
Adaptive grid algorithm in application to parallel computation of the solution of reaction
diffusion equations

Joseph Yeh, Ray Huffaker, Dr. Boris Kogan
UCLA Computer Science Dept.

Abstract

The power of modern computers becomes insufficient for simulation of excitation wave
propagation in two- and three-dimensional cardiac tissues composed of up-to-date mathematical
cell models. Recently, a new idea has been proposed based on replacing the grid of constant
space steps by a grid with space steps adapted to chosen characteristics of the wave processes.
This approach has only been applied to problems with simplified cardiac cell models (Fitzhugh-
Nagumo, Luo-Rudy I) on sequential computers. Here we present preliminary results of
modification of this approach to study excitation wave propagation in cardiac tissue, with
mathematical cell models containing intracellular Ca2+ dynamics, using parallel supercomputers.
Using the operator splitting algorithm, the adaptive grid was implemented in solving the point
model equations, while diffusion was solved using the original constant space step grid.
Simulation results showed savings of up to 25% of program execution time for 1D simulation,
and up to 52% of program execution time for 2D simulation. However, wave conduction
velocity increased as the threshold for refining the adaptive grid was increased.

Introduction

The power of modern computers becomes insufficient for simulation of excitation wave
propagation in two- and three-dimensional cardiac tissues composed of up-to-date mathematical
cell models [1,2,3]. Proposed solutions to this problem have included: the operator splitting
algorithm [4], introduction of the variable time step depending on the maximum rate of change
of problem variables [5], tabular representation of non-linear functions, the use of parallel
supercomputers, and optimal apportioning of these parallel processors among the nodes of a
given grid. Recently, a new idea has been proposed based on replacing the grid of constant
space steps by a grid with space steps adapted to chosen characteristics of the wave processes
[6,7]. In the original paper this approach was used to study a simplified type of cardiac reaction-
diffusion equations on sequential computers. Here we present preliminary results of
modification of this approach to study excitation wave propagation in cardiac tissue, with
mathematical cell models containing intracellular Ca2+ dynamics, using parallel supercomputers.

Methods

Constant Space Step Methods:

The mathematical model of wave propagation in 2D tissue is described by the following
partial differential equation:

)1(1)),((2

2

2

2

mC
tsstImI

y
V

yD
x
V

xD
t
V

++
∂
∂

+
∂
∂

=
∂
∂

with appropriate initial and boundary conditions.

Here V is membrane potential, Dx and Dy are diffusion coefficients, Ist is the external
stimulating current, Im is the net membrane ionic current, and Cm is a membrane capacity. To
make the above equation closed, it is necessary to add the system of nonlinear ordinary
differential equations (ODEs) that describes the behavior of all components of Im and processes
in intracellular compartments. For this purpose we have chosen the AP model proposed by Luo-
Rudy [1] and modified by Chudin, et al. [8].

Computer simulations were performed on an IBM SP RS/6000 massively parallel
computer at Lawrence Berkeley National Laboratory. Information was passed between
processors using Message Passing Interface (MPI). The simulations used the operator splitting
algorithm [4]. According to this algorithm the integration (1) is split into two parts: integration

of diffusion equation 2

2

2

2

y
V

yD
x
V

xD
t
V

∂
∂

+
∂
∂

=
∂
∂ , and integration of the system of ODEs

mCstImI
t
V 1)(+=
∂
∂ . These integrations were executed in consecutive computational cycles of

predetermined duration t∆ = 0.1 ms. The specific features of this algorithm are described in
Kogan, et al. [5] and Chudin, et al. [9]. The operator splitting algorithm allows integration of the
system of nonlinear ODEs at any point in space independently and with variable time steps.

One computational cycle, t∆ = 0.1 ms, is a three-step process: (1) Solving the diffusion
equation for 05.0=∆t ms, with the initial condition for V(x,y) taken from the end of the
previous computational cycle; (2) Solving the system of ODEs for t∆ = 0.1 ms, using variable
time step from 0.005-0.1 ms, with the initial conditions for V(x,y) taken from step 1 and for gate
variable values taken from step 2 of the previous computational cycle; (3) Solving the diffusion
equation for 05.0=∆t ms, with the initial condition for V(x,y) taken from step 2. This process
is illustrated in Figure 1.

