
1

Intelligent Neighbor Selection in P2P
with CapProbe and Vivaldi

Michael Parker, Amir Nader-Tehrani, Alok Nandan, Giovanni Pau
Computer Science Department

University of California Los Angeles
Los Angeles, CA 90095-1596

Abstract— In this paper we propose a new technique for
peers on a Pastry network to find optimal entries for their
routing tables, where a node is optimal if it minimizes ping time,
maximizes bandwidth, or attempts to do both. To assist in such
neighbor selection, we investigate using Vivaldi in conjunction
with CapProbe. A variety of cost functions, or criteria to judge
peers, is devised and evaluated through simulation. We find
that intelligent peer selection, leading to optimized routing table
entries, can have benefits of halving end-to-end latency and more
than doubling end-to-end throughput.

Index Terms— Pastry, CapProbe, Vivaldi, intelligent neighbor
selection, routing table optimization

I. I NTRODUCTION

Intelligent neighbor selection is an important yet often-
overlooked aspect of peer-to-peer networks.Neighbor selec-
tion refers to a host being able to select one of many peers as a
neighbor while still maintaining the correctness of the network
topology. Intelligent neighbor selection refers to picking the
peer that minimizes some associated cost function, where a
cost function quantifies the “worth” of a peer according to
measurable metrics such as capacity and latency. The driving
idea behind intelligent neighbor selection is that, if each
node on the network greedily chooses for itself neighbors
that minimize a network-wide cost function, then end-to-end
measurements for the metrics associated with the cost function
will improve.

Most overlay topologies concentrate on minimizing end-to-
end latency and maximizing end-to-end capacity by reducing
the order of hops traversed when a message is sent. Most
popular Distributed Hash Table (DHT) topologies today [4],
[8], [13] perform routing inO(logN) steps while keeping
O(logN) connectivity per node. Recently, efforts have been
made to reduce these logarithmic bounds, introducing either
O(1) routing [1], [12] orO(1) state [2], [10]. These proposals,
however, introduce new complexity, have either increased costs
of joining, leaving, and maintenance, or place more importance
on some peers than others to achieve their ends. To im-
prove performance while avoiding such compromises, recent
research [6], [11], [15], [16] has focused on the incorporation
of proximity neighbor selection, or PNS, where a peer chooses
from a set of potential neighbors the one with the lowest
latency.

Intelligent neighbor selection can be seen as the next logical
step beyond PNS, where peers are chosen according to some
chosen cost metric that can incorporate latency, bandwidth,

or other quantifiable measures. Customizing the cost metric
by which you judge the quality of peers allows one to
tailor a peer-to-peer network for a specific application without
changing the underlying routing algorithm: Latency-bound
applications such as chat programs or networked games could
be optimized to minimize round trip time, while throughput-
bound applications such as multicast video streaming or world-
wide content replication could be optimized to maximize
capacity.

This paper makes the following contributions: We demon-
strate how, by using the underlying geometry of the Pas-
try DHT, a node can quickly and efficiently find sets of
nodes on which it can perform intelligent neighbor selection.
Furthermore, we show how by using the Vivaldi distributed
coordinate system and the CapProbe capacity estimation tool,
we can devise simple cost functions that optimize routing table
entries for end-to-end latency, throughput, or a balance of both.
Finally, a global tuning algorithm is presented, which prevents
a node on a static network from keeping a local minimum as
its optimal routing table entry, forcing it to continue searching
for the global minimum elsewhere along the ring.

The rest of the paper is organized as follows: Section II
describes the Pastry DHT, and the Vivaldi and CapProbe
algorithms we employ to optimize it. We then describe in
Section III our algorithm for optimizing the network given a
cost function, followed by descriptions of all the cost functions
we consider in this paper. Section IV details our simulation
environment, including parameters used, and the resulting
round trip time and capacity characteristics of a 1740 node
network when optimized under each cost function. Finally,
Section V describes what we will build upon in future papers,
while Section VI concludes this paper.

II. BACKGROUND

In this section we outline the two key techniques that enable
us to select peers intelligently. CapProbe is an accurate, light-
weight path capacity estimation tool, while Vivaldi allows us to
estimate the round-trip time to a remote node without explicit
pinging.

