1

ESL: a Very Powerful SQL-Compliant Data Stream Language

Yijian Bai' Chang R. Lud

Computer Science Dept., UCLA

Los Angeles, CA 90095

{bai,lc,hthakkar,zaniolg@cs.ucla.edu

Abstract

Compliance with SQL standards is very desirable
for a data stream query language because of prac-
tical considerations, and it is also very benefi-
cial for applications that span both data streams
and data bases. However, SQL suffers from ex-
pressive power impairments that, on streaming
data, are even more serious than those it suf-
fers on stored data. Our Expressive Stream Lan-
guage (ESL) solves these problems, and achieves
power, flexibility, and adherence to SQL:2003
standards by using: (i) table expressions and con-
crete views on data streams, (ii) non-blocking ag-
gregates (UDAs), and (iii) efficient delta-based
maintenance for UDAs on windows. ESL is fully
supported in the UCLA Stream Mill DSMS and
has proven very effective on a wide spectrum of
applications that include approximate computa-
tions, data stream mining, time-series queries, and
XML streams.

Introduction

Hetal Thakkal

Haixun Wang Carlo Zaniold
IBM T. J. Watson Researéh
Hawthorne, NY 10532
haixun@us.ibm.com

ing these two goals will go a long way toward enticing
database vendors and convincing skeptics on the superior-
ity of a database-oriented approach. Users will also greatl
benefit from these advances, because many applications
span both data streams and databases [12]. The users writ-
ing these applications will then be able to employ the same
language on both streaming data and stored data, rather
than having to learn two languages and deal with their
impedance mismatch.

Therefore, ESL pursues the parallel objectives of (i)
minimizing the syntactic and semantic differences from
SQL standards (i.e., SQL: 2003), and (ii) supporting a
very wide range of applications, by bringing SQL to new
levels of expressive power and flexibility. The difficulty
of achieving these objectives is underscored by the long-
known expressive power limitations of SQL on stored
data, and by recent research results showing that the prob-
lem is even more serious for continuous queries on data
streams [20].

The main negative result presented in [20] comes from
the fact that non-blocking queries are exactly monotonic
queries. However, if we eliminate from SQL its non-
monotonic operators (such agCcepT), we also lose some

Data Stream Management Systems (DSMSs) and their lans its monotonic query expressibility. Thus SQL is not
guages represent a vibrant and exciting area of databagenpjete w.rt. non-blocking queries (and neither is re-

research [9, 16]. However the requirements and applicayiona| algebra) [20]. These limitations are exacerbated
tions for data received on the wire are so different fromby the fact that the traditional remedy of embedding

those for data stored on disk, the view that this burgeoningSQL queries in a procedural programming language (PL)
research area naturally belongs to databases is not coffyprough the pull-based mechanism of cursors and get-next
monly accepted outside our field. This incertitude also nstructs) is no longer effective in the push-based envi-
mires database vendors: while some have moved to a
support for publish/subscribe and memory queues [3] intQyriented environment by continuously taking tuples from

their DBMS, others have chosen to add these services tg, ; ;

' o put buffers, and continuously pushing the query resalts t
say, web services [1]. A key objective of the ESL/Streamg i\t hyffers—without waiting for get-next requests from
Mill Project is to settle these issues by showing that (iysta 5, embedding PL.

dard SQL is all (or nearly all) that is needed to express con- Fortunately, the following encouraging positive result

tinuous and ad hoc queries on data streams, and (ii) this aRas also proved in [20]: SOL becomes Turing-complete,

proach is effective on a very wide range of appllcatlons—and also complete w.r.t. non-blocking queries, once it is

e.g., XML stream processing and stream mining. Achlev—extended with user defined aggregates (UBAJ this pa-
per, we build on this theoretical result, and turn UDASs into
atool of great practical significance in a broad range of data
stream applications, by extending them with window con-

structs that had in the past been used for built-in aggregate

Permission to copy without fee all or part of this materiagimnted pro-
vided that the copies are not made or distributed for diremtnmercial
advantage, the VLDB copyright notice and the title of theljgation and
its date appear, and notice is given that copying is by pesioisof the
Very Large Data Base Endowment. To copy otherwise, or tohdégiy
requires a fee and/or special permission from the Endowment

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

1while UDAs are not part of the official SQL:2003 standardsythe
hardly represent an extension, since they were includedity SQL3
draft, and are supported in many commercial DBMS.

but not for UDAs. 2 Continuous Queries on Data Streams

Because of space limitations and the availability of au-gg) {reats data streams as unbounded ordered sequences of

thoritative surveys [9, 16], we will not discuss here previ- ¢ this is consistent with the ‘append only table’ mode
ous projects, except for obgervmg t_hat theylare not focuse ommonly used by data stream systems [11, 9, 16, 20]. In
on the two objectives of (i) compliance with SQL stan- w0 g system, each data stream is imported from an ex-
dards, and (ii) generality through expressive power, withg o wrapper \;ia the (mandatorgPURCE clause in its

the same ardor as ESL. For instance Aurora/Borealis, rathefo = A1e STREAM declaration. This declaration also spec-
than using SQL, provides an operator-based graphical usega s yhe tyne of timestamp associated with the stream. ESL
interf_ace for entering continuous quer@es. The Stanfor@upports the following three types of timestamps: et}
Continuous Query Language (CQL) [6] is based on SQL— | timestampg(ii) internal timestampsand (iii) latent

but compliance with standards is not a key objective d”V'ngtimestamps

the design of the language. In particular, CQL allows win- " £ o na| timestamps are values that are already con-
o_Iow_constr_upt In thQ’:RQM cIause_ to be used in the speci- tained in the arriving tuples—typically, placed there by
fication of joins, while in SQL windows are only allowed o 55 jication producing the data; in this case, all that is
as aggregate modifiers in tSELECTclause. Similar con- oaged in the data stream declaration, is to identify the co

structs having different syntax and semantics in CQL and,, containing such timestamps using the order-by clause.
SQL complicates the task of the programmer writing SPantq;r instance, the data streaBpenAuction in Example 1,

ning applications. The CQL constructs are differentenougrbebw is declared as havistart_time as its external times-
from standard SQL to require a new formal definition for ' Sgart-ime

its semantics [8]. Moreover, a somewhat arbitrary choice
must be made between the different semantics proposed fQfgne an internal timestamp: internal timestamps are gen-

joins involving windows. In ESL, we instead rely on stan- o areq when the ESL system receives the tuples from the
dard syntax and semantics of SQL 2003, and rather thafy ., ,erq and they are stored in a new column cailed
introducing new constructs for window joins, we express, e ™ 5 reserved name used only to denote internal

them through the existing constructs as discussed in thi§yestamps. Internal timestamps and external timestamps

paper. will be called explicit ESL operators treat all explicit

Short Overview timestamps in the same way, no matter how they were gen-

rated. Explicitly timestamped streams are always ordered

express simple continuous queries involving the applica; y increasing timestamp values. In Sectlon_2.3, we discuss

tion of the following operators on data streams: how this assumption is enforced by a special treatment of
out-of-order records.

