
ESL: a Very Powerful SQL-Compliant Data Stream Language

Yijian Bai1 Chang R. Luo1 Hetal Thakkar1 Haixun Wang2 Carlo Zaniolo1

Computer Science Dept., UCLA1

Los Angeles, CA 90095
{bai,lc,hthakkar,zaniolo}@cs.ucla.edu

IBM T. J. Watson Research2

Hawthorne, NY 10532
haixun@us.ibm.com

Abstract
Compliance with SQL standards is very desirable
for a data stream query language because of prac-
tical considerations, and it is also very benefi-
cial for applications that span both data streams
and data bases. However, SQL suffers from ex-
pressive power impairments that, on streaming
data, are even more serious than those it suf-
fers on stored data. Our Expressive Stream Lan-
guage (ESL) solves these problems, and achieves
power, flexibility, and adherence to SQL:2003
standards by using: (i) table expressions and con-
crete views on data streams, (ii) non-blocking ag-
gregates (UDAs), and (iii) efficient delta-based
maintenance for UDAs on windows. ESL is fully
supported in the UCLA Stream Mill DSMS and
has proven very effective on a wide spectrum of
applications that include approximate computa-
tions, data stream mining, time-series queries, and
XML streams.

1 Introduction
Data Stream Management Systems (DSMSs) and their lan-
guages represent a vibrant and exciting area of database
research [9, 16]. However the requirements and applica-
tions for data received on the wire are so different from
those for data stored on disk, the view that this burgeoning
research area naturally belongs to databases is not com-
monly accepted outside our field. This incertitude also
mires database vendors: while some have moved to add
support for publish/subscribe and memory queues [3] into
their DBMS, others have chosen to add these services to,
say, web services [1]. A key objective of the ESL/Stream
Mill Project is to settle these issues by showing that (i) stan-
dard SQL is all (or nearly all) that is needed to express con-
tinuous and ad hoc queries on data streams, and (ii) this ap-
proach is effective on a very wide range of applications—
e.g., XML stream processing and stream mining. Achiev-

Permission to copy without fee all or part of this material isgranted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

ing these two goals will go a long way toward enticing
database vendors and convincing skeptics on the superior-
ity of a database-oriented approach. Users will also greatly
benefit from these advances, because many applications
span both data streams and databases [12]. The users writ-
ing these applications will then be able to employ the same
language on both streaming data and stored data, rather
than having to learn two languages and deal with their
impedance mismatch.

Therefore, ESL pursues the parallel objectives of (i)
minimizing the syntactic and semantic differences from
SQL standards (i.e., SQL: 2003), and (ii) supporting a
very wide range of applications, by bringing SQL to new
levels of expressive power and flexibility. The difficulty
of achieving these objectives is underscored by the long-
known expressive power limitations of SQL on stored
data, and by recent research results showing that the prob-
lem is even more serious for continuous queries on data
streams [20].

The main negative result presented in [20] comes from
the fact that non-blocking queries are exactly monotonic
queries. However, if we eliminate from SQL its non-
monotonic operators (such asEXCEPT), we also lose some
of its monotonic query expressibility. Thus SQL is not
complete w.r.t. non-blocking queries (and neither is re-
lational algebra) [20]. These limitations are exacerbated
by the fact that the traditional remedy of embedding
SQL queries in a procedural programming language (PL)
(through the pull-based mechanism of cursors and get-next
constructs) is no longer effective in the push-based envi-
ronment of data streams. DSMS must operate in a push-
oriented environment by continuously taking tuples from
input buffers, and continuously pushing the query results to
output buffers—without waiting for get-next requests from
an embedding PL.

Fortunately, the following encouraging positive result
was also proved in [20]: SQL becomes Turing-complete,
and also complete w.r.t. non-blocking queries, once it is
extended with user defined aggregates (UDA)1. In this pa-
per, we build on this theoretical result, and turn UDAs into
a tool of great practical significance in a broad range of data
stream applications, by extending them with window con-
structs that had in the past been used for built-in aggregates

1While UDAs are not part of the official SQL:2003 standards, they
hardly represent an extension, since they were included in early SQL3
draft, and are supported in many commercial DBMS.

but not for UDAs.
Because of space limitations and the availability of au-

thoritative surveys [9, 16], we will not discuss here previ-
ous projects, except for observing that they are not focused
on the two objectives of (i) compliance with SQL stan-
dards, and (ii) generality through expressive power, with
the same ardor as ESL. For instance Aurora/Borealis, rather
than using SQL, provides an operator-based graphical user
interface for entering continuous queries. The Stanford
Continuous Query Language (CQL) [6] is based on SQL—
but compliance with standards is not a key objective driving
the design of the language. In particular, CQL allows win-
dow construct in theFROM clause to be used in the speci-
fication of joins, while in SQL windows are only allowed
as aggregate modifiers in theSELECTclause. Similar con-
structs having different syntax and semantics in CQL and
SQL complicates the task of the programmer writing span-
ning applications. The CQL constructs are different enough
from standard SQL to require a new formal definition for
its semantics [8]. Moreover, a somewhat arbitrary choice
must be made between the different semantics proposed for
joins involving windows. In ESL, we instead rely on stan-
dard syntax and semantics of SQL 2003, and rather than
introducing new constructs for window joins, we express
them through the existing constructs as discussed in this
paper.

Short Overview

In the next section, we cover the use of SQL constructs to
express simple continuous queries involving the applica-
tion of the following operators on data streams:

1. Select, Project, and Aggregates (with or without win-
dow modifiers) on a single data stream,

2. Join of a data stream with a DB table, and
3. Union of two or more data streams.

These operators can be used to define continuous queries or
to derive new data streams from existing ones in a view-like
fashion.

ESL also supports ad hoc queries on stored database ta-
bles and on virtual tables derived from data streams via
SQL:2003 constructs of concrete views and table functions.
These are discussed in Section 3, where we also show how
to express the join of a stream with a window on another
stream, using these constructs.

UDAs, which represent the cornerstone of ESL query
power, are discussed in Section 4, which provides a sim-
ple syntactic characterization of non-blocking UDAs ver-
sus blocking UDAs. The former can be applied directly
on data streams, while the latter can only be applied over
windows (as in SQL OLAP functions).

The optimization of window UDAs is presented in Sec-
tion 5: our approach is based on delta-maintenance tech-
niques that are effective for different kinds of windows and
aggregates.

In Section 6, we show that, because of its query power,
ESL can concisely and efficiently express applications,
such as data stream mining, sequence queries, and approxi-
mate computations, which would be impossible or difficult
to handle in other query languages.

2 Continuous Queries on Data Streams
ESL treats data streams as unbounded ordered sequences of
tuples: this is consistent with the ‘append only table’ model
commonly used by data stream systems [11, 9, 16, 20]. In
the ESL system, each data stream is imported from an ex-
ternal wrapper via the (mandatory)SOURCE clause in its
CREATE STREAM declaration. This declaration also spec-
ifies the type of timestamp associated with the stream. ESL
supports the following three types of timestamps: (i)ex-
ternal timestamps, (ii) internal timestamps, and (iii) latent
timestamps.

External timestamps are values that are already con-
tained in the arriving tuples—typically, placed there by
the application producing the data; in this case, all that is
needed, in the data stream declaration, is to identify the col-
umn containing such timestamps using the order-by clause.
For instance, the data streamOpenAuction in Example 1,
below, is declared as havingstart time as its external times-
tamp.

