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Abstract

We address the multi-view shape from shading problem, that is the recovery of 3-D shape, lighting configuration and surface
albedo from multiple calibrated views. Previous approaches to this problem relied on physically impossible illumination
models (negative light), and resulted in biased estimates of shape and lighting positions. Furthermore, since the solution
involves infinite-dimensional optimization, existing approaches were quite slow. We develop a new model that explicitly
enforces positivity in the light sources, and show that it significantly improves the accuracy and robustness relative to existing
approaches. Furthermore, we show that the most computationally expensive step in the optimization can actually be solved
in closed form. This significantly improves speed of convergence over existing schemes. We illustrate the behavior of our
algorithm directly on the same data used by previous authors, so direct comparison is possible.

1 Introduction

We propose a method to estimate the shape, albedo and illumination direction from a collection of multiple views of a Lam-
bertian scene. This problem has been named multi-view shape from shading, although it also relates to stereo reconstruction.
It is usually assumed that the view are calibrated, that is the mutual position and orientation of the cameras is known. This
problem has been introduced by Jin et al. [5], who have shown that the problem can be formulated as a global optimization
task with respect to all the unknowns, but the optimization is ill-posed. Being inspired by some classical technics of the SFS
literature (see [8], for example), they have proposed an auxiliary vector field, that can be interpreted as a relaxation of the
model constrained, and they have demonstrated their approach on a collection of real and synthetic images. In their work,
Jin et al. [5] recovered an illumination model that is not physically plausible. In fact, the illumination consisted of point light
sources, some with negative radiance. Therefore, the recovered illumination had no relation to the actual illumination in the
scene.

Here we build on the work of Jin et al. and we show improvements in a number of ways. First, we formulate the
multi-view shading problem in a way that guarantees that the recovered illumination is physically plausible, i.e. has positive
radiance. This model is more complex than [5] because it enforces inequality constraints. Second, we show that one of the
steps of the optimization, indeed the most computationally intensive one where the (infinite-dimensional) auxiliary vector
field is estimated using a gradient flow, can be actually solved in closed form. This results in significant improvements in
speed and robustness. We illustrate our results on the same dataset used by Jin et al. (made available on the web), and show
radical improvement both in the estimation of shape, radiance, and the position of the light, all with significantly reduced
computational complexity.

While one may argue that such improvements are incremental, the increment is quite significant: we improve existing
approaches in accuracy, robustness and speed at the same time. While existing approaches could not be easily integrated with
other reconstruction modalities, for instance multi-view stereo, because of the presence of the auxiliary vector field and the
non-physical nature of the light, that impinges on the estimate of reflectance, our model has the potential of being integrated
with multi-view stereo, at least for Lambertian scenes, since the auxiliary vector field can be solved for in closed-form and
therefore can be factored out of the reconstruction process.
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1.1 Prior Work and our contribution

The work on shape from shading is generally written in [19, 6, 3, 15]. More specifically, the readers are referred to papers
including [9, 14, 20, 11, 7, 10, 16].

Belhumer et al.[17, 1] analyzed the effect of changing lighting on the object appearance for fixed viewpoint. Estimating the
light direction and shape in an alternating way was done by Samaras and Metaxas [2], which differs from our work mainly in
that we consider multiple views, which enable us to recover the whole shape instead of a depth map only. Using variational
methods in shape from shading dates back to the eighties [6, 12]. Yu and Malik [18] showed the work on establishing
illumination configuration with known scene geometry and reflectance. In this article, we only consider the Lambertian
objects.

A closely related work is that of Jin et al [5],who combine the reconstruction of shape and light configuration together and
solve the variational problems via level set methods. This work differs from ours in that the authors allows the light, whatever
point light source or ambient term, to be negative, which is not physically possible. They introduced an auxiliary vector field
to replace the normal direction for increasing stability, but fails to yield an estimate of the auxiliary vector field, which affect
the reconstruction of light configuration.