1. Select, Project, and Aggregates (with or without win- g ais0 supports data streams, suctBiasin Exam-

The ClosedAuction stream in Example 1, is instead as-

In the next section, we cover the use of SQL constructs t

doyv modifiers) on a single data stream, ple 1, where no explicit timestamp is actually stored in the
2. Join of a data stream with a DB table, and tuples (a fact denoted by the absenceoebER BY from
3. Union of two or more data streams. their declarations). However, timestamps values (consis-

These operators can be used to define continuous queriestgpgv}”th t#ple Ord?r In tﬂe streamg are dynaméc_ally gener-
to derive new data streams from existing ones in a view-liké?1€d for these tuples whenever they are used In operators
fashion. that have a semantics based on timestamps. Therefore, we

ESL also supports ad hoc queries on stored database ggfer to these data streams as havatgnttimestamp&

bles and on virtual tables derived from data streams vigxample 1 Declaring Streams in ESL

SQL:2003 constructs of concrete views and table functions
. . . EATE STREAM OpenAuction (/* Stream of auction openings */
These are discussed in Section 3, where we also show ho% itemlD int /* id of the item being auctioned.*/

to express_the join of a stream with a window on another sellerlD char(10) /* seller of the item being auctioned.*/,
stream, using these constructs. start_price real /* starting price of the item */,
UDAs, which represent the cornerstone of ESL query start_time timestamp /* time when the auction started */)

power, are discussed in Section 4, which provides a sim- ~ ORDER BY start.time; /* external timestamps */
ple syntactic characterization of non-blocking UDAs ver- ~ SOURCE ‘portd445;
sus blocking UDAs. The former can be applied directly CREATE STREAM ClosedAuction(*Stream of auction closings */
on data streams, while the latter can only be applied over itemID int /*id of the item in this auction. */,

. . . buyerlID char(10) /* buyer of this item.*/)
windows (aS _'n S_QL OLAP functlons): . final _price real /* final price of the item */,
~ The optimization of window UDAs is presented in Sec- current time timestamp /*internal timestamps*/)
tion 5: our approach is based on delta-maintenance tech- ORDER BY current_time; /* internal timestamp */
nigues that are effective for different kinds of windows and =~ SOURCE "port4446’;
aggregates. CREATE STREAM Bid(/* Bid: Stream of bidding.*/

In Section 6, we show that, because of its query power, itemIDint /* the item being bid for*/,

ESL can concisely and efficiently express applications;
such as data St.ream m".“ng' sequen(_:e que”.es’ and .approéb'cer of the data, internal timestamps are generated eagetigwaenter
mate computations, which would be impossible or difficult ie psms, and latent timestamps are produced lazily as needgxid-

to handle in other query languages. cessing the tuples.

2In summary, external timestamps are generated by the extemal pr

bid_price real /* bid price */, Example 5 shows the invocation of a UDA calldée-
bidderID char(10) /* id of the bidder*/, _ cay.online_avg that computes the exponential decay of the
bid_time timestamp /* time when bid was registered */) closing values of auctions. Since blocking aggregates are

SOURCE ‘portd44r’; _ not allowed on data stream, the ESL compiler also checks
Example 1 uses wrappers that are created automaticalihat gecay online_avg is a non-blocking UDA—a property

by the system for each port used in the program. Thusyat is easily inferrable from the syntactic structure @ th
containing the code that ‘wraps’ data coming from that nost aggregates, including the traditional SQL:2 aggre-
port—with data items and records, respectively, separategates, are blocking and can be applied to data streams via
by commas, and end-of-line charapters. Rather than usingindows only. ESL uses the standard SQL:2003 syntax
these defaults, users can also easily create their own wrags o AP functions for such window aggregates, whereby
pers. the window specification is appended to the aggregate us-
2.1 Single Stream Transducers ing theoVER clause [31]. For instance, Example 6, below,
shows the use of an unlimited window, whereby thia

ESL only allowsone data stream irFROM clause of the &eturns the lowest start price seen so far.

query; this is a restriction that ensures simpler syntax an
semantics, without impairing the power of the language, aExample 5 The Recent Average of the Closing Bids
we shall see later. For instance, to continuously send to the g, et decayonline_avg(finalprice)

user all auctions where the asking price is above 1000, we FroMm ClosedAuction

can write: Example 6 The Smallest Asking Price, For Each Seller

Example 2 Performing Selection Operations on Streams SELECT itemID, sellerID, start price, min(start_price)
SELECT itemID, sellerID, start_price, start_time OVER(PARTITION BY SellerlD
FROM OpenAuction WHERE start_price > 1000 RANGE UNLIMITED PRECEDING) AS Price

Semantics.The clauseORDER BY start_time’ can also FROM OpenAuction
be added to this query, without changing its meaning, since In this example, we use an unlimited window, which
the tuples are always produced by the increasing values dfasically returns the cumulative min so far. ESL sup-
timestamps. Therefore, consider the query in Example 2ports both logical windows (i.e., time-based) and physi-
after the addition ofORDER BY start_time’: the semantics cal windows (i.e., count-based), and the optional partitio
of this query in ESL is exactly the same as in SQL. Indeedhy clause whereby the incoming stream can be partitioned
the ordered list of tuples produced by ESL up to titie into multiple stream® The only departure from SQL:2003
exactly the same as that produced by SQL on table cornsupported in ESL, is the option of omitting tk&DER BY
taining the list ofOpenAuction tuples that have arrived up clause, since the output data stream is already known to be
to timet. Therefore, in ESL, the semantics of continuousordered by its timestamp. Thus, UDAs invoked without a
queries on data streams can be simply defined by reducingindow modifier will be calledbase aggregateas in Ex-
them to that of equivalent SQL:2003 queries on databasample 5, whereas UDAs invoked with a window modifier
tables. will be calledwindow aggregateas in Example 6.

ESL also supports the derivation of one stream from Both the min aggregate and its window version are sup-
another through €REATE STREAM mechanism that can ported in ESL as built-ins, and so are the other basic SQL:2
be viewed as similar to theREATE VIEW mechanism in aggregates. But ESL also supports efficiently window con-
SQL. For instance, Example 3, below, structs on arbitrary UDA—not just builtin ones. This fea-
ture provides much greater power and flexibility than those
provided by other DSMS or commercial implementation of
CREATE STREAM expensiveltemsAS OLAP functions that only support window on builtin aggre-

SELECT itemID, sellerID, start_price, start_time t ; ; ; ;
.) , and will i in tion 5.
FROM OpenAuction WHERE start_price > 1000 gates, a d be discussed in Section 5

defines a data stream that is basically the same as that deliontinuous Queries Spanning Data Streams and DB
ered to the user by Example 2. However, instead of beingables.
delivered to the useexpensiveltemsis now a data stream ESL also supports the join of a data stream with database

Example 3 Deriving a New Streams

that can be used by other queries, as in Example 4. relations. For instance, if we have the database table
Example 4 Sending the Results of a Continuous Query to sellerinfo(sellerlD, ZipCode, City, State)
the Output then the following query can be used to add the zipcode of
_ _ _ g query p
SELECT itemlID, start _price, start_time the seller to thexpensiveltemsstream:
FROM expensiveltemsVHERE sellerlD="JA9248’ o .
Aggregates Example 7 Joining a Data Stream with a Database Table

Aggregates are the final construct that can be applied to an gg| et zipcode, itemiD, start _price, start time
individual data stream (i.e., via an ESL statement that has FROM expensiveltemsAS I, sellerinfo AS S
only one data stream in isROM clause). ESL indeed sup- WHERE l.sellerID= S.sellerID

ports very powerful user-defined aggregates (UDAs) that 3the standarérou eyconstructis used in ESL to partition the input
make the language very expressive and extensible [20]. streams for base UDAs.