The ClosedAuction stream in Example 1, is instead as-
signed an internal timestamp: internal timestamps are gen-
erated when the ESL system receives the tuples from the
wrappers and they are stored in a new column calledcur-
rent time - a reserved name used only to denote internal
timestamps. Internal timestamps and external timestamps
will be called explicit: ESL operators treat all explicit
timestamps in the same way, no matter how they were gen-
erated. Explicitly timestamped streams are always ordered
by increasing timestamp values. In Section 2.3, we discuss
how this assumption is enforced by a special treatment of
out-of-order records.

ESL also supports data streams, such asBid in Exam-
ple 1, where no explicit timestamp is actually stored in the
tuples (a fact denoted by the absence ofORDER BY from
their declarations). However, timestamps values (consis-
tent with tuple order in the stream) are dynamically gener-
ated for these tuples whenever they are used in operators
that have a semantics based on timestamps. Therefore, we
refer to these data streams as havinglatenttimestamps2.

Example 1 Declaring Streams in ESL

CREATE STREAM OpenAuction (/* Stream of auction openings */
itemID int /* id of the item being auctioned.*/,
sellerID char(10) /* seller of the item being auctioned.*/,
start price real /* starting price of the item */,
start time timestamp /* time when the auction started */)

ORDER BY start time; /* external timestamps */
SOURCE ’port4445’;

CREATE STREAM ClosedAuction(/*Stream of auction closings */
itemID int /* id of the item in this auction. */,
buyerID char(10) /* buyer of this item.*/)
final price real /* final price of the item */,
current time timestamp /*internal timestamps*/)

ORDER BY current time; /* internal timestamp */
SOURCE ’port4446’;

CREATE STREAM Bid(/* Bid: Stream of bidding.*/
itemID int /* the item being bid for*/,

2In summary, external timestamps are generated by the external pro-
ducer of the data, internal timestamps are generated eagerly as they enter
the DSMS, and latent timestamps are produced lazily as needed for pro-
cessing the tuples.

bid price real /* bid price */,
bidderID char(10) /* id of the bidder*/,
bid time timestamp /* time when bid was registered */)
SOURCE ’port4447’;

Example 1 uses wrappers that are created automatically
by the system for each port used in the program. Thus,
for port ’4446’ the system creates a file named’port4446’
containing the code that ’wraps’ data coming from that
port—with data items and records, respectively, separated
by commas, and end-of-line characters. Rather than using
these defaults, users can also easily create their own wrap-
pers.

2.1 Single Stream Transducers

ESL only allowsone data stream inFROM clause of the
query; this is a restriction that ensures simpler syntax and
semantics, without impairing the power of the language, as
we shall see later. For instance, to continuously send to the
user all auctions where the asking price is above 1000, we
can write:

Example 2 Performing Selection Operations on Streams

SELECT itemID, sellerID, start price, start time
FROM OpenAuction WHERE start price > 1000

Semantics.The clause ‘ORDER BY start time’ can also
be added to this query, without changing its meaning, since
the tuples are always produced by the increasing values of
timestamps. Therefore, consider the query in Example 2,
after the addition of ‘ORDER BY start time’: the semantics
of this query in ESL is exactly the same as in SQL. Indeed,
the ordered list of tuples produced by ESL up to timet is
exactly the same as that produced by SQL on table con-
taining the list ofOpenAuction tuples that have arrived up
to time t. Therefore, in ESL, the semantics of continuous
queries on data streams can be simply defined by reducing
them to that of equivalent SQL:2003 queries on database
tables.

ESL also supports the derivation of one stream from
another through aCREATE STREAM mechanism that can
be viewed as similar to theCREATE VIEW mechanism in
SQL. For instance, Example 3, below,

Example 3 Deriving a New Streams

CREATE STREAM expensiveItemsAS
SELECT itemID, sellerID, start price, start time
FROM OpenAuction WHERE start price > 1000

defines a data stream that is basically the same as that deliv-
ered to the user by Example 2. However, instead of being
delivered to the user,expensiveItemsis now a data stream
that can be used by other queries, as in Example 4.

Example 4 Sending the Results of a Continuous Query to
the Output

SELECT itemID, start price, start time
FROM expensiveItemsWHERE sellerID= ’JA9248’

Aggregates

Aggregates are the final construct that can be applied to an
individual data stream (i.e., via an ESL statement that has
only one data stream in itsFROM clause). ESL indeed sup-
ports very powerful user-defined aggregates (UDAs) that
make the language very expressive and extensible [20].

Example 5 shows the invocation of a UDA calledde-
cay online avg that computes the exponential decay of the
closing values of auctions. Since blocking aggregates are
not allowed on data stream, the ESL compiler also checks
that decayonline avg is a non-blocking UDA—a property
that is easily inferrable from the syntactic structure of the
UDA definition, as discussed in Section 4.

Most aggregates, including the traditional SQL:2 aggre-
gates, are blocking and can be applied to data streams via
windows only. ESL uses the standard SQL:2003 syntax
of OLAP functions for such window aggregates, whereby
the window specification is appended to the aggregate us-
ing theOVER clause [31]. For instance, Example 6, below,
shows the use of an unlimited window, whereby themin
returns the lowest start price seen so far.

Example 5 The Recent Average of the Closing Bids

SELECT decayonline avg(final price)
FROM ClosedAuction

Example 6 The Smallest Asking Price, For Each Seller

SELECT itemID, sellerID, start price, min(start price)
OVER(PARTITION BY SellerID

RANGE UNLIMITED PRECEDING) AS Price
FROM OpenAuction

In this example, we use an unlimited window, which
basically returns the cumulative min so far. ESL sup-
ports both logical windows (i.e., time-based) and physi-
cal windows (i.e., count-based), and the optional partition-
by clause whereby the incoming stream can be partitioned
into multiple streams3. The only departure from SQL:2003
supported in ESL, is the option of omitting theORDER BY
clause, since the output data stream is already known to be
ordered by its timestamp. Thus, UDAs invoked without a
window modifier will be calledbase aggregatesas in Ex-
ample 5, whereas UDAs invoked with a window modifier
will be calledwindow aggregatesas in Example 6.

Both the min aggregate and its window version are sup-
ported in ESL as built-ins, and so are the other basic SQL:2
aggregates. But ESL also supports efficiently window con-
structs on arbitrary UDA—not just builtin ones. This fea-
ture provides much greater power and flexibility than those
provided by other DSMS or commercial implementation of
OLAP functions that only support window on builtin aggre-
gates, and will be discussed in Section 5.

Continuous Queries Spanning Data Streams and DB
Tables.

ESL also supports the join of a data stream with database
relations. For instance, if we have the database table

sellerinfo(sellerID, ZipCode, City, State)

then the following query can be used to add the zipcode of
the seller to theexpensiveItemsstream:

Example 7 Joining a Data Stream with a Database Table

SELECT ZipCode, itemID, start price, start time
FROM expensiveItemsAS I, sellerInfo AS S
WHERE I.sellerID= S.sellerID

3The standardGROUP BYconstruct is used in ESL to partition the input
streams for base UDAs.

The previous example only uses one database table in
its FROM clause, in general, any number of database tables
can be used in theFROM clause of an ESL query. How-
ever, only one data stream can be included in theFROM
clause—and will be listed first in our examples for clarity.
Furthermore, any nested subqueries are supported in ESL
but they can only use database tables in theirFROM clause.
Therefore, with only one data stream allowed in theirFROM
clauses, ESL queries can be viewed as a transducer that
takes one input stream and returns one output stream. This
simple model is amenable to simple semantics for queries
involving one data stream and multiple database tables.
Semantics. In the previous sections, we have defined
the semantics of continuous queries involving only data
streams by prescribing that, the cumulative result produced
by a continuous query up to timet should be the same as
that produced by its equivalent SQL:2003 statements ap-
plied to the content of the input data streams up to time
t. However, for queries spanning both data streams and
DB tables, we must also consider changes in the content
of tables, by using a snapshot semantics for database ta-
bles. Thus, in Example 7, a new tuple fromexpensiveItems
arriving at timet must be joined with snapshot of thesel-
lerinfo table at timet. This delta result is then appended
to the current output to produce the cumulative result of
the query at timet. Observe that when no database tables
are involved, or the content of the database tables involved
does not change with time, we obtain the same result as the
cumulative semantics discussed, previously.

