
Improving Mining Quality by Exploiting Data Dependency

Fang Chu Yizhou Wang Carlo Zaniolo D. Stott Parker
Computer Science Department, UCLA

Technical Report # TR050004

March 11, 2005

Abstract

The usefulness of the results produced by data mining
methods can be critically impaired by several factors
such as (1) low quality of data, including errors due
to contamination, or incompleteness due to limited
bandwidth for data acquisition, and (2) inadequacy
of the data model for capturing complex probabilistic
relationships in data. Fortunately, a wide spectrum of
applications exhibit strong dependencies between data
samples. For example, the readings of nearby sensors
are generally correlated, and proteins interact with each
other when performing crucial functions. Therefore,
dependencies among data can be successfully exploited
to remedy the problems mentioned above. In this
paper, we propose a unified approach to improving
mining quality using Markov networks as the data
model to exploit local dependencies. Belief propagation
is used to efficiently compute the marginal or maximum
posterior probabilities, so as to clean the data, to infer
missing values, or to improve the mining results from
a model that ignores these dependencies. To illustrate
the benefits and great generality of the technique, we
present its application to three challenging problems:
(i) cost-efficient sensor probing, (ii) enhancing protein
function predictions, and (iii) sequence data denoising.

1 Introduction

The usefulness of knowledge models produced by data
mining methods critically depends on two issues. (1)
Data quality: Data mining tasks expect to have accu-
rate and complete input data. But, the reality is that in
many situations, data is contaminated, or is incomplete
due to limited bandwidth for acquisition. (2) Model ad-
equacy: Many data mining methods, for efficiency con-
sideration or design limitation, use a model incapable
of capturing rich relationships embedded in data. The
mining results from an inadequate data model will gen-
erally need to be improved.

Fortunately, a wide spectrum of applications exhibit
strong dependencies between data samples. For exam-

ple, the readings of nearby sensors are correlated, and
proteins interact with each other when performing cru-
cial functions. Data dependency has not received suffi-
cient attention in data mining research yet, but it can
be exploited to remedy the problems mentioned above.
We study this in several typical scenarios.

Low Data Quality Issue Many data mining methods
are not designed to deal with noise or missing values;
they take the data “as is” and simply deliver the best
results obtainable by mining such imperfect data. In
order to get more useful mining results, contaminated
data needs to be cleaned, and missing values need to be
inferred.

Data Contamination An example of data con-
tamination is encountered in optical character recog-
nition (OCR), a technique that translates pictures of
characters into a machine readable encoding scheme.
Current OCR algorithms often translate two adjacent
letters “ ff ” into a “# ” sign, or incur similar system-
atic errors.

In the OCR problem, the objective is not to ignore
or discard noisy input, but to identify and correct the
errors. This is doable because the errors are introduced
according to certain patterns. The error patterns
in OCR may be related to the shape of individual
characters, the adjacency of characters, or illumination
and positions. It is thus possible to correct a substantial
number of errors with the aid of neighboring characters.

Data Incompleteness A typical scenario where
data is incomplete is found in sensor networks where
probing has to be minimized due to power restrictions,
and thus data is incomplete or only partially up-to-date.
Many queries ask for the minimum/maximum values
among all sensor readings. For that, we need a cost-
efficient way to infer such extrema while probing the
sensors as little as possible.

The problem here is related to filling in missing at-
tributes in data cleansing [8]. The latter basically learns
a predictive model using available data, then uses that
model to predict the missing values. The model train-



ing there does not consider data correlation. In the
sensor problem, however, we can leverage the neighbor-
hood relationship, as sensor readings are correlated if
the sensors are geographically close. Even knowledge of
far-away sensors helps, because that knowledge can be
propagated via sensors deployed in between. By exploit-
ing sensor correlation, unprobed sensors can be accu-
rately inferred, and thus data quality can be improved.

Inadequate Data Model Issue Many well known
mining tools are inadequate to model complex data rela-
tionships. For example, most classification algorithms,
such as Naive Bayes and Decision Trees, approximate
the posterior probability of hidden variables (usually
class labels) by investigating on individual data fea-
tures. These discriminative models fail to model the
strong data dependencies or interactions.

Take protein function prediction as a concrete clas-
sification example. Proteins are known to interact with
some others to perform functions, and these interactions
connect genes to form a graph structure. If one chooses
Naive Bayes or Decision Trees to predict unknown pro-
tein functions, he is basically confined to a tabular data
model, and thus has lost rich information about inter-
actions.

Markov networks, as a type of descriptive model,
provide a convenient representation for structuring com-
plex relationships, and thus a solution for handling
probabilistic data dependency. In addition, efficient
techniques are available to do inference on Markov net-
works, including the powerful Belief Propagation [20]
algorithm. The power in modeling data dependency,
together with the availability of efficient inference tools,
makes Markov networks very useful data models. They
have the potential to enhance mining results obtained
from data whose data dependencies are underused.

Our Contribution The primary contribution of this
paper is that we propose a unified approach to improv-
ing mining quality by considering data dependency ex-
tensively in data mining. We adopt Markov networks
as the data model, and use belief propagation for effi-
cient inference, so as to clean the data, to infer missing
values, or to generally improve the mining results from
a model that ignores data dependency. This paper may
also contribute to data mining practice with our inves-
tigations on some real-life applications.

