
Fast Visual Feature Selection and Tracking in a

Hybrid Reconfigurable Architecture

Alessandro Bissacco Jason Meltzer Soheil Ghiasi
Majid Sarrafzadeh Stefano Soatto

UCLA CSD-TR050002

This report details the development of a fast visual feature tracking system
which takes advantage of dedicated hardware to perform the computationally
intensive step of selection. A software system uses the output of the hardware
selector to develop tracks using filtering and data association techniques, and
image-based validation.

1 Introduction

Advances in powerful, sometime inexpensive reprogrammable hardware has
opened up opportunities for implementing vision systems in real-time. One
existing paradigm that would benefit tremendously from dedicated hardware
is feature tracking, which matches discrete locations in space across adjacent
frames in video. Current feature trackers, such as multi-scale Lucas-Kanade [3],
can track many hundreds of points at 60Hz or greater, but suffer from limita-
tions on the speed of selection (for adding new points to the tracker) and require
nearly all the available processing power of the CPU. By using separate, custom
hardware to select hundreds of points per frame then associating these points to
tracks in software, we can achieve greater than 60Hz real-time tracking without
burdening the primary CPU, which can use the output of the system for other
tasks, such as structure from motion.

1.1 Overview of the system

Our tracking system consists of a number of hardware and software components
which operate in serial and parallel. Images are initially processed by a field
programmable gate array (FPGA) which runs a modified Harris corner detector,
taking the local maxima of scores above a threshold as feature points. These
are provided to the tracking system, which uses a second-order Kalman filter to
predict feature locations on the current frame. Given the prediction, previous
tracks, and newly selected points from the FPGA, a data association technique
is used to match new points to existing tracks (see section 3.1). To assist

1

the matching process, we use normalized cross-correlation to prune incorrect
correspondences. Finally, the new tracks are used to predict the feature locations
in the next frame.

FPGA SelectorKalman filter

Selected PointsPrediction

SNN
with NCC Track Initiation

Associated tracks

Image

Figure 1: The components and flow of the tracking system are illustrated above.

2 Feature selection

Feature selection is implemented on a reconfigurable computer based on Field
Programmable Gate Arrays (FPGA’s). The method, proposed in [9], is a sim-
plification to the Tomasi and Kanade selection technique [10] requiring only
summations and multiplications on integers.

In the standard Tomasi-Kanade selection, for each point p in the image we
compute the following matrix:

G =

[∑N
k=1(I

k
x)2

∑N
k=1 Ik

xIk
y∑N

k=1 Ik
xIk

y

∑N
k=1(I

k
y)2

]
=

[
a b
b c

]
(1)

by summing over a window of N pixels centered at p, where Ix and Iy are
the image gradients. Let λ1 be the smallest eigenvalue of G:

λ1 = min(eig(G))

Then p is selected if λ1 is greater than a predefined threshold λt and has a local
maximum at p.

2

If we call Pλ the characteristic polynomial:

Pλ = (a− λ)(c− λ)− b2 (2)

it can be shown [9] that the condition λ1 > λt is equivalent to:

Pλt
> 0 and a > λt (3)

With this approach instead of finding the eigenvalues of a 2× 2 matrix it is
sufficient to evaluate the polinomial Pλt

, which needs only two multiplications.
The nonmaximum suppression is then performed on Pλt

, which is shown [9]
to have very strong similarity with the original quality measure λ1.

3 Feature tracking

In our study of the point association and tracking problem we explored several
approaches. We tested the straightforward solutions of matching selected points
in adjacent frames first by nearest neighbor and then by Normalized Cross-
Correlation of the surrounding patches, with very little success. The main reason
for the failure of these attempts is that the output of the feature selector does
not exhibit a stable behavior, points disappear and reappear from one frame
to the next, and attempts of directly matching points in adjacent frames will
inevitably produce poor results. Moreover, the computational load for complete
NCC tests is too high for a real-time application, in particular given our goal of
tracking hundreds of features at frame rates not lower than 60Hz.

We propose to enforce temporal continuity by assuming linear dynamics for
the tracked points in the image sequence. If we assume that selected features are
measurements of underlying tracks whose dynamics is described by a Gaussian
ARMA model, then we have a standard problem of tracking and data association
in a multitarget environment with less-than-unity probability of detection and
presence of false alarms. This problem has been studied in the literature for
decades and a number of effective approaches have been developed (see [1] for
a review).

What makes our scenario different from the one considered in the target
tracking literature is the presence of images, which can be used as a rich source
of information for discrimination and false alarm rejection in the data association
step. We explored extensions to established tracking techniques by exploiting
measures of similarity between feature patches.

3.1 Tracking and Data Association

Among the various tracking algorithms proposed in the literature, the main ones
are Joint Probabilistic Data Association (JPDA [1]), Global Nearest Neighbor
(GNN [4]), and variants (Probabilistic Data Association [2], Suboptimal Nearest
Neighbor [5], Cheap JPDA [6], Fast JPDA [8] and Suboptimal JPDA [7]) . In
all these algorithms Kalman Filters are used for tracking, and the predictions

3

from the filters are used to define the regions where the features are expected
to appear in the next frame - the so called validation gates. In particular, if
ŷi and Si are respectively the predicted measurement and the variance of the
innovation of the Kalman filter associated to track i, then the validation gate
of track i is the set of points y such that the normalized distance:

di(y) =
√

(y − ŷi)T (Si)−1(y − ŷi) (4)

is less than a predefined value g (typically g = 4).
The JPDA algorithm is an extension to multiple targets of the PDA algo-

rithm. The PDA is a single track-multiple measurements association algorithm.
It uses a weighted average of the measurements in the validation gate to update
a track, where the weights are the posterior probabilities that the measure-
ments have been generated by the track assuming less than one probability of
detection and Poisson distributed false measurements. The JPDA is a mul-
tiple track-multiple measurements association scheme, where the probabilities
of all the possible associations measurements-tracks are evaluated in order to
compute the weights. This is done by forming clusters consisting of all tracks
that have measurements in the intersection of their validation gates. For each
cluster all the possible associations measurement-track are considered and the
corresponding probabilities are computed. Since the number of association hy-
potheses increases exponentially in the number of tracks and points in a clus-
ter, and in test images with 1000 selections we obtained clusters exceeding 100
tracks, a direct JPDA implementation is not possible for a real-time applica-
tion. Even though we can use one of the several suboptimal solutions proposed
in the literature (CJPDA, SJPDA, FJPDA), there is another main issue. JPDA
shows undesirable characteristics when used in a dense target environment such
as the one we consider. In particular track bias and track merging may occur
when several closely spaced targets travel in the same direction. To solve this
problem, in [6] a Nearest Neighbor implementation of JPDA (NNJPDA) has
been suggested. In this variant, instead of using a weighted average of the ob-
servations in the validation gate to update a track, the observation with highest
association probability is used.