The previous example only uses one database table ialimination is efficiently supported in the sort-mergecsin
its FROM clause, in general, any number of database tableduplicate tuples must also have identical timestamps.)
can be used in therom clause of an ESL query. HOW- 5 3 | sient Timestamps
ever, only one data stream can be included infRem _ o _)
clause—and will be listed first in our examples for clarity. Timestamps explicitly stored in tuples are expensive te sup
Furthermore, any nested subqueries are supported in ESR0rt, because of the space they use in buffers, and the pro-
but they can only use database tables in theibm clause. ~ C€ssing cost they impose on query operators. Therefore,
Therefore, with only one data stream allowed intiigiom ~ ESL introduces the notion of latent timestamps to avoid
clauses, ESL queries can be viewed as a transducer thétese costs in the many applications where explicit times-
takes one input stream and returns one output stream. Th{dmps are not actually needed.
simple model is amenable to simple semantics for queries For instance in Example 1, the streail has latent
involving one data stream and multiple database tables. timestamps, since itis declared without the order-by @aus
Semantics. In the previous sections, we have definedAls0, as shown in Examples 5 and 6 a data stream where its
the semantics of continuous queries involving only data€Xplicittimestamp is projected out becomes one with latent
streams by prescribing that, the cumulative result producetimestamps. _)
by a continuous query up to tinmeshould be the same as Latent timestamps are not carried along in the tuples
that produced by its equivalent SQL:2003 statements apas these flow from one operator to the next: they are in-
plied to the content of the input data streams up to timeStead generated dynamically as required by the query op-
t. However, for queries spanning both data streams an@rators being executed. In terms of semantics, the key dif-
DB tables, we must also consider changes in the conterference between explicit and latent timestamps pertains to
of tables, by using a snapshot semantics for database tyhen their value_s are a_ctually materialized: latent times-
bles. Thus, in Example 7, a new tuple frexpensiveltems ~ {@mps are materialized just before the tuples are proces;ed
arriving at timet must be joined with snapshot of tisel- by each query operator. Moreover, the abstract semantics
lerinfo table at timet. This delta result is then appended Of query operators on data streams is independent of the
to the current output to produce the cumulative result ofParticular type of timestamp the data streams Havehis
the query at time. Observe that when no database tableds illustrated by Example 9, where a time-based window
are involved, or the content of the database tables involvetf applied to data streasid which has latent timestamps:
does not change with time, we obtain the same result as tH8iS query reports the number of bids received in the last
cumulative semantics discussed, previously. hour (60 minutes) for each item.

22 UNION Example 9 For Each Item Count the Number of Bids in the
Last Hour (60 Minutes)

UNION is the only ESL operator that is directly applicable .o <rream HAGtivty

to multiple data streams. (ESL does not aIIEMCEPTan_d SELECT itemID, count(bid_price)
INTERSECTtO be applied on data streams; and the union of OVER(PARTITION BY itemiD
data streams and database tables is also not allowed.) RANGE 60 MINUTES PRECEDING)
For instance, the query in Example 8, below, sort- FROM Bid
merges th®penAuction and theClosedAuctioninformation The meaning of this statement is that when a new tuple is
on start_price andfinal_price for each item: added to the window, a timestamp value equal to the current

system time is created and stored with the tuple in the win-

Example 8 Price History Query dow. This timestamp is consulted to decide when the win-

CREATE STREAM PriceRise(itemID, price, Time)AS dow tuple has expired from the window. The (unnamed)
?E(I_)Iincg 'temA'D' start price, start-time timestamp column that was used to maintain the window in
o pnAuetion Example 9 is not included in the resulting stredlctivty ,
SELECT itemID, final _price, current time which there_fore has latent timestamps. Later query opera-
FROM ClosedAuction tors onHActivty that require timestamps will then generate

The union of data streams with explicit timestamps pro-new values based on the current clock. _
duces a stream that is ordered by its timestamps. Thus, the The fact that the generated value of the latent timestamp

ORDER BY Time in the following ESL statement is imma- s not part of the output simplifies the operational semantic
%ﬁgaelq%ri]\(/ja(l:gr?t ts)%ﬁlmlgﬁytfd (but is included here to ShOW, 4 the implementation of query operators on data streams
N _ with latent timestamps; in fact the actual generation of the
SELECT * FROM PriceRiseORDER BY Time timestamps can be omitted all together for simple query op-
At the implementation level, union is implemented by aerators, which preserve the arrival order of the tuples. For
sort-merge operation on the streams. We choose the tupigstance, the need for a sort-merge operation to compute
with the minimum timestamp from the input data streams ifunion is eliminated by the observation that tuples could be
none of their buffers are empty. If the buffer of any streamassigned timestamp values equal to the time at which they
is empty, we must wait for its next incoming tuple before were taken from their input buffers and moved to the out-
we proceed, since that tuple may have a timestamp smallétut. The actual order of tuples being produced by such a

than any unproceSSEd tUple of the other streams. 4Thus, the abstract semantics of queries on data streams wétit la

As in SQL, ESL supportsNION ALL which preserves timestamps follows directly from that of stream with explitinestamps
duplicates, andNION, which eliminates them. (Duplicate which we have defined in the previous sections.

union depends on the order in which they arrived at the inSELECT itemID, sellerID
put buffers, and also on load conditions— but the order of FROM TABLE(OpendAuction OVER

tuples for each individual stream is always preserved. A (RANGE 10MINUTES PRE_CED'EG CURR'ZNT)(;
The syntax TABLE(function_call) is the standar
Out-of-Order Tuples y ()

SQL:2003 syntax (that explicitly reminds the user that the

Latent data streams offer many benefits besides perfolebject returned is of typeble). However, ESL allows the

mance. They are particularly useful with out-of-order tu-more user-friendly syntax fdiunction_call, whereover is

ples in a stream. For each externally timestamped streamie name of the function and MINUTES PRECEDING

ESL also generates a latent stream containing the out dfURRENT define the arguments of the function. In spite

order tuples. For instance, the declarationGyfenAc- of the use of similar keywords our table-function construct

tion in Example 1, generates the data stre@penAc- is semantically different from theveRr construct used as

tion_OutOfOrder with latent timestamps. Strea@pen- aggregate modifier in several ways, including the fact that

Action_OutOfOrder contains all the out-of-order tuples of PARTITION BY is not allowed here.

OpenAction. The user is thus given the opportunity to re- Upon receiving such ad hoc query form the user, a sys-

adjust the timestamps @fpenAction_OutOfOrder, e.g., to tem must collect 10 minutes of data before an answer can

merge them back into the original stream. be returned to the user. One way to solve this waiting prob-
The next example illustrates how data streams with lalem is to create the concrete view in Example 12, followed

tent timestamp combined with UDAs can be effectively by the ad-hoc query in Example 13, as below.

used to fix timestamps and out-of-order problems. Exam: _— -

ple 10 below uses a window of 2 minutes. As discusse S&%ﬂlsefgtﬁeo{;%rﬂ% \rg%vl\j.téé'\s.table containing all the

in Section 5 esort_bids is a UDA that selects out of a set

of tuples (in this case the tuples within a two minutes win- CREATE TABLE high priced AS SELECT itemID, selleriD

FROM TABLE(OpendAuction OVER

dow) those that are minimal in their fourth column and re- (RANGE 10 MINUTES PRECEDING CURRENT))

turn these tuples (UDAs in ESL can return whole tuples,ReFRESH IMMEDIATE

not just single values). Example 13 Ad Hoc Query on the concrete viewCount

Example 10 Resorting to Handle Late Arrivals by 2 Min- the number of such auctions.

utes or Less SELECT count(ltemID) FROM high_priced

CREATE STREAM OKBids Because of th@EFRESH IMMEDIATE option, the sys-
SELECT resort_bids(itemID, bid_price, bidderID, bid _time) tem will continuously keep the view up to date; then the ad
FROM Bid OVER(RANGE 2 MINUTES PRECEDING) hoc queries on this view can be answered immediately. A

|

wide range of ad hoc queries can be answered efficiently

This solution only works when the maximum delay is on the view of Example 12, and could thus justify its cre-
less than 2 minutes. The tuples that are more than 2 minutegion, whereas a much more specific concrete view should
late can be deleted or given new timestamps, see Section pe used to support only the query of Example 13. Indeed
3 Ad Hoc Queries and Concrete Views on what concrete views should b_e created to optimally sup-

Data Streams port a given set of ad-hoc queries represents an interesting
problem [17].