The primary contribution of this paper is that we
propose a unified approach to improving mining quality
by considering dependencies among the data intensively
in data mining. We adopt Markov networks as the data
model, and use belief propagation to efficiently compute
the marginal or maximum posterior probability, so as to
clean the data, to infer missing values, or to generally

improve the mining results from a model that ignores
data dependency.

This paper may also contribute to data mining prac-
tice with our investigations on several real-life applica-
tions. By exploiting data dependency in these appli-
cation, clear improvements have been achieved in data
quality and the usefulness of mining results.

Outline We describe Markov networks in the next sec-
tion. Also discussed there are pairwise Markov net-
works, a special form of Markov network. Pairwise
Markov networks not only model local dependency well,
but also allow very efficient computation by belief prop-
agation. We then address the three above-mentioned
examples in sections 3, 4 and 5. We conclude the paper
with related work and discussion in Section 6.

2 Markov Networks

Markov networks have been successfully applied to
many problems in different fields, such as artificial
intelligence [14], image analysis [17], turbo decoding [11]
and condensed matter physics [1]. They have the
potential to become very useful tools of data mining.

2.1 Graphical Representation The Markov net-
work is naturally represented as an undirected graph
G = (V, E), where V is the vertex set having a one-to-
one correspondence with the set of random variables
X = {xi} to be modeled, and E is the undirected
edge set, defining the neighborhood relationship among
variables, indicating their local statistical dependencies.
The local statistical dependencies suggest that the joint
probability distribution on the whole graph can be fac-
tored into a product of local functions on cliques of the
graph. A clique is a completely connected subgraphs
(including singletons), denoted as XC . This factoriza-
tion is actually the most favorable property of Markov
networks.

Let C be a set of vertex indices of a clique, and
let C be the set of all such C. A potential function
ψXC (xC) is a function on the possible realization xC of
the clique XC . Potential functions can be interpreted
as “constraints” among vertices in a clique. They favor
certain local configurations by assigning them a larger
value.

The joint probability of a graph configuration
p({x}) can be factored into

P({x}) =
1

Z

∏

C∈C
ψXC

(xC) (2.1)

where Z is a normalizing constant:

Z =
∑

{x}

∏

C∈C
ψXC

(xC)



(a) (b)

Figure 1: Example of a Pairwise Markov Network. In (a), the white circles denote the random variables,

and the shaded circles denote the external evidence. In (b), the potential functions φ() and ψ() are showed.

2.2 Pairwise Markov Networks Computing joint
probabilities on cliques reduces computational complex-
ity, but still, the computation may be difficult when
cliques are large. In a category of problems where our
interest involves only pairwise relationships among the
samples, we can use use pairwise Markov networks. A
pairwise Markov network defines potentials functions
only on pairs of nodes that are connected by an edge.

In practical problems, we may observe some quanti-
ties of the underlying random variables {xi}, denoted as
{yi}. The {yi} are often called evidence of the random
variables. In the text denoising example discussed in
Section 1, for example, the underlying segments of text
are variables, while the segments in the noisy text we
observe are evidence. These observed external evidence
will be used to make inferences about values of the un-
derlying variables. The statistical dependency between
xi and yi is written as a joint compatibility function
φi(xi, yi), which can be interpreted as “external poten-
tial” from the external field.

Another type of potential functions are defined be-
tween neighboring random variables. The compatibility
function ψij(xi, xj) which captures the “internal bind-
ing” between two neighboring nodes i and j. An exam-
ple of pairwise Markov networks is illustrated in Fig-
ure 1(a), where the white circles denote the random
variables, and the shaded circles denote the evidence.
Figure 1(b) shows the potential functions φ() and ψ().

Using the pairwise potentials defined above and in-
corporating the external evidence, the overall joint prob-
ability of a graph configuration in Eq.(2.1) is approxi-
mated by

P({x}, {y}) =
1

Z

∏

(i,j)

ψij(xi, xj)
∏

i

φi(xi, yi) (2.2)

where Z is a normalization factor and the product over
(i, j) is over all compatible neighbors.

2.3 Solving Markov Networks Solving a Markov
network involves two phases:

• The learning phase, a phase that builds up the
graph structure of the Markov network, and learns
the two types of potential functions, φ()’s and ψ()’s,
from the training data.

• The inference phase, a phase that estimates the
marginal posterior probabilities or the local maxi-
mum posterior probabilities for each random vari-
able, such that the joint posterior probability is
maximized.

In general learning is an application-dependent
statistics collection process. It depends on specific ap-
plications to define the random variables, the neighbor-
hood relationships and further the potential functions.
We will look at the learning phase in detail with con-
crete applications in Sections 3-5.

The inference phase can be solved using a number
of methods: simulated annealing [9], mean-field anneal-
ing [15], Markov Chain Monte Carlo [7], etc. These
methods either take an unacceptably long time to con-
verge, or make oversimplified assumptions such as to-
tal independence between variables. We choose to use
the Belief Propagation method, which has a computa-
tion complexity proportional to the number of nodes
in the network, assumes only local dependencies, and
has proved to be effective on a broad range of Markov
networks.

2.4 Inference by Belief Propagation Belief prop-
agation (BP) is a powerful inference tool on Markov
networks. It was pioneered by Judea Pearl [14] in be-
lief networks without loops. For Markov chains and
Markov networks without loops, BP is an exact infer-
ence method. Even for loopy networks, BP has been
successfully used in a wide range of applications [11][12].
We give a short description of BP in this subsection.



