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Abstract

Current local feature detectors/descriptors implicitly assume that the scene is (locally) planar, an assumption that is violated at
surface discontinuities. We show that this restriction is, at least in theory, un-necessary, as one can construct local features that
are viewpoint-invariant for generic non-planar scenes. However, we show that any such feature necessarily sacrifices shape
information, in the sense of being non shape-discriminative. Finally, we show that if viewpoint is factored out as part of the
matching process, rather than explicitly in the representation, then shape is discriminative indeed. We illustrate our theoretical
results empirically by showing that, even for simplistic scenes, current affine descriptors fail where even a naive 3-D viewpoint
invariant succeeds in matching.

1. Introduction

Visual classification plays a key role in a number of applications and has received considerable attention in the community
during the last decade. The fundamental question is easy to state, albeit harder to formalize: when do two or more images
“belong to the same class”? A class reflects some commonality among scenes being portrayed [12, 15, 22, ?]. Classes that
contain only one element are often called “objects,” in which case the only variability in the images is due to extrinsic factors
— the imaging process — but there is no intrinsic variability in the scene. Extrinsic factors include illumination, viewpoint, and
so-called clutter, or more generally visibility effects. Classification in this case corresponds to recognition of a particular scene
(object) in two or more images. In this manuscript we restrict ourselves to object recognition. While this is considerably simpler
than classification in the presence of intrinsic variability, there are some fundamental questions yet unanswered: What is the
“best” representation for recognition? Is it possible to construct features that are viewpoint-invariant for scenes with arbitrary
(non-planar) shape? If so, are these discriminative? In fact, do we even need a notion of “feature” to perform recognition? We
wish to contribute to formalizing these questions, and where possible give precise answers, as summarized in Sect. 1.3.

1.1. Generalized correspondence

The simplest instance of our problem can be stated as follows: When do two (or more) images portray (portions of) the same
scene? Naturally, in order to answer the question we need to specify what is an image, what is a scene, and how the two are
related. We will make this precise later; for the purpose of this introduction we just use a formal notation for the image I and
the scene £&. An image I is obtained from a scene £ via a certain function(al) h, that also depends on certain nuisances v of the
image formation process, namely viewpoint, illumination, and visibility effects. With this notation we say that two images are
in correspondence' if there exists a scene that generates them
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for some nuisances vy, vo. Matching, or deciding whether two or more images are in correspondence, is equivalent to finding a
scene ¢ that generates them all, for some nuisances v;,7 = 1,2, . ... These (viewpoint, illumination, occlusions, cast shadows)

could be estimated explicitly as part of the matching procedure, akin to “recognition by reconstruction,” or they could be
factored out in the representation, as in “recognition using features.” But what is a feature? and why do we need it? We
will address these questions in Sect. 2.2. In the definition of correspondence the “="" sign may seem a bit strong, and it could
certainly be relaxed by allowing a probabilistic notion of correspondence. However, even with such a strong requirement, it
is trivial to show that any two images can be put in correspondence, making this notion of correspondence meaningless in
lack of additional assumptions. Probabilistic assumptions (e.g. priors) require endowing shape and reflectance with probability
measures, not an easy feat. Therefore, we choose to make physical assumptions that allow us to give a meaningful answer to
the correspondence problem. This problem naturally relates to wide-baseline matching [31, 13, 13, 10, 20].

Note that there is no locality implied in this definition, so correspondence here should not be confused with point-correspondence.



1.2. Lambertian scenes in ambient light

While global correspondence can be computed for scenes with complex reflectance under suitable assumptions, local corre-
spondence cannot be established in the strict sense defined by (1) unless the scene is Lambertian, and even then, it is necessary
to make assumptions on illumination to guarantee uniqueness [8]. In particular, one can easily verify that if the illumina-
tion is assumed to be constant (ambient, or “diffuse”) then local correspondence can be established. We therefore adopt such
assumptions and relegate all non-Lambertian effects as “disturbances.”