Figure 1: One computational cycle, t∆ = 0.1 ms, and flow of V data

In the case of a constant space step, x∆ was fixed at 0.025 cm for 1D and 2D
simulations. Along with the variable time step of 0.005-0.1 ms, these choices provided stability
and accuracy with the chosen numerical integration method, and did not disturb the conditions of
medium continuity proposed by Winfree [10]. This condition requires that the chosen space step

x∆ satisfies rTxD /2∆> . Here Tr is an activation rising time measured in a cell placed in tissue.
This time is longer than in an isolated cell due to the effect of the local currents and incomplete

V(x,y)
V(x,y)

V(x,y) (1) Solve diffusion
equation, 05.0=∆t ms

(2) Solve system of
ODEs, using variable
time step, t∆ = 0.1 ms

(3) Solve diffusion
equation, 05.0=∆t ms

recovery of INa during wave circulation with comparatively short period. Estimating Tr = 2.5 ms,
we found that for D = 1 cm2/s the inequality is satisfied for x∆ < 0.005 cm.

An explicit Euler numerical method was used to solve the diffusion equation. The
problem of computational error arises for solutions to the system of nonlinear ODEs describing
the fast membrane processes during depolarization phase of the Action Potential (AP). To
decrease these errors, we used the Euler explicit method with variable time steps, which were
changed depending on the rate of the most rapid variable. In addition, for the fast sodium
channel gate variable, we replaced the Euler method with the so-called hybrid method [15].

Modifications for Adaptive Grid:

The adaptive grid algorithm introduces a variable space step for integration of the system
of ODEs. While the underlying (or “finest”) grid remains the same (no nodes are added or taken
away), integration of the ODEs for each computational cycle is only performed on a selected
“adaptive grid” of nodes. Inclusion of nodes on the adaptive grid during a particular
computational cycle depends on the distribution of dV/dx through the grid. In areas with large
dV/dx, such as near the front of a propagating wave, the density of the adaptive grid must be
larger than in areas of small dV/dx. Since the ODEs do not need to be integrated for nodes not
selected for the adaptive grid during a particular computational cycle, the adaptive grid algorithm
offered potential time savings for simulations.

One potential problem with such an algorithm occurs when a node that has not been on
the adaptive grid for a few computational cycles is included in the adaptive grid at a later time.
What initial values for state variables and V should be used to solve the ODEs? Normally we
would use the output from the previous computational cycle, but in this case there was no output
since the calculations were not done for this node in the previous cycle. The proposed solution
to this problem is to estimate the values by interpolating from the values of the variables at
surrounding cells that were included on the adaptive grid in the previous computational cycle.
Using interpolation to estimate V after every ODE integration step gives us a value for V at
every node, even those where the ODE integration was not performed. Thus, the diffusion
equation can be integrated using the finest grid. One computational cycle in the adaptive grid
algorithm now requires that step 2 from before be split into three parts: (2a) Select the adaptive
grid, based on distribution of V; (2b) Solve system of ODEs for adaptive grid points; (2c)
Interpolate values of V and other state variables for non-selected nodes. The new process can be
seen in Figure 2.

Figure 2: One computational cycle for adaptive grid algorithm, t∆ = 0.1 ms

The basis for the adaptive grid is the “coarsest grid”, a set of nodes that will be

automatically selected for the adaptive grid during every computational cycle. We choose a
coarsest grid composed of every fourth node, yielding a maximum space step of 4* x∆ for the
grid (see Figure 3). We will define a basic grid unit (BGU) as the smallest subsection of the
coarsest grid. For 1D, a BGU would be a 5 x 1 node piece of the grid, with coarse nodes at
either end. For 2D, a BGU would be a 5 x 5 node piece of the grid, with coarse grid points at
every corner. An n x n node 2D grid would then be composed of (n/4)*(n/4) BGUs.

As tissue size grows much larger than the size of an individual BGU, the coarsest grid
offers a potential reduction of ODE calculations approaching 75% (only necessary to calculate 1
out of every 4 nodes) in the case of 1D and approaching 93.75% (calculate only 1 out of every 16
nodes) in the case of 2D.