Figure 2: Message passing in a Markov network.

Messages are defined by Eqs.(2.3) or (2.4) under two

types of rules, respectively.

The BP algorithm iteratively propagates “mes-
sages” in the network. Messages are passed between
neighboring nodes only, ensuring the local constraints,
as shown in Figure 2. The message from node i to node
j is denoted as mij(xj), which intuitively tells how likely
node i thinks that node j is in state xj . The message
mij(xj) is a vector of the same dimensionality as xj .

There are two types of message passing rules:

• SUM-product rule, that computes the marginal
posterior probability.

• MAX-product rule, that computes the maximum a
posterior probability.

For discrete variables, messages are updated using
the SUM-product rule:

mt+1
ij (xj) =

∑
xi

φi(xi, yi)ψij(xi, xj)
∏

k∈N(i),k 6=j

mt
ki(xi) (2.3)

or the MAX-product rule,

mt+1
ij (xj) = max

xi

φi(xi, yi)ψij(xi, xj)
∏

k∈N(i),k 6=j

mt
ki(xi) (2.4)

where mt
ki(xi) is the message computed in the last

iteration of BP, k runs over all neighbor nodes of i except
node j.

BP is an iterative algorithm. When messages
converge, the final belief b(xi) is computed. With the
SUM-product rule, b(xi) approximates the marginal
probability p(xi), defined to be proportional to the
product of the local compatibility at node i (φ(xi)), and
messages coming from all neighbors of node i:

bi(xi)SUM = xiφi(xi, yi)
∏

j∈N(i)

mji(xi) (2.5)

where N(i) is the neighboring nodes of i.

116 117 118 119 120 121 122 123 124 125
42

43

44

45

46

47

48

49

Figure 3: Sensor site map in the states of Washington

and Oregon.

If using the MAX-product rule, b(xi) approximates
the maximum a posterior probability:

bi(xi)MAX = arg max
xi

φi(xi, yi)
∏

j∈N(i)

mji(xi) (2.6)

For more theoretical details of the belief propaga-
tion and its generalization, we refer the reader to [20].

3 Application I: Cost-Efficient Sensor Probing

In sensor networks, how to minimize communication is
among the key research issues. The challenging problem
is how to probe a small number of sensors, yet to
effectively infer the unprobed sensors from the known.
Cost-efficient sensor probing represents a category of
problems where complete data is not available, but has
to be compensated by inference.

Our approach here is to model a sensor network
with a pairwise Markov network, and use BP to do
inference. Each sensor is represented by a random
variable in the Markov network. Sensor neighborhood
relationships are determined by spatial positions. For
example, one can specify a distance threshold so that
sensors within the range are neighbors. Neighbors are
connected by edges in the network.

In the rest of this section, we study a rainfall sensor-
net distributed over Washington and Oregon [13]. The
sensor recordings were collected during 1949-1994. We
use 167 sensor stations which have complete recordings
during that period. The sensor site map is shown in
Figure. 3.

3.1 Problem Description and Data Represen-
tation The sensor recordings were collected in past
decades over two states along the Pacific Northwest.
Since rain is a seasonal phenomena, we split the data
by week and build a Markov network for each week.

We need to design the potential functions φi(xi, yi)
and ψij(xi, xj) in Eq. (2.2) in order to use belief propa-
gation. One can use Gaussian or its variants to compute



the potential functions. But, in the sensornet we study,
we find that the sensor readings are overwhelmed by ze-
roes, while non-zero values span a wide range. Clearly
Gaussian is not a good choice for modeling this very
skewed data. Neither are mixtures of gaussian, due to
limited data. Instead, we prefer to use discrete sensor
readings in the computation. The way we discretize
data is given in section 3.3.

The φ() functions should tell how likely we observe
a reading yi for a given sensor xi. It is natural to use
the likelihood function:

φi(xi, yi) = P(yi|xi) (3.7)

The ψ() functions specify the dependence of sensor
xj ’s reading on its neighbor xi.

ψij(xi, xj) = P(xj|xi) (3.8)

3.2 Problem Formulation We give a theoretical
analysis of the problem here. As we will see shortly,
the problem fits well into the maximum a posterior
(MAP) estimation on a Markov chain solvable by belief
propagation.

Objective: MAP

Let X to be the collection of all underlying sensor
readings, Y the collection of all probed sensors. Using
Bayes’ rule, the joint posterior probability of X given
Y is:

P (X|Y ) =
P (Y |X)P (X)

P (Y )
(3.9)

Since P (Y ) is a constant over all possible X, we
can simplify this problem of maximizing the posterior
probability to be maximizing the joint probability

P (X, Y ) = P (Y |X)P (X) (3.10)

Eq.(3.10) is the objective function to be maximized,
which is proportional to the maximum a posterior
probability.

Likelihood

In a Markov network, the likelihood of the readings
Y depends only on those variables they are directly
connected to:

P (Y |X) =
m∏

i=1

P (yi|xi) (3.11)

where m is the number of probed sensors.