We can now make the formal notation above more precise: We represent an image as an array of positive numbers: [ : D C
R? — R, ; z — I(z). A Lambertian scene is represented by a collection of (piecewise smooth) surfaces embedded in R3,
which we indicate collectively by S C IR3, that support a positive-valued function p : S — R, with bounded variation, called
albedo. So, the scene is described by £ = {5, p} where both shape and albedo are infinite-dimensional objects (functions).

The scene and the image are related by an image formation model. This requires specifying a viewpoint, i.e. a moving
reference frame ¢g; € SE(3), where SE(3) denotes a Euclidean reference frame (rotation and translation relative to a fixed
reference frame), and an illumination. In the case of ambient illumination, to first approximation’ we have a global scaling o
and an offset 3;. The overall model can thus be written as

Ii(z1) = cup(p) + Br + nu()
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where m : R? — R? is the perspective projection and n; is a “disturbance” term that includes all the nuisances that are
not explicitly modeled. The nuisance proper here is limited to viewpoint and illumination, v = {g;, oy, 5:}. We have so
far neglected visibility effects (occlusions and cast shadows), which we will address in Sect. 2.2. Eq. (2) is reminiscent of
deformable templates [35, 9, 16], although here we do not know the template p.

1.3. State of the art and our contributions

The non-existence of general-case view invariants [6] has often been used to motivate local descriptors, for instance affine
invariants. The results of [6], however, pertain to collections of points in 3-D space with no photometric signature associated
to them. When one measures image intensity, on the other hand, we show that viewpoint invariance can be achieved for scenes
with arbitrary (continuous) shape, regardless of their albedo, under suitable conditions which we outline in Sect. 2.1. While
this result seems obvious in the aftermath, and by no means undermines the importance of affine descriptors, we believe it is
important to state it precisely and prove it for the record, which we do in Theorem 1. The flip-side of general-case viewpoint
invariants is that they necessarily sacrifice shape information, and therefore discrimination has to occur based solely on the
photometric signature (Sect. 2.1). This result is straightforward to prove (Theorem 2), but since nobody has done so before,
we believe it is important. It also explains the empirical success of “bags of features” in handling viewpoint variations [?].
Finally, we show that if viewpoint is factored out as part of the matching process, rather than in the representation, then
shape information is retained, and can be used for discrimination. This may contribute to the discussion following [30] in the
psycho-physical community. On illumination invariants, [8] showed that even for Lambertian scenes they do not exist. While
they used a point light source model, diffuse illumination is perhaps a more germane assumption for cloudy days or indoor
scenes, due to inter-reflections [21]. As we show, invariance to such a first-order model of Lambertian reflection in diffuse
illumination can be easily achieved with our approach (Sect. 2.3). In deriving our results we lay out a general framework
for designing detector/descriptor pairs that allows for comparison of existing algorithms on analytical grounds, in addition to
experimental [28]. Our approach is reminiscent of [2], although more general. For the benefit of the reader that is unappreciative
of theory alone, we illustrate our results with simple experiments that show that even a naive 3-D viewpoint invariant can support
matching whereas current affine descriptors fail (Sect. 3). Of course, existing descriptors only fail at discontinuities, so our
work serves to validate existing methods where appropriate, and to complement them where their applicability is limited. The
point of this section is not to advocate use of our detector/descriptor as a replacement of existing ones. It only serves to illustrate
the theory, and to point out that some of the restrictions imposed on existing methods may be un-necessary. The topic of this
manuscript relates to a vast body of work in low-level image representation, recognition, wide-baseline matching, segmentation.
We will therefore point out relationship throughout the manuscript. More discussion and a list of common objections to our
theory can be found in Sect. 4.

2. Recognition using features

We define a feature to be any image statistic, that is a known vector-valued function(al) of the image: ¢(1) € R¥. In particular,
the image itself is a (trivial) feature, and so is the function ¢(I) = 0V I. A feature ¢(I) = »({I(z), z € Q C D}) where

2More precisely, the radiance at p € S is given by R(p) = p(p) fvp (Vp, A)dA(X) where vy, is the normal and V}, the visibility cone at p and dA is the
area form on the light source [21]. We coarsely approximate this model with a global affine transformation in (2).
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Figure 1: Viewpoint invariant features sacrifice shape information by collapsing all homeomorphic closures of allowable warps
onto a single equivalence class (see text for explanation).