While they have not received much attention in previous In summary, ESL uses the following simple rule:
DSMS, ad hoc queries on data streams can be very us®ueries that use a data stream in theom clause are
ful. For instance, a user might want to find the averagecontinuous; queries that only use database tables, imgudi
price and the volume of a given stock during the last 20concrete views, are ad-hoc. The event causing the produc-
minutes—without having to receive that information con-tion of new results for continuous queries is the arrival of a
tinuously. The difference between the two kind of queriesnew tuple in the data stream, while for ad hoc queries it is
is that continuous queries persist until they are turnetdyff the arrival of the query itself. Thus, joins of a data stream
the users, ad hoc queries are instead turned off as soon a4th relations can also be modelled as sequence of ad hoc
they complete, and they remain off until they are re-issuedelection queries—one query for one incoming data stream
by the user. tuple.

Therefore, along with traditional ad hoc queries on 1 Window Joins on Data Streams
database tables ESL also supports ad-queries on dafa . R)
streams through the mechanismaoincrete viewsndta- ~ Say that we are interested in finding buyers who, in two
ble functionsthat extract snapshots of tables from the datahours, have raised their offers on a given item by more than
streams. 20%. Then we could join th&KBids stream with a con-

Table functions represent a very powerful SQL;zoogcrete view like that of Example 12. Alternatively, the user
construct that can be used to transform practically any kin¢an express this query by the ESL statement of Example
of data source into SQL tables [25]. Thus we will use them14, below, which is more concise and more conducive to
to extract tables from data streams. Consider the followingfficient implementation.

ad hoc query: Example 14 Buyers who have Raised their Offers by more

€4
Example 11 Concrete View:Count the number of items than 20% in Two Hours.
offered for auction in the last 10 minutes. CREATE STREAM higher_price AS

SELECT ItemID, SellerID, Price alarger class of data stream applications. We show that this
FROM OKBids AS H, can be achieved by UDAs that:
TABLE(OKBids OVER . .
(RANGE 2 HOURS PRECEDING CURRENT)) ASL ® can express both blocking and non-blocking query op-

WHERE H.itemID = L.itemID AND H.bidderID = L.bidderID erators,

AND H.Price > 1.2 *L.Price e are powerful and flexible, and can be written natively
Thus, TABLE(OKBids OVER ...) generates a TABLE- in ESL itself or in external programming languages,
like view of the streamDKBids over logical window de- e are amenable to very efficient implementations on
fined using theRANGE statement; alternatively we could both logical and physical windows using the ESL con-

have used a physical window with tROWS clause. structs introduced in the next section.

The next query illustrates how the window in one stream . - .
can be synchronized with the timestamps in another streantt>- Implements SQL:3's idea of creating a new UDA by
ecifying the computation to be performed in the three

Say that we are interested in finding auctions that close((ﬁ;l.?cf t stat lodk d
within 24 hours of opening. Then, we can define a table ! erer; SEaSES ﬁa ENITIALIZE , 'TERATEt; an TE.fR“’('j".
function that produces a concrete viewayenAuction data NATE. n , these computations can be specified in an
stream over a 24-hour window and join tBsed Auction external PL, but can also be defined in ESL itself. In our
data stream with this concrete view: examples, we will use UDAs of these second type, since
' they represent a unique feature of ESL and they produce

Example 15 Short Auction Query: Report all auctions code that is clear and concise.

which closed within 24 hours of their opening. For instance, Example 16 defines a UDA equivalent to

SELECT CA.itemID, CA.current _time the standardvG aggregate in SQL. The second line in Ex-

FROM ClosedAuctionAS CA, ample 16 declares a local tabkate where the sum and
TABLE(OpenAuction OVER count of the values processed so far are kept. Further-

(RANGE 24 HOURS PRECEDING CA)) AS O Hain thi : -
WHERE O.itemiD = CA itemiD: more, Whllg in t_h|s particular exampkate contains only
Al . o one tuple, it is in fact a table that can be queried and up-
Thus for each arrivin@losedAuctiontuple, with times- gated using SQL statements and can contain any number

tampt, we now collect in the window th@penAuctiontu- of typles. These SQL statements are grouped into the three
ples that have arrived in the last 24 hours befor& more pjocks labeled, respectivelyiTIALIZE , ITERATE, andTER-

relaxed, and less expensive synchronization will instead by yate. Thus,iniTiaLizE inserts the value taken from the
achieved if we changBRECEDING CA to PRECEDING input stream and sets the countitoTheITERATE statement
CURRENT. updates the tuple istate by adding the new input value to
Data Stream Joins the sum and to the count. TheERMINATE Statement re-

. . . turns the ratio between the sum and the count as the final
At the present time, ESL does provide special CONSUUCt3a g it of the computation by theserT INTO RETURNState-

to support the symmetric window join of two data Streams‘men’@. Since thererMINATE Statements are processed just

2 apd.Bin— dI.V?/i.{htTﬁ S|tui?]tlor\:v\i/;/]2e:,\elz t?‘eBarrlr\::jngi tup\l/ef N after all the input tuples have been exhausted, the UDA in
are joine 0seina owonb, a ceve S'a'ﬁxample 16 below is blocking. Note that the ESL system

This symmetric join operation can be easily expressed as 0
S ; : o 4 . as built-in support for standard aggregates such as avg,
joined with a window on BuNION B joined with a window max, min, sum, etc. Aggregate avg is used here for illus-

on A. For instance, the query in Example 15 can be trans;__:

formed into a symmetric join by also joiningpenAuction tration purposes only.
with a window onClosedAuctionand then taking the union Example 16 Defining the Standard Aggregate Average
of the two. But since the closing of an auction always cgeare AGGREGATE avg(NextReal) : Real

follows its opening, the second join is likely to be empty { TABLE state(tsumReal, cnt Int);

and we can omit it. It is also easy to see that in the case INITIALIZE: {

of self-joins the asymmetric join such as that of Example INSERT INTO state VALUES (Next, 1);

14 always produces the same results as the symmetric one.
Furthermore, in the next section we will show that in many
practical situations it is far more efficient to express join
like operations on streams via UDAs, rather than symmet-
ric joins. Because symmetric joins are not needed in many TERMINATE : {

examples, and our minimalist’s bias, they are not supported INSERT INTO RETURN

in the current version of ESL (but they will be added in later SELECT tsum/cnt FROM state;
versions if the demand for them proves strong).)

4 Base Aggregates: Blocking vs. Non- A continuous, non-blocking version afyg can instead
Blocking be defined as shown in Example 17, below, where the new

In the previous sections, we have concentrated on providinséalriegxageng:}lﬁgl gggheorfmee'%r;;]thgrq;ggemd values to as-
unified support for continuous queries and ad hoc queries; P y P :

while minimizing extension to SQL:2003. We next focus s1q conform to SQL syntaxRETURN is treated as a virtual table;

on extending the query power of ESL to support efficientlyhowever, it is not a stored table and cannot be used in any ritee

}
ITERATE : {
UPDATE state
SET tsum=tsum+Next, cnt=cnt+1;

Example 17 Continuous Average with Exponential Decay Example 19 List the Length of Every Call imalls(call_ID,

event, time)
CREATE AGGREGATE decayonline_avg(NextReal) : Real SELECT O1.callID, O2.time - Ol.time
{ TABLE state(tsumReal, cnt Int); FROM calls AS O1, callsAS 02
INITIALIZE : { WHERE (Ol.callID = O2.call_ID
INSERT INTO state VALUES (Next, 1); AND O1.event = 'start’
INSERT INTO RETURN VALUES (Next); AND O2.event = 'end’);
¥ However, this statement could require infinite memory.
ITERATE: {

One approach to solve this problem is to join the data

UPDATE stat ,]
state streamO1 with a window on the data strea@p, as done

SET tsum= 0.9*tsum + 1.1*Next, cnt=cnt+1;

INSERT INTO RETURN in Examples 14 and 15. But this would only provide an
SELECT tsum/cnt FROM state approximate solution, since the exact length of a conversa-
tion whose duration is longer than the window size cannot
TERMINATE : { } be reported. A better solution consists in deleting from the
} window those records whose 'end’ has already been seen.

