of confidence
is very tight (small in terms of percentage range) and the
probability that the outcome will be within that range, the
prediction model is highly accurate. Specifically, the interval
of confidence +/- 10% indicates that we are considering
the percentage of outcomes that will be within 10% of our
prediction and the probability of 86% indicates that in less
than 14% of the cases that will not happen. This relatively
lower probability was the direct consequence of the fact that
from a statistical point of view relatively few designs were
available. Nevertheless, the percentile analysis [9], [11], [22]
strongly validates the approach and indicates that the statistical
trends have less than a one in billion chance of occuring on
accident.

IV. STATISTICAL WIRE-LENGTH PDF AND CDF MODELS

In this section, we present the obtained statistical wire-
length model. We present the parameters of the model, ob-
tained PDF and CDF, and summarize the model evaluation
results. Although we present a single final model, it is impor-
tant to emphasize that the procedure presented in the previous
Section resulted in a large number of competitive models that
differed relatively little with respect to their accuracy and
interval of confidence. The model that we present was mainly
selected due to its low conceptual complexity and through the
use of a set of features that can be rapidly extracted from the
post-placement designs.

The prediction abilities of the model are illustrated in
Figures 4(a)-5(b). The demonstration example used for the
development of the model is IBM07. It is important to
emphasize that the model was actually developed using only
60% of randomly selected nets. Figures 4(a) and 4(b) show the
normalized net length with respect to HPBBOX for different
sizes of HPBBOX. The continuous lines in these two figures
indicate the prediction models for small and large HPBBOX
respectively. The bottom line corresponds to 10% percentile
and the top line to 90% percentile value. All other lines

indicate the value of expected length for percentiles that differ
by 10% increments. Tables V and VI present the parameters
of the models and the obtainedR2 values. They indicate that
the square of residuals is consistently high. The t-test indicates
that for both sets, the probability of accidental coincidence is
less than10−18. Therefore, it is clear that the model is both
theoretically and practically sound.

As can be seen from the table, the variability of the
net lengths is well captured as indicated by the high value
of the R2 coefficient, in particular for the small HPBBOX
model. There are two main reasons why it is much easier to
accurately predict short nets. The first one is that there are
significantly more short nets than long nets and, therefore,
the statistical model can be developed using a much larger
number of samples. The second reason is that short nets
usually have significantly fewer terminals, simple structure,
and can leverage on relatively small areas of white space in
their vicinity. For longer wires, we see that the prediction of
nets that are almost as short as their lower bound indicated
by the HPBBOX is more accurate than nets that are long. For
the long nets, the model relies on the CART model presented
in the previous Section that has very high consistency. The
CART model-based removal of nets that are predicted to be
significantly longer than the HPBBOX-bound, improves the
R2 for all percentiles to above the 0.95 level, essentially
matching the accuracy of the model for short nets. The CART
model correctly identifies very long nets with accuracy better
than 90%. More importantly, less than 1% of nets longer than
25% than indicated by the HPBBOX linear regression-model
is not detected by the CART model. Finally, note that no short
nets (with HPBBOX value less than 6,000 in either the x or
y direction) were identified as outliers.

TABLE V

L INEAR REGRESSIONFIT PARAMETERS AND R2 FOR SMALL HPBBOX

OF IBM07 DESIGN. COEFFICIENTSa, b, AND c ARE USED FOR THE

QUADRATIC MODEL OF THE FORMax2 + bx + c.

IBM07a - Small HPBBOX Linear Regression Models
Percentile a b c R2

90 9E-09 2E-05 1.1758 0.9876
80 9E-10 5E-05 1.0686 0.9762
70 2E-10 6E-05 1.1175 0.9184
60 -2E-09 5E-05 1.0439 0.9804
50 -4E-09 5E-05 1.0131 0.9849
40 -2E-09 3E-05 1.0055 0.9876
30 1E-09 6E-06 1.0160 0.9854
20 -9E-10 1E-05 1.0038 0.8049
10 1E-09 -3E-06 1.0023 0.9702

Figure 3(a) and 3(b) show a cumulative distribution function
(CDF) and a probability distribution function (PDF) for short
and long nets. The x-axis indicates the normalized discrepancy
against the most likely values. Again, the continuous line
indicates the prediction provided by the model and each plot
point corresponds to the length of the nets in a particular
half-perimeter bounding box bin selected by the resubstitution
procedure. From the PDF figures we can conclude that the
majority of nets are routed using a wire-length that is close to
theoretical minimum and that longer nets are statistically rare.

We evaluated the accuracy and consistency of the PDF and
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IBM07a - Large BBOX Model
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(a) Large HPBBOX Model

IBM07a - Small BBOX Model
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Fig. 4. Linear Regression Model for IBM07 design using Cadence Router: (a) Large HPBBOX Model (B) Small HPBBOX Model

TABLE VI

L INEAR REGRESSIONFIT PARAMETERS AND R2 FOR LARGE HPBBOX

OF IBM07 DESIGN. COEFFICIENTSa, b, AND c ARE USED FOR THE

QUADRATIC MODEL OF THE FORMax2 + bx + c.