In Global Nearest Neighbor, a track can be updated by at most one mea-
surement and a measurement can be assigned to at most one track. The first
step is to form an assignment matrix A = [di(yj)] where di(yj) is the normal-
ized distance (4) between track i and measurement yj . Then the solution to
the track-measurement association problem is obtained by maximizing the num-
ber of assignments while minimizing the sum of the the normalized distances
of the assigned track-measurement pairs. The Munkres algorithm can be used
to find the optimal assignment, but its complexity is O(n3), where n is the
bigger between the number of measurements and the number tracks. Since we
want to be able to track hundreds of points in real time, we consider a subop-
timal solution, the Suboptimal Nearest Neighbor. This is a greedy approach
to the matching problem: it searches the measurement-to-track pair with the
minimum normalized distance, makes the assignment, removes all the pairs con-

4

taning the assigned measurement or track, then repeats the first step until no
more assigment is possible. The complexity of this algorithm is O(n log(n)) due
to the ordering step. A further decrease in complexity can be achieved by first
segmenting the input data in clusters as in the JPDA algorithm, then applying
the SNN matching within each cluster.

A comparison of the performance of the discussed tracking algorithms was
presented in [11]. The tests were conducted on radar data of real closely spaced
maneuvering targets, and the results favor the Nearest Neighbor approaches.
Consequently, given also the strict computational constraints due to the goal of
a real-time application, we opted for the Suboptimal Nearest Neighbor approach.

3.2 Tracking feature patches

A natural extension of conventional target tracking algorithms for the problem
of feature tracking in images is to modify the notion of normalized distance by
including validation based on the appearance of the tracked patch. Our solution
consists in comparing the patch surrounding the candidate selected point at the
current frame with the patch at the estimated track position in the previous
frame. Then the normalized distance (4) of measurement yj from track i at
time t becomes:

di
t(y

j) =

{ √
(yj − ŷi

t|t−1)
T (Si

t)
−1(yj − ŷi

t|t−1) if NCC(It(y
j), It−1(ŷ

i
t−1|t−1)) < h

∞ otherwise

(5)

where h is a threshold, NCC(I1(y1), I2(y2)) denotes the Normalized Cross-
Correlation between the patch centered in y1 on image I1 and the patch centered
in y2 on image I2, yi

t|t−1, yi
t−1|t−1 and Si are the prediction, filtered estimate

and innovation variance of track i computed at time t− 1.
The effect of this modification is to reject from the candidate points all

the selections whose appearance does not match the one of the track in the
previous frame. This test allows to prune out wrong potential matches and is
simple enough to allow for a real-time implementation.

4 Track initiation

In a scenario where track-data association is a main issue special care must be
taken in the initiation of new tracks. This problem is well know and several
algorithms have been proposed for its solution [1]. In view of some comparison
studies on track initiator performances [12], we concluded that the logic-based
method [1] was the most suitable for our application. The approach works as
follows:

• Starting with a measurement in the first frame, a validation gate is set up
for the second frame. For every measurement in the second frame falling
in the validation region a potential track is set up.

5

• For each potential track the velocity of the track is computed from the
first two frames and used to set a validation gate in the third frame. The
measurement in the third frame closest to the prediction is used to extend
the track.

• From the last three frames, track velocity and acceleration is computed
and used to set a validation gate in the next frame. If no measurement falls
within the gate, the track is terminated. Otherwise this step is repeated
until the desired minimum number of measurements is reached.

Usually three or four is the number of measurements required for track ini-
tiation. Note that in the first two scans measurements can be used more than
once to form potential tracks. When a track is successfully initiated, the initia-
tor has a mechanism to suppress duplicate tracks and prevent multiple use of
the same points.

By replacing the normalized distance used in the validation gate tests with
the NCC-based distance (5), it was possible to naturally extend this track ini-
tiator scheme to exploit information on the appearance of the patch.

5 Implementation and experiments

For image acquisition, we are using a Teli CS8550DiF DCAM-compliant CCD
camera, which has a resolution of 640x480 monochrome pixels and a refresh of
60 full (non-interlaced) frames per second.

5.1 Feature selection

The current version of the Harris selector is implemented on a Xilinx WILD-
STAR/PCI FPGA board. The board has the folllowing features:

• Xilinx VIRTEX FPGA with 1 million system gates

• 1.6 Gbytes/second I/O Bandwidth

• 6.4 Gbytes/second Memory Bandwidth

• Processing clock 100 MHz

• Synchronous ZBT SRAM with 100 MHz access

Selection takes about 160 microseconds on average on 640 × 480 images,
which is approximately constant with the number of features, since the algo-
rithm runs on the entire image every frame. The board is connected to a host
computer via the PCI bus. Because of limitations on the hardware, it takes
about 20 milliseconds to move data from the camera to the memory on the
FPGA board. This accidental hardware limitation does not allow us to display
the complete end-to-end system running in real time. Therefore, for experimen-
tal purpose, we use a stored sequence of images as input to our algorithms and

6

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

se
le

ct
io

ns

t

Figure 2: Number of feature selected in a outdoor sequence

measure the time required for each component. An alternative FPGA board,
the Micro-Line C6713Compact, has on-board Firewire (along with drivers for
DCAM-compliant cameras) which writes directly into memory accessible by the
FPGA. This will eliminate the memory-transfer delay and allow the system to
run in real-time. Due to its high cost, however, its purchase has been ruled
out since the feasibility of the system can be equally well illustrated by careful
timing of each component.

As described in section 2, a threshold parameter λt is used to control the
number of selections per frame. All the local maxima of the polynomial Pλt

satisfying conditions (3) are selected.
The image gradients Ix and Iy are obtained by computing the centered differ-

ences, which amounts to convolving the image with the kernels
[
−0.5 0 0.5

]
and

[
−0.5 0 0.5

]T . This solution is computationally efficient but it is
known to be rather sensitive to the noise. Significant improvements in accu-
racy and stability of results can be obtained by using smoothing kernels in the
calculation on the image gradients. We plan to investigate this possibility in
future developments.