In this article, our approach mainly differs from [5] at three aspects: first, we add the positive constraint for the light
sources of both ambient light and point light source; second, we give a closed-form function for the auxiliary vector field,
which is proved strictly in this article; third, we optimize the energy function with respect to the ambient term and point light
sources simultaneously, which avoids the local minimum problem in the alternative method. We demonstrate its performance
on the experiments both on synthesized data and real data and prove the stability, accurateness and robustness of the proposed
algorithm for even sophisticated shapes having sharp changes.

2 Problem Formalization

LetS ∈ R3 be a smooth surface. We denote withX = [x, y, z]T the coordinates of a generic point onS with respect to a fixed
reference frame. The goal is to reconstruct the surfaceS and the light sources from a set ofn imagesIi : Ωi → R, i = 1, ..., n,
whereΩi ⊂ R2. The intrinsic and extrinsic calibration parameters for each image are assumed to be known [4]. Thus each
camera can be modeled as a perspective projectionπi : R3 → Ωi;X → xi = πi(X) = π(Xi), whereXi is the coordinates
of X in the i-th camera reference frame.X andXi are related by a rigid body transformation, that isXi = Ri X +Ti.
We assume that there is a backgroundB covering the field of view of each camera. We also assumeB to be a sphere with
infinite radius and define the foreground projection to be the regionQi = πi(S) ⊂ Ωi and denote its complement inΩi by
Qc

i . We also define the back-projectionπ−1
i : Ωi → R3 of xi ontoS, which could be the first intersection point withS of a

ray starting from thei-th camera center and passing throughxi.
We assume that both the foreground and background are Lambertian. The radiances are modeled as scalar-valued func-

tions:
ρ : S → R, and h : B → R, (1)

The surface is assumed to have constant albedo, without loss of generality, to be1. Therefore, the varying image appearance
is only generated by the lighting configuration and the scene geometry. We assume that the true light configuration could be
approximated by a superposition of two different component: ambient termE0 and distant positive point light sources.

For distant point light sources,ρ(X) = k〈N(X) , L〉ξ(X), wherek denotes the intensity of the light source,L the unit
vector pointing in the direction of the light,N the surface unit outward normal andξ : S → {0, 1} the visibility of the light.
In the case of convex objects, the visibility is given byξ = H(〈N,L〉), whereH denotes the Heaviside step function.

Thus we can write the image formation model as:

I(X) = k〈N(X), L〉ξ(X) + E0. (2)

Our model differs from [5] mainly in that we add a positive constraint on both ambient term and intensity of point light
source for the sake of guaranteeing physical constraint, that is,E0 ≥ 0 andk ≥ 0. Actually in [5], its light model introduced
a negative light (i.e. the intensityk of the light can be negative), which is not physically correct. The proposed light model in
this article fulfills the physical constraints and works well for recovering shape and light configuration with contributions on
the numerical solution.
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3 Optimization Problem formulation

For the sake of recovering the shape and light configuration simultaneously, we propose to minimize the following energy
function.

Etotal = Edata + αEprior + βEcoupling =
n∑

i=1

∫
S

χi(Ii(πi(X))−max(〈kV (X), L〉, 0)− E0)2σidA

+
n∑

i=1

∫
Qc

i

(
Ii(π(X))− h

)2
dΩi + α

∫
S

dA + β

∫
S

(
1− 〈V (X), N(X)〉

)
dA.

We have two more concepts here:χi is the visibility function of a pointX on surfaceS with respect to thei-th camera,
i.e. χi(X) = 1 for points onS that are visible from thei-th camera andχi(X) = 0 otherwise.σi represents the change of
coordinates fromdΩi to dA, i.eσi = dΩi

dA = 〈Xi, N〉/Z3
i . α, β are the coefficients forEprior, Ecoupling. h is the estimation

of background intensity.
V is the auxiliary vector field as a relaxed version of normal vectorN [5]. V takes the place of theunit normal in modeling

the shading effects and is supposed to resolve the instability of the approach which directly use normal direction in modeling
shading. Although [5] introduced the conceptV , it did not work well in optimizingEdata with respect toV and even result
in the failure in recovering lights. In this article we propose a closed-form solution for V in section 3.2 and verify its great
impact on the energy minimization.

