
Robust Mixed-Size Placement by Recursive Legalized

Bipartitioning ∗

Jason Cong, Michail Romesis and Joseph R. Shinnerl

UCLA Computer Science Department

Los Angeles, CA 90095-1596

{cong,romesis,shinnerl}@cs.ucla.edu

Technical Report 040057
January 21, 2005

Abstract

A novel and very simple correct-by-construction top-down methodology for mixed-size place-
ment is presented. The PolarBear algorithm combines recursive cutsize-driven partitioning
with fast and scalable legalization of every placement subproblem generated by every partition-
ing. The feedback provided by the legalizer at all stages of partitioning improves final placement
quality significantly on standard IBM benchmarks and dramatically on low-white-space adapta-
tions of them. Compared to Feng Shui 2.6 and Capo 9.0, PolarBear is the only tool that can
consistently find high-quality placements for benchmarks with less than 5% white space. With
white space at 12%, PolarBear beats Capo 9.0 by 6% in average total wirelength while Feng
Shui 2.6 frequently fails to find legal placements altogether. With 20% white space, PolarBear

still beats Capo 9.0 by 10% and FengShui 2.6 by 2% in average total wirelength, using very
similar run time.

Key Words: Mixed-Size Placement, Legalization, Recursive Bipartitioning, White Space

1 Introduction

Advancing IC technology has brought increased use of large intellectual-property (IP) blocks in
multi-million-gate ASICs and SOC designs. Most modern designs consist of a very large number of
standard cells mixed with many big macros, such as ROMs, RAMs, and IP blocks. The placement
of mixed-size cells has thus become a very important topic in physical design. The problem can be
defined as follows. Given a fixed rectangular region R divided into rows of uniform height, arrange
a set of rectangular standard cells and large macros in R such that adjacent cells and macros do not
overlap. Standard cells all have a common height equal to the row height. Macros are significantly
bigger and often span multiple rows. The objective is usually the minimization of total wirelength,
expressed as the sum of the half-perimeters of the bounding boxes of the nets. However, other
objectives — routed wirelength, timing — can be used instead, with various constraints — power,
temperature, etc.
Compared to standard-cell placement, most of the increased difficulty in mixed-size placement

is attributable to overlap removal, or legalization. Although in general legalization is NP-complete,

∗Financial Support from Semiconductor Research Consortium Contract 2003-TJ-1091 and National Science Foun-

dation Award CCF-0430077 is gratefully acknowledged.

1

legalization of a standard-cell placement is typically easy, because all standard cells have the same
height and differ only in their widths. Most placement tools are able to produce legal standard-cell
solutions, even when little white space is available, without sacrificing much wirelength. However,
when large multi-row blocks are added to the design, placement becomes similar to floorplanning
in complexity. In this context, it is often possible that even a good legalization algorithm can fail
to find an overlap-free placement which retains the basic structure of a given global placement.
Moreover, in designs of high row utilization, i.e., low white space, experiments show that publicly
available state-of-the-art software may fail to find a legal solution altogether, even when a given
global placement is known to be good in both wirelength and block density distribution.
Frequent failures by leading academic tools on designs with white space below 15% present a

serious limitation on their applicability. In practice, the fabrication cost of an IC increases rapidly
with the area of its layout. Designers therefore tend to pack their layouts as tightly as possible.
Designs with white space between 5 and 10% white space are common; designs with less than
5% white space are not unusual [21, e.g.]. The ability to find high-quality overlap-free mixed-size
placements scalably and reliably in a low-white-space setting is clearly important; yet, as discussed
below, this ability has yet to be satisfactorily achieved, despite recent progress [2].
The work presented here demonstrates that mixed-size placement by recursive bipartitioning

can be done very successfully in a scalable way that removes any need for post-hoc legalization or

backtracking. A non-overlapping solution is obtained during global placement through the explicit
construction of strictly legal layouts for every partition block at every level of the top-down hierarchy.
These legal layouts are computed for all placement subproblems as soon as they are generated by min-
cut bipartitioning. Targeting area as its primary objective, the legalizer has linear complexity, runs
extremely fast, and finds legal solutions with a very high success rate, even with row utilizations
over 99%. Its role is best understood not as predictor, but as guarantor. Most legal layouts for
larger subproblems near the top of the bipartitioning hierarchy are not actually used. However,
should legalization fail on a given subproblem, the existence of a known legal layout for its parent
subproblem ensures that legality can be restored quickly and locally, without a potentially costly
backtracking through multiple generations of ever larger ancestor regions. In this situation, feedback
from the legalizer implicitly guides subsequent partitioning, significantly improving the quality of
the final placement [12].
Dramatically improved performance on low-white-space designs is achieved by this approach.