D is the domain of the image, is called a local feature. Obviously, of all features, we are interested in those that facilitate
correspondence between two images I, I, or equivalently recognition of the scene £. This requires handling the nuisance v,
either in the correspondence process (expensive) or by designing features that are invariant with respect to the nuisance. A
feature is invariant if its value does not depend on the nuisance: ¢(I) = ¢ o h(&,v) = po h(&, p) Vv, p.

As we have mentioned, ¢(I) = 0V I is a feature, and indeed it is an invariant one. Alas, it is not very helpful in the
correspondence process Therefore, one can introduce the notion of discriminative feature when two different scenes yield
different statistics:® &1 # &3 = ¢ o h(&1, 1) # ¢ o h(€2,v) ¥V u, v. In particular, we say that a feature is shape-discriminant if
scenes with different shape (but possibly identical albedo) result in different statistics, and similarly for albedo-discriminant.

2.1. Viewpoint invariant features

In this section we address viewpoint invariance, and therefore assume a; = 1 and 3, = 0V ¢ in eq. (2) until Sect. 2.3; we also
assume no self-occlusions until Sect. 2.2, and therefore parametrize the surface S as 2 C R? — R, 2z +— S(z) = [zT 2(z)]T
for some choice of local coordinates, for instance x = 7(p). Since both p and S are unknown, and we only measure their
composition through I;(x;) = p o S(x), we rename the function p = po S. Similarly, we call wy; = 7og;0S : Q C R? — R?
the function that maps the point z to the point z;. This yields the following simplified model:

Iw) = p(z), we€Q 5

xp = wi(x).
We have dropped the generic “disturbance” term n; since that only affects the inference technique, not the general modeling
paradigm and invariance considerations. Under these assumptions, w; are homeomorphisms; as such, they induce a partition of
the set of images I (z) into equivalence classes. Any function that maps I(z) to a unique representative I (x) of its equivalence
class [I(x)] provides a viewpoint invariant. In particular, ¢(I) = {p(x), * € Q} is the maximal invariant (in the sense of
inclusion, see Appendix A , uploaded as supplementary material, for details). This is a sketch of the argument that proves the
following result.

Theorem 1 (Viewpoint invariants exist ...). Given an image of a Lambertian scene with continuous (not necessarily smooth)
surfaces and no self-occlusions, viewed under diffuse illumination, there always exist non-trivial viewpoint invariants.

The actual proof is constructive, and forms the basis for the design of general viewpoint invariant descriptors. Since it is
somewhat technical we report it in Appendix A (uploaded). In Sect. 2.3 we show a simplified version of this construction.
The restriction of this theorem to planar scenes is straightforward and forms the basis of the motivation behind affine invariant
descriptors [27, 19, 32]. The claim is also latent in [4, 13, 26] for more general transformations, although to the best of our
knowledge it has never been stated explicitly nor proven before.

Ideally one would like an invariant descriptor to be a “signature” of the scene, i.e. different scenes should result in different
descriptors. Alas this cannot happen, as any viewpoint invariant necessarily sacrifices shape information. This is illustrated in
Fig. 1 and proven below. The theorem is true for any viewpoint invariant, not just those that satisfy the sufficient conditions of
Theorem 1, although we will adopt such assumptions for simplicity.

Theorem 2 (... but are not shape-discriminant). Under the hypotheses of Theorem 1, given a viewpoint invariant feature ¢, for
any scene with shape S1 that yields an image I there exists a scene with shape S # S that yields an image I # Iy such that

P(I2) = ¢(I1).

3This definition can be relaxed as 3 &1 # &2 | ¢ o h(€1, 1) # ¢ o h(€2, v) as proposed in [8].