UDAs, such as those of Example 17 where ttER- This allows us to compute the duration with bounded mem-
MINATE state is empty or missing all together, are non-ory, given that the number of calls drop exponentially with
blocking and can be applied freely to data streams. ESlincreasing call length, as in the following UDA:
also uses a (non-blocking) hash-based implementation f . .
the crour-BY calls of the UDAs as opposed to the com—oeé)éﬁ{ntﬂi)zo List the Length of Every Call inalls(call.ID,

. X N . vent, ti
mon implementation for SQL aggregates, which first sorts , _
the data according to therour-BY attributes and thus is a CREATE AGGREGATE call len(callid, event, time) : (Id, Length)

: ; : - - TABLE memo(id, start);
blocking operation. This default operational semantics oft INITIALIZE: ITERATE. {

ESL leads to a stream-oriented execution, whereby the in- INSERT INTO memoVALUES(callidtime)

put stream is pipelined through the operations specified in WHERE Event="start":

theniTIALIZE andITERATE clauses. INSERT INTO RETURN SELECT id, time - start
The UDAs defined so far are callbdseaggregates and FROM memoWHERE event="end’

AND memo.id=callid;
DELETE FROM memo
WHERE event="end’ AND memo.id=callid;

follow the syntactic rules of the traditional SQL:2 aggre-
gates. Therefore, they can be used without a group-by
clause as in Example 5, or with a group-by clause as shown }
in Example 18 below. }

Example 18 Find the Recent Average Price of the ltems 1€ UDAs discussed in this section are base UDAs:
Offered by Each Seller. base UDAs with an empty or missSimgERMINATE clause

are non-blocking and can be applied freely to on data
SELECT sellerID, decayonline_avg(start_price) AS avg price ztreamS; blockmg UDASs, instead, can .be used freely on
FROM OpenAuction atabase relatlons,_ but they can be applled on qlata streams
GROUP BY sellerlD only_throug_h the window construct, discussed in the next

section. Window aggregates enhance the performance of

Ilz(rom a theoretical stalndpointait WSS known t?at UD’Ar‘]SUDAs and the user convenience, thus they are part of ESL,
make SQL Turing complete on databases, insofar as theq, gh their functionality could be captured directly us
can express every function on the database computable by”qg base UDAS.

Turing Machine [20]. Similarly, non-blocking UDAs make " jngtance, Example 21 below shows the definition of

SQL complete for data stream applications_inso_far asitcag aggregate that behaves asuhienited preceding version
express every non-blocking query expressible in any othe6f average.

possible language [20]. Our practical experience with ESL
indicates that UDAs can be used to implement efficientlyExample 21 The Cumulative Average—i.e., its 'unlimited
mining functions, sequence queries and optimal graph alPreceding’ version

gorithms that cannot be expressed well in SQL:2003. INcREATE AGGREGATE cum_avg(NextReal) : Real

the next example, we show how a non-blocking UDA can{ TABLE state(tsumReal, cnt Int);

CREATE STREAM AskdPrice AS

be used to save memory in the computation of self-joins. INITIALIZE : {
o INSERT INTO state VALUES (Next, 1);
Self-joins INSERT INTO RETURN

. . . SELECT tsum/cnt FROM state;
Since data streams are unbounded, naive joins over streams

might require infinite memory. Say thedilis(callLID, event, ITERATE : {

time) is a stream of phone-call records, where we stag UPDATE state

orendin theeventfield to indicate whetheime field marks SET tsum=tsum+Next, cnt=cnt+1;
the beginning or the end of a phone-call. Then to find the INSERT INTO RETURN

length of every conversation, we could self-join the stream SELECT tsum/cnt FROM state;

with itself to find two tuples that have the sae®li_ID, and

}
: : TERMINATE : { }
theireventvalues are respectivelart andend. }

This cumulative version ofvg was obtained from its of tuples in the input and(is the number of tuples im-
base definition in Example 16, by taking the return clausewindow.
from TERMINATE and appending it toNITIALIZE andIT- To further optimize such window aggregates ESL makes
ERATE. The UDA so obtained has an emptgRMINATE available to users thexPIRE construct, discussed next,
clause and it is thus non-blocking and also efficient (atleaswhich enables computation in tint(n). Example 23 de-
to the extent in which the base UDA is). Therefore, thefines a highly optimized implementation a¥/G, using a
ESL compiler uses this rewriting technique to implementnew state calleéxpPIREin which the values of tuples leav-
'unlimited preceding’ versions of UDA% ing the window are used to perform delta-maintenance on

Nevertheless, for general windows on UDAs the imple-the window UDA. ForavG, the delta maintenance consists
mentations that can be derived from their base definitionin decreasing the sum by the value of the expired tuple and
tend to be inefficient and require a different solution forthe count by 1. The result is the same whether this delta
this problem, which is discussed in the next section. computation is performed as soon as a tuple expires, or

. later when a new tuple comes in, or anywhere in between

5 Window Aggregates these two instants. ESL takes advantage of this freedom to
ESL supports the optimization of window aggregates bothoptimize execution.

at the physical and logical level by: Example 23 The New Constru@xpPIRE
e theinwindow construct whereby the system optimizes CREATE WINDOW AGGREGATE myavg(NextReal) : Real

the management of windows, and { TABLE state(tsumint, cnt Real);
e the CREATE WINDOW AGGREGATE declarations, TABLE inwindow(wnext Real);
whereby the user can specify an optimized implemen- 'N'IL'QEETEI:N{TO state VALUES (Next, 1):
tation for each window aggregate via thePIRE con- INSERT INTO RETURN VALUES (Next):
struct.)
The use of theCREATE WINDOW AGGREGATE declara- ITERATE : {
tion and theinwindow construct is illustrated by Example UPDATE state SET tsum=tsum+Next, cnt=cnt+1;

INSERT INTO RETURN

22 below, which defines a naive implementatioawaf over SELECT tsum/cnt FROM state;

a finite-sized window.