In figure 2 we show the number of selections in a sample outdoor sequence,
where we can see some the fluctuations of the total number of features. Be-
sides that, it must be pointed out that there is significant additional interframe
variation in the selections due to disappearing and reappearing of features. The
performance of the tracker are very sensitive to the quality of the selections, but
not particularly to their number. In figure 3 we show average and standard de-
viation of the lifetime of tracks for the previous sequence as function of average
number of selected features. The flatness of the curve shows how the choice of
the selection threshold is not critical for the overall lifetime of the tracks.

7

0 100 200 300 400 500 600 700 800 900
0

5

10

15

20

25

30

35

40

45

50

55

selections

lif
et

im
e

Figure 3: Tracks lifetime vs. number of selections for a 100 frame sequence:
mean (solid line) and standard deviation (vertical bars).

5.2 Data association and tracking

The data association and tracking algorithm is composed of 3 modules: track
initiator, filter/predictor, and data association.

5.2.1 Track initiation

Modified logic-based track initiation scheme as described in section (4), with the
following parameters: frames required for successful track initiation (default 4),
maximum number of track splits in the second frame (default 3), and maximum
number of initiated tracks per frame.

The track initiation is computationally the most expensive part of the algo-
rithm. If larger number of tracks or bigger frame rates are desired, big speed
gains can be achieved by removing this module and initiating a track for each
new selection.

5.2.2 Kalman prediction and filtering

We model the position x(t) of the features on the image as second order Brow-
nian motion:

[
x(t + 1)
v(t + 1)

]
=

 1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

[
x(t)
v(t)

]
+ w(t) ,

[
x(0)
v(0)

]
=

[
x0

0

]
, w(t) ∼ N (0, Q))

y(t) =

[
1 0 0 0
0 1 0 0

][
x(t)
v(t)

]
+ v(t) , v(t) ∼ N (0, R) (6)

8

with noise variances:

Q =

qx 0 0 0
0 qx 0 0
0 0 qv 0
0 0 0 qv

 , R =
[

r 0
0 r

]

x0 is the position in the first frame, qx, qv, r are parameters to be tuned
according to the dynamics of the scene: qx set to a small number or zero,
qv related to the velocity of the features, and r based on the confidence in
the measurements (because of discretization not smaller than 0.5). A linear
time invariant Kalman filter is derived from the motion model (6). The initial
variance P0 of the filter estimate is obtained by first solving the Riccati equation
for the filter, then applying n0 prediction steps to the result. n0 measures the
number of measurements needed to reach the steady state and is a parameter
of the algorithm. In this way we guarantee a monotonically decreasing error
variance S, therefore a decreasing validation gate area.

5.2.3 Data association

For track-measurement association we implemented the Suboptimal Nearest
Neighbor algorithm with modified normalized distance as described in 3.1 . A
number of optimizations have been applied to the orginal algorithm in order to
allow for real-time performance. First a JPDA-like clustering step is performed
to reduce the number of the association hypotheses. Then tracks and measure-
ments are organized in a structure with spatial information that allows to prune
out pairings exceeding the maximum distance defined by the validation gate of
the track. Finally, an optimized implementation of Normalized Cross Correla-
tion has been included. Parameters of the algorithm are the size of the patch
used for the NCC test and the threshold h used for calculating the normalized
distance (5).

When no measurements can be associated to a track, the measurement up-
date is step is not performed and an additional prediction step of the Kalman
filter is applied.

A track is terminated when either a maximum number of consecutive predic-
tions steps is attained, or the norm of the innovation exceeds a defined threshold,
both parameters of the algorithm.

Figure 4 shows the trajectories of the filtered estimate for a small number of
tracks in a video clip. It is clear from the zoomed plot how the filter successfully
interpolates the noisy measurements. In figure 6 we see the innovation of the
Kalman filters associated to these tracks, which appears to be close to zero mean.
Figure 5 depicts the predicted positions together with the validation gates. We
can see how the gates become smaller as new measurements are associated to
the track.

To illustrate the performance of our tracker, we show in Table 1 the results
of tracking a sequence of 100 frames with different selection algorithms and
thresholds (see figures 7 and 8 for sample frames). The Harris feature selector

9

0 10 20 30 40 50 60 70 80 90 100
100

150

200

250

300

350

t

x(
t)

22 24 26 28 30 32

235

236

237

238

239

240

241

242

243

t

x(
t)

Figure 4: Kalman filter position estimates for 50 tracks in a 100 frames clip, x
coordinate plotted. Estimates shown as dots connected with solid lines, mea-
surement as crosses connected by dashed lines. The left plot displays all the
tracks, the right plot is a zoom of the small dashed box on the left. It can
be seen that most validation gates contain multiple measurements, which can
be correctly associated thanks to the image-based validation and the temporal
dynamics model encoded in the tracking filter.

0 100 200 300 400 500 600
100

150

200

250

300

350

x

y

290 300 310 320 330 340 350 360

220

225

230

235

240

245

250

255

x

y

Figure 5: Kalman filter predictions and validation gates for the same sequence
as in figure 4. Estimates shown as dots, measurement as crosses, validation
gates as circles. The left plot displays all the tracks, the right plot is a zoom of
the small dashed box on the left.

10

0 10 20 30 40 50 60 70 80 90 100
−4

−3

−2

−1

0

1

2

3

4

5

t

|y
(t

)−
yh

at
(t

)|

Figure 6: Kalman filter innovation for the sequence in figure 4, which appears
close to zero mean.

Feature Selection Average Number Average Number Average tracking time Frame rate
Algorithm of Selections of Tracks per frame (ms) (Hz)

Harris 1000 510 11.21 89
FPGA Tomasi-Kanade 1000 411 9.81 102

Harris 500 318 5.40 185
FPGA Tomasi-Kanade 500 250 4.74 211

Harris 200 128 2.54 393
FPGA Tomasi-Kanade 200 114 2.52 397

Table 1: Results and timing of the tracker with different selection algorithms

used in these experiments is the implementation available in the Intel OpenCV
library [3]. It is clear from the data that the Harris corner detection significantly
improves the number and quality of the tracks.

The timings in Table 1 were measured on a Pentium IV 3.2 GHz PC with 1
Gbyte of RAM and do not include selection time.

A Feature selection code

Below we include the VHDL source code of our FPGA feature selector.

FILE: pex_fs.vhd

--

--

-- Copyright (C) 1998-2000, Annapolis Micro Systems, Inc.

-- All Rights Reserved.