Proof (sketch). Let a scene &1 have surface S (x) parametrized as the graph of a function, which is possible in the absence of
self-occlusions, and similarly for a scene £-. Let I; be the image generated by S for some albedo p;, and let I, be the image
generated by the same scene under a different viewpoint, specified by g1: I = h(&1,91). Note that by assumption we have
o(I,) = ¢(I). Now select “any surface Sy(z) # S1(w) that is not occluded from both v1ewp01nts that generated I; and I,
and back-project the image /; onto S, to generate /5. Then we have I (z) = L(mg1S1(x) = 11 (%) = (%) = Io(7Sa(E)).
Tr1v1ally, since I; = I, we have qS(I 1) = qS(Ig) Now take an image of the scene &> from a different vantage point go to get
Ir(z) = I(mgaSa(x)). Unless albedo is constant, in general Iy # I, while ¢(I2) = ¢(Iy) = ¢(I1) = ¢(I1). O

While the proof is simple, the claim is powerful because it shows that if we want to be viewpoint invariant, we have to “throw
away” shape information. This does not mean that viewpoint invariant features are useless! In fact, scenes with different albedo
yield different invariant descriptors, that are albedo-discriminative. The theorem suggests that approaches that do away with
restrictive geometric variations in the configuration of feature descriptors in favor of loser topological requirements [?] or coarse
quantization [3] of feature positions may be more robust to extreme viewpoint variations.

Also, the theorem does not imply that we cannot recognize objects that have different shape but the same albedo! Indeed,
consider two scenes with different shape but identical albedo, e.g. p = const., each generating an image I; and /5, for instance
the geometric structures of [30]. Now, given a new image I we want to decide whether I comes from &; or £&;. While this
is not possible with a viewpoint invariant feature (as we show in App. A and briefly sketch below we can construct general
homeomorphisms that make their feature coincide ¢(I,) = ¢(I) = _¢(I2)), it is still possible if the viewpoint is marginalized
as part of the matching process (“recognition via reconstruction”): I « I; < 3&;,95,p,G | I = h(&;,§) = h(&;, g;). In this
idealized case with no disturbance or uncertainty, the test will succeed for elther 7 = lorj = 2. This argument can be used to
prove the following:

Theorem 3 (Matching shapes). Discriminating scenes made of continuous surfaces with different shape but identical albedo
from images that yield no self-occlusions can only be performed by estimation of the viewpoint as part of the matching process.

Note that the estimate of the viewpoint may not be unique, as long as it yields a valid viewpoint-induced warp, as opposed
to a general one. A pictorial illustration of this phenomenon is shown in Fig. 1. While the transformation from [; to I can be
performed by changes of viewpoint alone (but not shape), and the same for the transformation from /s to I,, the composition
of the two requires a change in shape. In other words, while the dotted orbit w () = 7w(g[z”, 21 (x)]) and the dashed one
wa(z) = m(g[xT, z2(x)]T) can be implemented by a change in viewpoint, their composition (solid line) cannot, and is instead
a more general 2-D homeomorphism w(z) = [f1(z), f2(x)]*. However, the computation of the feature collapses these three
orbits onto the same equivalence class, making it impossible to distinguish warps that are due to changes in viewpoint (such as
w1, ws2) and those that are more general (such as w) (see App. A).

To avoid confusion, note that here “shape” means the 3-D geometry of the scene S. If we have, say, a planar contour,
which we can view as a binary image p, we can build a viewpoint invariant descriptor (e.g. [3]) that can be legitimately
used to recognize shape without searching for viewpoint during the matching procedure. Note, however, that the descriptor is
albedo-discriminative, and it is only accidental that the albedo is used to represent (2-D) shape. Similarly note that the scene
here includes everything visible, so the theorem does not apply to cases where the occluding boundary provides discriminative
features, say to recognize a white sphere from a white cube on a black background. Finally, note that the notion of viewpoint
can be generalized to an equivalence class under the action of a group, for instance the 3-D projective group, so that no explicit
reconstruction is necessary during the matching phase.

2.2. Why features?

Before we marry to the notion of feature it is useful to recall Rao-Blackwell’s theorem ([33], page 87) that, adapted to our
context, claims that there is no advantage in using features, as opposed to using the entire data I, I». That is, unless we could
eliminate the nuisance v without “throwing away information” on the scene £.* Unfortunately, Theorem 2 says that this is not
possible: in order to achieve viewpoint invariance, shape information has to be sacrificed. In light of this result, then, does it
still make sense to use features?