A. CapProbe

CapProbe [3] is an accurate link capacity estimation tool
that usesPacket Pairs. Packet Pairs, as the name suggests, is a
pair of back-to-back packets that are sent over the any network

2

path to estimate the path’s characteristics. The basic Packet
Pair relies on the fact that if two packets are sent back-to-
back and are queued one after another at the narrow link, they
will exit the link with a dispersionT given byT = L

B , where
L is the size of the second packet andB is the bandwidth
of the narrow link, i.e., the capacity-limiting link. If the two
packets have the same size, their transmission delays are the
same. This means that after the narrow link, a dispersion of
T will be maintained between the packets even if faster links
are traversed downstream of the narrow link. This is shown in
Figure 1, whereS is the source,D is the destination, and link
A−B is the narrow link. The narrow link capacity can then be
calculated asB = L

T . The Packet Pair algorithm assumes that
the packets will queue next to each other at the narrow link.
The presence of cross-traffic can invalidate this assumption.

The underlying idea of CapProbe is that at least one of the
two probing packets must have queued if the dispersion at the
destination has been distorted from that corresponding to the
narrow link capacity. This means that for samples that estimate
an incorrect value of capacity, the sum of the delays of the
packet pair packets, which we call thedelay sum, includes
cross-traffic induced queuing delay. This delay sum will be
larger than the minimum delay sum, which is the delay sum
of a sample in which none of the packets suffers cross-traffic
induced queuing. The dispersion of such a packet pair sample
is not distorted by cross-traffic and will reflect the correct
capacity. Based on this observation, CapProbe calculates delay
sums of all packet pair samples and uses the dispersion of the
sample with the minimum delay sum to estimate the narrow
link capacity.

B. Vivaldi

Vivaldi [17] is an algorithm for assigning synthetic coordi-
nates to hosts such that the distance between the coordinates
of two hosts accurately predicts the round trip time, or RTT,
between them. Unlike previous methods to allow estimation
of latency a priori, Vivaldi is distributed among participating
hosts and thus scales efficiently as the size of the network
grows. Furthermore, coordinates change quickly in reaction to
adverse traffic patterns such as congestion.

To briefly describe how Vivaldi works, each host maintains a
set of coordinates and an error estimate denoting the accuracy
of these coordinates. The error estimate is derived from how
well the host’s coordinates, when combined with coordinates
of remote nodes, estimate the RTT to the remote nodes. If,
after a sample, the RTT to another node is not equal to the
distance between them, the sampling node moves a fraction
toward the coordinates that would have perfectly predicted the
RTT for that sample. Thus, if the sample RTT is less than
the predicted value, the nodes move closer in the coordinate
space; if the sample RTT is more than the predicted value, the
nodes separate farther. Nodes with high error estimates are
assumed to not yet have found their correct position within
the coordinate space. As such, after a sample they are allowed
to take larger leaps toward the coordinates that would have
perfectly predicted the sample, and thus explore the coordinate
space more freely in hopes of finding accurate coordinates.

(Ideal Case)

S A B D

Packet 1

Packet 2
Packet 1

Packet 2
Packet 1

Packet 2

Dispersion

Fig. 1. CapProbe: Ideal Case

Compressed

S A B D

Packet 1

Packet 2
Packet 1

Packet 2

Packet 2

Packet 1

Queueing
Delay

Dispersion

Fig. 2. CapProbe: Over-Estimation of Capacity

delay

S A B D

Packet 1

Packet 2
Packet 1

Packet 2
Packet 1

Packet 2

Dispersion

Expanded

queueing

Fig. 3. CapProbe: Under-Estimation of Capacity

C. Pastry

Pastry [13] is a peer-to-peer overlay topology allowing mes-
sages to be routed between N participating hosts inO(logN)
time while the connectivity of each host scales with only
O(logN) complexity. Each host on the network is assigned
a randomly chosen Globally Unique Identifier, orGUID, in
the range[0, 2160). Such a value is usually derived by the
SHA-1 hash its IP address. The service provided by Pastry,
like all other Distributed Hash Tables, is to map messages
with the same 160-bit key to a single host on the network
regardless of the originating node. In Pastry, messages are
mapped to the node whose GUID is numerically closest to

3

the key modulo2160. The identifier space is thus circular
and commonly referred to as a ring. To enable end-to-end
delivery, each node on the network must assume responsibility
for forwarding messages not meant for it to nodes that are
closer to the destination in some sense. In Pastry, the nodes a
host knows are found in either itsleaf setor its routing table.