Prior

Priors shall be defined to capture the constraints
between neighboring sensor readings. By exploiting the
Markov property of the sensors, we define the prior to
involve only the first order neighborhood. Thus, the
prior of a sensor is proportional to the product of the
compatibility between all neighboring sensors:

P (X) ∝
∏

(i,j)

P (xj |xi) (3.12)

Solvable by BP

By replacing Eqs.(3.11) and (3.12) into the objec-
tive Eq.(3.10), we have the joint probability to be max-
imized:

P (X,Y ) =
1
Z

∏

(i,j)

P (xj |xi)
N∏

i=1

P (yi|xi) (3.13)

Looking back at the φ() and ψ() functions we
defined in Eqs.(3.7) and (3.8), we see that the objective
function is of the form:

P (X, Y ) =
1
Z

∏

(i,j)

ψ(xi, xj)
N∏

i=1

φ(xi, yi) (3.14)

where Z is a normalizing constant.
This is exactly the form in Eq.(2.2), where the

joint probability over the pairwise Markov network is
factorized into products of localized potential functions.
Therefore, it is clear that the problem can be solved by
belief propagation.

3.3 Learning and Inference The learning part is
to find the φ() and ψ() functions for each sensor, as
defined in Eqs.(3.7) and (3.8). The learning is straight-
forward. We discretize the sensor readings in the past
46 years, use the first 30 years for training and the rest
16 years for testing. In the discrete space, we simply
count the frequency of each value a sensor could possibly
take, which is the φ(), and the conditional frequencies
of sensor values given its neighbors, which is the ψ().

We use a simple discretization with a fixed
number of bins, 11 bins in our case, for each sen-
sor. The first bin is dedicated to zeroes, which
consistently counts for over 50% of the popula-
tions. The 11 bins span the following ranges:
[0, 0], [1, 5], [6, 10], [11, 30], [31, 60], [61, 100], [101, 200],
[201, 400], [401, 1000], [1001, 1500], and[1500,∞). This
very simple discretization method has been shown to
work well in the sensor experiments. More elaborated
techniques can be used which may further boost the
performance, such as histogram equalization that gives
balanced bin population with adaptive bin numbers.



0.2

0.4

0.6

0.8

1

10 20 30 40 50

52 weeks

Probing Ratio
Top 10 recall on Raw data

Top 10 recall on Discrete data

0.2

0.4

0.6

0.8

1

10 20 30 40 50

52 weeks

Probing Ratio
Top 10 recall on Raw data

Top 10 recall on Discrete data

(a) BP-based probing. (b) naive probing.

Figure 4: Top-K recall rates vs. probing ratios. (a): results obtained by our BP-based probing; (b) by the

naive probing. On average, BP-based approach probed 8% less, achieves 13.6% higher recall rate for raw

values, and 7.7% higher recall rate for discrete values.

For inference, belief propagation does not guarantee
to give the exact maximum a posterior distribution, as
there are loops in the Markov network. However, loopy
belief propagation still gives satisfactory results, as we
will see shortly.

3.4 Experimental Results We evaluate our ap-
proach using Top-K queries. A Top-K query asks for
the K sensors with the highest values. It is not only a
popular aggregation query that the sensor community is
interested in, but also a good metric for probing strate-
gies as the exact answer requires contacting all sensors.

We design a probing approach in which sensors are
picked for probing based on their local maximum a
posterior probability computed by belief propagation,
as follows.

BP-based Probing:

1. Initialization: Compute the expected readings of
sensors using the training data. Pick the top 20.

2. Probe the selected sensors.
3. True values acquired in step 2 become external

evidence in the Markov network. Propagate beliefs
with all evidence acquired so far.

4. Again, pick the top sensors with the highest ex-
pectations for further probing, but this time use
the updated distributions to compute expectations.
When there are ties, pick them all.

5. Iterate steps 2-4, until beliefs in the network con-
verge.

6. Pick the top K with the highest expectations
according to BP MAP estimation.

As a comparative baseline, we have also conducted
experiments using a naive probing strategy as follows:

Naive Probing:
1. Compute the expectations of sensors. Pick the top

25% sensors.
2. Probe those selected sensors.
3. Pick the top K.

Performance of the two approaches is shown in
Figure 4 (a) and (b), respectively. On each diagram,
the bottom curve shows the probing ratio, and the two
curves on the top show the recall rates for raw values
and discrete values, respectively. We use the standard
formula to compute recall rate, i.e.:

Recall =
|STT |
|T | (3.15)

where S is the top-K sensor set returned, and T is the
true top-K set.

Since the sensor readings are discretized in our
experiments, we can compute S and T using raw values,
or discrete values. Discrete recall demonstrates the
effectiveness of BP, while raw recall may be of more
interest for real application needs. As can be seen from
Figure 4, raw recall is lower than discrete recall. This
is due to error introduced in the discretization step.
We expect raw recall to be improved when a more
elaborated discretization technique is adopted.

It shows clearly in Figure 4 that BP-based approach
outperforms the naive approach in terms of both recall
rates, while requiring less probing. On average, the BP-
based approach has a discrete recall of 88% and a raw
recall of 78.2%, after probing only 17.5% sensors. The
naive recall has a discrete recall of only 79.3%, a raw
recall of only 64.6%, after probing 25% sensors.

The results shown in Figure 4 are obtained for
K = 10. The relative performance remains the same
for other values K = 20, 30, 40.



(0) (1) (2)

(3) (4) (5)

Figure 5: Belief updates in 6 BP iterations((0) - (5)). Initially only the four sensors at the corners are

probed. The strong beliefs of these four sensors are carried over by their neighbors to sensors throughout

the network, causing beliefs of all sensors updated iteratively till convergence.