2.2 UNION

UNION is the only ESL operator that is directly applicable
to multiple data streams. (ESL does not allowEXCEPTand
INTERSECTto be applied on data streams; and the union of
data streams and database tables is also not allowed.)

For instance, the query in Example 8, below, sort-
merges theOpenAuction and theClosedAuctioninformation
on start price andfinal price for each item:

Example 8 Price History Query

CREATE STREAM PriceRise(itemID, price, Time)AS
SELECT itemID, start price, start time
FROM OpenAuction
UNION ALL
SELECT itemID, final price, current time
FROM ClosedAuction

The union of data streams with explicit timestamps pro-
duces a stream that is ordered by its timestamps. Thus, the
ORDER BY Time in the following ESL statement is imma-
terial and can be eliminated (but is included here to show
the equivalent SQL query):

SELECT * FROM PriceRiseORDER BY Time

At the implementation level, union is implemented by a
sort-merge operation on the streams. We choose the tuple
with the minimum timestamp from the input data streams if
none of their buffers are empty. If the buffer of any stream
is empty, we must wait for its next incoming tuple before
we proceed, since that tuple may have a timestamp smaller
than any unprocessed tuple of the other streams.

As in SQL, ESL supportsUNION ALL which preserves
duplicates, andUNION, which eliminates them. (Duplicate

elimination is efficiently supported in the sort-merge, since
duplicate tuples must also have identical timestamps.)

2.3 Latent Timestamps

Timestamps explicitly stored in tuples are expensive to sup-
port, because of the space they use in buffers, and the pro-
cessing cost they impose on query operators. Therefore,
ESL introduces the notion of latent timestamps to avoid
these costs in the many applications where explicit times-
tamps are not actually needed.

For instance in Example 1, the streamBid has latent
timestamps, since it is declared without the order-by clause.
Also, as shown in Examples 5 and 6 a data stream where its
explicit timestamp is projected out becomes one with latent
timestamps.

Latent timestamps are not carried along in the tuples
as these flow from one operator to the next: they are in-
stead generated dynamically as required by the query op-
erators being executed. In terms of semantics, the key dif-
ference between explicit and latent timestamps pertains to
when their values are actually materialized: latent times-
tamps are materialized just before the tuples are processed
by each query operator. Moreover, the abstract semantics
of query operators on data streams is independent of the
particular type of timestamp the data streams have4. This
is illustrated by Example 9, where a time-based window
is applied to data streamBid which has latent timestamps:
this query reports the number of bids received in the last
hour (60 minutes) for each item.

Example 9 For Each Item Count the Number of Bids in the
Last Hour (60 Minutes)
CREATE STREAM HActivty

SELECT itemID, count(bid price)
OVER(PARTITION BY itemID

RANGE 60 MINUTES PRECEDING)
FROM Bid

The meaning of this statement is that when a new tuple is
added to the window, a timestamp value equal to the current
system time is created and stored with the tuple in the win-
dow. This timestamp is consulted to decide when the win-
dow tuple has expired from the window. The (unnamed)
timestamp column that was used to maintain the window in
Example 9 is not included in the resulting streamHActivty ,
which therefore has latent timestamps. Later query opera-
tors onHActivty that require timestamps will then generate
new values based on the current clock.

The fact that the generated value of the latent timestamp
is not part of the output simplifies the operational semantics
and the implementation of query operators on data streams
with latent timestamps; in fact the actual generation of the
timestamps can be omitted all together for simple query op-
erators, which preserve the arrival order of the tuples. For
instance, the need for a sort-merge operation to compute
union is eliminated by the observation that tuples could be
assigned timestamp values equal to the time at which they
were taken from their input buffers and moved to the out-
put. The actual order of tuples being produced by such a

4Thus, the abstract semantics of queries on data streams with latent
timestamps follows directly from that of stream with explicittimestamps
which we have defined in the previous sections.

union depends on the order in which they arrived at the in-
put buffers, and also on load conditions— but the order of
tuples for each individual stream is always preserved.

Out-of-Order Tuples

Latent data streams offer many benefits besides perfor-
mance. They are particularly useful with out-of-order tu-
ples in a stream. For each externally timestamped stream
ESL also generates a latent stream containing the out of
order tuples. For instance, the declaration ofOpenAc-
tion in Example 1, generates the data streamOpenAc-
tion OutOfOrder with latent timestamps. StreamOpen-
Action OutOfOrder contains all the out-of-order tuples of
OpenAction. The user is thus given the opportunity to re-
adjust the timestamps ofOpenAction OutOfOrder , e.g., to
merge them back into the original stream.

The next example illustrates how data streams with la-
tent timestamp combined with UDAs can be effectively
used to fix timestamps and out-of-order problems. Exam-
ple 10 below uses a window of 2 minutes. As discussed
in Section 5,resort bids is a UDA that selects out of a set
of tuples (in this case the tuples within a two minutes win-
dow) those that are minimal in their fourth column and re-
turn these tuples (UDAs in ESL can return whole tuples,
not just single values).

Example 10 Resorting to Handle Late Arrivals by 2 Min-
utes or Less

CREATE STREAM OKBids
SELECT resort bids(itemID, bid price, bidderID, bid time)

OVER(RANGE 2 MINUTES PRECEDING)
FROM Bid

This solution only works when the maximum delay is
less than 2 minutes. The tuples that are more than 2 minutes
late can be deleted or given new timestamps, see Section 5.

3 Ad Hoc Queries and Concrete Views on
Data Streams

While they have not received much attention in previous
DSMS, ad hoc queries on data streams can be very use-
ful. For instance, a user might want to find the average
price and the volume of a given stock during the last 20
minutes—without having to receive that information con-
tinuously. The difference between the two kind of queries
is that continuous queries persist until they are turned offby
the users, ad hoc queries are instead turned off as soon as
they complete, and they remain off until they are re-issued
by the user.

Therefore, along with traditional ad hoc queries on
database tables ESL also supports ad-queries on data
streams through the mechanism ofconcrete viewsand ta-
ble functionsthat extract snapshots of tables from the data
streams.

Table functions represent a very powerful SQL:2003
construct that can be used to transform practically any kind
of data source into SQL tables [25]. Thus we will use them
to extract tables from data streams. Consider the following
ad hoc query:

Example 11 Concrete View:Count the number of items
offered for auction in the last 10 minutes.

SELECT itemID, sellerID
FROM TABLE(OpendAuction OVER

(RANGE 10MINUTES PRECEDING CURRENT))

The syntax TABLE(function call) is the standard
SQL:2003 syntax (that explicitly reminds the user that the
object returned is of typetable). However, ESL allows the
more user-friendly syntax forfunction call, whereover is
the name of the function and 10MINUTES PRECEDING
CURRENT define the arguments of the function. In spite
of the use of similar keywords our table-function construct
is semantically different from theOVER construct used as
aggregate modifier in several ways, including the fact that
PARTITION BY is not allowed here.

Upon receiving such ad hoc query form the user, a sys-
tem must collect 10 minutes of data before an answer can
be returned to the user. One way to solve this waiting prob-
lem is to create the concrete view in Example 12, followed
by the ad-hoc query in Example 13, as below.

