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Abstract--In high-level synthesis, accurate lower-bound estimation is helpful to explore the search space efficiently and to evaluate 

the quality of heuristic algorithms. For the lower-bound estimation of the scheduling problems, previous works mainly focus on the 

number of resources with uniform bitwidth. In this paper, we study the problem of lower-bound estimation on bitwidth summation 

of functional units for multi-bitwidth scheduling, where data-paths are composed of operations with various bitwidth. An integer 

linear programming (ILP) formulation and a polynomial time algorithm are presented. Experimental results indicate that the 

proposed algorithm produces good estimation, only 2% lower than the optimal results, which are obtained from ILP. 

 

I. INTRODUCTION 

In high-level synthesis, scheduling is one of the central sub-tasks and has a pronounced impact on the area and performance 

of the final design. Given a data-flow graph (DFG), the scheduling task is to explicitly map operations onto control steps to 

achieve some goals while maintaining data-dependence and other constraints. Depending on the different constraints and 

optimization goals, the scheduling problems are divided into time-constrained scheduling (TCS), resource-constrained 

scheduling (RCS), and time- and resource-constrained scheduling (TRCS). 

The decision problem of TRCS is well known to be NP-Complete [5]. Therefore, there is no existing polynomial algorithm 

for any of these scheduling problems. A wide variety of heuristic solutions are researched and developed to find good though 

not necessarily optimal schedules. To get a good knowledge of the quality of heuristics or help to explore the design space 

more efficiently, lower-bound estimation of resources, as well as performance, has been attracting interest from researchers. 

However, most of the related works only deal with those designs utilizing resources of uniform bitwidth.  

Recently, there has been several works studying multi-bitwidth systems at the stage of high-level synthesis to get more 

chance of minimizing area of resources [2][3][4][7][8][9][10]. Since the area cost of resources is directly related to the 

bitwidth configuration, the objective becomes to minimize the total bitwidth for each resource. When the bitwidth of 

operations is various, and the scheduling begins to consider functional units having different bitwidth configurations, the 

problem is even harder. Most of these works proposed heuristics without any quantitative evaluation of optimality. To our 

knowledge, only the work in [4] presented an interval-based lower-bound estimation on the total bitwidth of functional units 

for TCS.  



In this paper, we focus on the lower-bound estimation on bitwidth summation of functional units for the multi-bitwidth TCS 

problem. We transfer it to a minimizing memory job scheduling problem and solve it in polynomial time. An ILP formulation 

is presented to get the optimal solution and used to evaluate the accuracy of our proposed estimator. Also, LP relaxation is 

used to evaluate the accuracy in case of medium- and large-size benchmarks, where ILP cannot finish in acceptable time. 

Experimental results show that our estimator is close to the optimal results and more accurate than the interval-based 

algorithm in [4]. 

The paper is organized as follows. In Section II, we will introduce related preliminaries. A formal ILP formulation, as well as 

the estimator named MB_UnitLength, will be presented in Section III and IV. Section V shows the accuracy comparison, and 

Section VI concludes this paper. 

II. PRELIMINARIES 

Some concepts and definitions related to this problem are introduced first. The inputs of the multi-bitwidth TCS (MB-TCS) 

problem are a DFG and a time constraint. DFG is a directed acyclic graph, in which nodes represent operations, and edges 

represent data dependence. In the context of multi-bitwidth, each node is annotated with bitwidth information, which is set by 

users or obtained by bitwidth analysis tools, such as the technique proposed in [14]. Figure 1 shows an example of a 

multi-bitwidth DFG. The input-width constraint indicates a bitwidth requirement for a functional unit to perform the 

operation correctly. 
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Figure 1. DFG with bitwidth information. 