3.1 Updating the Surface S

By fixing V, k, L, E0, h , we first propose to update shapeS to decreaseE as the following gradient descent flow:

St =
( n∑

i=1

1
Z3

i

(
(Ii − (k〈V,Lξ〉+ E0))2 − (Ii − h)2

)
·
〈
∇χi, R

T
i Xi

〉
−

n∑
i=1

2χi

(
Ii − k〈V,Lξ〉 − E0

)(
ξkLT∇SV RT

i Xi + k 〈V,L〉 〈∇ξ, RT
i Xi〉

)
+ (2H(α + β)− β∇S · V )

)
N.

The numerical implementation of the flow is carried out in the level set framework [13]. The next step would be to fixS and
minimizeE with respect toV, L, E0, h. We divided this step into the following two parts while considering the positive
constraints.

3.2 Updating the Auxiliary Vector Field V

Fix k, L, E0, h, for each pointX on surfaceS, we search forV to minimizeE . In the minimization process, we need to
guarantee that‖V ‖ = 1. [5] proposed to updateV with an iterated process. Unfortunately there is no strict proof that the
strategy would guarantee the convergence ofV . Besides the experiments in this article would verify that its instability would
prevent the algorithm from recovering the true shape and light configuration.

We propose to give a closed-form representation for auxiliary vector fieldV . In order to parameterizeV , without loss of
generality, we letV = (p, q,

√
1− p2 − q2). Thus the minimization problem ofE over vector fieldV is transformed into

the minimization over the vector field(p, q). The gradient ofE over (p, q) is ∇E(p, q) = (dE
dp , dE

dq ). For each pointX on
shapeS, the minimization condition is : (

dE
dp

= 0,
dE
dq

= 0.
(3)

Besides, according to the derivation over compound function, we have8>>>>>><
>>>>>>:

0 = dE
dp

= dE
dV
|
V =(p,q,

√
1−p2−q2)

. dV
dp

= dE
dV
|
V =(p,q,

√
1−p2−q2)

.(1, 0,− p√
1−p2−q2

)T ,

0 = dE
dq

= dE
dV
|
V =(p,q,

√
1−p2−q2)

. dV
dq

= dE
dV
|
V =(p.,q,

√
1−p2−q2)

.(0, 1,− q√
1−p2−q2

)T .

(4)
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Accordingly, there exists a real scalarγ , such that

dE

dV
|
V =(p,q,

√
1−p2−q2)

= γ.(p, q,
p

1− p2 − q2)T . (5)

According to the definition ofE, we have that

dE

dV
|
V =(p,q,

√
1−p2−q2)

=
n∑

i=1

χi(2Ii − 2〈(p, q,
√

1− p2 − q2)T , kLξ〉 − 2E0)kLξσi + βN.

By combining the above two equations, we have:

n∑
i=1

χi(2Ii − 2〈(p, q,
√

1− p2 − q2)T , kLξ〉 − 2E0)kLξσi + βN = γ(p, q,
√

1− p2 − q2).

The above nonlinear equation system for(p, q, γ) is with three unknowns and three equations actually. To solve it, we
introduce an equivalent and easier form of the above equation as follows:

nX
i=1

χi(2Ii − 2〈V, kLξ〉 − 2E0)kLξσi + βN = γV,

⇔ γV = −〈V, kLξ〉(kLξ)(

nX
i=1

2χiσi)

+(βN + kLξ

nX
i=1

2χi(Ii − E0)σi),

‖V ‖ = 1, V ∈ R3. (6)

If ξ = 0, obviously the solution isV = ~N/‖ ~N‖; else we let(
~G = (Lξ)(

Pn
i=1 2χiσi),

~H = βN + Lξ
Pn

i=1 2χi(Ii − E0)σi.
(7)

Thus we could get that (
‖(γ.I3∗3 + ~G.LT )−1 ~H‖2 = 1,

V = (γ.I3∗3 + ~G.LT )−1 ~H.
(8)