(2a) Select
adaptive grid

(2c) Interpolation

(1) Solve diffusion
equation, 05.0=∆t
ms, for finest grid

(2b) Solve system of
ODEs, using variable
time step, t∆ = 0.1 ms,
for adaptive grid

(3) Solve diffusion
equation, 05.0=∆t ms,
for finest grid

Figure 3: Coarsest grid (represented by large dots) and BGU (outlined) for 1D (9 x 1 node grid)
and 2D (9 x 9 node grid) cases

 In every computational cycle, the adaptive grid will include all the coarse grid points.
The other nodes selected for the adaptive grid are chosen according to the distribution of V
across the grid outputted from the previous diffusion calculation. The first step is choosing the
threshold V∆ so that the grid will be refined in areas where voltage varies beyond V∆ . Larger
values of V∆ should decrease program execution time by omitting more ODE integrations, but
might also decrease the accuracy of the results. Our simulations were run with V∆ values
varying from 0 to 5 mV.
 Selection of nodes for the adaptive grid is performed on each BGU. For the 1D case,
nodes are selected based on a recursive method. Define Vi as the voltage of the node at position
i. If, for the two coarse grid points Xi and Xi+4 of the BGU, VVV ii ∆≥−+4 , then` node Xi+2
must be added to the adaptive grid. If Xi+2 is indeed selected for the grid, we recursively
examine ii VV −+2 and 24 ++ − ii VV , adding to the adaptive grid Xi+1 and Xi+3, respectively, if the
differences exceed V∆ .
 Selection of nodes for the 2D case is similar. The nodes of a BGU are given a hierarchy,
seen in Figure 4. Each node will have two or four nodes of a higher level, which we will call
critical nodes, that determine whether or not they will be added to the grid. Level 1 consists of
the coarse grid points at each corner of the BGU. These are automatically selected for the
adaptive grid. Level 2 consists of the four nodes in the middle of any two level 1 nodes. The
critical nodes for each level 2 node are the two level 1 nodes it is between. If V varies beyond

V∆ for any two level 1 nodes, then the level 2 node between them is added. For example, if
VVV jiji ∆≥−+ ,,4 , then node Xi+2,j is added to the adaptive grid. Level 3 consists only of the

node in the middle of the BGU. Its critical nodes are the four level 2 nodes. If more than one of
the level 2 nodes were added to the adaptive grid, then the level 3 node is added as well. Level 4
consists of the twelve nodes that are bordered either horizontally or vertically by two nodes of
level 1, 2, or 3. The two higher-level nodes bordering the level 4 node are its critical nodes. If
both were added to the adaptive grid, and they have V variance beyond V∆ , then the level 4

x∆

4* x∆

4* x∆

x∆

x∆4* x∆

Coarse node
Non-coarse node

BGU

node is added to the adaptive grid. For example, if Xi+2,j+2 and Xi+2,j+4 were both added to the
adaptive grid, and VVV jiji ∆≥− ++++ 4,22,2 , then node Xi+2,j+3 is added to the adaptive grid. Level
5 consists of the four remaining nodes, each of which is bordered by four level 4 nodes, its
critical nodes. A level 5 node is added to the adaptive grid if more than one of its bordering level
4 nodes was added to the grid.

Figure 4: Hierarchy of nodes in a 2D BGU. Arrows point from each node to its critical nodes.
Solid arrows indicate node is added to the adaptive grid if V difference between its critical nodes
exceeds V∆ . Dotted arrows indicate node is added to the adaptive grid if more than one of its

critical nodes were added.

 Once the adaptive grid has been selected for a computational cycle, the system of ODEs
is integrated only in the selected nodes. Following integration, V and gate variable values in
non-selected nodes must be interpolated from the calculated values in selected nodes. Like grid
selection, interpolation is performed on each BGU. In the 1D case, interpolation is again
performed recursively. If Xi+2 was added to the adaptive grid, then we performed the
calculations there and do not need to interpolate for that node. If Xi+2 was not added to the

adaptive grid, then we set
2

4
2

+
+

+
= ii

i
VV

V . For nodes Xi+1 and Xi+3, if they were not added to the

adaptive grid then we set
2

2
1

+
+

+
= ii

i
VVV and

2
42

3
++

+

+
= ii

i
VV

V . If Xi+2 was not added to the

adaptive grid, then we will be finding interpolated values of Vi+1 and Vi+3 using an interpolated
value of Vi+2. All other state variables are interpolated in the exact same manner as V.