By scalably incorporating legalization into the hierarchical flow, better partitioning decisions are
made during global placement, and placements of superior quality are obtained in extremely fast
O(N logN) run time. The implementation of our algorithm, PolarBear (“Placement by Legalized
Recursive Bipartioning is more Robust”), consistently obtains high-quality placements on standard
mixed-size benchmarks, even as the amount of white space is decreased to just 1%. In contrast
Feng Shui [15] cannot consistently obtain legal solutions on these benchmarks with less than 16%
white space, and Capo 9.0 fails at or near 5–10%. All three tools use comparable run time and show
similar scalability. For the 20% white space value given in the Dragon benchmarks [20] PolarBear’s
average total wirelength is 2% less than that of Feng Shui 2.6 and 10% less than that of Capo 9.0.
The remainder of the paper is organized as follows. Section 2 briefly describes recent work

on mixed-size placement. Section 3 presents the main elements of the PolarBear algorithm,
including rbp. Experiments and results are presented in Section 4, and conclusions and future work
are discussed in Section 5.

2 Related Work

Mixed-size placement has recently drawn considerable attention, with several recent papers reporting
large improvement. We divide this work into two categories: methods requiring legalization after
global placement, and methods whose global placements are overlap-free by construction.

2

As of November 2004, the best published wirelength results are obtained by methods requiring
legalization after global placement. FengShui 2.6 [15] uses recursive-bisection with iterative deletion,
iterative repartitioning, relaxed rows not aligned with standard cell rows (“fractional cut”), and
a simple Tetris-style approach to legalization. A-place [13] employs a multiscale, force-directed
formulation and nonlinear conjugate-gradient iterations. A-place’s run time is approximately 8×
that of Feng-Shui on the first 10 test IBM/ISPD98 test cases; results are not available for the 8
larger test cases.
Previously published correct-by-construction algorithms for mixed-size placement all rely on

simulated annealing in some crucial way. mPG [7] builds a cluster hierarchy for multiscale op-
timization in a physical-hierarchy-generation framework. mPG uses simulated annealing (SA) on
the Sequence-Pair [17] floorplanning representation over nested grids at every level of the cluster
hierarchy for legalization. Reliance on annealing slows mPG down considerably.
Correctness by construction is a relatively recent addition to Capo [6, 3, 1, 2]. Capo 9.0 proceeds

top down by cutsize-driven recursive bipartitioning until certain ad-hoc tests suggest that newly
generated subproblems may be difficult to legalize. At that point, standard cells in each subproblem
are clustered, and these clusters are treated as soft macros. SA-based fixed-outline floorplanning
is then attempted on the hard macros and soft clusters for the given subregion. If it succeeds,
the locations of the macros are then fixed, and further refinement proceeds on the declustered soft
macros. If it fails, then the subproblem is merged with its sibling, the previous partition of the parent
subproblem is discarded, and floorplanning is attempted for the parent subproblem. In priniciple,
this backtracking may continue indefinitely until some ancestor is successfully floorplanned or until
failure at the top level occurs. In practice, the ad-hoc tests used to determine when to commence
floorplanning are observed to be good enough that backtracking is only rarely needed. However,
when white space is particularly scarce, e.g., less than 4%, Capo 9.0 reports failures, presumably
because its ad-hoc tests are insufficient to prevent floorplanning on subproblems that are too large for
its SA-based floorplanner to solve scalably. Moreover, clustering standard cells to form rectangular
blocks may prevent a hierarchical method from finding an optimal or near-optimal solution in terms
of wirelength and delay minimization [9].
Although PolarBear has some superficial similarity to Capo 9.0 [2], its differences are quite

significant, as evidenced by its superior performance and robustness. First, PolarBear guarantees
legality by look-ahead rather than backtracking. Failures in its intermediate-level legalizations are
used to provide important feedback to its cutsize-driven partitioner. Ultimately, this feedback allows
its recursive bipartitioning to continue to single-cell end cases. Second, all its core algorithms are
scalable and deterministic. Rather than use floorplanning to enforce legality, it uses extremely fast
and simple row-oriented block packing (rbp). Because this legalization technique is so fast and
scalable, it can be applied to every subproblem at every level, even on the flat problem at the very
top level. In this way, backtracking is avoided, and run time is used very consistently and predictably.
Recent work has also drawn attention to the connection between mixed-size placement and

floorplanning [2]. Recent advances in fast floorplanning by recursive bipartitioning [18, 10] are also
related to the work in this paper. In particular, the patoma floorplanner [10] also constructs explicit
floorplans for each of the floorplanning subproblems generated by recursive bipartitioning.