Example 12 Concrete View: A table containing all the
auctions for the last 10 minutes.

CREATE TABLE high priced AS SELECT itemID, sellerID
FROM TABLE(OpendAuction OVER

(RANGE 10MINUTES PRECEDING CURRENT))
REFRESH IMMEDIATE

Example 13 Ad Hoc Query on the concrete view:Count
the number of such auctions.

SELECT count(ItemID) FROM high priced

Because of theREFRESH IMMEDIATE option, the sys-
tem will continuously keep the view up to date; then the ad
hoc queries on this view can be answered immediately. A
wide range of ad hoc queries can be answered efficiently
on the view of Example 12, and could thus justify its cre-
ation, whereas a much more specific concrete view should
be used to support only the query of Example 13. Indeed
what concrete views should be created to optimally sup-
port a given set of ad-hoc queries represents an interesting
problem [17].

In summary, ESL uses the following simple rule:
Queries that use a data stream in theirFROM clause are
continuous; queries that only use database tables, including
concrete views, are ad-hoc. The event causing the produc-
tion of new results for continuous queries is the arrival of a
new tuple in the data stream, while for ad hoc queries it is
the arrival of the query itself. Thus, joins of a data stream
with relations can also be modelled as sequence of ad hoc
selection queries—one query for one incoming data stream
tuple.

3.1 Window Joins on Data Streams

Say that we are interested in finding buyers who, in two
hours, have raised their offers on a given item by more than
20%. Then we could join theOKBids stream with a con-
crete view like that of Example 12. Alternatively, the user
can express this query by the ESL statement of Example
14, below, which is more concise and more conducive to
efficient implementation.

Example 14 Buyers who have Raised their Offers by more
than 20% in Two Hours.

CREATE STREAM higher price AS

SELECT ItemID, SellerID, Price
FROM OKBids AS H,

TABLE(OKBids OVER
(RANGE 2 HOURS PRECEDING CURRENT)) AS L

WHERE H.itemID = L.itemID AND H.bidderID = L.bidderID
AND H.Price > 1.2 * L.Price

Thus, TABLE(OKBids OVER ...) generates a TABLE-
like view of the streamOKBids over logical window de-
fined using theRANGE statement; alternatively we could
have used a physical window with theROWS clause.

The next query illustrates how the window in one stream
can be synchronized with the timestamps in another stream.
Say that we are interested in finding auctions that closed
within 24 hours of opening. Then, we can define a table
function that produces a concrete view ofOpenAuction data
stream over a 24-hour window and join theClosed Auction
data stream with this concrete view:

Example 15 Short Auction Query: Report all auctions
which closed within 24 hours of their opening.

SELECT CA.itemID, CA.current time
FROM ClosedAuctionAS CA,

TABLE(OpenAuction OVER
(RANGE 24HOURS PRECEDING CA)) AS O

WHERE O.itemID = CA.itemID;

Thus for each arrivingClosedAuction tuple, with times-
tampt, we now collect in the window theOpenAuction tu-
ples that have arrived in the last 24 hours beforet. A more
relaxed, and less expensive synchronization will instead be
achieved if we changePRECEDING CA to PRECEDING
CURRENT.

Data Stream Joins

At the present time, ESL does provide special constructs
to support the symmetric window join of two data streams
A and B — i.e., the situation where the arriving tuples in
A are joined with those in a window on B, and vice versa.
This symmetric join operation can be easily expressed as A
joined with a window on BUNION B joined with a window
on A. For instance, the query in Example 15 can be trans-
formed into a symmetric join by also joiningOpenAuction
with a window onClosedAuctionand then taking the union
of the two. But since the closing of an auction always
follows its opening, the second join is likely to be empty
and we can omit it. It is also easy to see that in the case
of self-joins the asymmetric join such as that of Example
14 always produces the same results as the symmetric one.
Furthermore, in the next section we will show that in many
practical situations it is far more efficient to express join-
like operations on streams via UDAs, rather than symmet-
ric joins. Because symmetric joins are not needed in many
examples, and our minimalist’s bias, they are not supported
in the current version of ESL (but they will be added in later
versions if the demand for them proves strong).

4 Base Aggregates: Blocking vs. Non-
Blocking

In the previous sections, we have concentrated on providing
unified support for continuous queries and ad hoc queries,
while minimizing extension to SQL:2003. We next focus
on extending the query power of ESL to support efficiently

a larger class of data stream applications. We show that this
can be achieved by UDAs that:

• can express both blocking and non-blocking query op-
erators,

• are powerful and flexible, and can be written natively
in ESL itself or in external programming languages,

• are amenable to very efficient implementations on
both logical and physical windows using the ESL con-
structs introduced in the next section.

ESL implements SQL:3’s idea of creating a new UDA by
specifying the computation to be performed in the three
different states calledINITIALIZE , ITERATE, andTERMI-
NATE. In ESL, these computations can be specified in an
external PL, but can also be defined in ESL itself. In our
examples, we will use UDAs of these second type, since
they represent a unique feature of ESL and they produce
code that is clear and concise.

For instance, Example 16 defines a UDA equivalent to
the standardAVG aggregate in SQL. The second line in Ex-
ample 16 declares a local table,state, where the sum and
count of the values processed so far are kept. Further-
more, while in this particular examplestate contains only
one tuple, it is in fact a table that can be queried and up-
dated using SQL statements and can contain any number
of tuples. These SQL statements are grouped into the three
blocks labeled, respectively,INITIALIZE , ITERATE, andTER-
MINATE . Thus,INITIALIZE inserts the value taken from the
input stream and sets the count to1. TheITERATE statement
updates the tuple instateby adding the new input value to
the sum and1 to the count. TheTERMINATE statement re-
turns the ratio between the sum and the count as the final
result of the computation by theINSERT INTO RETURNstate-
ment5. Since theTERMINATE statements are processed just
after all the input tuples have been exhausted, the UDA in
Example 16 below is blocking. Note that the ESL system
has built-in support for standard aggregates such as avg,
max, min, sum, etc. Aggregate avg is used here for illus-
tration purposes only.

Example 16 Defining the Standard Aggregate Average

CREATE AGGREGATE avg(NextReal) : Real
{ TABLE state(tsumReal, cnt Int);

INITIALIZE : {
INSERT INTO stateVALUES (Next, 1);

}
ITERATE : {

UPDATE state
SET tsum=tsum+Next, cnt=cnt+1;

}
TERMINATE : {

INSERT INTO RETURN
SELECT tsum/cnt FROM state;

}
}

A continuous, non-blocking version ofavg can instead
be defined as shown in Example 17, below, where the new
values are given a higher weight than the old values to as-
sure exponential decay of their importance.

5To conform to SQL syntax,RETURN is treated as a virtual table;
however, it is not a stored table and cannot be used in any other role.

Example 17 Continuous Average with Exponential Decay

CREATE AGGREGATE decayonline avg(NextReal) : Real
{ TABLE state(tsumReal, cnt Int);

INITIALIZE : {
INSERT INTO stateVALUES (Next, 1);
INSERT INTO RETURN VALUES (Next);

}
ITERATE: {

UPDATE state
SET tsum= 0.9*tsum + 1.1*Next, cnt=cnt+1;

INSERT INTO RETURN
SELECT tsum/cnt FROM state

}
TERMINATE : { }

}

UDAs, such as those of Example 17 where theTER-
MINATE state is empty or missing all together, are non-
blocking and can be applied freely to data streams. ESL
also uses a (non-blocking) hash-based implementation for
the GROUP-BY calls of the UDAs as opposed to the com-
mon implementation for SQL aggregates, which first sorts
the data according to theGROUP-BY attributes and thus is a
blocking operation. This default operational semantics of
ESL leads to a stream-oriented execution, whereby the in-
put stream is pipelined through the operations specified in
the INITIALIZE andITERATE clauses.