 Interpolation for the 2D case is done using the same hierarchy of nodes as adaptive grid
selection. For every node that was not selected for the adaptive grid, V is set to the average V of
its critical nodes. All other state variables for non-selected nodes are also set to the average of
the state variables in the critical nodes.
 Applying the adaptive grid algorithm to the setting of parallel computation requires some
special consideration for the interpolation algorithm. Two possible methods of interpolation are
possible: inter-processor and intra-processor. In the inter-processor method, interpolation would
be done assuming knowledge of the entire grid. It would be performed sequentially using MPI
to gather data from all processors. The intra-processor method would entail each processor
independently interpolating upon its own pre-designated subsection of the grid. No MPI would
be required during the interpolation since each processor would only need to know the
information it already has. In order for the intra-processor method to work, the perimeter of each
processor’s independent subsection of the grid would need to be included on the adaptive grid at
all times, i.e. added to the coarsest grid, since the perimeter nodes would have no knowledge of
their neighbors (see Figure 5). Thus, the inter-processor method will be slowed by MPI
communication while the intra-processor method will be slowed by more nodes needing to be on
the adaptive grid.

Figure 5: Coarsest grid for portions of a 2D grid using the (a) inter- and (b) intra-processor

interpolation algorithms. Lines indicate division of the grid between processors.

 Distribution of the grid across processors for the 2D case will be affected by which
interpolation method is used. The inter-processor method would favor a distribution of the grid
with a high perimeter/area ratio for the subsections of the grid given to each processor, since
time needed for MPI communication depends more on the total number of communications
between processors, rather than the size of each communication. The intra-processor method
would favor distribution of the grid with a low perimeter/area ratio since this would decrease the
number of nodes on the perimeter, all of which need to be added to the coarsest grid.

(a) (b)

 Since the adaptive grid introduces a variable space step, we must reconsider whether the

conditions of stability and continuity are still met. The stability condition is
D
xt

2

2∆
≤∆ for 1D

and
D
xt

4

2∆
≤∆ for 2D. This condition is satisfied by the adaptive grid method, since increasing

the space step loosens the bound on t∆ . However, recall the continuity condition rTxD /2∆> ,
requiring in our problem that x∆ < 0.05 cm. This is true only when the adaptive grid reaches the
highest level of refinement. Thus, we must ensure that we choose an adequate threshold V∆
such that near the front of a propagating wave, where the continuity condition applies, the
adaptive grid contains all the nodes.

Results

 All simulations were run for 500 ms. For 1D simulations, the first 20 nodes of the grid
were given a stimulus current to induce a propagating wave in the tissue. Simulation of the
adaptive grid algorithm with inter-processor interpolation for a 1D tissue yielded bad results (see
Table 1). The program executed more than 7x slower than the original program with constant

x∆ . Message passing amongst processors proved to be an immensely time consuming solution.
Switching between parallel and sequential processing consumed time as all processors needed to
finish running before interpolation could be done. The slowest processor became the rate-
limiting factor and hindered the progress of the entire program.

Table 1:

1D, inter-processor: # of
Processors:

Grid Size (#
of nodes)

Simulation
Time

∆V
(mV)

Program
Execution Time

Constant x∆ 64 4096×1 500 ms n/a 24.246 s
Adaptive grid 64 4096×1 500 ms 1 172.804 s

The adaptive grid algorithm with intra-processor interpolation in a 1D tissue yielded

better results (see Table 2). The program executed faster than in the original program with
constant x∆ . 21% of the execution time was saved with a threshold value of V∆ = 1 mV, while
25% of the time was saved with V∆ = 5 mV.