 

Only two types of operations, addition and multiplication, are considered in this work. We assume each operation o has two 

inputs with bitwidth pair (b1, b2), and define the bitwidth of operation o as b(o) = max{b1, b2}, for the same reason explained 

in [4]. For a group of operations O, we define the bitwidth of set O as the maximum bitwidth of all o∈O, denoted by B(O) = 

max{b(o) | o∈O }. Let exe(o) denote the delay of an operation o, which is equal to the delay of the functional unit running o. 

In this work, we assume the execution time for adders and multipliers are 1 and 3 clock cycles, respectively. Let the type of a 

functional unit indicate its functionality, and F be the set of types that are available, addition and multiplication. The type of 

an operation o, t(o), is determined by the type value f∈F, where o can be executed on functional units of type f. For a DFG 

under time constraint T, ASAP(o) and ALAP(o), the as-soon-as-possible and as-late-as-possible control steps of operation o 

are computed.  



III. ILP FORMULATION 

In this section, an ILP formulation is presented, which gives the tightest lower-bound on the summation of bitwidth for each 

type of functional units separately. ILP either maximizes or minimizes an objective function of a set of variables, subject to a 

group of linear equality and inequality constraints, and integral restriction on all of the variables.  

Since the bitwidth of an instance of functional units of type f will be set as the maximum bitwidth of operations executed on it, 

we only need to consider those bitwidths associated with operations of type f, denoted by Bf = {b(o) | o is of type f}.  

Let Nf,b≥0 be the number of functional units configured with bitwidth b, where b∈Bf. The objective function for functional 

units of type f, which is the bitwidth summation of required functional units of type f, is defined as follows: 
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Let variable oc,b represent whether operation o is scheduled at step c and bound to a functional unit with bitwidth b, where 

c∈[ASAP(o), ALAP(o)], b∈Bt(o) and b≥b(o). If this is the case, oc,b is set as 1; otherwise, the value is 0. Based on the definition, 

the expression representing whether o is scheduled at c is defined as follows: 
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If the result of r(o, c) is 1, o is scheduled at control step c. 

The minimization is subject to four types of constraints. The first is the assignment constraint (A). Each operation must be 

scheduled at one and only one control step and executed on one and only one instance of functional units. The second is the 

resource constraint (R). The number of operations, which are bound to functional units with bitwidth b, is equal to or less 

than Nf,b at any control step. The third is the data-dependence constraint (D), which means an operation cannot start execution 

until all of its predecessors have finished. The description of data-dependence is based on the structure proposed by Gebotys 

et al. in [6], which is proved tighter than the one used in [7]. The last constraint (I) is that all variables can only have 

non-negative integral values, and oc,b can only be set as either 1 or 0. 
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For a benchmark with 26 additions and 16 multiplications, when the time constraint is set as the length of the critical path, i.e., 

the minimum number of clock cycles a DFG needs, the formulation for adders comprises 551 variables and 203 equality and 

inequality constraints. As we relax the latency by 2 cycles, the number of variables and constraints increases to 993 and 335 

respectively. The large number of variables and constraints causes ILP unsuitable for design space searching, where the 

estimation may be performed many times. Furthermore, it may not finish running in reasonable time for even one 

computation. 

On the other side, this ILP formulation can produce a feasible schedule corresponding to the minimum requirement on the 

bitwidth summation of functional units of each type. Therefore, it achieves the tightest lower-bound. This is why we choose it 

as the baseline for the accuracy evaluation of our proposed estimator. Note that the lower-bounds for different types of 

functional units may not be achieved at the same time. 

IV. MB_UNITLENGTH SOLUTION 

A. Problem Transformation 

We transform the original MB-TCS problem to a job scheduling problem by relaxing the data-dependence constraints and 

associating each job with a memory requirement, such that the lower-bound of the job problem is also that of the original 

DFG scheduling problem. 