3 The Polar Bear Algorithm

PolarBear employs top-down, cutsize-driven, recursive bipartitioning in combination with explicit
area legalization of every placement subproblem generated by each partitioning. Cut-size driven area
bipartitioning is done by hMetis [14]. Subproblem legalization is performed by a simple, scalable
heuristic which we call row-oriented block packing (rbp). The main contribution of PolarBear

is not in either of these components, but in how they are combined in the recursive-bipartitioning
flow. The feedback from rbp guides post-partitioning modification of the hMetis solution used

3

to legalize the two generated subproblems. The recursive partitioning process continues until every
block is assigned to its own subregion. Placement of blocks in their assigned subregions automatically
produces a legal layout. This layout is further improved by greedy swapping of neighboring cells in
detailed placement.

3.1 Flow Overview

Pseudocode for PolarBear is shown in Figure 1. By an instance, we mean a rectangular placement
region R; a set of cells and macros V, each v ∈ V of prescribed area and shape; and a hypergraph
netlist H = (V, E), where each net e ∈ E is a subset of V. For brevity, we refer to cells and macros
collectively as “blocks.” Initially, a completely legal overlap-free placement to the given instance
is computed by rbp without regard to wirelength. Because rbp is scalable, it cannot in general
guarantee that it will find a legal solution, if one exists. However, by ignoring wirelength, the rbp

heuristic is typically able to find tightly packed placements quickly, even with total white space below
1%. We have yet to observe an rbp failure at this initial stage on any available benchmark circuit.
Henceforth, we assume that this initial application of rbp succeeds; therefore, every subproblem
is descended from a parent subproblem for which an explicit, legal, overlap-free solution is known.
Under this assumption, PolarBear is guaranteed to terminate with a legal placement.
Given an rbp placement of the given instance, the algorithm proceeds recursively in the same

way on that instance as on every subproblem it subsequently generates. Cells and macros are
partitioned by hMetis into two subsets, the ratio ρ of whose total areas satisfying 2/3 ≤ ρ ≤ 3/2
(balance factor 10%). The partitioning attempts to minimize the total number of nets connecting
blocks in both subsets. Connections to fixed terminals along the placement region or in other
subregions are modeled by terminal propagation. The placement region R is then sliced to create
two new placement subproblems, one for each of the two block subsets. Initially, the cutline is placed
in proportion to the areas of the block subsets, and its initial orientation minimizes the aspect ratios
of the subregions it creates. As described below, its position and orientation may subsequently be
changed.
The key feature distinguishing PolarBear from other min-cut-based placement algorithms is

its incorporation of legalization into its top-down flow. Before recurring with hMetis on the two new
subproblems, PolarBear first calls rbp in order to construct legal, overlap-free placements of those
two subproblems. Although the initial application of rbp may fail to legalize one or both of them,
one of four separate correction strategies described in Section 3.3 below is guaranteed to succeed,
given the legal layout of the parent subproblem. These explicitly constructed legal subproblem
solutions then allow recursive, legalized, cutsize-driven bipartitioning to continue separately on each
of them. The algorithm continues in this fashion down to end cases of subregions containing one
block each.

3.2 Prelegalization by Block Packing (RBP)

Because legalization in PolarBear is always its first step for computing a placement, it is also called
“prelegalization.” The purpose of prelegalization is to find a legal, non-overlapping configuration
of a given set of blocks in a given region as quickly as possible. This legal configuration is used to
guide actual placements only if one of its child subproblems defined by cutsize-driven partitioning
cannot also be legalized. Otherwise, once legal placements are obtained for both its child placements,
the prelegalized solution is discarded. For speed, simplicity, and modularity, wirelength is ignored
during prelegalization.1 In order that the prelegalizer may serve as guarantor of the legalizability of
subsequent placement subproblems contained within its subregion, each of its solutions is required

1Though some wirelength gain might be obtained by incorporating network flows into prelegalization, such techniques
were not attempted in the current implementation.