Posing the correspondence problem as an optimal decision requires marginalizing nuisances, that are infinite-dimensional
unknowns living in spaces that are not easily endowed with a metric (let alone probabilistic) structure. Therefore, unless we
are willing to perform recognition by reconstructing the entire observable component of the scene and its nuisances, the use
of invariant statistics seems to be the only computationally viable option. However, by choosing a viewpoint invariant we are
agreeing to give up some discriminative power, and therefore accept some degradation of recognition performance relative to
the optimal (Bayes) risk.

4“Throwing away information” in this context means lowering the Bayesian risk associated with the decision task of correspondence. A feature that
maintains the Bayesian risk unaltered would be a sufficient statistic (with respect to the correspondence decision) for the scene &.



The assumptions to prove Theorem 1 require no visibility artifacts, such as self-occlusions or clutter. Clutter is an “ad-
versarial” nuisance (one can always make object A look like object B by placing object B in front of it), and no ana-
lytical results can be proven that will guarantee (worst-case) invariance to generic clutter. > This motivates relaxing the
notion of correspondence by requiring that a given scene £ generates at least a (non-empty) subset of each image I, Io:
Lol & 3QCDE|VeeQ: Ii(z) =h(&(x), 1), I2(z) = h(é(x),v2).

This brings us to the notion of local feature which is what we will use from now on. The extent of the domain {2 depends
on the visibility boundaries and will be determined by a detector, which is itself a feature (i.e. a function of the image), as we
discuss in Sect. 2.3.

2.3. Invariance by canonization

From (3) we can easily infer that {p(x), x € Q} is the “ideal” invariant feature, in the sense that any other invariant feature is a
function of it. Of course, we do not know p nor 2. In App. A we will construct the maximal feature explicitly; here we derive
a simplified version of the argument that is more intuitive. We start by expressing what we have in terms of what we want:
Ii(x;) = p(w;  (21)), x¢ € we(Q). It is obvious that if we take any homeomorphism v : R? — R? and we replace p(-) with
p(-) = pow(-), wy(-) with @y(-) = wy o v(-), and Q with Q = v~1(Q), we obtain the same images, and therefore we cannot
distinguish {p(-), Q} from {p(v(-)), v=1(2)}. In other words, what we can recover from I;(x;), ¥; € D is not the invariant
feature ¢ = {p(x), x € Q}, but an entire equivalence class of invariant features: [¢p] = {p(v(z)), z € v71(Q), v : R? —
R? a homeo}. Now we have two options to proceed. One is to define a distance between equivalence classes, d([¢1], [¢2]),
that requires marginalizing the nuisance as part of the correspondence process, what we called “recognizion by reconstruction”
earlier. The alternative is to identify, for each equivalence class, a canonical representative, that is a unique element of the
class, ¢) correspondmg to a choice of v, and then define a distance between feature elements, d(¢1, (bg) A choice of canonical
element ¢ in the equivalence class [¢] must be determined uniquely from the available data, that is I;(z;), x¢ € D.

Feature detectors. Based on the discussion above, a detector is a contra-variant functional F;, ¢« = 1,2,..., such that
F,([¢]) = F;(z,v,9Q) = e; uniquely determines ©, and therefore ¢. Without loss of generality®, we can choose e; = 0, since
whatever value can be incorporated into the definition of F;. Furthermore, in the presence of uncertainty, rather than looking
for ¢ | F;(¢) = 0, we can look for

¢ = argmin |[F5(¢)]| @)

for some choice of norm. One can derive most existing detectors by changing the functional or the norm, second order moments
[24, 27], edge/intesity [13], saliency [19], level set-based regions [26, 1], affine homogeneous-texture regions [32].

Feature descriptors. Once  and () have been determined, the statistic I, (v~ (z)), z € {2 becomes available. This is invariant
by construction, and we therefore call it, or any deterministic function of it, invariant descriptor. This indicates that the local
structure of the image around a point can be used to determine a local “natural” frame.’