}
Example 22 A Naive Version o&vgon a Finite Window EXPIRE: {
/* when there are expired tuples take the oldest */

CREATE WINDOW AGGREGATE avg(NextReal) : Real UPDATE state SET cnt= cnt-1,
tsum = tsum - oldest().wnext

TABLE inwindow(wnext Real); }
INITIALIZE : } _ . .
ITERATE : { In the definition of window aggregategXxPIRE is
INSERT INTO RETURN treated as an event that occurs once for each expired
SELECT avg(wnext) FROM inwindow; tuple—and the expired tuple is removed as soon agxhe
} PIRE statement completes execution. In ESldest()is a
} built-in function that delivers the oldest among the tuphes

Observe that, in Example 22, our window version of inwindow, andoldest().wnextdelivers thewnext column in
AVG calls on the basavg aggregate for tables; but this is this tuple. If the tuple has only one column then the system
not a recursive call, since the two aggregates are intgrnallallows usingoldest(), i.e. without the coulmn name.
treated as two different procedures. Upon the arrival of a new tuple, the system first proceeds

The declaratiorTABLE inwindow(wnext real) instructs at executing any outstandirExPIRE event. TheTERATE
the system to store the input values in a special windovgtatements are next executed on this tuple. Afterithe
buffer that will be callednwindow’. Incoming tuples (ex- ERATE statements, the new tuple is put into theindow
piring tuples) are automatically added to (deleted fram) puffer.
window by the system. The system performs the window The following examples show how specialized versions
maintenance task on behalf of the user, with the same inof window aggregates can result in significant performance
terface to both physical and logical windows. This unifica-improvements, and ESL users are likely to take full advan-
tion makes it easier to specify window UDAs. Moreover, tage of this option in their applications. However, usegs ar
it creates opportunities for physical optimization by shar not required to define the window version of a UDA, since
ing windows between UDAs and swapping large windowsgSL falls back on the base version whenever the window
to secondary store when necessary[22]. Although the usgersion is not provided. For instance, in the absence of
of inwindow assures efficient storage management, the aldefinition Example 23, the ESL system uses the definition
gorithm shown in Example 22 is still inefficient since it re- of Example 22 to support the applicationasty over finite
computesavg on the current window for each new incom- windows, and for 'unlimited preceding’ windows ESL in-
ing tuple. It takes timé&) (K x n), wheren is the number stead uses the definition in Example 21. This policy is ap-

6n fact, instead of rewriting the UDA, ESL simply executes tteR- plled_unlformly to all UDAs, not Just tavg ar-]d- I-t 'S ma-lde
MINATE stétement after eagNITIALIZE OI: ITERATE execution. pOSSIble by the faCt that once a base dEfInItlon eXIStS for

"The names of the columns Bfwindow can be chosen by the user, any UDA, the "unlimited preceding’ and the "finite win-
but their data types must be the same as the aggregate arguments. dow’ versions can be trivially derived by simple syntactic

rewriting. This convenience also holds when PL statementghenever a tuple expires, we return the tuple along with
are used to define the computations performed in the threany tuples that havbid_time less than or equal to the ex-
statesINITIALIZE , ITERATE, TERMINATE (Access toin- piring tuple’sbid_time. This UDA does not reorder tuples
window by PL functions is provided by our system for this that are more than 2 minutes out-of-order, which will be
purpose). redirected to the out-of-order stream as discussed in Sec-
The tableinwindow is managed by the system, which in- tion 2.3. Alternatively, it is easy to modify the UDA of
serts arriving tuples and deletes expiring tuples accgrdin Example 26 to either delete these tuples or to reassign their
to the window range and its type (i.e., logical or physical).timestamps to the max value seen so far.
Insertion of new tuples in the window by ESL statements
is not allowed since it is incompatible with the window se-
mantics that assume externally arriving tuples rather tha¢REATE WINDOW AGGREGATE resort_bids (itemID Int,
internal ones. However, there is no reason that tuples that Pid-price Real, bidderID Int, bid_time Timestamp):
are no longer needed must be kept in the window until they (itemID Int, bid price Real, bidderID Int,

. .] . bid_time Timestamp)
expire out of the window range: therefore besides unrey 1xg) E inwindow(itemiDw Int, bid_pricew Real

Example 26 UDA to Resort Late Arrivals in a Window

stricted queries oimwindow, ESL also allows the deletion bidderiDw Int, bid_timew Timestamp);
of inwindow tuples as part of the UDA statements. The ap- INITIALIZE : { } /* the system adds new tuples to inwindow */
plication of this is illustrated by theumdistinct aggregate: ITERATE: { }

when a new tuple arrives we can eliminate older duplicate ~ EXPIRE: {

; INSERT INTO RETURN
values from the window. SELECT itemIDw, bid _pricew, bidderIDw, bid _timew

Example 24 Sum Distinct with Windows FROM inwindow o
CREATE WINDOW AGGREGATE sumdistinct (NextReal) : Real \(/)VSIEERE g'\? ‘g'ig]_fi‘ivnegw?ldwo'b'dt'mew
{ TABLE _the;um(tsumreal); DELETE FROM inwindow WHERE bid _timew < oldest().bid timew;
TABLE inwindow(wnext real); }
INITIALIZE : {)
INSERT INTO thesumVALUES (Next); . .
INSERT INTO RETURN VALUES (Next): The above UDA first collects the tuples in tingiindow
buffer, and no other processing is done in tR&EIALIZE
ITERATE : { and ITERATE states. Then, when a tuple expires, all tu-
DELETE FROM inwindow WHERE wnext=Next, ples that are younger than the expiring tuple are returned,
\L/"VF"_"?EARTEEggiggg?;i”g}ztsumwem i.e._in theEXPIRE state. Reordering mechanism defined
INSERT INTO RETURN by Examples 26 and 10 together is very similar to the slack
SELECT tsum FROM thesum: mechanism in the Aurora system [4], however ESL allows
more flexibility to the user by allowing them to handle
EXPIRE: { out-of-order tuples in any way they like, not just reorder
[* when there are expired tuples take the oldest */ or discard them. These examples illustrate the desinabilit
UPDATE thesum SET tsum = tsum - oldest(); of customizing delta-maintenance on each UDA. Remark-
} ; ably, the declarative framework here proposed is effective

on both physical and logical windows, and, in addition to

pata streams, it can also be applied to database tables.
Data stream mining applications discussed next illus-

ate another interesting application of window aggregate

n these examples, the performance obtained by coding

UDAs in ESL was comparable to that obtained by coding

Consider now the window version afax: for each in-
coming tuple, we can eliminate the older tuples of less o
equal value. Thus the oldest tuples in the window are als
those that have the max value which is therefore returne?f
as the result of the aggregate.

Example 25 MAX with Windows the UDAs in C++ (typically, a 10% slow-down).
CREATE WINDOW AGGREGATE max (NextReal) : Real i i
{ TABLE inwindow(wnext real); () 6 App“C&thﬂS
INITIALIZE : { In [20] we proved that (i) the introduction of natively de-
INSERT INTO RETURN VALUES (Next); fined UDAs turn SQL into a Turing-complete language,
} /* the system adds new tuples to inwindow */ and (i) the language is also complete for data stream ap-
'T%REALTEETE{FROM inwindow WHERE wnext < Next plications since it can express all the monotonic quer!es
INSERT INTO RETURN VALUES (oldest(): expressible by a Turing machine (non-monotonic queries
} cannot be used on data streams since they are always block-
EXPIRE: { } /*expired tuples are removed automatically*/ ing). The theoretical results presented in [20] are impor-
} tant, but, in the end, the strength of a language and its

The optimized treatment of window aggregates findsystem can only be evaluated through actual applications.
many natural applications. Let us return to the out-of-orde ESL and the Stream Mill system [2] have proven effective
problem of Example 10, where we have shown how tu-on a wide range of complex applications that includes (i)
ples that are less than two minutes late can be reorderddining Data Streams [21], (ii) Sequence Queries [10], (iii)
by callingresort_bids with a window of two minutes. The Streaming XML queries [32], and (iv) Approximate Com-
windowed version ofesort_bids is defined in Example 26: putations.