In the above Equations,~G, LT , ~H are known, thus we could simply getγ via Newton-methods with the initial valueγ
determined by the previousV and other parameters in the above equation onγ. Actually as for the initialization ofγ, since
we have known the previousV ∗, we could just simply get it by solving the following linear minimization problem

argminγ‖
nX

i=1

χi(2Ii − 2〈V ∗, kLξ〉 − 2E0)kLξσi + βN − γV ∗‖. (9)

After calculatingγ, we could getV from the second equation of (7), which minimizesE and fulfill the requirement of
‖V ‖ = 1.

3.3 Updatingk, L and E0

In this process, we fixS, V , and want to minimizeE with respect tok, L, E0 andh.
Minimization with respects toh:
For the sake of minimizingE overh, h should satisfy

h =

Pn
i=1

R
Qc

i
IidΩiPn

i=1

R
Qc

i
dΩi

. (10)

Minimization with respects tok, L andE0:
In [5], the model introduces a negative light which is not physically correct. In particular, the variablek representing the

4



intensity of the light is optimized inR. Here we propose a light model which really fulfills the physical constraints. Also,
we enforcek to be nonnegative. As a consequence,k must be optimized inR+. In order to simplify this step, we introduce a
variableL̃ ∈ R3:

L̃ = kL.

Thanks to this new variable, we can simply and equivalently rewrite the positivity constraint as:

k ≥ 0 ⇔ k〈N(X), L〉ξ(X) = 〈N(X), L̃〉ξ̃(X),

whereξ̃(X) = H(〈N, L̃〉). Thus, instead of processing an optimization on(k, L) ∈ S(0, 1) × R+ which may be relatively
sophisticated, we process an optimization onL̃ ∈ R3 (which is considerably easier to implement).

Let us remind that [5] proposed to retrieveE0 and L̃ respectively, that is easily trapped into local minimum, i.e. the
approach may always keep away from the true intensity of light source all along. To see the failure resulted in by the
approach, we conduct comparison experiments.

In this article, we propose to minimizesimultaneouslythe energy function with respect tõL andE0 with the positive
constraint ofE0 ≥ 0. We let the Lagrange function be as follows:

nX
i=1

Z
S

χi(Ii − 〈V, L̃ξ̃〉 − E0)
2σidA +

nX
i=1

Z
Qc

i

�
Ii − h

�2
dΩi

+α

Z
S

dA + β

Z
S

�
1− 〈V, N〉

�
dA + λE0 = 0. (11)

The Kuhn-Tucker condition for the above Lagrange equation is :8>>>><
>>>>:

1)E0 ≥ 0,

2)λE0 = 0,

3)
Pn

i=1

R
Qi

(Ii − 〈V, L̃ξ̃〉 − E0)V ξ̃dΩi = 0,

4)
Pn

i=1

R
Qi

(Ii − 〈V, L̃ξ̃〉 − E0)dΩi + λ = 0.

(12)

λ ≥ 0; We now focus on the definition field of the above problem. If the optimization is retrieved within the field of
{E0 | E0 > 0} . Thenλ = 0. Thus according to (12.3) and (12.4) we have(

E0 =
Pn

i=1

R
Qi

(Ii − 〈V, L̃ξ̃〉)dΩi/
Pn

i=1

R
Qi

dΩi,

L̃ = (
Pn

i=1

R
Qi

V V T ξ̃dΩi)
−1(
Pn

i=1

R
Qi

(Ii − E0)V ξ̃dΩi).
(13)

In order to simply the above equations, we let8>>>>>><
>>>>>>:

M =
Pn

i=1

R
Qi

V V T ξ̃dΩi,

A =
Pn

i=1

R
Qi

IidΩi,

B =
Pn

i=1

R
Qi

dΩi;

V ∗ =
Pn

i=1

R
Qi

V ξ̃dΩi,

p∗ =
Pn

i=1

R
Qi

IiV ξ̃dΩi.