Once detectors/descriptors have been obtained, matching can be based on just comparing the descriptors (since the domains
have been normalized), or comparing the domains as well, for instance by quantifying the energy necessary to register them. A
combination of the two can also be implemented [29, 14].

Now, suppose that the image I does not allow full inference of w via (4), for instance because it does not contain enough
structure (e.g. local extrema) to provide a sufficient number of constraints. This means that, once the available constraints on
w have been enforced via (4), the “residual” is already, by construction, invariant to w, and therefore ¢ (and .S). In the extreme
case where I does not allow to infer any part of w, for instance when [ or its statistics are constant, / is already a “descriptor”
in the sense that it is invariant with respect to g.

Introducing illumination into the model does not modify the scheme just outlined for the simple case of ambient illumination
and Lambertian reflection. In fact, to first-order, this case corresponds to an affine transformation of the range of the image,
which simply enriches the equivalence class [¢]. Normalization is trivial for the illumination parameters, e. g. B, = J; o Plz)dx
and & = std({p(z) = € Q}). Naturally, inference of the canonical elements (detection) has to be performed simultaneously
with respect to all free parameters, which only increases the computational complexity, but not the conceptual derivation of the
Invariant.

S0f course one can attempt to characterize clutter probabilistically, but this is well beyond our scope here.

Note that all existing detectors assume 2 is given (e.g. a unit circle), and estimate the adapted region w(f2) (e.g. an ellipse) from the transformation.

In particular, translation invariance g € R? [18), scale invariance g € R3 [23]; Euclidean invariance (g9 € SE(2)) and Similarity invariance (g €
SE(2) x R) [25]; Affine invariance g € A(2) [28] are all well-known. Viewpoint invariance for generic shape (g € S E(3)) requires fixing a homeomorphism
tailored to the local structure of the image, e.g. a thin-plate splines [5, 4] (not a group, however) polynomials (tricky numerics), [7] or local histograms (e.g.
polar orientation histograms) to semi-global representations such as the sketch [11]. In Sect. 3 we illustrate this case with a piecewise affine deformation
model.



Remark 1 (Non-localized frames). All the detectors based on the invariance properties just outlined allow one to determine a
localized frame, called a co-variant local frame,® that has a well-defined origin, hence the early nomenclature “feature point”
although a region () is used to determine the frame. However, often an image region ) contains structure that is not localized
or is repeated regularly. In other words, the frame associated to a certain point is only determined up to a symmetry subgroup
which could be either continuous or discrete. In this case, one can associate the descriptor to any point on the equivalence
class determined by the subgroup ambiguity: for instance, for an edge in space (g € SE(3)/SE(2)) on can fix the gradient
direction and scale, and similarly for an edge on the image (g € SE(2)/R), a special case of the former when it is not possible
to reliably associate a scale to the edge; in homogeneous periodic textures (SE(3)/Z?) the intensity profile is isotropically
periodic (possibly after warping or normalization), and so on.

Remark 2 (Segmentation as a detector). When we do not have a localized frame, the result of the detector is a warped image
patch that contains an intensity profile with symmetries and any statistic computed from such a profile is a valid descriptor.
Unlike the localized frame, the detector here does not contain any shape information (neither does the descriptor, in both cases),
and is realized by a segmentation procedure that extends the domain of the descriptor S to include all points that have common
statistics. Therefore, our approach gives theoretical grounds to segmentation beyond simple computational considerations.