Mining Data Streams AGGREGATE find _pattern(PageTypeChar):

.. . TABLE memo(PageTypeChar, statelnt) MEMORY;
Support for data stream mining represents a major problen{1 INITIALIZE: ITERATE: {

for DSMS. The problem has its roots in the inadequacy UPDATE memoSET state = state + 1:

of SQL-compliant DBMS to support data mining meth- DELETE FROM memoWHERE state = 3;
ods, which have been the focus of much previous research. INSERT INTO memoVALUES (PageType, 0);
This problem was solved in Wang et al. [29], where it was INSERT INTO RETURN

shown that UDAs are effective at expressing data mining ﬁggﬁ%éﬁgg?ﬁ:&o AS Y MemoAS 7

methods, by expressing the complex statistical computa- WHERE X.state = OAND X.PageType = buy’
tion that are at the core of these methods. In [21], we show AND Y.state = LAND Y.PageType = 'pd’
that ESL UDAs are particularly effective on data streams, AND Z.state = 2AND Z.PageType = ad’;
where mining methods tend to perform one pass over the }

data (rather than many passes), have to adapt continuously

to concept drifts, and make use of windows and other syngypport for Continuous Queries on Streaming XML

opses.
P The need to unify the support of relational streams and

Sequence Queries XML streams into one DSMS is very strong, since it is
Several query languages have been proposed in the padtven by application demands similar to those that are
for sequences and time-series [23, 26]. The main motinow pushing DBMS vendors to support stored XML doc-
vation of these languages is that most self-join queries argments. Indeed, many competing solutions have been pro-
too complex to express and inefficient to implement if theyposed for the unified management of DB relations and
are written in SQL [23, 26]. Take for instance the follow- XML. However, at the best of our knowledge, Stream Mill
ing query on time-series of daily temperatures: Find a fortis the only DSMS that currently supports both kinds of
night of raising temperatures. In SQL, this query requiresstreams. Indeed, the expressive power of ESL greatly sim-
14 joins; that many joins cannot be supported efficiently,plified the difficult task of supporting XML streams and
and are also too complex for users to write. Other queriesXQueries in our system [32].

such as double-bottom queries [26] would require an un-,
bounded number of self-joins, and might not be expressible
in SQL. All these queries can however be expressed in ESIA new requirement introduced by data streams is the need

pproximate Computation on Data Streams

using UDAs [10]. to support approximate computation and synopses. Many
_In the following example we have a log of web pagesof these can be naturally expressed as UDAs. For instance
clicked by a user, as follows: Datar et al [14] proposed an elegant solution to the follow-
CREATE STREAM ing problem:
Sessions(SessNat, ClickTime Timestamp, PageNoalnt, Given a stream of data elements consisting of 0's and
PageTypeChar); 1's, maintain an approximate count of the number of 1's in

ORDER BY ClickTime the lastN elements using as little memory as possible.

A user entering the home page of a given site starts a The solution proposed by Datar et al [14] creates a new
new session that consists of a sequence of pages clickeducket of value 1, for each incoming element of value 1.
For each session numbesessNo the log shows the se- If there arek neighboring buckets with same valugwe
guence of pages visited—where a page visit is describetherge the oldest two buckets into one bucket with value
by its timestamp ClickTime, number,PageNoand type, (valuek depends on the error bourdwhich is given by
PageType(e.g., an advertisement page, a product descripthe user). At any time, the approximate count is the sum
tion page, or a page used to purchase the item). The ideaf the values of all buckets minus half of the value in the
scenario for advertisers is when users (i) see the advertis@ldest bucket. It can be shown that the algorithm maintains
ment page for some item in a content page, (ii) jump to thean approximate count with a relative error bound.of €
product-description page with details on the item and itswith Q(% log® N) bits of memory space [14].
price, and finally (iii) click the ‘buy this item’ page. This The above algorithm is realized easily by UBasic-
advertisers’ dream pattern can be expressed by the followcount in ESL:
ing UDA query, where ‘ad’, ‘pd’, and ‘buy’, respectively, o _
denote an ad page, a product description page, and a puygxample 28 Maintaining Approximate Counts over
chase page. We store the last three page types using t ms
memo table in the UDAfind _pattern. Then we issue a self- TABLE hist(h Int, timestampInt) AS VALUES (0, 0);
join query to check the condition. Since themo table = CREATE AGGREGATE BasicCount(vInt, timestampint) : Int

only contains three tuples at all times, the self-join query { INITIALIZE 1 ITERATE : { _
very efficient. INSERT INTO hist VALUES (v, timestamp);

DELETE FROM hist AS h

Example 27 Sequence Query WHERE h.timestamp < timestamp - N;
) INSERT INTO RETURN
SELECT SessNo, findpattern(PageType) SELECT merge(h, timestamp)
FROM Sessions OVER (ORDER BY timestamp DESC) FROM hist;
GROUP BY SessNo; }

In Example 28, we assume elements arrive with increaswere considered, and sophisticated techniques to han-

ing timestampsl, 2,3,---, and we use a tablejist, to dle out-of-order tuples were proposed. The question on
maintain the buckets. Initially, the histogram contains awhether these techniques can be implemented in ESL, by
dummy entry(0, 0). We add new entries to tabiést for el- using system generated heartbeats and application-gpecifi

ements of value 1, and we remove expired entries from th&/DAs represents an interesting topic for further research.
window. We merge histograms by invoking UD#erge in Also, punctuation [24], that has proven very useful in deal-
Example 29, which iterates through entrieshist, starting ing with blocking aggregates, can be used in a role simi-

from the last entry to the dummy ent(g, 0). lar to heartbeats, particularly for data streams with katen
_)) timestamps.
Example 29 Merge Duplicate Values in the Histogram Instead of extending SQL, Aurora defines query plans
CREATE AGGREGATE merge(iValuelnt, iTime Int): via an attractive “boxes and arrows” graphical interfaces
{ TABLE state(vint, cint, t Int) AS VALUES(1,0,0); [12]. Aurora supports eight primitive operations, among
INITIALIZE: ITERATE : { which four are windowed operators. It also supports user-
UPDATE Stattf_SElT c=c+1,t=iTime defined aggregates, which are defined in a procedural lan-
WHERE v=iValue; H i
! uage. The aggregation operators have optional parame-
UPDATE state SET v=iValue,c=1,t=iTime ?ersg makin tk?gir gemantigs dependent onp strean? arrival
WHERE v<>iValue AND c>k; ! g P
UPDATE hist SET h = h * 2 WHERE SQLCODE=0 and processing rates.))
AND timestamp=(SELECT t FROM state); GSQL is a pure stream query language des!gne_d for Gi-
DELETE FROM hist WHERE SQLCODE=0 gascope, a stream database for network applications [13].
AND timestamp=(SELECT t-1 FROM state); GSQL is an SQL-like language allowing query composi-
TERMINATE : { tion and query optimization, which supports sort-merge
INSERT INTO RETURN union of streams, joins of two streams, and aggregation
SELECT sum(h)-iValue/2FROM hist; . ’ . . ! !
} besides externally defined functions.
} TelegraphCQ [15] proposes a SQL-like language with

extended window constructs, including a low-level C/C++-
like for-loop, aiming at supporting more general windows
~'such as backward windows. TelegraphCQ [15], and also
the current entry, delete the I_ast entry, and restart cognti CQL [6], treat windows as streamgmgdifiers[, rllther than
Finally, we return the approximate count. aggregate modifiers as SQL:2003 does.
7 Related Work and Discussion The main restriction of ESL with respect to other lan-

i o guages is that it does not contain special constructs to ex-
There are obvious similarities between the ESL approachyress window joins on multiple streams directly. This did
a_nd that of othe_r data stream projects, but a_Iso agmﬂqanﬁot prove to be a major problem in the many complex appli-
differences. A first difference is that ESL strives to unify cations we have implemented so far. However, if needed,
the treatment of continuous queries and ad hoc queries e various kinds of window joins proposed in the literature
building as much as possible on standard syntax and s¢19, 28, 18, 5] can be easily added since table expressions

mantics. For instance, SQL:2003 supports windows as agp SQL:2003 already accommodates special joins, such as
gregate modifiers in OLAP Functions, providing constructsyyter-joins.