(14)

By using the following abbreviations, which are all known, we could simplify the equations as follows:(
E0 = (A− 〈V ∗, L̃〉)/B,

L̃ = M−1(p∗ − E0V
∗).

(15)

The above abbreviations are all known. By combining the two equations of the above, we have that :

L̃ = M−1(p∗ − (A− 〈V ∗, L̃〉)V ∗/B).

So
L̃ = 〈V ∗, L̃〉(M−1V ∗)/B + M−1(p∗ −AV ∗/B). (16)

We introduce two new vector variables to simplify the above equation: one is~α, another is~β

~α = (α1, α2, α3) = (M−1V ∗)/B; ~β = (β1, β2, β3) = M−1(p∗ −AV ∗/B). (17)
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Thus we have

(L̃1, L̃2, L̃3)
T

= (V ∗
1 L̃1 + V ∗

2 L̃2 + V ∗
3 L̃3)(α1, α2, α3)

T + (β1, β2, β3)
T . (18)

We let

W3∗3 =

2
4 (V ∗

1 α1 − 1) V ∗
2 α1 V ∗

3 α1

V ∗
1 α2 (V ∗

2 α2 − 1) V ∗
3 α2

V ∗
1 α3 V ∗

2 α3 (V ∗
3 α3 − 1)

3
5 . (19)

Thus we have
W3∗3L̃ = −~β. (20)

The above is a simple 3D linear algebra problem forL̃, we can easily derivẽL. Now, from the representation ofE0

with respect tõL, we can deriveE0. If it is greater than zero, then it is what we are searching for and thusL̃ is also fixed.
Otherwise, we have to look for the minima within the field{E0 | E0 = 0}. Then the problem is much easier. We can derive
L̃ from (12.3) as follows becauseE0 = 0 .

L̃ =

 
nX

i=1

Z
Qi

V V T ξ̃dΩi

!−1 nX
i=1

Z
Qi

IiV ξ̃dΩi

!
. (21)

4 Experiments

For the sake of testing the performance of recovering shape and light configuration, we compare the enhanced stereo algo-
rithm with positive constraints and closed-form of Vector field and the non-enhanced algorithm [5] via experiments on both
synthesized data and real data. We first did experiments on a synthesized data: 14 images from different viewpoints for a ball
with radius 8 lighted by a directional light sourceL̃ with directionL(0,0,1) and an ambient term. The 1st one is: The intensity
k = 100 and and ambient light source intensityE0 = 100. We also conducted experiments on other light configuration for
the synthesized data: one strong point light source ofk = 100 with weak ambient term ofE0 = 30;

For the1st experiment on synthesized data, we compare the shape result of the enhanced algorithm and the non-enhanced
algorithm in Figure 1, which also compares the vector field, an important factor for evolution. It is shown from figure 1 that the
enhanced algorithm leads to much more accurate shape and vector field. We also show the light configuration reconstruction
results including the ambient term intensity and the intensity of point light source, in figure 2. With the enhanced algorithm,
the light configuration quickly converges to the ground-truth value, while the existing algorithm always keep away from the
true value. The experiments indicate that the positive constraints and the simultaneous updating ofE0 andL̃ help to recover
the light configuration better. The table shown in figure 4 lists the final results comparison of the light configuration.

For2nd experiment on different light configuration on synthesized data, we show the iteration process of ambient intensity
and intensity of point light in Figure 3. It is given that the enhanced algorithm generates fairly accurate light configuration
while the alternative one rarely converges to the true result or even fails to converge. Furthermore, we conduct the experiments
on the real data and compare the result in a very direct and obvious way with the existing algorithm. In this experiment, there
are 28 calibrated images of a dancer doll data of approximately uniform albedo. The doll is illuminated with a standard
fluorescent overhead lamps and by an additional strong light. Figure 5 shows 4 representative views, which shows the strong
point light source on the head of the doll.