3. A case study: 3-D corners

To illustrate the analytical results we explicitly construct a viewpoint invariant descriptor for 3-D scenes. Our goal here is not
to propose yet another detector/descriptor to replace existing ones. Rather, we illustrate how their limitations can be overcome.
We focus on singular points of the surface S(x) that cannot be locally approximated by a plane (Figure 2), hence defying
current affine descriptors. We model a corner as a vertex with n planar faces that, barring occlusions, produces an image
with n angular sectors and a center x, projection of the vertex. These are separated by edges, which we represent as vectors
v; € R?, i = 1,...,n, their lengths being scale parameters. When the viewpoint changes the n sectors are transformed by
homographies, which we approximate with affine warps. This model locally captures the true transformation to an arbitrary
degree, unlike a single affine transformation that current descriptors are based on. Since the corner surface is continuous, in
the absence of occlusions so is the overall transformation. Thus, the n affine transformations are not independent and are fully
specified by the mappings x — yo v; — i, i = 1,...,n.°

Detection: While there exist many possible procedures for detecting corners in images [?], including sketch primitives [11]
or matched filters [17], our emphasis here is on how to arrive at a viewpoint invariant once a structure has been detected.
Therefore, we choose a simple if not somewhat naive detector that yields directly the corner structure.'”

Canonization: Once a frame is detected we map it to a canonical configuration that avoids singular transformations''. This
step fixes the canonical frame up to a rotation, which can be partially eliminated by requiring that one edge maps to (1,0),
which leaves us with a discrete subgroup that can be further resolved with radiance information.'?

Descriptor: Although the canonized features could be compared directly (e.g. by NCC), we compute a descriptor for each
detected feature. This has the advantage of makeing the comparison faster, absorbing differences in the normalized features
due to imprecise detections or unsatisfied assumptions (e.g. the surface is not Lambertian), and illustrates how our approach
complements, rather than replaces, existing descriptors. Most descriptors are insensitive to affine transformations of the albedo,
so that we do not need to normalize explicitly the illumination. In the experiment we use the SIFT descriptor [25], one of
the most widely used [25, 28]. We note however how this descriptor may not be as effective in our case as is for other kind
of features. Indeed our canonized corners have strong oriented structures (the edges) in fixed position. This makes the SIFT
descriptor (which is based on the gradient distribution) less discriminative.

Unilateral feature descriptors: Many corners are found on the occluding boundaries [34], and some sectors y; may belong
to the background. We therefore compute multiple descriptors, one per possible assignment of the faces to the foreground or

8 Although contra-variant would be a more appropriate name (Sect. 2.3).

Formally, let {x;(x), i = 1,...,n} be a partition of R? in n angular sectors, x; () the indicator function of the i-th sector. We call piecewise affine
transformation (PWA) of degree n a function w : R? — R? given by w(z) = 31| x:(z)Ai(z — 20) + yo, © € R? where 4; € GL(2), i = 1,...,n
are chosen so that w(z) is continuous.

10A set of putative corners X = {1, ...,z } is extracted [18] and edges checked for each pair (z;,z;) € X2 using a parametric template T'(z,y; w) =
sign(y), (x,y) € [0,1] X [—w, w] reminiscent of [2], via normalized cross correlation (NCC). A reference frame is then attache to each point zg € X and
all edges connected to ¢ are detected, localized (using an extension of the edge model with explicit terminations), refined and clustered via vector quantization.

''This can be achieved by enforcing the following conditions: (i) if all sectors are less than 7, the normalized frame has n equall sectors; (ii) if one of the
sectors is wider than 7 we make this sector 37 /4 and fit the others in the remaining 7 /2 radians; (iii) if one sector is exactly 7 (e.g. a T-junction), we delete
one edge and reduce to the former case.

121f the corner has a sector wider than 7, we use this to uniquely identify an edge and eliminate the ambiguity, since there is at most one such sector and the
property is preserved under viewpoint changes. If all sectors are narrower than 7 radians, we use the sector with maximal mean albedo as reference.



Figure 2: Affine-invariant descriptors fail to capture non-planar structures: (top) two images of the same scene with detected regions;
(middle and bottom) correspondence established using affine invariant signatures on the planar (middle) and non-planar (bottom) regions
of the scene. While several non-planar regions are detected, they are mismatched because of the large discrepancy in the corresponding
descriptor, caused by the non-planar structure of the scene.

Figure 3: General viewpoint invariants can match 3-D corners: (top) detected reference frames; (bottom) matched “3-D features”; (right)
examples of canonized features. Most of the “3-D features” that are detected but mismatched by affine-invariant descriptors are correctly
matched by a more general viewpoint-invariant.

the background. '?