4

PolarBear Mixed-Size Placement

input: Set of hard blocks V = {v1, . . . , vn}; netlist
H = (V, E); rectangular region R of fixed dimensions.

remark: Each node of the bipartitioning tree is a triple:
(i) a set of blocks V , (ii) a rectangular subregion R,
and (iii) a legalized placement P (V,R) of V in R.

Create an initially empty queue Q of prelegalized
placement subproblems. Apply rbp to V in R.

if (rbp fails to prelegalize V in R)
Report a failure of PolarBear to the caller.

else Denote rbp’s legal placement of V in R by P. Set
the root node to (V,R,P).
enqueue the prelegalized root in Q.

while (Q is nonempty) do

dequeue a prelegalized subproblem S = (V,R, P).
Partition V into disjoint subsets V1, V2 by hMetis with
terminal propagation. Slice R into subregions R1, R2,
and assign V1, V2 to them.
Let P1 := rbp(V1, R1) and P2 := rbp(V2, R2).
notation: Pi is true if and only if Pi is legal.
if (not (P1 and P2))

if (cutline search legalizes P1 and P2)
continue

else if (repartitioning legalizes P1 and P2)
continue

else if (block swapping legalizes P1 and P2)
continue

else refine P = rbp(V,R) to reconstruct
legal P1 and P2.

end if

remark. P1 and P2 are now legal.
if (|V1| > 1) enqueue (V1, R1, P1) in Q.
if (|V2| > 1) enqueue (V2, R2, P2) in Q.

end do

output: a legal placement of V inside region R

Figure 1: Overview of the PolarBear algorithm.

to contain at least one straight-line slice, either horizontal or vertical, which can be used as a cutline.
This process is described in Section 3.3 below.
Prelegalization in PolarBear is an extremely simple form of row-oriented block packing (rbp).

Macros and cells (“blocks”) are taken in nonincreasing-height order and placed in consecutive rows
in the subregion. Each block is placed in the first row in which it fits in a way that preserves at
least one slice. Individual rows are filled from left to right. Macros typically span multiple rows.
Therefore, stacks of smaller blocks may appear to the right of larger blocks (Figure 2). If at any
point, a macro or a standard cell cannot fit in the specified region, the algorithm reports failure.
The row-oriented structure ensures that either (i) a horizontal slice along a row boundary exists; or,
(ii) the tallest macro spans all rows, creating a vertical slice. A small sample rbp layout is shown

5

0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700

 RBP

Figure 2: Sample RBP Layout

in Figure 2.

3.3 RBP Feedback to Bipartitioning

If rbp initially fails to find a legal solution to a given subproblem, four separate corrective measures
are attempted in sequence. The first three measures — cutline repositioning, repartitioning, and
iterated block swapping — are not guaranteed to legalize. When they succeed, however, they
preserve a given cutsize-driven partitioning as closely as possible. If all three fail, then cutsize-
driven partitioning of the parent subproblem is abandoned, and the prelegal rbp solution to the
parent subproblem is instead adopted and refined.

Cutline Search

When rbp finds a legal solution to one of the subproblems but not the other, the cutline can be
moved away from the failed case and toward the solved one. A limited number of iterations (3–12)
of binary search on the cutline position is performed. The block subsets of the subregions are held
fixed, and for each candidate cutline position, rbp is attempted anew on the same block subsets in
the new candidate subregions.

Repartitioning

If one of the placement subproblems still cannot be solved after cutline search, the entire process is
repeated for up to 10 new hMetis partitionings or until legality is obtained for both subproblems.
Experiments to date produce the best quality/run-time tradeoff with 2 runs of hMetis for each of 5
different balance factors: 10, 15, 5, 20, and 25%. Overall, replacing these multiple runs of hMetis
by just one run at balance factor 10% increases total wirelength by 9%.