Table 2:

1D, intra-processor # of
Processors:

Grid Size (#
of nodes)

Simulation
Time

∆V
(mV)

Program
Execution Time

Constant x∆ 64 2112×1 500 ms n/a 17.822 s
Adaptive grid 64 2112×1 500 ms 0 14.983 s
Adaptive grid 64 2112×1 500 ms 1 14.106 s
Adaptive grid 64 2112×1 500 ms 3 13.732 s
Adaptive grid 64 2112×1 500 ms 5 13.325 s

Visualization of the voltage output from the adaptive grid at different times showed the

coarsest grid being used in areas away from the wave front, and a finer grid being used near the

wave front (see Figure 6). As the threshold V∆ increased, the area of the fine grid used near the
front of the wave becomes smaller and coarser.

Figure 6: Voltage trace and visualization of adaptive grid with V∆ = 1 mV at times: (a) 50 ms,
(b) 100 ms, (c) 150 ms, (d) 200 ms. Adaptive grid is shown below corresponding voltage trace.
Black vertical lines indicate that node has been selected for the adaptive grid, while gray areas
indicate regions of nodes not selected for the adaptive grid. Area of fine grid near wave tail in

(d) is due to rapid repolarization after plateau.

Visualization of also showed an unwanted side-effect of the adaptive grid algorithm. For
V∆ = 0 mV, the conduction velocity of the wave (θ) was the same as in the constant space step

case. However, as the V∆ increased, θ increased (see Figure 7a). Subsequently, the wave
propagated further along the tissue during the 500 ms simulation as V∆ increased (see Figure
7b).

(a)

(b)

(c)

(d)

Figure 7: 1D simulations of adaptive grid algorithm for different values of V∆ . (a) Conduction
velocity (θ) increases as V∆ increases. (b) Position in tissue of wave front after 500 ms. Wave

has propagated further in the case of larger V∆ .

For 2D simulation a stimulus current was given in the first 20 columns of nodes in the
tissue to induce rectilinear wave propagation. A premature beat was given near the tail of the
propagating wave to induce a spiral wave. In all simulations the time and location of the
premature beat was the same. The premature beat was given at t = 238 ms, meaning the 500 ms
simulations had 238 ms of rectilinear wave propagation and 262 ms of spiral wave formation and
rotation. Rectilinear wave propagation should be less computationally intensive than the spiral
wave formation and rotation since there is less variation of voltage among nodes over the entire
grid during rectilinear propagation.

The adaptive grid algorithm showed greater time savings than in the case of 1D
simulation (see Table 3). With V∆ = 0 mV the program ran slower than the original. However,
22% of the execution time was saved for V∆ = 1 mV and 52% of the execution time was saved
for V∆ = 5 mV.

Table 3:
2D, intra-processor # of

Processors:
Grid Size (#

of nodes)
Simulation

Time
∆V

(mV)
Program

Execution Time
Constant x∆ 64 264×264 500 ms n/a 364.653 s
Adaptive grid 64 264×264 500 ms 0 382.788 s
Adaptive grid 64 264×264 500 ms 1 283.952 s
Adaptive grid 64 264×264 500 ms 3 244.687 s
Adaptive grid 64 264×264 500 ms 5 173.312 s

Visualization of the voltage output for the 2D case showed the same unwanted side-effect as in
1D (see Figure 8). For V∆ = 0 mV, the wave propagated and formed a spiral wave in the same
manner as the original program. However, for V∆ = 1 mV and V∆ = 3 mV we see a slight
increase of rectilinear conduction velocity. The subsequent spiral wave then propagates slower,
due to an increased refractory period in the region of the premature beat. When V∆ = 5 mV, the
rectilinear wave propagates so quickly that the premature beat arrives much too late and forms a
circular wave rather than a spiral wave.

Figure 8: Voltage traces and visualization of adaptive grid at various times for 2D simulation
and varying V∆ . Rectilinear wave propagation (t = 100 ms), premature beat (t = 238 ms),
formation of the spiral wave (t = 290 ms), and first turn of the spiral wave (t = 450 ms) are

shown. Adaptive grid is shown below corresponding voltage trace. Black dots indicate that
node has been selected for the adaptive grid, while gray areas indicate regions of nodes not

selected for the adaptive grid.