The leaf set consists of theL2 nodes whose GUIDs imme-
diately precede it in the circular identifier space, and theL

2
nodes whose GUIDs immediately succeed it, whereL is a
fixed value shared by all nodes on the network. The routing
table, by contrast, logarithmically increases and decreases in
size with the size of the network. In our configuration of
Pastry, the routing table is organized as 160 rows, indexed
from 0 to 159. Treating GUIDs as a sequence of 160 bits,
a remote node on the network belongs in rowi of the local
host’s routing table if its GUID matches the firsti bits of the
local node’s GUID and differs in the bit at positioni + 1.
Such a bit sequence is said to share aprefix of length i with
the local node’s GUID. Therefore nodes in higher rows of the
routing table share successively longer prefixes with the local
node’s identifier.

The Pastry routing algorithm is as follows: When a Pastry
node receives a message, either from a remote host or an
application running locally, it first determines whether the
message key falls within the range of the identifier space
spanned by its leaf set. If this happens, and the local node is the
closest node, the message is passed up to the application layer;
otherwise, the message is forwarded to the closest remote node
in the leaf set, which is necessarily the last hop. If the message
key is not spanned by the leaf set, the node finds the length
i of the prefix its GUID shares with the key. If some node
exists in rowi of its routing table, it must share a prefix of
at least lengthi + 1 with the message key. This node is thus
closer to the key than the current node, and so the message is
forwarded on to it. If no node exists in rowi, the message is
forwarded to a node whose GUID shares a prefix of lengthi
with the key and is numerically closer. This way the message
is still making progress toward the node that is numerically
closest to it.

III. O PTIMIZATION

A. Procedure

As seen in Figure 4, all nodes that begin their identifiers
with a given bit sequenceb are found consecutively in the
circular identifier space. Therefore, a node whose GUID
begins with b can always find in its leaf set another node
whose GUID begins ifb if one exists; we say their leaf sets
overlap. Now consider an entry in rowi of a given node’s
routing table; this entry’s GUID matches the firsti bits of the
given node’s GUID, and differs in biti + 1. We can conclude
that if any other nodes exist with a prefix of lengthi, a subset
of them must be found in the leaf set of the entry in rowi.
Therefore, bypulling the leaf set of the entry in rowi of our
routing table, we can find a subset of all possible nodes that
could go in rowi. We can then choose one that minimizes a
selected cost function, and repeat the process for all rows in
the routing table.

00..

1....

010..

0111..

01100...
01100...
0111...

010...
00...

1...0
1
2
3
4
5

01101..

Fig. 4. Pastry DHT

Because GUIDs are assigned to nodes by the SHA-1 hash,
although a cluster of nodes may share the same subnet or
ISP and therefore have similar IP addresses, their positions in
the circular identifier space will be diverse. Thus the nodes
in a pulled leaf set should have varied geographic locations,
exhibiting a wide array of round trip time and capacity
characteristics. This increases our chances of finding a node
that has a lower cost with respect to the current node.

Note that simply optimizing each row of our routing table
once by the procedure above is not enough, for two reasons:
First, if the entry in rowi is not optimal, and a node from its
pulled leaf set is chosen to replace it, part of this replacement’s
leaf set does not overlap with the original entry’s leaf set.
A node that minimizes the cost function even more than the
replacement node may exist there, and so it would be beneficial
to optimize again later by pulling the replacement node’s leaf
set and repeating the process. Second, even if pulling a row
entry’s leaf set yields no nodes with a lower cost function than
that entry, new nodes may later join the network and enter into
that entry’s leaf set. Alternatively, nodes may later drop from
the entry’s leaf set, moving entries previously outside its leaf
set into it. Either way, we see it would still be beneficial to
occasionally pull the leaf set of an optimized entry, hoping to
find a new node that has a lower cost function value.

If the churn rateof the network is low, however, there is a
chance that our algorithm above will stabilize at some entry
that is a local minimum. At this point, pulling the leaf set
repeatedly of an optimized entry will retrieve the same nodes
again and again, all with a higher cost than the current entry.
For a network with sizeN , however, approximatelyN/2i+1

could be used to fill rowi of a routing table. Therefore,
especially for smaller values ofi, it is likely that some node
exists outside the current entry’s leaf set that has a lower cost
value. Ideally, we would like to find such a node, and even
the global minimum. If an entry in rowi of our routing table
remains optimal after pulling its leaf setk times, we turn to a
technique inspired byglobal tuningin the Bamboo DHT [7],
a variant of Pastry.