3.5 How BP Works A closer look at the changing
sensor beliefs during the iterations shows how belief
propagation provides effective inference. We look at
49 sensors that form a 7 × 7 grid, each having the
surrounding sensors (≤ 8) as its neighbors. Only the
four sensors at the corners are probed. We use the
ψ() functions acquired by learning, but set φ() to be
uniform. This is solely for demonstration purpose.
(The original φ() is so skewed that BP converges too
fast to demonstrate a moderate sized sequence of belief
changes.) The beliefs are shown in Figure 5, one
per iteration. In the first diagram, only the four
corner sensors have an impulse at the true value, while
all the others showing a flat distribution. But the
probability histogram of each unprobed sensor grows
notably sharper as BP iterates, showing how belief can
grow stronger by receiving messages from neighbors.

This sensor probing on a small scale gives a sense
of how effective belief propagation can be in Markov
networks.

• From Figure 5, we can see that beliefs are able
to propagate through the network via messages
quickly. The messages of the four sensors at the
corners are first passed to the nearby sites, then

carried all the way to the central sites in just a few
iterations.

• We can also see that the well informed nodes can
help those less informed to build up their beliefs.
Informally, we say a node is well informed or has
stronger beliefs, if their belief distribution has a
lower entropy. Figure 5 clearly shows that the
four corner sensors pass strong beliefs to others to
help them compute a good approximation of the
posterior.

4 Application II: Enhancing Protein Function
Predictions

Local data dependency can not only help infer missing
values, as in the sensor example, but can also be ex-
ploited to enhance mining results. Many data mining
methods, for efficiency consideration or design limita-
tion, use a model incapable of capturing rich relation-
ships embedded in data. Most discriminative models
like Naive Bayes and SVM belong to this category. Pre-
dictions of these models can be improved, by exploit-
ing local data dependency using Markov networks. The
predictions are used as the likelihood proposal, and mes-
sage passing between variables refines and reinforces the



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6: Logistic curve that is used to blur the

margin between the belief on two classes.

beliefs. Next we show how to improve protein function
predictions in this way.

4.1 Problem Description Proteins tend to localize
in various parts of cells and interact with one another,
in order to perform crucial functions. One task in
the KDD Cup 2001 [3] is to predict protein functions.
The training set contains 862 proteins with known
functions, and the testing set includes 381 proteins.
The interactions between proteins, including the testing
genes, are given. Other information provided specifies a
number of properties of individual proteins or genes that
encodes the proteins. These include the chromosome on
which the gene appears, phenotype of organisms with
differences in this gene, etc.

Since information about individual proteins or
genes are fixed features, it becomes crucial how to learn
from interactions. According to the report of the cup or-
ganizers, most competitors organized data in relational
tables, and employed algorithms that deal with tabular
data. However, compared with tables, graphical models
provide a much more natural representation for interact-
ing genes. With a Markov network model, interactions
can be modeled directly using edges, avoiding preparing
a huge training table. Interacting genes can pass mes-
sages to each other, thus getting their beliefs refined
together.

In the next of this section, we show a general
way of enhancing a weak classifier by simply leveraging
local dependency. The classifier we use is Naive Bayes,
which is learned from the relational table. We build a
Markov network, in which genes with interactions are
connected as neighbors. The φ() function prediction
comes from Naive Bayes, and the ψ() are learned from
gene interactions.

4.2 Learning Markov Network We separate the
learning of each function, as focusing on one function
a time is easier. There are 13 function categories,
hence we build 13 Markov networks. To prepare the

−1 −0.5 0 0.5 1
0

0.02

0.04

0.06

0.08

−1 −0.5 0 0.5 1
0

0.02

0.04

0.06

0.08

(1.a) FF (2.a) FF

−1 −0.5 0 0.5 1
0

0.02

0.04

0.06

0.08

−1 −0.5 0 0.5 1
0

0.02

0.04

0.06

0.08

(1.b) FNF (2.b) FNF

−1 −0.5 0 0.5 1
0

0.02

0.04

0.06

0.08

−1 −0.5 0 0.5 1
0

0.02

0.04

0.06

0.08

(1.c) NFNF (2.c) NFNF

Figure 7: Distribution of correlation values learned

for two functions. left column function: cell growth,

right column function: protein destination. In each

column, the distributions from top to bottom are

learned from group (a), (b) and (c), respectively.

initial beliefs for a network, we first learn a Naive
Bayes classifier, which output a probability vector b0(),
indicating how likely a gene will perform the function
in question or not.

Each gene i maps to a binary variable xi in the
Markov network. First we design the φ() potentials for
{xi}. One can set the Naive Bayes prediction b0() to
be φ(). But this way the Naive Bayes classifier is over
trusted, make it harder to correct the misclassifications.
Instead, we adopt a generalized logistic function to blur
the margin between the belief on two classes, yet still
keeping the prediction decision.

f =
a

1 + e−α(x−β)
+ b (4.16)

In the experiments, we set a = 0.75, b = 0.125,
α = 6, and β = 0.5. The logistic curve is shown in
Figure 6.

The ψ() potentials are learned from protein inter-
actions. Interactions are measured by the correlation
between the expression levels of the two encoding genes.
At first we tried to related the functions of two genes in
a simple way: a positive correlation indicates that with



1


G238783


1


G234405


1


G230291


1


G239273


1


G235339


...


...


...


...