The UDAs defined so far are calledbaseaggregates and
follow the syntactic rules of the traditional SQL:2 aggre-
gates. Therefore, they can be used without a group-by
clause as in Example 5, or with a group-by clause as shown
in Example 18 below.

Example 18 Find the Recent Average Price of the Items
Offered by Each Seller.

CREATE STREAM AskdPrice AS
SELECT sellerID, decayonline avg(start price) AS avg price
FROM OpenAuction
GROUP BY sellerID

From a theoretical standpoint, it was known that UDAs
make SQL Turing complete on databases, insofar as they
can express every function on the database computable by a
Turing Machine [20]. Similarly, non-blocking UDAs make
SQL complete for data stream applications insofar as it can
express every non-blocking query expressible in any other
possible language [20]. Our practical experience with ESL
indicates that UDAs can be used to implement efficiently
mining functions, sequence queries and optimal graph al-
gorithms that cannot be expressed well in SQL:2003. In
the next example, we show how a non-blocking UDA can
be used to save memory in the computation of self-joins.

Self-joins

Since data streams are unbounded, naive joins over streams
might require infinite memory. Say thatcalls(call ID, event,
time) is a stream of phone-call records, where we usestart
or end in theeventfield to indicate whethertime field marks
the beginning or the end of a phone-call. Then to find the
length of every conversation, we could self-join the stream
with itself to find two tuples that have the samecall ID , and
their eventvalues are respectivelystart andend.

Example 19 List the Length of Every Call incalls(call ID,
event, time)

SELECT O1.call ID, O2.time - O1.time
FROM calls AS O1, callsAS O2
WHERE (O1.call ID = O2.call ID

AND O1.event = ’start’
AND O2.event = ’end’);

However, this statement could require infinite memory.
One approach to solve this problem is to join the data
streamO1 with a window on the data streamO2, as done
in Examples 14 and 15. But this would only provide an
approximate solution, since the exact length of a conversa-
tion whose duration is longer than the window size cannot
be reported. A better solution consists in deleting from the
window those records whose ’end’ has already been seen.
This allows us to compute the duration with bounded mem-
ory, given that the number of calls drop exponentially with
increasing call length, as in the following UDA:

Example 20 List the Length of Every Call incalls(call ID,
event, time)

CREATE AGGREGATE call len(callid, event, time) : (Id, Length)
{ TABLE memo(id, start);

INITIALIZE: ITERATE: {
INSERT INTO memoVALUES(callid,time)
WHERE Event=’start’;
INSERT INTO RETURN SELECT id, time - start

FROM memoWHERE event=’end’
AND memo.id=callid;

DELETE FROM memo
WHERE event=’end’ AND memo.id=callid;

}
}

The UDAs discussed in this section are base UDAs:
base UDAs with an empty or missingTERMINATE clause
are non-blocking and can be applied freely to on data
streams; blocking UDAs, instead, can be used freely on
database relations, but they can be applied on data streams
only through the window construct, discussed in the next
section. Window aggregates enhance the performance of
UDAs and the user convenience, thus they are part of ESL,
although their functionality could be captured directly us-
ing base UDAs.

For instance, Example 21 below shows the definition of
an aggregate that behaves as theunlimited preceding version
of average.

Example 21 The Cumulative Average–i.e., its ’unlimited
preceding’ version

CREATE AGGREGATE cum avg(NextReal) : Real
{ TABLE state(tsumReal, cnt Int);

INITIALIZE : {
INSERT INTO stateVALUES (Next, 1);
INSERT INTO RETURN

SELECT tsum/cnt FROM state;
}
ITERATE : {

UPDATE state
SET tsum=tsum+Next, cnt=cnt+1;

INSERT INTO RETURN
SELECT tsum/cnt FROM state;

}
TERMINATE : { }

}

This cumulative version ofavg was obtained from its
base definition in Example 16, by taking the return clause
from TERMINATE and appending it toINITIALIZE and IT-
ERATE. The UDA so obtained has an emptyTERMINATE
clause and it is thus non-blocking and also efficient (at least
to the extent in which the base UDA is). Therefore, the
ESL compiler uses this rewriting technique to implement
’unlimited preceding’ versions of UDAs6.

Nevertheless, for general windows on UDAs the imple-
mentations that can be derived from their base definition
tend to be inefficient and require a different solution for
this problem, which is discussed in the next section.

5 Window Aggregates
ESL supports the optimization of window aggregates both
at the physical and logical level by:
• the inwindow construct whereby the system optimizes

the management of windows, and
• the CREATE WINDOW AGGREGATE declarations,

whereby the user can specify an optimized implemen-
tation for each window aggregate via theEXPIREcon-
struct.

The use of theCREATE WINDOW AGGREGATE declara-
tion and theinwindow construct is illustrated by Example
22 below, which defines a naive implementation ofavgover
a finite-sized window.

Example 22 A Naive Version ofavg on a Finite Window

CREATE WINDOW AGGREGATE avg(NextReal) : Real
{

TABLE inwindow(wnext Real);
INITIALIZE :
ITERATE : {

INSERT INTO RETURN
SELECT avg(wnext)FROM inwindow;
}

}

Observe that, in Example 22, our window version of
AVG calls on the baseavg aggregate for tables; but this is
not a recursive call, since the two aggregates are internally
treated as two different procedures.

The declarationTABLE inwindow(wnext real) instructs
the system to store the input values in a special window
buffer that will be calledinwindow7. Incoming tuples (ex-
piring tuples) are automatically added to (deleted from)in-
window by the system. The system performs the window
maintenance task on behalf of the user, with the same in-
terface to both physical and logical windows. This unifica-
tion makes it easier to specify window UDAs. Moreover,
it creates opportunities for physical optimization by shar-
ing windows between UDAs and swapping large windows
to secondary store when necessary[22]. Although the use
of inwindow assures efficient storage management, the al-
gorithm shown in Example 22 is still inefficient since it re-
computesavg on the current window for each new incom-
ing tuple. It takes timeO(K × n), wheren is the number

6In fact, instead of rewriting the UDA, ESL simply executes theTER-
MINATE statement after eachINITIALIZE or ITERATE execution.

7The names of the columns ofinwindow can be chosen by the user,
but their data types must be the same as the aggregate arguments.

of tuples in the input andK is the number of tuples inin-
window.

To further optimize such window aggregates ESL makes
available to users theEXPIRE construct, discussed next,
which enables computation in timeO(n). Example 23 de-
fines a highly optimized implementation ofAVG, using a
new state calledEXPIRE in which the values of tuples leav-
ing the window are used to perform delta-maintenance on
the window UDA. ForAVG, the delta maintenance consists
in decreasing the sum by the value of the expired tuple and
the count by 1. The result is the same whether this delta
computation is performed as soon as a tuple expires, or
later when a new tuple comes in, or anywhere in between
these two instants. ESL takes advantage of this freedom to
optimize execution.