We ran our enhanced algorithm with one positive light source and one ambient term. We choose 3 representative views
to compare the shape results of the two algorithms. The reconstructed object shape is shown in the lower row of Figure6.
The comparison result of the existing method is shown in the upper row of Figure 6. ¿From the experiment, the enhanced
algorithm gains better performance than the alternative one, especially in the parts including the two hands, the two hair
buns, the buttocks and the eyes, where the normal direction of the points vary sharply. The proposed algorithm extracts the
shape of the thumbs and the rest four fingers clearly. Besides, the two hair buns and the buttocks are recovered obviously and
could be easily discerned with respect to the neighborhood parts. We draw different lines to help to show the difference of
performance of the two algorithms.

We carefully analyze the root of the proposed algorithm’s better performance over alternative approaches. We find out
that in the enhanced algorithm, the closed-form vector field helps to build up an accurate and robust description of normal
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Figure 1: The final shape and vector field. The left one is of the enhanced algorithm;The middle one is of the non-enhanced
algorithm; The right one is of the ground truth object shape and its vector field.

Figure 2:Ground truth ambient intensity is 100 and the intensity of point light is 100 also. The left figure shows the iteration
process of the intensity of point light source; At step 100, the enhanced algorithm converges to satisfying result, while the
alternative one keeps away from the ground-truth value. The right figure shows the iteration process of the ambient intensity.
At the 150th step, the enhanced algorithm converges to satisfying result, while the alternative one keeps oscillating.

Figure 3: Ground truth ambient intensity is 30 and the intensity of point light is 100. The left figure shows the iteration
process of the intensity of point light source; The enhanced algorithm finally converges to 98.0, while the non-enhanced one
keeps far away from the ground-truth all along.The right figure shows the iteration process of the ambient intensity. At the
300th step, the enhanced algorithm converges to satisfying result 29.5, while the alternative one keeps away from the true
value ,30.

direction and thus makes the shapes converge to the ground-truth result. The vector field results of hands,buttocks and hair
buns are shown in figure 7 and 8. In further, the final light configuration converges to : Ambient term: 85.1; Directional Light
source : 89.5 *(0.009,-0.252, 0.959).
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Light parameters Enhanced Algorithm Non-enhanced algorithm Ground Truth.
L (0.000,0.001,0.999) (0.015,-0.010,1.000) (0.000,0.000,1.000)
E0 98.4 105.2 100.00

Intensity of point light 98.5 77.2 100.00

Figure 4: The table compares the results of light parameters with the enhanced algorithm and the non-enhanced algorithm

Figure 5:Example views of the input data set consisting 28 views of a dancer model on a table. The head is much brighter
than the rest part because the head is facing the spot light.

Figure 6: The comparison of the reconstructed shape of the dancer data between the enhanced algorithm and the non-
enhanced algorithm. We give images of the object from 3 representative viewpoints. The upper row is images from the
non-enhanced algorithm. The lower one is images from the Enhanced algorithm.

5 Conclusion

We have introduced an image-formation model for Lambertian scenes viewed from multiple calibrated viewpoint under a
collection of point light sources. Unlike previously proposed models, we explicitly enforce positivity of the light sources,
and therefore our model is physically plausible. We develop a novel algorithm for the estimation of shape, albedo and
lighting position. This algorithm significantly improves the prior art on all grounds: accuracy, robustness and speed. More
specifically, we develop a novel solution for the auxiliary vector field that represents the normal to the surface in closed
form. This was the most computationally expensive step of existing algorithm. Furthermore, the positivity constraint that
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Figure 7: The vector field result for Hand(Left image) and the buttock(right one)

Figure 8: The vector field result for the Hair buns

we enforce allows us to recover an illumination model that is physically plausible, and we show that it allows for fairly
accurate estimation of lighting position. Of course, in laboratory environments the light is never ideal, as there are inter-
reflections, diffuse illumination etc., but our model approximates the real illumination in the best possible way, as measured
by the discrepancy between the real images and those generated by our model. We have demonstrated the performance of our
algorithm directly on the same data set of previous approaches to the same problem, which shows a significant improvement
on all fronts.
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