Iterated Block Swapping

When repartitioning and cutline search reach their limits, the first hMetis solution with 10% balance
factor is restored for attempted correction by iterative refinement. Suppose that rbp successfully
finds a legal placement for subregion A but not for its sibling subregion B. Usually, a small number

6

of small adjustments to the given cutsize-driven partitioning suffices to determine legal solutions to
both subproblems. A partial solution of B is generated by running rbp while skipping the placement
of the blocks that do not fit in the subregion. The legal solution to A and the partial solution to B
are used as a starting point. First, the blocks that are not contained in B by the partial solution are
moved across the cutline from B to A. This step legalizes the placement in B but typically renders
the solution to A illegal. In order to re-legalize A, the cutline is first moved as far toward B as
possible, so that the width of B is the same as the width of the widest row of blocks there. Then
rbp is rerun on the new subproblem for A. If rbp fails on this new subproblem, then the above
steps are repeated with the roles of regions A and B reversed. This refinement continues up to a
maximum of 10 iterations until either legal placements to both subregions are found, or cycling is
detected, i.e., a given set of leftover blocks appears more than once for different iterations of the same
subproblem. If a legal target layout is found, but there are multiple blocks of the same dimensions
which can be relocated in order to obtain that layout (a common scenario), then the blocks actually
moved are selected to reduce wirelength, as estimated by placing all pins at subregion centers.
Experiments demonstrate that iterated block swapping is the most effective of the correction

heuristics used in PolarBear. When it is omitted, average total wirelength increases by 14%,
while run time increases by only 3%.

Refining an RBP Solution

If iterated block swapping fails to legalize a given placement subproblem, then PolarBear returns
to its parent subproblem, for which a legal rbp solution has already been computed and stored. A
non-legalized target solution to this subproblem is then computed by traditional min-cut placement:
recursive cutsize-driven bipartitioning coupled with terminal propagation, cutline specification, and
assignment of the block subsets to the subregions defined by the cutline position. Locations of blocks
in this target solution are used to guide the refinement of the given rbp solution, as follows. Blocks
of identical dimensions in the rbp solution are permuted in order to move them as close to their
locations in the target solution as possible. I.e., the original rbp solution is viewed as a template
for the ultimate assignment of its blocks to the subregions currently associated with the blocks.
In PolarBear, the permutation is generated by sorting the block locations in the rbp solution

by their y-coordinates, if a partition along the x-dimension will follow, or by their x-coordinates,
if the partition will be along the y-dimension. The target locations are sorted in the same fashion.
Juxtaposing these orderings gives the assignment.
The permuted rbp placement is bipartitioned, and the main algorithm resumes separately on each

of its two child subproblems. In order to guarantee the legality of subproblem solutions, however,
the permuted rbp placement is partitioned along one of its row or column boundaries, and not
by generic, cutsize driven hMetis bipartitioning.2 A few nearly centered, row or column-separating
cutlines for the rbp solution and its symmetric solution (flipped across the cutline) are considered
for its bipartitioning. For each of these candidates, wirelength is estimated by placing all blocks in
each subregion at the subregion’s center and modeling external connections by terminal propagation.
The selected cutline produces the least estimated wirelength. An example of our approach is shown
in Figure 3. On average, this refinement of the guarantor rbp solution reduces total wirelength by
3%.

4 Experiments and Results

The PolarBear algorithm was implemented with the gcc 3.2.3 compiler on a 2.4 GHz Pentium
4 processor in a RedHat 9.0 Linux environment. It was compared with the two leading mixed-
size placement algorithms that are publicly available online: Feng Shui 2.6 [22] and Capo 9.0 [19].

2In our experiments, the vast majority of the cases where PolarBear has to resort to this step were observed to be very
small in the number of blocks — always less than 30.

7

Figure 3: Refining the RBP Layout. The nonlegalized “ideal” min-cut placement (b) is used to
guide permutations of identically sized blocks 1 – 6 in the legal RBP layout (a).

Both these tools use recursive bipartitioning, but their methodologies are different (cf. Section 2).
Feng Shui is very aggressive during global placement; it shows relatively little consideration for
nonoverlapping constraints. After global placement, it uses a simple Tetris-like legalization algorithm
[11, 16] to remove overlap. However, this combination consistently fails to produce legal placements
on the IBM benchmarks when white space is decreased below 12%. Capo 9.0 uses backtracking
and SA-based floorplanning to construct correct layouts without post-hoc legalization. However, as
white space decreases to near 5%, it often reports failures also, presumably because its backtracking
proceeds to subproblems too large for its floorplanner to handle with acceptable run time.
The results for the IBM/ISPD98 benchmarks [4] for mixed-size placement are reported in Table 1