G234263


1
1


G235803


1


G234382


0


G235506


Figure 8: A subgraph in which testing genes got

correct class labels due to message passing.

a fixed probability both or neither genes perform the
function, while a negative correlation indicates that one
and only one gene perform the function. This will leads
to a simple fixed ψ() function for all interacting genes.
But, a close look at the interaction tells that 25% of the
time this assumption is not true. In reality, sometimes
two genes participating in the same function may be
negatively correlated; a more influential phenomena is
that genes may participate in several functions, hence
the correlation is a combined observation involving mul-
tiple functions.

We decided to learn the distribution of correlation
values for three types of interactions, separately: (a)FF:
a group for protein pairs that both perform the func-
tion, (b)FNF: a group for pairs that one and only one
performs the function, and (c)NFNF: a group for pro-
tein pairs that neither performs the function. Thus, the
potential function ψi,j defines how likely to observe a
correlation value given for genes xi and xj , under dif-
ferent cases where xi and xj each has the function or
not. In Figure 7, we show the distribution of correla-
tion values learned for two functions. The left column
is about a function related to cell growth, the right col-
umn is about a function related to protein destination.
From top to bottom in each column, the distributions
are learned from interaction group (a), (b) and (c), re-
spectively. The figures show that correlation distribu-
tions differ among groups, and are specific to functions
as well.

4.3 Experiments Naive Bayes does not perform well
on this problem, because it does not model the gene
interactions sufficiently, and thus cannot fully utilize
the rich interaction information. Taking the average
predictive accuracy of all classifiers, one per function,
the overall accuracy of Naive Bayes is 88%. Belief
propagation improves this to 90%.

To exemplify how misclassifications get corrected

due to message passing, we show a subgraph of genes in
Figure 8. The white circles represent genes(variables),
and the shaded circles represent external evidence. Only
training genes have corresponding external evidence.
The 1’s or 0’s in the circles tell whether a gene has the
function in question or not. For interested readers, we
also put the gene ID below the circle. The subgraph con-
tains four training genes and five testing genes. All these
testing genes were misclassified by Naive Bayes. After
receiving strong beliefs from their neighboring genes,
four out of five testing genes were correctly classified.
The other test gene ‘G230291’ was misclassified by both,
but Naive Bayes predicted 0% for it to have the function
(which is the truth), while belief propagation increased
this belief to 25%.

We also evaluated our approach using the score
function originally used in the 2001 KDD cup [3]. First
we picked out all the functions we predicted for a gene.
If more functions are predicted than the true number
(which is actually the number of duplicates of that gene
in the test table provided), we remove the ones with
the smallest confidence. The final score is the ratio of
correct predictions, including both positive and negative
predictions. Our final score is 91.2%, close to the Cup
winner’s 93.6%. Although the winner scored reasonably
high, they organized data in relational tables and didn’t
fully explore gene interactions. We expect that their
method could perform better if integrated with our
approach to exploit local dependencies between genes.

The Cup winner organized data in relational tables,
which is not designed at all for complex relationships.
To make up for this, they manually created new fea-
tures, such as computing “neighbors” within k (k > 1)
hops following neighbor links. Even so, these new fea-
tures can only be treated the same as the other individ-
ual features. The rich relationship information in the
original graph structure was lost. Graphical models, on
the other hand, are natural models for complex rela-
tionships. Markov networks together with belief prop-
agation provides a general and powerful modeling and
inference tool on problems satisfying local constraints,
such as protein function prediction.

5 Application III: Sequence Data Denoising

Sequences are ordered lists of elements, such as text
strings, DNA sequences, or binary codes in channel
transmission. This type of data often exhibits depen-
dencies between adjacent elements. For example, there
are rich dependencies embedded in English text. This
sequence data can be modeled using Markov chains—a
degenerate form of Markov networks.

Moreover, errors in sequence data often have neigh-
borhood patterns. OCR discussed in Section 1 gives an



example where errors are related to the shapes of char-
acters and to their relative positions. The mutation of
a nucleotide is also influenced by its nearby bases. That
the Markov property is satisfied by both the sequence
data itself and by errors strongly suggests the applica-
bility of belief propagation for sequence data denoising.
Actually for Markov chains, belief propagation is theo-
retically guaranteed to give exact marginal or maximum
a posterior probabilities.

In the rest of the section, we study a problem of
correcting errors in noisy documents. While a simple
problem, it exemplifies many basic characteristics in
sequence data mining.

5.1 Problem Description and Data Represen-
tation A document is a text sequence consisting of
characters from an alphabet, while a noisy document
is the result from some recognizer with systemic errors.
We split the sequence into small segments, each hav-
ing n characters, and let neighboring segments overlap
by m characters, m < n. We use a random variable
xi = (x(1)

i , · · · , x(n)
i ) to represent each underlying clean

segment i. The corresponding observed segment in the
noisy document is denoted as yi = (y(1)

i , · · · , y(n)
i ). Each

segment, except those that starts or ends the sequence,
has a neighbor segment on either side.