Example 23 The New ConstructEXPIRE

CREATE WINDOW AGGREGATE myavg(NextReal) : Real
{ TABLE state(tsumInt, cnt Real);

TABLE inwindow(wnext Real);
INITIALIZE : {

INSERT INTO stateVALUES (Next, 1);
INSERT INTO RETURN VALUES (Next);

}
ITERATE : {

UPDATE stateSET tsum=tsum+Next, cnt=cnt+1;
INSERT INTO RETURN

SELECT tsum/cnt FROM state;
}
EXPIRE: {

/* when there are expired tuples take the oldest */
UPDATE stateSET cnt= cnt-1,

tsum = tsum - oldest().wnext
}

}
In the definition of window aggregates,EXPIRE is

treated as an event that occurs once for each expired
tuple—and the expired tuple is removed as soon as theEX-
PIRE statement completes execution. In ESL,oldest() is a
built-in function that delivers the oldest among the tuplesin
inwindow, andoldest().wnextdelivers thewnext column in
this tuple. If the tuple has only one column then the system
allows usingoldest(), i.e. without the coulmn name.

Upon the arrival of a new tuple, the system first proceeds
at executing any outstandingEXPIRE event. TheITERATE
statements are next executed on this tuple. After theIT-
ERATE statements, the new tuple is put into theinwindow
buffer.

The following examples show how specialized versions
of window aggregates can result in significant performance
improvements, and ESL users are likely to take full advan-
tage of this option in their applications. However, users are
not required to define the window version of a UDA, since
ESL falls back on the base version whenever the window
version is not provided. For instance, in the absence of
definition Example 23, the ESL system uses the definition
of Example 22 to support the application ofavg over finite
windows, and for ’unlimited preceding’ windows ESL in-
stead uses the definition in Example 21. This policy is ap-
plied uniformly to all UDAs, not just toavg and it is made
possible by the fact that once a base definition exists for
any UDA, the ’unlimited preceding’ and the ’finite win-
dow’ versions can be trivially derived by simple syntactic

rewriting. This convenience also holds when PL statements
are used to define the computations performed in the three
statesINITIALIZE , ITERATE, TERMINATE (Access toin-
window by PL functions is provided by our system for this
purpose).

The tableinwindow is managed by the system, which in-
serts arriving tuples and deletes expiring tuples according
to the window range and its type (i.e., logical or physical).
Insertion of new tuples in the window by ESL statements
is not allowed since it is incompatible with the window se-
mantics that assume externally arriving tuples rather than
internal ones. However, there is no reason that tuples that
are no longer needed must be kept in the window until they
expire out of the window range: therefore besides unre-
stricted queries oninwindow, ESL also allows the deletion
of inwindow tuples as part of the UDA statements. The ap-
plication of this is illustrated by thesumdistinct aggregate:
when a new tuple arrives we can eliminate older duplicate
values from the window.

Example 24 Sum Distinct with Windows

CREATE WINDOW AGGREGATE sumdistinct (NextReal) : Real
{ TABLE thesum(tsumreal);

TABLE inwindow(wnext real);
INITIALIZE : {

INSERT INTO thesumVALUES (Next);
INSERT INTO RETURN VALUES (Next);

}
ITERATE : {

DELETE FROM inwindow WHERE wnext=Next;
UPDATE thesumSET tsum=tsum+Next
WHERE SQLCODE <> 0;
INSERT INTO RETURN

SELECT tsum FROM thesum;
}
EXPIRE: {

/* when there are expired tuples take the oldest */
UPDATE thesumSET tsum = tsum - oldest();

}
}

Consider now the window version ofmax: for each in-
coming tuple, we can eliminate the older tuples of less or
equal value. Thus the oldest tuples in the window are also
those that have the max value which is therefore returned
as the result of the aggregate.

Example 25 MAX with Windows

CREATE WINDOW AGGREGATE max (NextReal) : Real
{ TABLE inwindow(wnext real);

INITIALIZE : {
INSERT INTO RETURN VALUES (Next);

} /* the system adds new tuples to inwindow */
ITERATE : {

DELETE FROM inwindow WHERE wnext≤ Next;
INSERT INTO RETURN VALUES (oldest());

}
EXPIRE: { } /*expired tuples are removed automatically*/

}

The optimized treatment of window aggregates find
many natural applications. Let us return to the out-of-order
problem of Example 10, where we have shown how tu-
ples that are less than two minutes late can be reordered
by calling resort bids with a window of two minutes. The
windowed version ofresort bids is defined in Example 26:

whenever a tuple expires, we return the tuple along with
any tuples that havebid time less than or equal to the ex-
piring tuple’sbid time. This UDA does not reorder tuples
that are more than 2 minutes out-of-order, which will be
redirected to the out-of-order stream as discussed in Sec-
tion 2.3. Alternatively, it is easy to modify the UDA of
Example 26 to either delete these tuples or to reassign their
timestamps to the max value seen so far.

Example 26 UDA to Resort Late Arrivals in a Window

CREATE WINDOW AGGREGATE resort bids (itemID Int,
bid price Real, bidderID Int, bid time Timestamp):

(itemID Int, bid price Real, bidderID Int,
bid time Timestamp)

{ TABLE inwindow(itemIDw Int, bid pricew Real,
bidderIDw Int, bid timew Timestamp);

INITIALIZE : { } /* the system adds new tuples to inwindow */
ITERATE : { }
EXPIRE: {

INSERT INTO RETURN
SELECT itemIDw, bid pricew, bidderIDw, bid timew
FROM inwindow
WHERE bid timew ≤ oldest().bid timew
ORDER BY bid timew;

DELETE FROM inwindow WHERE bid timew ≤ oldest().bid timew;
}

}

The above UDA first collects the tuples in theinwindow
buffer, and no other processing is done in theINITIALIZE
and ITERATE states. Then, when a tuple expires, all tu-
ples that are younger than the expiring tuple are returned,
i.e. in theEXPIRE state. Reordering mechanism defined
by Examples 26 and 10 together is very similar to the slack
mechanism in the Aurora system [4], however ESL allows
more flexibility to the user by allowing them to handle
out-of-order tuples in any way they like, not just reorder
or discard them. These examples illustrate the desirability
of customizing delta-maintenance on each UDA. Remark-
ably, the declarative framework here proposed is effective
on both physical and logical windows, and, in addition to
data streams, it can also be applied to database tables.

Data stream mining applications discussed next illus-
trate another interesting application of window aggregates.
In these examples, the performance obtained by coding
UDAs in ESL was comparable to that obtained by coding
the UDAs in C++ (typically, a 10% slow-down).

6 Applications
In [20] we proved that (i) the introduction of natively de-
fined UDAs turn SQL into a Turing-complete language,
and (ii) the language is also complete for data stream ap-
plications since it can express all the monotonic queries
expressible by a Turing machine (non-monotonic queries
cannot be used on data streams since they are always block-
ing). The theoretical results presented in [20] are impor-
tant, but, in the end, the strength of a language and its
system can only be evaluated through actual applications.
ESL and the Stream Mill system [2] have proven effective
on a wide range of complex applications that includes (i)
Mining Data Streams [21], (ii) Sequence Queries [10], (iii)
Streaming XML queries [32], and (iv) Approximate Com-
putations.

Mining Data Streams

Support for data stream mining represents a major problem
for DSMS. The problem has its roots in the inadequacy
of SQL-compliant DBMS to support data mining meth-
ods, which have been the focus of much previous research.
This problem was solved in Wang et al. [29], where it was
shown that UDAs are effective at expressing data mining
methods, by expressing the complex statistical computa-
tion that are at the core of these methods. In [21], we show
that ESL UDAs are particularly effective on data streams,
where mining methods tend to perform one pass over the
data (rather than many passes), have to adapt continuously
to concept drifts, and make use of windows and other syn-
opses.