--

--

--

--

-- Entity : PEX

--

-- Architecture : Template

--

-- Filename : pex_template_arch.vhd

11

Figure 7: FPGA selection output, sample frame. There are 1162 feature se-
lected, obtained with threshold parameter λt = 50. The sequence is available
at http://www.cs.ucla.edu/∼bissacco/jpltrack/fpgaselect.mov

12

http://www.cs.ucla.edu/~bissacco/jpltrack/fpgaselect.mov

Figure 8: Tracking output, sample frame, obtained with selections in figure
7 as input. Tracks are displayed as dots of different colors, their total num-
ber in this frame is 562. The sequence is available at http://www.cs.ucla.
edu/∼bissacco/jpltrack/fpgatrack.mov, together with the results of track-
ing using the Harris selector http://www.cs.ucla.edu/∼bissacco/jpltrack/
harristrack.mov

13

http://www.cs.ucla.edu/~bissacco/jpltrack/fpgatrack.mov
http://www.cs.ucla.edu/~bissacco/jpltrack/fpgatrack.mov
http://www.cs.ucla.edu/~bissacco/jpltrack/harristrack.mov
http://www.cs.ucla.edu/~bissacco/jpltrack/harristrack.mov

--

-- Date : 7/25/00

--

-- Description : PEX architecture that should be used as a starting

-- point for new PEX applications. This file should

-- be copied to the project directory, then customized

-- to meet the needs of the application.

--

--

-------------------------- Library Declarations ------------------------

-- IEEE Libraries --

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_signed.all;

use ieee.std_logic_arith.all;

-- Wildstar System Libraries -

library SYSTEM;

use SYSTEM.Xilinx_Package.all;

use SYSTEM.AMS_package.all;

-- Wildstar PEx Libraries --

library PEX_Lib;

use PEX_Lib.PE_Package.all;

--use PEX_Lib.PE_Mezz_Mem_package.all;

--use PEX_Lib.Mezz_Mem_Mux_pkg.all;

--use PEX_Lib.Mezz_Mem64_Mux_pkg.all;

use PEX_Lib.PEX_Mem32_Mux_pkg.all;

use PEX_Lib.PE_LAD_Mux_pkg.all;

use PEX_Lib.LAD_Mem32_Mux_pkg.all;

--use PEX_Lib.LAD_Mem64_Mux_pkg.all;

-- LAD Mux Libraries --

library LAD_Mux_Lib;

use LAD_Mux_Lib.LAD_Mux_pkg.all;

-- Mem Mux Libraries --

library Mem32_Mux_Lib;--, Mem64_Mux_Lib;

use Mem32_Mux_Lib.Mem32_Mux_pkg.all;

--use Mem64_Mux_Lib.Mem64_Mux_pkg.all;

--

--

-- Below are all of the standard PE pad interface signals. Simply

-- uncomment the signal(s) that are needed by the PE design. All

-- other unused signals may remain commented out. Be sure to

-- uncomment any component instances used by the interface.

--

--

------------------------ Architecture Declaration ----------------------

architecture Mux_Mem_Test of PEX is

constant img_width : integer := 640;

constant img_height : integer := 480;

signal GND : std_logic := ’0’;

signal Global_Reset : std_logic := ’0’;

signal Reset_Register : std_logic := ’0’;

signal Clocks_In : Clock_Std_IF_In_Type;

signal Clocks_Out : Clock_Std_IF_Out_Type;

-- signal LAD_Bus_In : LAD_Bus_Std_IF_In_Type;

-- signal LAD_Bus_Out : LAD_Bus_Std_IF_Out_Type;

signal LEDs_Out : LED_Std_IF_Out_Type;

-- signal Left_Mem_In : Mem_Std_IF_In_Type;

-- signal Left_Mem_Out : Mem_Std_IF_Out_Type;

-- signal Right_Mem_In : Mem_Std_IF_In_Type;

-- signal Right_Mem_Out : Mem_Std_IF_Out_Type;

-- signal Left_Mezz_In : Mezz_Mem_Std_IF_In_Type;

-- signal Left_Mezz_Out : Mezz_Mem_Std_IF_Out_Type;

-- signal Right_Mezz_In : Mezz_Mem_Std_IF_In_Type;

-- signal Right_Mezz_Out : Mezz_Mem_Std_IF_Out_Type;

-- signal PE0_Bus_In : PE0_Bus_Std_IF_In_Type;

-- signal PE0_Bus_Out : PE0_Bus_Std_IF_Out_Type;

-- signal Top_Sys_In : Systolic_Std_IF_In_Type;

-- signal Top_Sys_Out : Systolic_Std_IF_Out_Type;

-- signal Bot_Sys_In : Systolic_Std_IF_In_Type;

-- signal Bot_Sys_Out : Systolic_Std_IF_Out_Type;

--

--

-- Below are signals which can be used with the Mem_Mux and

-- LAD_Mux interfaces. Modify each signal to match the number of

-- clients for each mux interface.

--

--

signal count : std_logic_vector (31 downto 0);

signal reg_in : std_logic_vector (31 downto 0);

signal reg_out : std_logic_vector (31 downto 0);

14

signal pixin : std_logic_vector (7 downto 0);

signal pixout : std_logic_vector (7 downto 0);

signal lambda : std_logic_vector (16 downto 0);

signal flag : std_logic;

signal feature_quality : std_logic_vector (35 downto 0);

signal bit_out : std_logic;

signal LAD_Mux_Bus : LAD_Mux_vector (0 to 3);

signal Left_Local_Mux : Mem32_Mux_vector (0 to 1);

signal Right_Local_Mux : Mem32_Mux_vector (0 to 1);

signal read_clk : std_logic;

signal K_Clk : std_logic;

signal i : integer;

signal My_Registers : LAD_Mux_register_vector(0 to 3);

type state_value is (state_0, state_1, state_2, state_3, state_4, state_5, state_6);

signal state : state_value;

component eigen is

generic(img_width : positive := img_width);

port (pixin : in signed (7 downto 0);

clk : in std_logic;

lambda : in signed (16 downto 0);

flag : out std_logic;

quality : out signed (31 downto 0);

pixout : out signed (7 downto 0));

end component;

for all : eigen use entity pex_lib.eigen(synthesis);

begin

K_Clk <= Clocks_In.K_Clk;

u_Regfile: LAD_Mux_RegFile

generic map

(

Mask => x"7FF8",

Base => x"0000",

L2Num => 2

)

port map

(

Kclk => K_Clk,

LAD => LAD_Mux_Bus(3),

Regs => My_Registers

);

read_mem : process (Global_Reset, Clocks_In.M_Clk , Left_Local_Mux(1), Right_Local_mux(1))

begin

if (Global_Reset = ’1’) then

i <= 0;

read_clk <= ’0’;