In our global tuning phase, we first construct a message
with a key sharing a prefix of lengthi with our GUID. Like

4

the current entry in rowi, the key will first differ from our
GUID in the bit at positioni + 1. All bits following position
i+1 in the key are randomly generated. Because all bits after
positioni + 1 are random, there is a high probability that this
message will be delivered to a node whose leaf set entries also
share a prefix of lengthi, but which is also outside the leaf
set of our local minimum. The hope is to sample from a set
of nodes outside the optimized entry’s leaf set. Once delivered
by Pastry, the closest node to the message key returns its leaf
set. If a node is found in this leaf set with a lower cost value
than our current entry in rowi, we choose it as a replacement.
Otherwise, rowi remains unchanged and we repeat our global
tuning if the current entry is still optimal after pulling its leaf
setk more times.

B. Cost Functions

Now that we have devised a technique to find suitable
routing table entries, we must find some cost function to
judge which is best. Here we describe five functions whose
effectiveness we will evaluate in the next section:

• RTT Only: The node whose Vivaldi coordinates are
closest to the current node is chosen.

• Capacity Only: CapProbe is run on each node, and the
node having the highest capacity is chosen.

• RTT First: The L
2 nodes whose Vivaldi coordinates are

farthest are discarded. CapProbe is then run on the re-
maining nodes, and the node having the highest capacity
is chosen.

• Capacity First: CapProbe is run on each node, and theL
2

nodes whose capacities are lowest are discarded. Of the
remaining nodes, the node whose Vivaldi coordinates are
closest is chosen.

• RTT-Capacity Joint Ranking: CapProbe is first run on
each node. After doing this, nodes are ranked separately
by their estimated RTT and their bandwidth. Joint rank-
ings are then computed for each node by adding their
respective RTT and bandwidth ranks. The node with the
highest joint ranking is chosen, while the node with the
higher capacity ranking is chosen in the event of a tie.

• Normalized Deviations: CapProbe is run on each node to
find capacities. The average and standard deviation over
all RTTs, rtt and σrtt, are computed. The average and
standard deviation over all capacities,cap andσcap, are
also computed. Peeri receives a score equal to:

si = signum(rtt− rtti)
(

rtt− rtti
σrtt

)0.75

+

signum(capi − cap)
(

capi−cap
σcap

)0.75

where:

signum(x) =
{

1 if x ≥ 0
−1 if x < 0

The score of a node is proportional to how many standard
deviations it is from an ‘average’ node, in terms of both
RTT and capacity. Note that we damp both components

by raising each to a power less than unity; this is so nodes
with overwhelmingly low latencies or high capacities do
not dominate, promoting well balanced entries. The node
i with the highest scoresi is chosen.

IV. SIMULATION

A. Setup

Our simulation starts with a single node on the network.
Nodes then join the network one by one, each choosing as
its bootstrap node a randomly selected node on the network.
Between nodes joining, each node selects up to two nodes it
knows of (either from its leaf set or routing table) and pings
them, allowing it to refine its own Vivaldi coordinates. The
5D Euclidian coordinate space was used for Vivaldi since it
yields the lowest absolute error. A node first optimizes its
routing table entries once 30 nodes have joined the network
after it, and continues to optimize every time 30 more nodes
have joined since its last optimization attempt. The leaf set
sizeL is 8, while for the purposes of global tuning we set the
parameterk to 3.

This process continues until there are 1740 nodes on the
network, at which point we consider the network complete
and begin the measurements described below. This leaves
some of the last nodes to join the network with inaccurate
Vivaldi coordinates and unoptimized routing tables, giving us a
snapshot of a network that is still evolving when measurements
are performed. Note that such transient conditions are similar
to ones encountered in real, deployed peer-to-peer networks
exhibiting a high degree of churn and no stabilization period.
We therefore feel that the results described below are a good
approximation to results from a real networked environment.

At this point, two different nodes are selected at random
from the network, and a message is routed between them. We
sum the RTTs along the links taken get the end-to-end RTT,
and find the link taken with the minimum capacity to get the
limiting bottleneck capacity. This process is repeated for 2500
iterations. The average and medians of our measurements are
found in Table I and Table II, respectively.