and Figure 4. Twenty different versions of the IBM benchmarks were generated by setting the
white space available in the placement region from 1% up to 20% white space in increments of 1%.
PolarBear is clearly much more robust than Feng Shui 2.6 and Capo 9.0. It successfully computed
a legal placement for every benchmark tested, with every value of white space, down to 1% white
space.3 On IBM10, PolarBear beats Feng Shui by 25% on average over the different white space
values where Feng Shui succeeds. Solutions produced by Feng Shui 2.6 are consistently legal over all
the benchmarks only with white space at least 16%. Solutions produced by Capo 9.0 are consistently
legal over all the benchmarks only with white space at least 12%. Capo 9.0 typically does find legal
solutions when white space is as low as 5%, but not consistently. For some benchmarks, even with
15% white space, multiple runs of Capo 9.0 were needed to find a feasible solution. Table 1 reports
for each benchmark both the least value of white space for which a legal solution was found and the
greatest value of white space for which a failure was observed.
With 20% white space,4 PolarBear is on the average 2% better than Feng Shui and 10% than

3It seems evident that legal placements can also be computed under much less than 1% white space, at some cost in
increased wirelength. This possibility was not investigated.

4By default, PolarBear shrinks its internal core region to reduce the white space it actually uses to 10%, when the given
white space exceeds 10%. This feature was enabled for the experiments reported in Table 1 but disabled for those described
in Figure 4.

8

Capo 9.0. In runtime, PolarBear is slightly slower than Feng Shui (1.3×) and comparable to
Capo. Overall, the results suggest that, compared to existing methods, enforcing legalization during
min-cut, mixed-size placement leads both to much improved robustness and better placement quality.

Circuit pb wl pb cpu fs wl fs cpu fs best fs worst capo wl capo cpu capo best capo worst

ibm01 2.35 6 1.07 0.33 12% 11% 1.17 1.00 5% 12%
ibm02 5.09 5 1.02 1.00 13% 12% 1.07 1.00 4% 9%
ibm03 7.72 9 1.01 0.56 16% 15% 1.10 2.22 5% 4%
ibm04 8.2 11 1.05 0.55 7% 6% 1.19 1.45 1% -
ibm05 10.45 5 0.95 1.60 1% - 1.04 1.20 1% -
ibm06 6.69 11 1.08 0.73 14% 13% 1.17 1.36 4% 9%
ibm07 11.55 18 0.99 0.67 10% 9% 1.05 0.78 5% 4%
ibm08 13.27 31 1.02 0.48 15% 14% 1.12 1.16 2% 1%
ibm09 14.02 20 1.00 0.75 13% 12% 1.10 0.90 3% 12%
ibm10 30.49 33 1.30 0.64 16% 15% 1.16 1.00 13% 14%
ibm11 19.51 35 1.00 0.63 16% 15% 1.13 0.74 3% 6%
ibm12 37.33 50 1.03 0.50 13% 12% 1.11 0.72 6% 12%
ibm13 25.19 55 0.98 0.69 14% 13% 1.13 0.91 3% 10%
ibm14 38.76 57 0.98 0.96 4% 3% 1.07 0.89 12% 11%
ibm15 51.74 134 1.01 0.51 11% 10% 1.08 0.61 5% 10%
ibm16 62.22 93 0.97 0.98 8% 7% 1.06 0.87 7% 6%
ibm17 73.33 97 0.98 0.95 7% 6% 1.06 0.71 3% 12%
ibm18 46.83 83 0.94 1.10 6% 5% 1.07 0.73 3% 16%

Avg. 1 1 1.02 0.76 1.10 1.02

Table 1: Comparison of PolarBear (PB) with Feng Shui 2.6 (FS) and Capo 9.0. Reported
wirelength for PolarBear is half-perimeter bounding-box summed over all nets. Reported runtime
for PolarBear is in minutes. Values for Feng Shui and Capo are normalized to PolarBear’s
results. The columns labeled “Worst” report the greatest white space percentages for which Feng
Shui and Capo reported at least one failure. The columns labeled “Best” report the least white
space percentages for which Feng Shui and Capo reported at least one success.

5 Conclusion

Integrating legalization with global min-cut placement produces solutions of superior quality, speed,
and robustness. The approach is scalable, suitable for the incorporation of complex constraints,
and readily adaptable to combinations with other techniques. The basic techniques used in the
prototype implementation described here are extremely simple and can obviously be enhanced to
achieve even better quality. E.g., recent advances in analytical placement [8, 23] can be used to guide
partitioning in place of cutsize minimization [5]. As the complexity and heterogeneity of modern
designs continue to increase, we expect the flexible “correct by construction” framework to become
ever more attractive.