Different types of operations are processed separately. Let Of = {o | t(o) = f} be the set of operations of type f. In the new job 

scheduling problem, there is a job j corresponding to each o∈Of. Let J represent the whole set of jobs. Note that operations of 

different types have unrelated job sets. A job j is associated with a triple, (release(j), deadline(j), mem(j)), representing its 

release time, deadline, and memory requirement on the processor, respectively. These values are set as release(j) = ASAP(o), 

deadline(j) = ALAP(o)+exe(o)-1, and mem(j) = b(o), where o is the corresponding operation of j. We define that the memory 

configuration of a processor is the maximum memory requirement of those jobs executed on it. The new problem, called 

MIN_mem job scheduling problem, is stated as: 

Given: (1) A set of jobs with same execution time; (2) Each job has a release time and deadline; (3) Each job has a memory 

requirement for the allocated processor. 

Objective: Allocate the jobs to a number of processors and schedule them under the constraints of release times and 

deadlines non-preemptively. The goal is to minimize the summation of the memory configuration of all the allocated 

processors. 

In this way, data-dependence constraints are relaxed, while the integrity of the execution period is maintained. It is obvious to 

see that the solution space of the MIN_mem job scheduling problem is a superset of that of the original DFG scheduling, 

since the strict data-dependence is relaxed to release times and deadlines. Therefore, we have the following straightforward 

conclusion. 



Theorem 1: The memory lower-bound of the MIN_mem job scheduling problem is also the bitwidth lower-bound of the 

corresponding functional units.                                                                          � 

 

B. Lower-Bound Calculation 

In this sub-section, we will illustrate how to calculate the memory lower-bound for the MIN_mem job scheduling problem. 

For a job set S, we define the maximum memory requirement of S as Mem(S) = max{mem(j) | j∈S}, and the minimum number 

of required processors for S under constraints of release times and deadlines is denoted as P_Num(S). 

We first divide J into sub-groups according to their memory requirement. All jobs in each sub-group have the same memory 

requirement. We then sort these sub-groups in the decreasing order of their memory requirement. Suppose the sorted 

sub-groups be {J1, J2, …, Jk}, where k is the number of various memory requirement. From J1, we know that the number of 

the processors with memory configuration Mem(J1) must be no less than P_Num(J1) for any scheduling scheme of J, due to 

the definition of P_Num. Then for J1∪J2, the number of processors with memory configuration no less than Mem(J2) must be 

at least P_Num(J1∪J2). Combing these two facts, we conclude that except the P_Num(J1) processors of memory 

configuration Mem(J1), the number of processors with memory no less than Mem(J2) must be at least 

P_Num(J1∪J2)-P_Num(J1). This calculation continues until Jk is included. Based on this observation, we come to the 

following conclusion. 

Theorem 2: The lower-bound of memory requirement for the MIN_mem job scheduling problem is 
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where Ji, for 1≤i≤k, are the sorted sub-groups constructed in the aforementioned way, and we define that P_Num(∅) = 0.  � 

Then we will show how to compute the exact value of P_Num(S). The core function is the algorithm proposed by Simons in 

[13], for the following unit-time job scheduling problem. 

Given: (1) A group of N unit-time jobs with fractional release times and deadlines; (2) m identical processors. 

Objective: Determine whether a non-preemptive schedule exists under the constraints of release times and deadlines. 

For additions with execution time of 1 clock cycle, Simons’ algorithm can be directly used. For multiplications with 

execution time of 3 cycles, only trivial modification of the algorithm is required.  

In the algorithm of Figure 2, a feasible upper-bound of P_Num is first calculated by using a simple earliest-release-first 

algorithm with time complexity Nlog(N). Then a search is performed to obtain the minimum required processors. The 

searching method we used in this algorithm is to decrease the number of processors by one each time, until Simons’ 

algorithm decides that no feasible schedule exists. The last feasible number is the exact value of P_Num. In experimental 

results, the times of Simons’ algorithm being called vary between 1 and 4. The time complexity of Simons’ algorithm is 

O(mN2). Since the jobs in our problem only have T distinct release times, the running time of Simons’ scheduling is actually 

O(Nlog(N)+mNT). Therefore, the total running time for the lower-bound calculation is O(k(Nlog(N)+mNT)) with P_Num 

being called k times.  