Experiments: We choose H-A [27] as representative of affine invariant detectors/descriptors. Figure 2 shows that of 186
features detected in the first image, 53 are successfully matched in the second, 68 are mismatched because of the descriptor
variability and 65 are not matched because the detector fails to select them in the second image. Figure 3 shows that even
the naive 3-D descriptor introduced can match most 3-D corners. There is just one mismatch, due to the almost identical
appearance of the last two feature pairs in Figure 3, and two missing corners, which are not extracted by the Harris detector
in the first stage. An exact comparison with affine-invariant detectors is difficult because the latter find several times the same
structures; roughly speaking, however, 70% of the mismatches of the affine detector are fixed by the “3-D corner” model.'*
Note that no direct comparison with 3-D viewpoint invariants is possible since, to the best of our knowledge, there are none in
the literature. In the second experiment we test a scene presenting a variety of 3-D corners. Figure 4 shows the detected frames
and the matching pairs: One third of the features in the first image are correctly matched in the second. In this, the performance
is similar to that of the H-A detector on the planar structures of Figure 2, but in our case for non-planar structures. In the

13In practice, the most common cases (objects with convex corners) are covered if we do so only for sectors larger than 7, thereby obtaining no more than
two descriptors for each detected feature.

14As an additional advantage, our method extracts just one feature for each 3-D structure, while the Harris-Affine detector generates many duplicate
detections of these structures.
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Figure 4: Matching example: (top) all the features detected in the first image are connected to their nearest neighbor descriptor in the
second image (bottom); (right) a variety of normalized features. Of 93 detected features, 32 are present and correctly matched in the second
image.

Figure 5: Matching Gehry: (top) two corners matched by our method; (middle) features canonized by a piecewise-affine transformation;
(bottom) features canonized by a thin-plate spline transformation. Although the scene does not meet most of our working assumptions, a few
corners are still matched (see also supplementary material).

last experiment (Figure 5) we test our method on a scene where several of our working hypotheses are not verified because
of highly non-planar, non-Lambertian surfaces. The figure shows two corners that our method is able to match, together with
the corresponding canonized features. The canonized features are similar enough to be matched using SIFT, illustrating the
importance of viewpoint canonization. We also show the same two corners canonized using a thin-plate spline, estimated
by rectifying the edges. The matching distances are slightly smaller (0.28 — 0.15 and 0.4 — 0.36 respectively) using this
deformation as we compensate for the curvature of the edges.

4. Discussion

Our contributions in this manuscript are mainly theoretical: We clarify some misunderstandings that are lingering in the litera-
ture, where affine-invariant detectors/descriptors are often motivated by the non-existence of general-case viewpoint invariants
following [6]. Our results do not imply that affine-invariant descriptors are not useful. On the contrary, they may very well
be the way to go, but we believe it is important that their motivations be clear and that overly restrictive assumptions are not
imposed. Furthermore, by showing that viewpoint invariants are not shape-discriminative we validate “bags of features” ap-
proaches to recognition (see [?] and references therein), where spatial relations among features (i.e. shape) are either discarded
or severely quantized or “blurred” [3, 4]. Finally, we show that if instead of using a feature-based approach one factors out
viewpoint as part of the matching process, then shape is discriminative indeed. This, however, requires (explicit or implicit)



optimization with respect to the viewpoint, which may help explain some of the psycho-physical results following [30], where
albedo is non-discriminative and therefore shape is the only “feature.” Formalizing the simplest instance of the recognition
problem makes it immediate to see that features cannot improve the quality of “recognition by reconstruction,” if that was theo-
retically and computationally viable. However, features can provide a principled, albeit suboptimal, representation for recogni-
tion: We have shown that under certain conditions viewpoint and illumination-invariant features can be constructed explicitly.
Our framework allows comparison of existing methods and opens the way to design richer classes of detectors/descriptors. As
an illustrative example, we introduce a 3-D corner descriptor that can be employed to establish correspondence when the state
of the art fails because of violation of the local-planarity assumption.
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