-- reg_out <= (others => ’0’);

reg_in <= (others => ’0’);

Left_Local_Mux(1).Addr <= (others => ’0’);

Right_Local_Mux(1).Addr <= (others => ’0’);

Left_Local_Mux(1).Data_Out <= (others => ’0’);

Right_Local_Mux(1).Data_Out <= (others => ’0’);

Left_Local_Mux(1).Req <= ’0’;

Right_Local_Mux(1).Req <= ’0’;

Left_Local_Mux(1).Write <= ’0’;

Right_Local_Mux(1).Write <= ’1’;

state <= state_0;

LEDs_Out.Red_n <= ’1’;

LEDs_Out.Green_n <= ’1’;

My_Registers(2).Data_out <= (others => ’0’);

elsif (rising_edge (Clocks_In.M_Clk)) then

case state is

when state_0 =>

read_clk <= ’0’;

lambda <= My_Registers(0).Data_in(16 downto 0);

if (i > (img_width * img_height)) then

state <= state_6;

elsif (lambda > 1) then

state <= state_1;

else

state <= state_0; -- stay in state_0 until lambda is non zero

end if;

when state_1 =>

-- read_clk <= ’0’;

Left_Local_Mux(1).Write <= ’0’;

Left_Local_Mux(1).Req <= ’1’;

if (Left_Local_Mux(1).Akk = ’1’) then

state <= state_2;

else

state <= state_1;

end if;

15

when state_2 =>

-- read_clk <= ’0’;

if (Left_Local_Mux(1).Data_Valid = ’1’) then

reg_in <= Left_Local_Mux(1).Data_In;

Left_Local_Mux(1).Req <= ’0’;

state <= state_3;

else

-- Left_Local_Mux(1).Req <= ’1’;

state <= state_2;

end if;

when state_3 =>

read_clk <= ’1’;

Left_Local_Mux(1).Write <= ’0’;

Left_Local_Mux(1).Req <= ’0’;

if (Left_Local_Mux(1).Data_Valid = ’0’) then

Left_Local_Mux(1).Addr <= Left_Local_Mux(1).Addr + ’1’;

i <= i + 1;

state <= state_4;

else

state <= state_3;

end if;

when state_4 =>

--read_clk <= ’1’;

Right_Local_Mux(1).Data_Out <= reg_out;

Right_Local_Mux(1).Write <= ’1’;

Right_Local_Mux(1).Req <= ’1’;

if (Right_Local_Mux(1).Akk = ’1’) then

state <= state_5;

else

state <= state_4;

end if;

when state_5 =>

-- read_clk <= ’1’;

Right_Local_Mux(1).Req <= ’0’;

if (Right_Local_Mux(1).Akk = ’1’) then

state <= state_5;

else

Right_Local_Mux(1).Addr <= Right_Local_Mux(1).Addr + ’1’;

state <= state_0;

end if;

when state_6 =>

LEDs_Out.Red_n <= ’0’;

My_Registers(2).Data_out <= x"0000FFFF";

state <= state_6;

end case;

end if;

end process read_mem;

My_Registers(0).Data_out <= My_Registers(0).Data_in;

My_Registers(1).Data_out <= "000000000000000" & lambda;

my_eigen : eigen

generic map

(img_width => img_width)

port map

(pixin => signed(pixin) ,

clk => read_clk,

lambda => signed (lambda),

flag => flag,

quality => signed(feature_quality),

pixout => signed(pixout));

pixin <= reg_in(7 downto 0);

reg_out <= flag & feature_quality(35 downto 5); --throwing out the 5 least significant bits to fit to the 32-bit bus

compute : process (Global_Reset)

begin

if (Global_Reset = ’1’) then

count <= (others => ’0’);

end if;

-- if (flag=’1’) then

-- reg_out <= x"000000ff";

--else

-- reg_out <= x"00000000";

-- end if;

-- compute : process (Global_Reset, read_clk)

-- begin

-- if (Global_Reset = ’1’) then

-- count <= (others => ’0’);

-- reg_out <= (others => ’0’);

-- else

16

-- pixin <= reg_in(7 downto 0);

--reg_out <= flag & flag & flag & flag & flag & flag & flag & flag; -- write FF if a feature, 0 otherwise;

-- if (flag=’1’) then

-- reg_out <= x"000000ff";

--else

-- reg_out <= x"00000000";

-- end if;

-- end if;

--reg_out(31 downto 8) <= (others => ’0’);

-- reg_out(7 downto 0) <= pixout;

-- reg_out <= x"00000000";

-- if (flag=’1’) then

-- reg_out <= x"000000ff";

-- reg_out(7 downto 0) <= x"ff";

-- pixin <= x"0f";

--else

--reg_out(7 downto 0) <=pixout;

-- pixin <= x"ff";

-- reg_out <= My_registers(0).Data_In;

--end if;

-- end if;

end process compute;

-- The following bridge component provides LAD-based access to PEX’s local memories.

U_LEFT_LOCAL_BRIDGE : LAD_Mem32_Bridge

generic map

(

Mask => x"7E00",

Base => x"1000"

)

port map

(

Kclk => K_Clk,

Mclk => Clocks_In.M_Clk,

LAD => LAD_Mux_Bus(0),

Mem => Left_Local_Mux(0)

);

U_RIGHT_LOCAL_BRIDGE : LAD_Mem32_Bridge

generic map

(

Mask => x"7E00",

Base => x"1200"

)

port map

(

Kclk => K_Clk,

Mclk => Clocks_In.M_Clk,

LAD => LAD_Mux_Bus(1),

Mem => Right_Local_Mux(0)

);

--

--

-- Below are all of the standard PE pad interface components. Simply

-- uncomment the interface(s) that are needed by the PE design. All

-- other unused interfaces may remain commented out. Be sure to

-- uncomment any signal declarations used by the interface.

--

--

U_Clocks : Clock_Std_IF

generic map

(

K_CLK_DLL_OUT => USE_1x,

M_CLK_DLL_TYPE => LOW_FREQ,

P_CLK_DLL_TYPE => LOW_FREQ,

U_CLK_DLL_TYPE => LOW_FREQ

)

port map

(

Pads => Pads.Clocks,

User_In => Clocks_In,

User_Out => Clocks_Out

);

-- --@@@

-- --@@

-- --@@ NOTE: Use either the U_LAD_MUX_IF or the U_LAD_Bus,

-- --@@ but not simultaneously.