Sequence Queries

Several query languages have been proposed in the past
for sequences and time-series [23, 26]. The main moti-
vation of these languages is that most self-join queries are
too complex to express and inefficient to implement if they
are written in SQL [23, 26]. Take for instance the follow-
ing query on time-series of daily temperatures: Find a fort-
night of raising temperatures. In SQL, this query requires
14 joins; that many joins cannot be supported efficiently,
and are also too complex for users to write. Other queries,
such as double-bottom queries [26] would require an un-
bounded number of self-joins, and might not be expressible
in SQL. All these queries can however be expressed in ESL
using UDAs [10].

In the following example we have a log of web pages
clicked by a user, as follows:

CREATE STREAM
Sessions(SessNoInt, ClickTime Timestamp, PageNoInt,

PageTypeChar);
ORDER BY ClickTime

A user entering the home page of a given site starts a
new session that consists of a sequence of pages clicked.
For each session number,SessNo, the log shows the se-
quence of pages visited—where a page visit is described
by its timestamp,ClickTime , number,PageNo and type,
PageType(e.g., an advertisement page, a product descrip-
tion page, or a page used to purchase the item). The ideal
scenario for advertisers is when users (i) see the advertise-
ment page for some item in a content page, (ii) jump to the
product-description page with details on the item and its
price, and finally (iii) click the ‘buy this item’ page. This
advertisers’ dream pattern can be expressed by the follow-
ing UDA query, where ‘ad’, ‘pd’, and ‘buy’, respectively,
denote an ad page, a product description page, and a pur-
chase page. We store the last three page types using the
memo table in the UDAfind pattern. Then we issue a self-
join query to check the condition. Since thememo table
only contains three tuples at all times, the self-join queryis
very efficient.

Example 27 Sequence Query

SELECT SessNo, findpattern(PageType)
FROM Sessions
GROUP BY SessNo;

AGGREGATE find pattern(PageTypeChar):
{ TABLE memo(PageTypeChar, stateInt) MEMORY;

INITIALIZE: ITERATE: {
UPDATE memoSET state = state + 1;
DELETE FROM memoWHERE state = 3;
INSERT INTO memoVALUES (PageType, 0);
INSERT INTO RETURN

SELECT ’Found Pattern’
FROM memoAS X, memoAS Y, memoAS Z
WHERE X.state = 0AND X.PageType = ’buy’

AND Y.state = 1AND Y.PageType = ’pd’
AND Z.state = 2AND Z.PageType = ’ad’;

}
}

Support for Continuous Queries on Streaming XML

The need to unify the support of relational streams and
XML streams into one DSMS is very strong, since it is
driven by application demands similar to those that are
now pushing DBMS vendors to support stored XML doc-
uments. Indeed, many competing solutions have been pro-
posed for the unified management of DB relations and
XML. However, at the best of our knowledge, Stream Mill
is the only DSMS that currently supports both kinds of
streams. Indeed, the expressive power of ESL greatly sim-
plified the difficult task of supporting XML streams and
XQueries in our system [32].

Approximate Computation on Data Streams

A new requirement introduced by data streams is the need
to support approximate computation and synopses. Many
of these can be naturally expressed as UDAs. For instance
Datar et al [14] proposed an elegant solution to the follow-
ing problem:

Given a stream of data elements consisting of 0’s and
1’s, maintain an approximate count of the number of 1’s in
the lastN elements using as little memory as possible.

The solution proposed by Datar et al [14] creates a new
bucket of value 1, for each incoming element of value 1.
If there arek neighboring buckets with same valuev, we
merge the oldest two buckets into one bucket with value2v
(valuek depends on the error boundε, which is given by
the user). At any time, the approximate count is the sum
of the values of all buckets minus half of the value in the
oldest bucket. It can be shown that the algorithm maintains
an approximate count with a relative error bound of1 + ε

with Ω(1

ε
log2 N) bits of memory space [14].

The above algorithm is realized easily by UDABasic-
Count in ESL:

Example 28 Maintaining Approximate Counts over
Streams

TABLE hist(h Int, timestamp Int) AS VALUES (0, 0);
CREATE AGGREGATE BasicCount(vInt, timestamp Int) : Int
{ INITIALIZE : ITERATE : {

INSERT INTO hist VALUES (v, timestamp);
DELETE FROM hist AS h

WHERE h.timestamp< timestamp - N;
INSERT INTO RETURN

SELECT merge(h, timestamp)
OVER (ORDER BY timestampDESC) FROM hist;

}
}

In Example 28, we assume elements arrive with increas-
ing timestamps1, 2, 3, · · · , and we use a table,hist, to
maintain the buckets. Initially, the histogram contains a
dummy entry(0, 0). We add new entries to tablehist for el-
ements of value 1, and we remove expired entries from the
window. We merge histograms by invoking UDAmerge in
Example 29, which iterates through entries inhist, starting
from the last entry to the dummy entry(0, 0).

Example 29 Merge Duplicate Values in the Histogram

CREATE AGGREGATE merge(iValueInt, iTime Int):
{ TABLE state(vInt, c Int, t Int) AS VALUES(1,0,0);

INITIALIZE: ITERATE : {
UPDATE stateSET c=c+1,t=iTime

WHERE v=iValue;
UPDATE stateSET v=iValue,c=1,t=iTime

WHERE v<>iValue AND c≥k;
UPDATE hist SET h = h * 2 WHERE SQLCODE=0

AND timestamp=(SELECT t FROM state);
DELETE FROM hist WHERE SQLCODE=0

AND timestamp=(SELECT t-1 FROM state);
TERMINATE : {

INSERT INTO RETURN
SELECT sum(h)-iValue/2FROM hist;

}
}

In UDA merge, we count if a value has more thank en-
tries in the histogram. If it does, we double the value of
the current entry, delete the last entry, and restart counting.
Finally, we return the approximate count.

7 Related Work and Discussion
There are obvious similarities between the ESL approach
and that of other data stream projects, but also significant
differences. A first difference is that ESL strives to unify
the treatment of continuous queries and ad hoc queries by
building as much as possible on standard syntax and se-
mantics. For instance, SQL:2003 supports windows as ag-
gregate modifiers in OLAP Functions, providing constructs
that can be applied directly to continuous queries on data
streams. Moreover, ad hoc queries on both database tables
and tables created as windows on data streams can be sup-
ported using SQL:2003 constructs of concrete views and
table functions. These constructs can thus be used in ESL
to specify window joins on streams.

While conservatively conforming to SQL:2003 syntax,
ESL has boldly attacked its expressive power problems,
and has extended it into a language that can be used to sup-
port complex queries such as time series queries. The basic
idea was taken from [20] where it was shown that UDAs
can turn SQL into a Turing complete (and non-blocking
complete) query language. ESL has materialized the ab-
stract notions of UDAs from [20] into a flexible and effi-
cient tool for data stream processing, by providing delta-
based maintenance mechanisms whereby arbitrary UDAs
can work efficiently on windows of different kinds. The
topic of optimizing windows was the subject of interest-
ing previous work, which primarily focused on the window
sharing problem [7, 30, 15].

The issue of flexible timestamp management has been
studied in [27], where internal and external timestamps

were considered, and sophisticated techniques to han-
dle out-of-order tuples were proposed. The question on
whether these techniques can be implemented in ESL, by
using system generated heartbeats and application-specific
UDAs represents an interesting topic for further research.
Also, punctuation [24], that has proven very useful in deal-
ing with blocking aggregates, can be used in a role simi-
lar to heartbeats, particularly for data streams with latent
timestamps.

Instead of extending SQL, Aurora defines query plans
via an attractive “boxes and arrows” graphical interfaces
[12]. Aurora supports eight primitive operations, among
which four are windowed operators. It also supports user-
defined aggregates, which are defined in a procedural lan-
guage. The aggregation operators have optional parame-
ters, making their semantics dependent on stream arrival
and processing rates.