 Procedure P_Num
Input: 

N unit-time jobs with fractional release times and deadlines
Output: 

The minimum number of required processors 
 

Calculate upper-bound of P_Num, denoted as ub; 
ub --; 
While Simons’ scheduling algorithm returns feasible solution 

ub --; 
ub++; 
return ub; 

 
Figure 2. Algorithm for the minimum number of processors. 

 

Compared to the multi-bitwidth interval-based algorithm MB_Interval with time complexity O(T2(N+Nlog(N))) proposed in 

[4], we have the below result. 

Theorem 3: For the operations of type f, Of, the bitwidth lower-bound estimation of FUs given by Theorem 1 and Theorem 2 

is more accurate than the multi-bitwidth interval-based algorithm, MB_Interval. 

Proof: The proof consists of three steps. 

Step 1: After relaxing the data-dependence of DFG to ASAP and ALAP steps without consideration of various bitwidths, the 

new problem is formulated as the below: 

Given: (1) A group of operations A with same execution time; (2) Each operation has an integral release time and deadline;  

Objective: Schedule these operations under the constraints of release times and deadlines such that the number of FUs is 

minimized. 

For the above problem, the interval-based algorithm in [11], which is used in MB_Interval, gives a lower-bound estimation of 

the number of required FUs, while Simons’ algorithm can give the optimal solution P_Num(A). We denote the result given by 

[11] as Interval(A). Therefore, we have that P_Num(A)≥ Interval (A). 

Step 2: In this step, we will give a formulation for the bitwidth lower-bound given by MB_Interval.  

Divide operations Of into sub-groups according to their bitwidth. All operations in each sub-group have the same bitwidth. 

Then sort these sub-groups in the decreasing order of their bitwidth. Suppose the sorted sub-groups be {A1, A2, …, Ak}. From 

the algorithm of MB_Interval, it is easy to see that the number of FUs of bitwidth B(A1) is estimated as Interval(A1). We also 

have that the number of FUs, whose bitwidth is no less than B(A1∪A2), is estimated as Interval(A1∪A2). Therefore, the 

number of FUs of bitwidth B(A2) is Interval(A1∪A2) - Interval(A1). In the same way, we can calculate the number of FUs of 

bitwidth B(A3),…, B(Ak), respectively. Based on these observations, the lower-bound given by MB_Interval is denoted as: 
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where we define N(∅) = 0. 

Step 3: From Theorem 1 and Theorem 2, the lower-bound given by MB_UnitLength is:  
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Also, we define P_Num(∅) = 0. 

Formulation (1) and (2) can be transformed into: 
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From the definition of J and Mem, we know that Ji corresponds to Ai, and B(Ai) = Mem(Ji), 1≤i≤k. Also, since {A1, A2, …, Ak} 

is constructed in decreasing order of bitwidth, B(Ai) is greater than B(Ai+1), 1≤i≤k-1. From formulation (1’) and (2’), we can 

come to the conclusion that LBINTERVAl ≤LBUNIT.                                                             � 

V. EXPERIMENTAL RESULTS 

The experiments are conducted in a C++/UNIX environment. A LP/ILP solver from [1] is used to obtain the results of ILP 

and LP relaxation. We will use ILP formulations, which are shown to produce the tightest lower-bounds in Section III, as the 

baseline to evaluate the accuracy of the estimator, MB_UnitLength. For medium- and large-size benchmarks, the large 

number of variables and constraints causes the solver unable to find the solution in ten hours. Therefore, we choose nine 

small benchmarks to perform the comparison with ILP, and nine real-life benchmarks to perform the comparison with LP 

relaxation.  