-- --@@

-- --@@@

U_LAD_MUX_IF : LAD_Mux_IF

generic map

(

17

K_Clk_x2 => FALSE

)

port map

(

Kclk => K_Clk,

Reset => Global_Reset,

pads => Pads.LAD_Bus,

Clients => LAD_Mux_Bus

);

-- U_LAD_Bus : LAD_Bus_Std_IF

-- port map

-- (

-- K_Clk => Clocks_In.K_Clk,

-- Global_Reset => Global_Reset,

-- Pads => Pads.LAD_Bus,

-- User_In => LAD_Bus_In,

-- User_Out => LAD_Bus_Out

--);

--

-- --@@@

-- --@@

-- --@@ NOTE: Use either the U_Left_Local_Mem_Mux or the

-- --@@ U_Left_Mem, but not simultaneously.

-- --@@

-- --@@@

U_Left_Local_Mem_Mux : Mem32_Mux_Priority_IF

port map

(

Mclk => Clocks_In.M_Clk,

Reset => Global_Reset,

Pads => Pads.Left_Mem,

Clients => Left_Local_Mux

);

-- U_Left_Mem : Mem_Std_IF

-- generic map

-- (

-- INFF_Delay => NODELAY,

-- OBUF_Drive => SLOW_12mA

--)

-- port map

-- (

-- M_Clk => Clocks_In.M_Clk,

-- Global_Reset => Global_Reset,

-- Pads => Pads.Left_Mem,

-- User_In => Left_Mem_In,

-- User_Out => Left_Mem_Out

--);

--

-- --@@@

-- --@@

-- --@@ NOTE: Use either the U_Right_Local_Mem_Mux or the

-- --@@ U_Right_Mem, but not simultaneously.

-- --@@

-- --@@@

U_Right_Local_Mem_Mux : Mem32_Mux_Priority_IF

port map

(

Mclk => Clocks_In.M_Clk,

Reset => Global_Reset,

Pads => Pads.Right_Mem,

Clients => Right_Local_Mux

);

-- U_Right_Mem : Mem_Std_IF

-- generic map

-- (

-- INFF_Delay => NODELAY,

-- OBUF_Drive => SLOW_12mA

--)

-- port map

-- (

-- M_Clk => Clocks_In.M_Clk,

-- Global_Reset => Global_Reset,

-- Pads => Pads.Right_Mem,

-- User_In => Right_Mem_In,

-- User_Out => Right_Mem_Out

--);

--

--

--

-- The following LAD_Mux component provides a global reset signal to

-- the PE. It is mapped to LAD address 0x7fff. To change it’s

-- mapping alter the constant passed to the Base generic.

--

--

U_LAD_Mux_Reset : LAD_Mux_Reset

generic map

18

(

Mask => x"7F00",

Base => x"7F00"

)

port map

(

Rclk => Clocks_In.M_Clk,

Kclk => K_Clk,

LAD => LAD_Mux_Bus(2),

Reset => Global_Reset,

DLL_Reset_0 => Clocks_Out.M_Clk_DllRst,

DLL_Reset_1 => Clocks_Out.P_Clk_DllRst,

DLL_Reset_2 => Clocks_Out.K_Clk_DllRst,

DLL_Reset_3 => Clocks_Out.U_Clk_DllRst

);

U_LEDs : LED_Std_IF

port map

(

Pads => Pads.LEDs,

User_Out => LEDs_Out

);

--

--

-- Global reset interface : Attach the Reset_Register signal to a

-- register bit of a LAD bus accessible register. This reset

-- mechanism generates a one K_Clk cycle long pulse to the GSR line

-- of the STARTUP block. The STARTUP block is also synchronous to

-- K_Clk.

--

--

-- U_Reset_Pulse_Gen : One_Shot

-- port map

-- (

-- Clk => Clocks_In.K_Clk,

-- I => Reset_Register,

-- O => Global_Reset

--);

--

-- U_Startup : STARTUP_VIRTEX_GSR

-- port map

-- (

-- GSR => Global_Reset

--);

--

-- NOTE : The following line must remain in all designs

-- to ensure that all of the PE pads are driven.

--

Init_PEX_Pads (Pads);

end Mux_Mem_Test;

FILE: eigen.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_signed.all;

use ieee.std_logic_arith.all;

entity eigen is

generic(img_width : positive := 320); -- width of image

port (pixin : in signed (7 downto 0);

clk : in std_logic;

lambda : in signed (16 downto 0);

flag : out std_logic;

quality : out signed(35 downto 0);

pixout : out signed (7 downto 0));

end eigen;

architecture synthesis of eigen is

component diff

generic (img_width : positive := 320); -- width of image

port (pixel : in signed (7 downto 0);

clk : in std_logic;

dx : out signed (7 downto 0);

dy : out signed (7 downto 0);

pixout : out signed (7 downto 0));

end component;

component mul

generic (img_width : positive := 320); -- width of image

port (x : in signed (7 downto 0);

y : in signed (7 downto 0);

clk : in std_logic;

w : out signed (17 downto 0));

end component;

19

component D_FF

generic(w : positive := 8);

port (d : in signed(w - 1 downto 0);

clk : in std_logic;

q : out signed(w - 1 downto 0));

end component;

component delay

generic(w : positive := 8; -- width of delay line

n : positive := 1); -- lenght of delay line

port (din : in signed (w - 1 downto 0);

clk : in std_logic;

dout : out signed (w - 1 downto 0));

end component;