References

[1] S. Adya, I. Markov, and P. Villarrubia. On whitespace and stability in mixed-size placement and
physical synthesis. In Proc. Int’l Conf. on Computer-Aided Design, 2003.

[2] S. N. Adya, S. Chaturvedi, J. A. Roy, D. A. Papa, and I. L. Markov. Unification of partitioning,
placement, and floorplanning. In Proc. Int’l Conf. on Computer-Aided Design, pages 12–17, Nov. 2004.

[3] S. N. Adya and I. L. Markov. Consistent placement of macro-blocks using floorplanning and standard-
cell placement. In Proc. Int’l Symp. on Phys. Design, pages 12–17, April 2002.

[4] C. Alpert. The ISPD98 circuit benchmark suite. In Proc. Int’l Symp. on Phys. Design, pages 80–85,
1998.

9

Figure 4: The performance of PolarBear, Feng Shui 2.6 and Capo 9.0 under limited white space.
Half-perimeter wirelengths are normalized to PolarBear’s results for 10% white space. For each
white space value, results for each tool are shown here only when that tool finds a legal placement
for every benchmark in the suite. Up to four runs of Capo 9.0 were necessary in order for it to
obtain legal solutions in some cases.

[5] U. Brenner and A. Rohe. An effective congestion-driven placement framework. In Proc. Int’l Symp. on
Phys. Design, Apr 2002.

[6] A. Caldwell, A. Kahng, and I. Markov. Can recursive bisection alone produce routable placements? In
Proc. 37th IEEE/ACM Design Automation Conf., pages 477–482, 2000.

[7] C.-C. Chang, J. Cong, and X. Yuan. Multilevel placement for large-scale mixed-size ic designs. In Proc.
Asia South Pacific Design Automation Conference, pages 325–330, 2003.

[8] C. Chu and N. Viswanathan. FastPlace: Efficient analytical placement using cell shifting, iterative local
refinement, and a hybrid net model. In Proc. Int’l Symp. on Phys. Design, pages 26–33, April 2004.

[9] J. Cong. An interconnect-centric design flow for nanometer technologies. Proceedings of the IEEE,
89(4):505–528, 2001.

[10] J. Cong, M. Romesis, and J. Shinnerl. Fast floorplanning by look-ahead enabled recursive bipartitioning.
In Asia South Pacific Design Automation Conf., 2005.

[11] D. Hill. Method and system for high speed detailed placement of cells within an integrated circuit
design. In US Patent 6370673, Apr 2002.

[12] A. Kahng and S. Reda. Placement feedback: A concept and method for better min-cut placements. In
Proc. Design Automation Conf., pages 357–362, June 2004.

[13] A. Kahng and Q. Wang. An analytic placer for mixed-size placement and timing-driven placement. In
Proc. Int’l Conf. on Computer-Aided Design, 2004.

[14] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph partitioning: Application
in VLSI domain. In Proc. 34th ACM/IEEE Design Automation Conference, pages 526–529, 1997.

[15] A. Khatkhate, C. Li, A. R. Agnihotri, S. Ono, M. C. Yildiz, C.-K. Koh, and P. H. Madden. Recursive
bisection based mixed block placement. In Proc. Int’l Symp. on Phys. Design, 2004.

10

[16] C. Li and C.-K. Koh. On improving recursive bipartitioning-based placement. Technical Report TR-
ECE 03-14, Purdue University, 2003.

[17] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. Rectangle-packing-based module placement.
In Proc. International Conference on Computer-Aided Design, pages 472–479, 1995.

[18] A. Ranjan, K. Bazargan, S. Ogrenci, and M. Sarrafzadeh. Fast floorplanning for effective prediction
and construction. In IEEE Trans. on VLSI Sys., pages 341 – 351, 2001.

[19] http://vlsicad.eecs.umich.edu/bk/pdtools/tar.gz/.

[20] http://er.cs.ucla.edu/Dragon/

[21] http://www.faraday-tech.com/structuredasic/download.html.

[22] http://vlsicad.cs.binghamton.edu/software.html

[23] Z. Xiu, J. Ma, S. Fowler, and R. Rutenbar. Large-scale placement by grid warping. In Proc. Design
Automation Conf., pages 351–356, June 2004.

11