Now we design the potential functions φi(xi, yi) and
ψij(xi, xj). For φ(), the definition should specify how
likely we observe yi given xi. A natural choice is to
define φ() to be a likelihood function

φi(xi, yi) = P (yi|xi) (5.17)

For a short segment, we can assume independence
between characters. Thus, φ() can be written as

φi(xi, yi) =
n∏

l=1

P (y(l)
i |x(l)

i ) (5.18)

For ψ(), the definition should specify how compat-
ible two neighboring segments xi and xj are. Again,
we can assume independence between the characters
in the two segments, except for those in the overlap-
ping part. Consider two overlapping characters, x

(k)
i

and x
(l)
j . If the probability is zero that x

(k)
i will change

to x
(l)
j or vice versa, then the two segments, xi and xj ,

are incompatible. The resulting mutation probability of
the overlapping segment quantifies the compatibility of
two neighboring segments. Non-adjacent segments are
incompatible. Formally, we define an asymmetric ψ()
function on xi and xj , when xi is the left neighbor of

xj :

ψij(xi, xj) =
m∏

l=1

P (x(l)
j |x(n−m+l)

i ) (5.19)

5.2 Learning and Inference The learning phase is
to find the φ() and ψ() functions. For this purpose,
we build a mutation matrix M . Each matrix element
m(i, j) is the unconditional mutation probability from
the i-th character to the j-th: m(i, j) = P (chj |chi).
This can be easily computed from the training set,
which consists of pairs of clean and noisy documents.

We partition the clean document and the noisy
documents in the same way. The φ() of each pair of
clean and observed segments is given in Eq.(5.17), and
the ψ() of each pair of neighboring clean segments is
given in Eq.( 5.19).

In inference, a subproblem is to find candidate un-
derlying segments for a given observed segment. One
can enumerate all possible candidates using the muta-
tion matrix. But this method not only can generate
too many candidates, but also ignores valuable infor-
mation in the training data: the possible combination
of segments. We restrict the candidates to be the top
matches among all training segments. When the num-
ber of matches is too small, we generate some extras
using the transition matrix. By doing so, we actually
explore the intra-segment constraints, which are fine de-
tails that the Markov chains cannot model, as they are
on the scale of segments.

5.3 Experimental Results We choose two confer-
ence papers on the same topic: motion modeling. Both
documents are distorted, using the probabilistic muta-
tion rules in Table 1, to form pairs consisting of a clean
document and a noisy document. One pair is used to
train the potential functions, while the other is used
for testing. For simplicity, we change all capitals into
lower-case letters, replace all punctuation marks other
than commas and periods into commas, and remove all
figures, tables and equations. The transformed docu-
ments belongs to an alphabet of size 38 (consisting of
26 letters, 10 digits, a comma and a period).

A variety of distortion rules are used: unconditional
mutation rules and k-order conditional mutation rules,
k = 1, 2, 3. (A k-order conditional mutation depends on
k neighbors on either side.) To compute the potential
functions, all we need to learn is a 38 by 38 mutation
matrix M for unconditional mutation rates only. Yet,
we are able to catch and to correct most of the mutation
errors, including the higher order conditional errors.
In fact, the correction rates for conditional errors are
even higher, as shown in Table 1. This is achieved by



rule mutation prob. # errors % corrected

x → k 100% 56 91%

f → f 42% - -

f → d 30% 123 92%

f → z 28% 118 87%

th → th 48% - -

th → tn 52% 220 96%

se → se 36% - -

se → ue 18% 51 93%

se → le 25% 69 94%

se → ie 21% 58 95%

tio → tio 29% - -

tio → tho 20% 35 100%

tio → txo 20% 35 100%

tio → two 31% 57 98%

total words/errors: 3459/822 overall accuracy: 94%

Table 1: Distortion rules and error correction results.

Columns 1 and 2 give the rule and mutation rate,

respectively. Column 3 is the actual number of

times a rule applies, and column 4 is the percentage

corrected by BP inference.

exploiting the Markov property and by passing local
beliefs through the network using BP.

To help give an intuitive idea about how depen-
dencies between text segments can be used effectively
for error correction, we enclose a paragraph of distorted
text here, followed by the corrected version. The mis-
spelled words are underlined. We can see that most of
the misspellings are corrected.

Distorted text:
introductxon. natural scenes contain rich stochastic

mothon patterns which are characterized by the movement

od a large number od distinguishable or indistinguishable el-

ements, such as falling snow, zlock of birds, river waves,

etc. tnele mothon patterns, called tektured, motion tempo-

ral tekture and dynamic tektures in the literature, cannot be

analyzed by conventwonal optical zlow dields and have stimu-

lated growing interests in both graphics and vision. in graph-

ics, the objective is to render photorealistic video iequences,

or non photorealistic but stylish cartoon animathons. both

physics baued metnods such as partial didferential equatxons

and image baled such as video tekture and volume tekture are

studied to simulate dire, fluid, and gaseous phenomena. in

vision, szummer and picard studied a spatial temporal auto

regression star model, which is a causal gaussian markov ran-

dom zield model.

Text after denoising:
introduction. natural scenes contain rich stochastic mo-

tion patterns which are characterized by the movement of

a large number of distinguishable or indistinguishable ele-

ments, such as falling snow, zlock of birds, river waves, etc.

tnese motion patterns, called textured motion, temporal tex-

ture and dynamic tektures in the literature, cannot be an-

alyzed by conventional optical flow fields, and have stimu-

lated growing interests in both graphics and vision. in graph-

ics, the objective is to render photorealistic video sequences,

or non photorealistic but stylish cartoon animations. both

physics based methods such as partial differential equations

and image based such as video texture and volume texture are

studied to simulate dire, fluid, and gaseous phenomena. in

vision, szummer and picard studied a spatial temporal auto

regression star model, which is a causal gaussian markov ran-

dom field model.