-- signal ixi : std_logic_vector (8 downto 0);

signal ix : signed (7 downto 0);

signal iy : signed (7 downto 0);

signal a : signed (17 downto 0);

signal c : signed (17 downto 0);

signal b : signed (17 downto 0);

signal b2 : signed (35 downto 0);

signal a1 : signed (17 downto 0);

signal c1 : signed (17 downto 0);

signal ac : signed (35 downto 0);

signal p : signed (35 downto 0);

signal n0, n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13, n14, n15, n16, n17, n18, n19, n20, n21, n22, n23, n24, n25 : signed (36 downto 0);

begin

gblock : diff

generic map (img_width)

port map (pixin, clk, ix, iy, pixout);

ablock : mul

generic map (img_width)

port map (ix, ix, clk, a);

bblock : mul

generic map (img_width)

port map (ix, iy, clk, b);

cblock : mul

generic map (img_width)

port map (iy, iy, clk, c);

s1 : a1 <= a - (lambda(16) & lambda);

s2 : c1 <= c - (lambda(16) & lambda);

s3 : ac <= a1 * c1;

s4 : b2 <= b * b;

s5 : p <= ac - b2;

n0(36) <= ’0’ when (p > 0 and a1 > 0) else ’1’;

n0(35 downto 0) <= p;

d0 : D_FF

generic map (w => 37)

port map (n0, clk, n1);

d1 : D_FF

generic map (w => 37)

port map (n1, clk, n2);

d2 : D_FF

generic map (w => 37)

port map (n2, clk, n3);

d3 : D_FF

generic map (w => 37)

port map (n3, clk, n4);

d4 : D_FF

generic map (w => 37)

port map (n4, clk, n5);

d5 : delay

generic map (w => 37, n => (img_width - 4))

port map (n5, clk, n6);

d6 : D_FF

generic map (w => 37)

port map (n6, clk, n7);

d7 : D_FF

generic map (w => 37)

port map (n7, clk, n8);

d8 : D_FF

generic map (w => 37)

port map (n8, clk, n9);

d9 : D_FF

generic map (w => 37)

port map (n9, clk, n10);

d10 : delay

generic map (w => 37, n => (img_width - 4))

20

port map (n10, clk, n11);

d11 : D_FF

generic map (w => 37)

port map (n11, clk, n12);

d12 : D_FF

generic map (w => 37)

port map (n12, clk, n13);

d13 : D_FF

generic map (w => 37)

port map (n13, clk, n14);

d14 : D_FF

generic map (w => 37)

port map (n14, clk, n15);

d15 : delay

generic map (w => 37, n => (img_width - 4))

port map (n15, clk, n16);

d16 : D_FF

generic map (w => 37)

port map (n16, clk, n17);

d17 : D_FF

generic map (w => 37)

port map (n17, clk, n18);

d18 : D_FF

generic map (w => 37)

port map (n18, clk, n19);

d19 : D_FF

generic map (w => 37)

port map (n19, clk, n20);

d20 : delay

generic map (w => 37, n => (img_width - 4))

port map (n20, clk, n21);

d21 : D_FF

generic map (w => 37)

port map (n21, clk, n22);

d22 : D_FF

generic map (w => 37)

port map (n22, clk, n23);

d23 : D_FF

generic map (w => 37)

port map (n23, clk, n24);

d24 : D_FF

generic map (w => 37)

port map (n24, clk, n25);

quality <= n13(35 downto 0);

flag <= ’0’ when (n13(36) = ’1’) else --shows whether the pixel is a feature or not (if it is the local maximum in the 5x5 window around it)

’0’ when ((n1(36) = ’0’) and n13 <= n1) else

’0’ when ((n2(36) = ’0’) and n13 <= n2) else

’0’ when ((n3(36) = ’0’) and n13 <= n3) else

’0’ when ((n4(36) = ’0’) and n13 <= n4) else

’0’ when ((n5(36) = ’0’) and n13 <= n5) else

’0’ when ((n6(36) = ’0’) and n13 <= n6) else

’0’ when ((n7(36) = ’0’) and n13 <= n7) else

’0’ when ((n8(36) = ’0’) and n13 <= n8) else

’0’ when ((n9(36) = ’0’) and n13 <= n9) else

’0’ when ((n10(36) = ’0’) and n13 <= n10) else

’0’ when ((n11(36) = ’0’) and n13 <= n11) else

’0’ when ((n12(36) = ’0’) and n13 <= n12) else

’0’ when ((n14(36) = ’0’) and n13 < n14) else

’0’ when ((n15(36) = ’0’) and n13 < n15) else

’0’ when ((n16(36) = ’0’) and n13 < n16) else

’0’ when ((n17(36) = ’0’) and n13 < n17) else

’0’ when ((n18(36) = ’0’) and n13 < n18) else

’0’ when ((n19(36) = ’0’) and n13 < n19) else

’0’ when ((n20(36) = ’0’) and n13 < n20) else

’0’ when ((n21(36) = ’0’) and n13 < n21) else

’0’ when ((n22(36) = ’0’) and n13 < n22) else

’0’ when ((n23(36) = ’0’) and n13 < n23) else

’0’ when ((n24(36) = ’0’) and n13 < n24) else

’0’ when ((n25(36) = ’0’) and n13 < n25) else

’1’;

end synthesis;

configuration ceigen of eigen is

for synthesis

-- default

end for;

end ceigen;

FILE: delay.vhd

library ieee;

use ieee.std_logic_1164.all;

21

use ieee.std_logic_signed.all;

use ieee.std_logic_arith.all;

entity D_FF is

generic(w : positive := 8);

port (d : in signed(w - 1 downto 0);

clk : in std_logic;

q : out signed(w - 1 downto 0));

end D_FF;

architecture simple of D_FF is

begin

q <= d when (clk = ’1’ and clk’event) else unaffected;

end simple;

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_signed.all;

use ieee.std_logic_arith.all;

entity delay is

generic(w : positive := 8; -- width of delay line

n : positive := 320); -- lenght of delay line

port (din : in signed (w - 1 downto 0);

clk : in std_logic;

dout : out signed (w - 1 downto 0));

end delay;

architecture synthesis of delay is

component D_FF

generic(w : positive := 8);

port (d : in signed (w - 1 downto 0);

clk : in std_logic;

q : out signed (w - 1 downto 0));

end component;

type bank is array (0 to n-1) of signed (w-1 downto 0);

signal wire : bank;

begin

gen_many : for i in 1 to n generate

just_a_label_1: if i = 1 generate

dffx : D_FF generic map (w) port map (din, clk, wire(1));

end generate;

just_a_label_2: if (i > 1 and i < n) generate

dffx : D_FF generic map (w) port map (wire(i-1), clk, wire(i));

end generate;

just_a_label_3: if i = n generate

dffx : D_FF generic map (w) port map (wire(n-1), clk, dout);

end generate;

end generate;

end synthesis;

configuration cdelay of delay is

for synthesis

-- default

end for;

end cdelay;