IBM07a - Large HPBBOX Linear Regression Models
%ile a b c R2

90 5E-11 5E-06 1.5944 0.7185
80 -1E-11 7E-06 1.3948 0.6268
70 -2E-11 8E-06 1.2767 0.6890
60 -5E-11 9E-06 1.1828 0.7460
50 -3E-11 7E-06 1.1383 0.8111
40 -3E-11 6E-06 1.0981 0.8655
30 -2E-11 5E-06 1.0720 0.9109
20 -3E-11 5E-06 1.0476 0.9033
10 -3E-11 5E-06 1.0135 0.8862

CDF using the resubstitution procedure. We generated 100
different subsets that contain 60% of initial data and build the
PDF and CDF wire-length model. For a hundred randomly
selected points their PDF and CDF values were recorded for
each of the resubstitution models. The non-parametric interval
of confidence was calculated for each point and for the overall
probability and cumulative distribution functions. The analysis
indicates that with a probability larger than 96% the model is
accurate within±7%. It is interesting to note that the interval
of confidence was sharper for the CDF than for the PDF, most
likely as a consequence of the CDF integrating discrepancies
of the PDF.

Finally, Figures 5(a) and 5(b) show a 3-dimensional rep-
resentation of histograms that are formed by selecting bins
according to their ratio of normalized net length versus HPB-
BOX and the size of HPBBOX on the other axis. The z-axis
indicates instead of the conventional number of nets which
belong to a particular bin, the logarithm of this value in order
to provide better visual insight in to the distribution of wire-
lengths of the net for all lengths. The data in Figure 5(a) was
collected after using the Cadence routing tool. The data in
Figure 5(b) is generated using the developed prediction model.

It is easy to see that there exists a close correspondence and
high correlation between data in the two figures, except for
a small subset of bins in the true data that have statistical
anomalies due to the specifics of the actual design.

An important question is to what extent the developed
models and methodology are applicable to different types of
designs and different set of floorplanning and routing tools.
Unfortunately, it is difficult to address this question without
comprehensive statistical studies. Our expectation is that while
models are not directly applicable, they can be relatively easily
retargeted to other design and tool scenarios, in particular if
alternative statistical methods and tools are used for derivation
and validation of new models.

V. A PPLICATION OFSTATISTICAL WIRE-LENGTH MODEL

TO PROBABILISTIC BUFFER INSERTION

In this section, we describe an application of the presented
wire-length model. The common underlying idea is to demon-
strate the superiority of statistical estimation and probabilistic
optimization over the traditional deterministic approach to
design automation. In order to accomplish this objective, we
applied the developed statistical models to the probabilistic
buffer insertion problem.

The buffer insertion problem can be formally stated in the
following way. Given the fan-out wiring tree with parasitic
resistances and capacitances, wire-lengths, potential buffer
locations, sink required times, sink capacitive loads and a
delay constraint at the driving gate, the problem is to place
buffers into the tree such that the required arrival time at the
input of the driving gate is maximum. We also consider the
optimization of the number of buffers used to satisfy the delay
constraint.

The buffer insertion problem was formalized by [28] and
models the fan-out wiring tree as a set of distributed RC
sections. The Elmore delay model [29] is used to compute
the delay of such a wiring tree.
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(a) Actual Data (b) Length generated using Prediction Model

Fig. 5. Logarithm of Histogram of Number of Nets of given Length and given HPBBOX for IBM07 Large HPBBOX.

A detailed methodology for using this modeling effort in
buffer insertion is as follows. First the design needs to be
placed for generating the wire-length models. Then these
models need to be used in a probabilistic buffer insertion
framework. This buffering technique assumes that the place-
ment locations of buffers have already been fixed (note that
traditional Van Ginneken approach for buffer insertion makes
a similar assumption). This optimization effort is following by
routing.

In order to estimate the parasitics for each wire segment we
need to determine the exact wire-lengths. Now let us suppose
that this optimization is being performed during thein-place
modeduring which the exact wire-length is not available. The
only available information is about the bounding box of the
nets. Using the placement information we can generate the
probability distributions of individual wire segments (through
the modeling effort presented earlier) of the wiring tree and
perform buffer insertion probabilistically. Khandelwal et al.
[13] proposed such a probabilistic approach to buffer insertion.
For brevity, we omit the details of that algorithm. We ran
probabilistic buffer insertion on a placed net (placed using
Cadence Qplace) and also traditional buffer insertion [28]
assuming bounding box as the net length estimate. After buffer
insertion, the entire circuit was routed and the net delay was
computed using real wire delay values.

Table VII compares the post routing net delays from prob-
abilistic and traditional buffer insertion. It can be seen that
post routing, the probabilistic approach produces significantly
better results (average of 21% reduction in delay) than a
bounding box based approach indicating the effectiveness of
our models and also the superiority of a probabilistic approach.

VI. CONCLUSION

We have built a compact statistical model that predicts the
probability that a given net will have a particular wire-length.
The model is characterized using a small set of parameters
that are easily extracted from the design’s floorplan. The run-
time of the model is less than one second even for the largest

TABLE VII

POST ROUTING COMPARISON: PROB. VS HPBBOX BASED BUFFER

INSERTION ONIBM08 DESIGN.

Probabilistic HPBBOX
Delay (ps) # Buffer Delay (ps) # Buffer

Net1 1367.03 31 1546.21 24
Net2 865.32 23 983.67 19
Net3 690.46 42 1413.11 40
Net4 1563.21 19 1798.33 16
Net5 2375.49 27 2892.47 20

designs. The model was validated using both learn-and-test
and resubstitution evaluation techniques.

The proposed net length models have a large range of
applicability in emerging probabilistic approaches to design
automation that are rapidly gaining acceptance. We demon-
strated the effectiveness of our model through extensive ex-
perimentation with state of the art commercial and academic
tools.
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