that can be applied directly to continuous queries on data i

streams. Moreover, ad hoc queries on both database tabl8s Conclusion

and tables created as windows on data streams can be supontinuous query languages that comply with SQL:2003

ported using SQL:2003 constructs of concrete views andtandards are preferable for database vendors and database

table fu_ncthns. The_se constructs can thus be used in ESlesearchers alike, and will simplify applications thatrspa

to specify window joins on streams. both DB tables and data streams. However, continuous
While conservatively conforming to SQL:2003 syntax, queries on streaming data are so different from traditional

ESL has boldly attacked its expressive power problemsapplications on stored data that other DSMS projects have

and has extended it into a language that can be used to supch deviated from the standards [6], or replaced SQL all

port complex queries such as time series queries. The basiggether [4]. The design of ESL shows that

idea was taken from [20] where it was shown that UDAs e SQL:2003 syntax and semantics can be used to unify

can turn SQL into a Turing complete (and non-blocking continuous queries and ad hoc queries in a quite natu-

complete) query language. ESL has materialized the ab- ral fashion (using concepts such as concrete views and

stract notions of UDAs from [20] into a flexible and effi- table functions)

cient tool for data stream processing, by providing delta- e UDAs enhanced with window constructs are neces-

based maintenance mechanisms whereby arbitrary UDAs sary and sufficient to support a wide range of ad-

In UDA merge, we count if a value has more thanen-
tries in the histogram. If it does, we double the value of

can work efficiently on windows of different kinds. The vanced data stream applications,

topic of optimizing windows was the subject of interest- o UDAs can be defined natively and concisely in SQL
ing previous work, which primarily focused on the window itself.

sharing problem [7, 30, 15]. The conservative approach taken by ESL, with respect to

The issue of flexible timestamp management has beestandards, has produced a language of great power and gen-
studied in [27], where internal and external timestampserality, which supports efficiently (i) continuous and aath

queries on data streams, (ii) data stream mining, (i) se{16] Lukasz Golab and M. TameOzsu. Issues in
quence queries, (iii) queries on streaming XML, and (iv) data stream managemenfACM SIGMOD Record
approximate computations. 32(2):5-14, 2003.

At the time of this writing, the ESL system is fully op- [17] Eric N. Hanson. A performance analysis of view ma-
erational and supports continuous and ad hoc queries using " terialization strategies. IBIGMOD, page 440, 1987.

a client-server architecture [2].
[2] [18] Jaewoo Kang, Jeffrey F. Naughton, and Stratis Viglas.

References Evaluating window joins over unbounded streams. In
[1] The IBM Websphere software. http:/www- ICDE, pages 341-352, 2003.
306.ibm.com/software/websphere. [19] M. T. Ozsu: L. Golab. Processing sliding window

; I ; multi-joins in continuous queries over data streams.
[2] Stream mill home. http://wis.cs.ucla.edu/streamkmil In VLDB, pages 500-511, 2003,

[20] Yan-Nei Law, Haixun Wang, and Carlo Zaniolo. Data
[4] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, models and query language for data streams. In
C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and VLDB, pages 492-503, 2004.

S. Zdonik. Aurora: A new model and architecture for :
data stream managemeMLDB Journa) 12(2):120~ [21] C. Luo, H. Thakkar, H. Wang, and C. Zaniolo. A
139, 2003. native extension of sqgl for mining data streams. ACM

SIGMOD 2005 demo papet.
[5] M. Riedewald: Abhinandan Das, J. Gehrke. Approx-

imate join processing over data streamsSIGMOD, [22] Chang Luo, Haixun Wang, and Carlo Zaniolo. Effi-
pages 40-512, 2003. cient support for window aggregates on data streams.

http://wis.cs.ucla.edu/publications/windows.pdf,
[6] A. Arasu, S. Babu, and J. Widom. Cql: A language 2004.

for continuous queries over streams and relations. Iri : C o .
23] Raghu Ramakrishnan Praveen Seshadri, Miron Livny.
DBPL, pages 1-19, 2003. The design and implementation of a sequence
[7] Arvind Arasu and Jennifer Widom. Resource sharing ~ database system. WiDB, pages 99-110, 1996.
in continuous sliding-window aggregates. DB, [24] P.Tucker, D. Maier, and T.Sheard. A i
. , D.) : . Applying punctua-
pages 336-347, 2004. tion schemes to queries over continuous data streams.
[8] Jennifer Widom Arvind Arasu. A denotational se- IEEE Data Engineering Bulletir26(1):33-40, 2003.

mantics for continuous queries over streams and relal— - D
;) 25] Berthold Reinwald, Hamid Pirahesh, Ganapathy Kr-
tions. SIGMOD Recoryi33(3)-6-12, 2004. ishnamoorthy, George Lapis, Brian Tran, and Swati

[3] The Teradata database. http://www.teradata.com.

[9] B. Babcock, S. Babu, M. Datar, R. Motawani, and Vora. Heterogeneous query processing through sgl
J. Widom. Models and issues in data stream systems. table functions. INCDE, pages 366—-373, 1999.
In PODS 2002. [26] Reza Sadri, Carlo Zaniolo, Amir Zarkesh, and Jafar
[10] Yijian Bai, Chang Luo, Hetal Thakkar, and Adibi. Optimization of sequence queries in database
Carlo Zaniolo. Efficient support for time se- systems. IrPODS Santa Barbara, CA, May 2001.

ries queries in data stream management system

http://wis.cs.ucla.edu/publications/esITS.pdf, 2004. f27] Utkarsh Srivastava and J. Widom. Flexible time man-

agement in data stream systems. R®DS pages
[11] D. Barbara. The characterization of continuous 263-274, 2004.
queriesintl. Journal of Cooperative Information Sys- [28] M. J. Franklin Tolga Urhan. Xjoin:a reactively-
tems 8(4):295-323, 1999. scheduled pipelined join operatalEEE Data Engi-

[12] D. Carney, U. Cetintemel, M. Cherniack, C. Con- neering Bulletin 23(2):27-33, 2000.
vey, S. Lee, G. Seidman, M. Stonebraker, N. Tatbul,[29] Haixun Wang and Carlo Zaniolo. Atlas: a native ex-
and S. Zdonik. Monitoring streams - a new class of "~ tension of sql for data minining. IRroceedings of
data management applicationsMhDB, Hong Kong, Third SIAM Int. Conference on Data Miningages
China, 2002. 130-141, 2003.

[13] C. Cranor, Y. Gao, T. Johnson, V. Shkapenyuk, and30] Haixun Wang, Carlo Zaniolo, and Chang R. Luo. AT-
O. Spatscheck. Gigascope: High performance net- LaS: A small but complete sql extension for data min-

work monitoring with an sql interface. IBIGMOD ing and data streams. MLDB, pages 1113-1116,
page 623. ACM Press, 2002. 2003.

[14] Mayur Datar, Aristides Gionis, Piotr Indyk, and Ra- [31] Fred Zemke, Krishna Kulkarni, Andy Witkowski, and
jeev Motwani. Maintaining stream statistics over slid- Bob Lyle. Proposal for OLAP functions. ISO/IEC
ing windows: (extended abstract). Rroceedings of JTC1/SC32 WG3:YGJ-nnn, ANSI NCITS H2-99;155
the thirteenth annual ACM-SIAM symposium on Dis- 1999.
crete algorithmspages 635-644, 2002. [32] Xin Zhou, Hetal Thakkar, and Carlo Zaniolo. Unify-

o i : ing the processing of xml streams and relational data
[15] Sirish Chandrasekaran et al. Telegraphcqg: Continu- i :
ous dataflow processing for an uncertain world. In %ngs. Concurrent submission to this conference,

CIDR, 2003.