FILE: gradient.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_signed.all;

use ieee.std_logic_arith.all;

entity diff is

generic(img_width : positive := 320); -- width of image

port (pixel : in signed (7 downto 0);

clk : in std_logic;

dx : out signed (7 downto 0); -- gradient in x direction

dy : out signed (7 downto 0); -- gradient in y direction

pixout : out signed (7 downto 0));

end diff;

architecture synthesis of diff is

signal n1, n2, n3, n4, n5, n6, n7 : signed (7 downto 0);

signal temp_dx, temp_dy : signed (7 downto 0);

component D_FF

generic(w : positive := 8);

port (d : in signed(w - 1 downto 0);

clk : in std_logic;

22

q : out signed(w - 1 downto 0));

end component;

component delay

generic(w : positive := 8; -- width of delay line

n : positive := 1); -- lenght of delay line

port (din : in signed (w - 1 downto 0);

clk : in std_logic;

dout : out signed (w - 1 downto 0));

end component;

begin

d0 : D_FF

port map (pixel, clk, n1);

d1 : D_FF

port map (n1, clk, n2);

d2 : delay

generic map (n => (img_width - 2))

port map (n2, clk, n3);

d3 : D_FF

port map (n3, clk, n4);

d4 : D_FF

port map (n4, clk, n5);

d5 : delay

generic map (n => (img_width - 2))

port map (n5, clk, n6);

d6 : D_FF

port map (n6, clk, n7);

temp_dx <= signed ("0" & n5(7 downto 1)) - signed ("0" & n3(7 downto 1)); --pixel values are unsigned. the minus implemented in ieee.std_logic_signed generates

temp_dy <= signed ("0" & n7(7 downto 1)) - signed ("0" & n1(7 downto 1)); --signed results with unsigned operands

dx_ff : D_FF

port map (temp_dx, clk, dx);

dy_ff : D_FF

port map (temp_dy, clk, dy);

pixout <= n7;

end synthesis;

configuration cdiff of diff is

for synthesis

-- default

end for;

end cdiff;

FILE: mul.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_signed.all;

use ieee.std_logic_arith.all;

entity mul is

generic(img_width : positive := 320); -- width of image

port (x : in signed (7 downto 0);

y : in signed (7 downto 0);

clk : in std_logic;

w : out signed (17 downto 0));

end mul;

architecture synthesis of mul is

signal w_temp : signed (17 downto 0);

signal z : signed (15 downto 0);

signal q1 : signed (15 downto 0);

signal q2 : signed (15 downto 0);

signal q3 : signed (15 downto 0);

signal q4 : signed (15 downto 0);

signal q5 : signed (15 downto 0);

signal q6 : signed (15 downto 0);

signal q7 : signed (15 downto 0);

signal q8 : signed (15 downto 0);

component D_FF

generic(w : positive := 8);

port (d : in signed(w - 1 downto 0);

clk : in std_logic;

q : out signed(w - 1 downto 0));

end component;

component delay

generic(w : positive := 8; -- width of delay line

n : positive := 1); -- lenght of delay line

port (din : in signed (w - 1 downto 0);

clk : in std_logic;

dout : out signed (w - 1 downto 0));

23

end component;

begin

z <= x * y;

d1 : D_FF

generic map (w => 16)

port map (z, clk, q1);

d2 : D_FF

generic map (w => 16)

port map (q1, clk, q2);

d3 : delay

generic map (w => 16, n => img_width - 2)

port map (q2, clk, q3);

d4 : D_FF

generic map (w => 16)

port map (q3, clk, q4);

d5 : D_FF

generic map (w => 16)

port map (q4, clk, q5);

d6 : delay

generic map (w => 16, n => img_width - 2)

port map (q5, clk, q6);

d7 : D_FF

generic map (w => 16)

port map (q6, clk, q7);

d8 : D_FF

generic map (w => 16)

port map (q7, clk, q8);

w_temp <= (z(15) & z(15) & z) + (q1(15) & q1(15) & q1) + (q2(15) & q2(15) & q2) + (q3(15) & q3(15) & q3) + (q4(15) & q4(15) & q4)

+ (q5(15) & q5(15) & q5) + (q6(15) & q6(15) & q6) + (q7(15) & q7(15) & q7) + (q8(15) & q8(15) & q8);

w_ff : D_FF

generic map(w => 18) port map(w_temp, clk, w);

end synthesis;

configuration cmul of mul is

for synthesis

-- default

end for;

end cmul;

References

[1] Y. Bar-Shalom and T. E. Fortmann. Tracking and Data Association.
Academic-Press, Boston, 1988

[2] Y. Bar-Shalom and X. R. Li Mutitarget-multisensor tracking: principles
and techniques. Storrs, CT: YBS, 1995

[3] Jean-Yves Bouguet Pyramidal Implementation of the Lucas Kanade Fea-
ture Tracker. Included in OpenCV documentation, 2000.

[4] S. S. Blackman Multiple target tracking with radar applications. Norwood
MA: Artech House, 1986.

[5] A. Farina and F. A. Studer Radar data processing I - Introduction and
Tracking. Research Studies Press, 1985.

[6] R. J. Fitzgerald Development of practical PDA logic for multitarget track-
ing by microprocessor. In Multitarget-Multisensor Tracking: Advanced Ap-
plications. Norwood MA: Artech House, 1990.

24

[7] A. Roecker and G. L. Phillis Suboptimal joint probabilistic data asso-
ciation. IEEE Transactions on Aerospace and Electronic Systems, 29, 2
(1993).

[8] B. Zhou and N. K. Bose Development of practical PDA logic for multitarget
tracking by microprocessor. In IEEE Trans. Aerosp. Electron. Syst., 29(2),
352-363, 1993.

[9] A. Benedetti and P. Perona Real-time 2-D Feature Detection on a Recon-
figurable Computer. In Proc. CVPR, 1998

[10] C. Tomasi and T. Kanade Detection and Tracking of Point Features. Tech.
Rep. CMU-CS-91-132, Carnegie Mellon University, Apr. 1991.

[11] H. Leung, Z. Hu and M. Blanchette Evaluation of Multiple Radar Target
Trackers in Stressful Environments In IEEE Transactions on Aerospace
and Electronic Systems, vol. 35, no. 2, april 1999.

[12] Z. Hu, H. Leung and M. Blanchette Statistical performance analysis of
track initiation techniques. In IEEE Transactions on Signal Processing,
45, 2, 445-456, 1997.

25

	Introduction
	Overview of the system

	Feature selection
	Feature tracking
	Tracking and Data Association
	Tracking feature patches

	Track initiation
	Implementation and experiments
	Feature selection
	Data association and tracking
	Track initiation
	Kalman prediction and filtering
	Data association

	Feature selection code