Note that to simulate latency between nodes, we used the
King data set [9] provided by MIT, which consists of a full
matrix of pair-wise RTTs between 1740 DNS servers collected
using the King method [5]. To simulate bandwidth, we created
a matrix of randomly generated real numbers having a uniform
distribution between 0 and 50. Because the capacity matrix
was generated separately from the RTT matrix, we assume
no correlation between pair-wise RTTs and capacities. Unlike
the RTT matrix, the capacity matrix is asymmetric, modeling
links with different upstream and downstream capacities such
as cable and DSL.

B. Results

In Figure 5 we see the end-to-end RTTs between the
first 50 source and destination pairs when the network is
unoptimized versus when the network is optimized using the
RTT Only cost function. We can observe that, on the whole,
the end-to-end RTT of a pair is greatly reduced; indeed, RTT
Only is especially effective for eliminating outliers in the

5

unoptimized method (which typically have near a 2000 ms
RTT). By Table II, the median RTT is reduced by over 50%,
from 741 ms to 331 ms. As expected, the median capacity
remains nearly unchanged, as when we generated the pair-wise
capacity data we introduced no correlation between it and the
RTT data. Similarly, in Figure 6 we see that the end-to-end
capacities between the first 50 source and destination pairs
increased dramatically when the Capacity Only cost function
was used. Again, by Table II, wee see that the median end-
to-end capacity is increased by over 200%. We note that this
percentage increase seems unusually high, and can attribute
it to the fact that the capacity distribution was uniformly
distributed, when perhaps it follows a Poisson or exponential
distribution in real networks.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 5 10 15 20 25 30 35 40 45 50

R
T

T
 (

m
s)

Source-Destination Pair

Unoptimized
Optimized

Fig. 5. RTT: Optimized vs. Unoptimized

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 5 10 15 20 25 30 35 40 45 50

C
ap

ac
ity

Source-Destination Pair

Unoptimized
Optimized

Fig. 6. Capacity: Optimized vs. Unoptimized

One interesting item to note is that, in both graphs, there are
pairs that suffer poorer end-to-end performance once optimiza-
tion is applied! This is due mostly to the greedy approach taken
when optimizing nodes are chosen. Let us show an example
using the RTT Only cost function: Before optimization, node
A routes a message to node B by forwarding the message
through intermediate hopX1. The end-to-end RTT is thus

equal tortt(A,X1)+rtt(X1, B). After optimization, nodeX2

replacesX1 in node A’s routing table, and the end-to-end RTT
changes tortt(A, X2) + rtt(X2, B). There is no guarantee,
however, thatrtt(X2, B) is less thanrtt(X1, B) because they
represent two separate paths through the network. Thus we
cannot assert the round-trip-time after optimization is less than
the round-trip-time before optimization.

Another reason for this performance degradation is that,
as said earlier, some nodes have not yet gone through an
optimization round. Consequently, any message forwarded
through them goes through an unoptimized node. Still yet
other nodes have not found their correct position in the Vivaldi
coordinate space. The distance between such a node and
another node is thus not a reliable predictor of the RTT
between them, which RTT Only relies on for best optimization.

The last four cost functions seek to optimize both end-to-end
capacity and latency: RTT First, Capacity First, Joint Ranking,
and Normalized Deviations. As we can see again in Table II,
each of the four cost functions offers large improvements
over an unoptimized network. Note that Joint Ranking and
Normalized Deviations maintain a slight advantage over the
other two in terms of end-to-end improvement because it is
the closest node to the saddle point formed by low RTTs and
high capacities in the sample set; RTT First and Capacity First
are only approximations to this point. RTT First, however,
holds the advantage of using the least amount of overhead;
this is because estimating the RTT to a node using Vivaldi
coordinates requires no additional traffic and only minor
computation, while estimating the capacity to a node requires
CapProbe to send packet pairs to it through the network. Since
RTT First throws away theL2 leaf entries with the farthest
coordinates before CapProbe is invoked, and the size of a leaf
set isL, we reduce total overhead by approximately 50%.