For the unit-time job scheduling problem, Simons proposed two algorithms in [12] and [13] with time complexity of 

O(N3loglog(N)) and O(mN2), respectively. The time complexity of these two algorithms for our problem in this paper is 

actually O(TN2loglog(N)) and O(Nlog(N)+mNT) due to the same reason as explained in Section IV(B). Because the algorithm 

of [12] is easier to implement, we used it in our experiments. 

To understand the impact of the data-dependence constraints on the lower-bound accuracy, we also perform experiments on 

another form of ILP, which omits the inequality constraints corresponding to data-dependence, denoted by ARI. Actually, ARI 

partially relaxes the data-dependence constraints to ASAP and ALAP steps. The full ILP formulation is denoted by ARDI, and 

the interval- based algorithm in [4] is denoted as MB_Interval. 

 
Table 1. Accuracy comparison with ARDI. 

 ARDI ARI MB-UnitLength MB-Interval[4] 

adder 1 1 1 1 

multiplier 1 1 98% 95% 

adder (s) 3.04 1.47 0.001 0.001 

multiplier (s) 24.92 15.40 0.001 0.001 
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Figure 3. Comparison of lower-bounds for multipliers (Small benchmarks). 

 

In Table 1, the second and third rows of list the accuracy comparison of ARDI, ARI, MB_UnitLength and MB_Interval, 

averaging over nine small benchmarks. The last two rows list the average running time for adders and multipliers. We can see 

that ARI is as tight as ARDI. For adders, all of the four estimators give the same results, meaning that ARI, MB_UnitLength 

and MB_Interval achieve the tightest lower-bounds for all these benchmarks. For multipliers, MB_UnitLength is only 2% 

lower than ARDI on average, higher than MB_Interval. Figure 3 shows the detailed results of multipliers for each benchmark.  

The LP relaxation of ARDI is denoted by ARD, and the one omitting the data-dependence is AR. For those benchmarks that 

ARDI can be solved in acceptable time, the result of ARD is 2% lower than ARDI on average. This means that the accuracy of 

ARD is high enough to be used as the baseline to evaluate the efficiency of the lower-bound estimations. 

Table 2. Accuracy comparison with ARD. 

 ARD AR MB-UnitLength MB_Interval [4] 

adder 1 99.7% 1 1 

multiplier 1 99.6% 99.1% 90.2% 

add-time(s) 53.88 2.86 0.35 0.04 

mul-time(s) 24.88 7.24 0.12 0.07 
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Figure 4. Comparison of lower-bounds for multipliers (Real-life benchmarks). 
 

Table 2 shows the average comparison results and running time. AR is still very close to ARD, only 0.4% difference observed 

with much less running time. For multipliers, MB_UnitLength is up to 30% higher than MB_Interval and is 9% better on 

average. For adders, MB_Interval is much faster than MB_UnitLength. This is because the algorithm of [12] requires long 

runtime for large benchmarks. If the algorithm of [13] is used, the runtime of MB_UnitLength should be better. Figure 4 

shows the detailed results of multipliers for each benchmark. 

Based on the above experimental results, we come to the following conclusions. Lower-bounds by relaxation of 

data-dependence to ASAP and ALAP steps are very close to optimal results. For functional units with execution time of 

multiple clocks, MB_Interval gives the loosest lower-bound. The main reason is that besides data-dependence relaxation, 

MB_Interval does a further estimation on the minimum number of required resources, P_Num, while MB_ UnitLength does 

not. For functional units with execution time of one single clock, both of the two estimators are very accurate. 

VI. CONCLUSION 

Traditional lower-bound estimations at the scheduling stage of high-level synthesis only consider functional units with 

uniform bitwidth. In this work, we studied the problem of lower-bound estimation on total bitwidth of functional units for the 

multi-bitwidth TCS. In particular, we have presented a formal ILP formulation and a polynomial time heuristic algorithm. For 

lower-bound estimation, experimental comparisons indicate that our algorithm produces accurate estimations. 
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