+21

-74

+10

10 mm

t = 100 ms t = 238 ms t = 290 ms t = 450 ms

(a) ∆V = 0
mV

(b) ∆V = 1
mV

(d) ∆V = 5
mV

(c) ∆V = 3
mV

Conclusion

 These preliminary results with the adaptive grid method indicate it may be a very useful
device for the problem of simulation of excitation wave propagation in cardiac tissue. The
algorithm cut program execution time by about ¼ in the 1D case and about ½ in the 2D case.
Time savings in 3D tissue could be even greater, because the coarse grid points will make up less
of the total grid (1/64 of the grid in 3D, compared to 1/16 in 2D and ¼ in 1D). However, the
issue of intra-processor interpolation looms large in 3D. Clearly, the MPI time needed for inter-
processor interpolation is unrealistic. Simulations using inter-processor interpolation took 7x
longer than the constant space step program. Thus, intra-processor interpolation must be used.
With intra-processor interpolation, though, every node on the border of a processor’s subsection
of the grid needs to be added to the adaptive grid. In 1D the border between processors is two
nodes, in 2D it is the perimeter of a rectangle, and in 3D it will be the entire surface of a
rectangular prism. Reconfiguring the method of intra-processor interpolation may be necessary.
 Another problem to be dealt with is the observed increase of speed of propagation in 2D
tissue by the adaptive grid method. We suspect that this is the result of the interpolation
algorithm. State variables are interpolated across the tissue. However, only V changes in space.
The other state variables change due to intracellular processes and do not diffuse. Instead of
using interpolation, these values could be calculated from the differential equations using the
value from the last time the node was on the adaptive grid. Another alternative that could
potentially solve this problem is to extrapolate rather than interpolate. Many of the state
variables, such as the gate variable m, are similar to step functions. An extrapolation algorithm
that examined nearby nodes and extrapolated from the region of smallest variation could provide
a better estimate of the state variables.
 Another lingering question is the criteria for refinement of the adaptive grid. Previous
investigations of adaptive grid algorithms have used the truncation error from the diffusion
calculation to determine the new grid. It is necessary to repeat our experiment using this
criterion and compare the results.

References:

1. Luo CH, Rudy Y. A dynamic model of the cardiac ventricular action potential.1.

Simulations of ionic currents and concentration changes. Circ Res. 1994; 74: 1071-1096.
2. Ten Tusscher KHWJ, Noble D, Noble PJ, Panfilov AV. A model for human ventricular

tissue. Am J Physiol Heart Circ Physiol. 2004; 286: H1573-H1589.
3. Jafri S, Rice JJ, Winslow RL. Cardiac Ca(2+) dynamics: the roles of ryanodine receptor

adaptation and sarcoplasmic reticulum load. Biophys J. 1998; 74: 1149-1168.
4. Strang G. Numerical Analysis. SIAM J. 1969; 5: 526-517.
5. Kogan BY, Karplus WJ, Chudin EE. Heart fibrillation and parallel supercomputers.

Paper presented at: Proceedings of International Conference on Information and Control,
1997; St. Petersburg, Russia.

6. Cherry EM, Greenside HS, Henriquez CS. A space-time adaptive method for simulating
complex cardiac dynamics. Phys Rev Lett. 2000; 84(6): 1343-1346.

7. Cherry EM, Greenside HS, Henriquez CS. Efficient simulation of three-dimensional
anisotropic cardiac tissue using an adaptive mesh refinement method. Chaos. 2003;
13(3): 853-865.

8. Chudin E, Goldhaber J, Garfinkel A, Weiss J, Kogan B. Intracellular Ca(2+) dynamics
and the stability of ventricular tachycardia. Biophys J. 1999; 77(6): 2930-2941.

9. Chudin E, Garfinkel A, Weiss J, Karplus W, Kogan B. Wave propagation in cardiac
tissue and effects of intracellular calcium dynamics (computer simulation study). Prog
Biophys Mol Biol. 1998; 69(2-3): 225-236.

10. Winfree AT. Heart muscle as a reaction-diffusion medium: the roles of electrical
potential diffusion, activation front curvature, and anisotropy. Int J Bif & Chaos. 1997;
7(3): 487-526.