GSQL is a pure stream query language designed for Gi-
gascope, a stream database for network applications [13].
GSQL is an SQL-like language allowing query composi-
tion and query optimization, which supports sort-merge
union of streams, joins of two streams, and aggregation,
besides externally defined functions.

TelegraphCQ [15] proposes a SQL-like language with
extended window constructs, including a low-level C/C++-
like for-loop, aiming at supporting more general windows
such as backward windows. TelegraphCQ [15], and also
CQL [6], treat windows as stream modifiers, rather than
aggregate modifiers as SQL:2003 does.

The main restriction of ESL with respect to other lan-
guages is that it does not contain special constructs to ex-
press window joins on multiple streams directly. This did
not prove to be a major problem in the many complex appli-
cations we have implemented so far. However, if needed,
the various kinds of window joins proposed in the literature
[19, 28, 18, 5] can be easily added since table expressions
in SQL:2003 already accommodates special joins, such as
outer-joins.

8 Conclusion
Continuous query languages that comply with SQL:2003
standards are preferable for database vendors and database
researchers alike, and will simplify applications that span
both DB tables and data streams. However, continuous
queries on streaming data are so different from traditional
applications on stored data that other DSMS projects have
much deviated from the standards [6], or replaced SQL all
together [4]. The design of ESL shows that
• SQL:2003 syntax and semantics can be used to unify

continuous queries and ad hoc queries in a quite natu-
ral fashion (using concepts such as concrete views and
table functions)

• UDAs enhanced with window constructs are neces-
sary and sufficient to support a wide range of ad-
vanced data stream applications,

• UDAs can be defined natively and concisely in SQL
itself.

The conservative approach taken by ESL, with respect to
standards, has produced a language of great power and gen-
erality, which supports efficiently (i) continuous and ad-hoc

queries on data streams, (ii) data stream mining, (iii) se-
quence queries, (iii) queries on streaming XML, and (iv)
approximate computations.

At the time of this writing, the ESL system is fully op-
erational and supports continuous and ad hoc queries using
a client-server architecture [2].

References
[1] The IBM Websphere software. http://www-

306.ibm.com/software/websphere.

[2] Stream mill home. http://wis.cs.ucla.edu/stream-mill.

[3] The Teradata database. http://www.teradata.com.

[4] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack,
C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and
S. Zdonik. Aurora: A new model and architecture for
data stream management.VLDB Journal, 12(2):120–
139, 2003.

[5] M. Riedewald: Abhinandan Das, J. Gehrke. Approx-
imate join processing over data streams. InSIGMOD,
pages 40–512, 2003.

[6] A. Arasu, S. Babu, and J. Widom. Cql: A language
for continuous queries over streams and relations. In
DBPL, pages 1–19, 2003.

[7] Arvind Arasu and Jennifer Widom. Resource sharing
in continuous sliding-window aggregates. InVLDB,
pages 336–347, 2004.

[8] Jennifer Widom Arvind Arasu. A denotational se-
mantics for continuous queries over streams and rela-
tions. SIGMOD Record, 33(3):6–12, 2004.

[9] B. Babcock, S. Babu, M. Datar, R. Motawani, and
J. Widom. Models and issues in data stream systems.
In PODS, 2002.

[10] Yijian Bai, Chang Luo, Hetal Thakkar, and
Carlo Zaniolo. Efficient support for time se-
ries queries in data stream management systems.
http://wis.cs.ucla.edu/publications/eslTS.pdf, 2004.

[11] D. Barbara. The characterization of continuous
queries.Intl. Journal of Cooperative Information Sys-
tems, 8(4):295–323, 1999.

[12] D. Carney, U. Cetintemel, M. Cherniack, C. Con-
vey, S. Lee, G. Seidman, M. Stonebraker, N. Tatbul,
and S. Zdonik. Monitoring streams - a new class of
data management applications. InVLDB, Hong Kong,
China, 2002.

[13] C. Cranor, Y. Gao, T. Johnson, V. Shkapenyuk, and
O. Spatscheck. Gigascope: High performance net-
work monitoring with an sql interface. InSIGMOD,
page 623. ACM Press, 2002.

[14] Mayur Datar, Aristides Gionis, Piotr Indyk, and Ra-
jeev Motwani. Maintaining stream statistics over slid-
ing windows: (extended abstract). InProceedings of
the thirteenth annual ACM-SIAM symposium on Dis-
crete algorithms, pages 635–644, 2002.

[15] Sirish Chandrasekaran et al. Telegraphcq: Continu-
ous dataflow processing for an uncertain world. In
CIDR, 2003.

[16] Lukasz Golab and M. Tamer̈Ozsu. Issues in
data stream management.ACM SIGMOD Record,
32(2):5–14, 2003.

[17] Eric N. Hanson. A performance analysis of view ma-
terialization strategies. InSIGMOD, page 440, 1987.

[18] Jaewoo Kang, Jeffrey F. Naughton, and Stratis Viglas.
Evaluating window joins over unbounded streams. In
ICDE, pages 341–352, 2003.

[19] M. T. Ozsu: L. Golab. Processing sliding window
multi-joins in continuous queries over data streams.
In VLDB, pages 500–511, 2003.

[20] Yan-Nei Law, Haixun Wang, and Carlo Zaniolo. Data
models and query language for data streams. In
VLDB, pages 492–503, 2004.

[21] C. Luo, H. Thakkar, H. Wang, and C. Zaniolo. A
native extension of sql for mining data streams. ACM
SIGMOD 2005 demo paper.

[22] Chang Luo, Haixun Wang, and Carlo Zaniolo. Effi-
cient support for window aggregates on data streams.
http://wis.cs.ucla.edu/publications/windows.pdf,
2004.

[23] Raghu Ramakrishnan Praveen Seshadri, Miron Livny.
The design and implementation of a sequence
database system. InVLDB, pages 99–110, 1996.

[24] P.Tucker, D. Maier, and T.Sheard. Applying punctua-
tion schemes to queries over continuous data streams.
IEEE Data Engineering Bulletin, 26(1):33–40, 2003.

[25] Berthold Reinwald, Hamid Pirahesh, Ganapathy Kr-
ishnamoorthy, George Lapis, Brian Tran, and Swati
Vora. Heterogeneous query processing through sql
table functions. InICDE, pages 366–373, 1999.

[26] Reza Sadri, Carlo Zaniolo, Amir Zarkesh, and Jafar
Adibi. Optimization of sequence queries in database
systems. InPODS, Santa Barbara, CA, May 2001.

[27] Utkarsh Srivastava and J. Widom. Flexible time man-
agement in data stream systems. InPODS, pages
263–274, 2004.

[28] M. J. Franklin Tolga Urhan. Xjoin:a reactively-
scheduled pipelined join operator.IEEE Data Engi-
neering Bulletin, 23(2):27–33, 2000.

[29] Haixun Wang and Carlo Zaniolo. Atlas: a native ex-
tension of sql for data minining. InProceedings of
Third SIAM Int. Conference on Data Mining, pages
130–141, 2003.

[30] Haixun Wang, Carlo Zaniolo, and Chang R. Luo. AT-
LaS: A small but complete sql extension for data min-
ing and data streams. InVLDB, pages 1113–1116,
2003.

[31] Fred Zemke, Krishna Kulkarni, Andy Witkowski, and
Bob Lyle. Proposal for OLAP functions. InISO/IEC
JTC1/SC32 WG3:YGJ-nnn, ANSI NCITS H2-99-155,
1999.

[32] Xin Zhou, Hetal Thakkar, and Carlo Zaniolo. Unify-
ing the processing of xml streams and relational data
streams. Concurrent submission to this conference,
2005.