6 Related Work and Discussions

Data dependency is present in a wide spectrum of
applications. In this paper, we propose a unified
approach that exploits data dependency to improve
mining results, and we approach this goal from two
directions: (1) improving quality of input data, such
as by correcting contaminated data and by inferring
missing values, and (2) improving mining results from
a model that ignores data dependency.

Techniques for improving data quality proposed in
the literature have addressed a wide range of problems
caused by noise and missing data. For better infor-
mation retrieval from text, data is usually filtered to
remove noise defined by grammatical errors [16]. In
data warehouses, there has been work on noisy class
label and noisy attribute detection based on classifica-
tion rules [21] [19], as well as learning from both labeled
and unlabeled data by assigning pseudo-classes for the
unlabeled data [2] using boosting ensembles. All this
previous work has its own niche concerning data qual-
ity. Our work is more general in that it exploits local
data constraints using Markov networks.

A pioneering work in sensor networks, the BBQ
system [4] has studied the problem of cost-efficient
probing. However, their method relies on a global
multivariate Gaussian distribution. Global constraints
are very strict assumptions, and are not appropriate in
many practical scenarios.

The primary contribution of this paper is to pro-
pose a unified approach to improving mining quality by
considering data dependency extensively in data min-
ing. This paper may also contribute to data mining
practice with our investigations on several real-life ap-
plications. By exploiting data dependency, clear im-
provements have been achieved in data quality and the
usefulness of mining results.



Acknowledgement

We would like to thank Zhenyu Liu and Ka Cheung
Sia for preparation of the sensor data and helpful
discussions about the probing problem.

References

[1] S. Aji and R. McEliece. The generalized distributive
law and free energy minimization. In Proc. of the
39th Annual Allerton Conference on Communication,
Control, and Computing, 2001.

[2] K. Bennett, A. Demiriz, and R. Maclin. Exploiting
unlabeled data in ensemble methods. In Proc. of the
8th ACM SIGKDD Intl. Conf. on Knowledge Discovery
and Data Mining, pp. 289-296, 2002.

[3] J. Cheng, C. Hatzis, H. Hayashi, M.-A. Krogel, S. Mor-
ishita, D. Page, and J. Sese. Kdd cup 2001 report. In
SIGKDD Explorations, 3(2):47–64, 2001.

[4] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein,
and W. Hong. Model-driven data acquisition in sensor
networks. In In Proc. of the 30th Int’l Conf. on Very
Large Data Bases (VLDB 04), 2004.

[5] R. Duda and P. Hart. Pattern Classification and Scene
Analysis. J. Wiley & Sons, New York, 1973.

[6] M. Elfeky, V. Verykios, and A. Elmagarmid. Tailor:
a record linkage toolbox. In In Proc. of the 18th Intl.
Conf. on Data Engineering (ICDE 02), 2002.

[7] W. Gilks, S. Richardson, and D. Spiegelhalter. Markov
Chain Monte Carlo in Practice. CRC Press, 1995.

[8] I. Guyon, N. Natic, and V. Vapnik. Discovering in-
formative patterns and data cleansing. In AAAI/MIT
Press, pp. 181-203, 1996.

[9] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization
by simulated annealing. In Science, vol. 220, no.4598,
1983.

[10] M. Lee, H. Lu, T. Ling, and Y. Ko. Cleansing data for
mining and warehousing. In Int’l Conf. and Workshop
on Database and Expert Systems Applications, 1999.

[11] R. McEliece, D. MacKay, and J. Cheng. Turbo decod-
ing as an instance of pearl’s ’belief propagation’ algo-
rithm. In IEEE J. on Selected Areas in Communica-
tion, 16(2), pp. 140-152, 1998.

[12] K. Murphy, Y. Weiss, and M. Jordan. Loopy belief
propagation for approximate inference: an empiricial
study. In Proc. Uncertainty in AI, 1999.

[13] University of Washington.
http://www.jisao.washington.edu/data sets/widmann/.

[14] J. Pearl. Probabilistic reasoning in intelligent systems:
networks of plausible inference. Morgan Kaufmann
publishers, 1988.

[15] C. Peterson and J. Anderson. A mean-field theory
learning algorithm for neural networks. In Complex
Systems, vol.1, 1987.

[16] G. Salton and M. McGill. Introduction to modern
information retrieval. McGraw Hill, 1983.

[17] R. Schultz and R. Stevenson. A bayesian approach

to image expansion for improved definition. In IEEE
Trans. Image Processing, 3(3), pp. 233-242, 1994.

[18] V. Vapnik. The Nature of Statistical Learning Theory.
Springer-Verlag, New York, 1995.

[19] Y. Yang, X. Wu, and X. Zhu. Dealing with predictive-
but-unpredictable attributes in noisy data sources. In
In Proc. of the 8th European Conf. on Principles and
Practice of Knowledge Discovery in Databases (PKDD
04), 2004.

[20] J. Yedidia, W. Freeman, and Y. Weiss. Generalized
belief propagation. In In Advances in Neural Informa-
tion Processing Systems (NIPS), Vol 13, pp. 689-695,
2000.

[21] X. Zhu, X. Wu, and Q. Chen. Eliminating class noise
in large datasets. In In Proc. of the 20th Int’l Conf.
Machine Learning (ICML 03), 2003.