What’s most interesting here is that each method comes

TABLE I

SIMULATION RESULTS FOR DIFFERENTCOST FUNCTIONS

Average
Cost Function RTT Capacity

Unoptimized 802.07 9.51
RTT Only 379.49 9.35
Capacity Only 861.23 25.41
RTT First 388.15 21.66
Capacity First 410.61 22.51
Joint Ranking 398.98 23.12
Normalized Deviation 403.86 23.85

TABLE II

SIMULATIONS RESULTS FOR DIFFERENTCOST FUNCTIONS

Median
Cost Function RTT Capacity

Unoptimized 741.00 6.97
RTT Only 331.5 7.27
Capacity Only 786.5 27.03
RTT First 354 22.32
Capacity First 375 23.45
Joint Ranking 367 24.32
Normalized Deviation 371.5 25.19

6

very close to achieving the end-to-end RTTs and capacities
achieved by RTT Only and Capacity Only, respectively. If one
wishes to have the end-to-end performance of both RTT Only
and Capacity Only without the compromise these three cost
functions incur, each node can maintain two routing tables: one
whose entries are optimized by RTT Only, and the other whose
entries are optimized by Capacity Only. The consequences of
this scheme, however, are the need to classify all data as either
RTT-link based or Capacity-link based, and the doubling in
state and connectivity at each node (although, asymptotically,
both remain a tractableO(logN)). We did not include this
metric in our paper, as its results are approximately the RTT
data from RTT Only and the capacity data from Capacity Only
in Table I and Table II.

V. FUTURE WORK

We hope to improve our work by finding and using real-
world capacity data between 1740 hosts in our measurements,
as opposed to the uniformly distributed synthetic data used in
this paper. If this proves to be too ambitious, another approach
we are considering is surveying the capacities of a smaller set
of hosts, and using the found distribution in our trials between
1740 hosts. Alternatively, we could run all our experiments
on a real network, such as PlanetLab [14]. Some drawbacks
to Planetlab, however, include its small size, its geographic
concentration in North America, and its abundant low-latency,
high-capacity links. These are not necessarily properties of
peer-to-peer networks in use today.

We would also like to investigate how varying system-wide
parameters affect performance. For example, by intuition, if
we increaseL (the size of each node’s leaf set), then when a
node pulls a routing table entry’s leaf set it should see a larger
set of nodes with a wider array of round-trip-time and capacity
characteristics. It is therefore more likely that the optimization
attempt will find a node that has a lower associated cost value
than the current entry, and is closer to the global minimum.
Other parameters include the global tuning parameterk, how
often nodes pull the leaf sets of their routing table entries,
and how often node ping one another to update their Vivaldi
coordinates.

Furthermore, we hope to move to an environment that
simulates queuing delay, congestion, and churn under periods
of optimization. As shown by Rhea et. al [7], ignoring such
effects at the stages of simulation can lead to a fragile peer-to-
peer network in practice that routes inconsistently, or collapses
entirely, when any one condition arises.

VI. CONCLUSIONS

In this paper, we introduced a new technique for optimizing
the entries of a Pastry node’s routing table. This procedure
was conducted in two steps: First, the current row entry’s
leaf set was pulled, which we showed had to contain another
suitable entry for the given row if one existed. Second, the
quality of potential nodes in the leaf set had to be evaluated.
We introduced the notion of cost functions to achieve this,
where different cost functions emphasized improving different
metrics, such as RTT or capacity.

Simulation shows that by each node performing greedy
selection of its neighbors using cost functions, end-to-end
latency and capacity can be drastically improved. Optimizing
strictly for latency, for example, can improve end-to-end per-
formance by over 50%, while optimizing strictly for capacity
improves end-to-end performance by over 200%. Surprisingly,
attempting to optimize for both metrics does not sacrifice much
performance in terms of one or the other, and maintains huge
gains over unoptimized networks.

We hope that this paper has brought to light how effective
intelligent neighbor selection is in reducing latency and in-
creasing throughput on a peer-to-peer network. Furthermore,
we hope it sparks interest in applying the techniques presented
here to other DHTs, and devising new cost functions to
evaluate the quality of neighboring nodes.

VII. A CKNOWLEDGEMENTS

We would like to thank Frank Dabek for his infinite patience
and insight when answering our questions about Vivaldi, and
Matt Rogers for his help in deriving the Normalized Deviation
metric.

REFERENCES

[1] Achieving One-Hop DHT Lookup and Strong Stabilization by Passing
Tokens, B. Leong, J. Li Proceedings of ICON, 2004

[2] Broose: A Practical Distributed Hash Table Based on the DeBruijn
Topology, A.-T. Gai, L. Viennut Proceedings of IEEE P2P, 2004

[3] CapProbe: A Simple and Accurate Capacity Estimation Technique, R.
Kapoor, L.J. Chen, L. Lao, M. Gerla and M.Y. Sanadidi Proceedings of
ACM SIGCOMM, 2004

[4] Chord: A Scalable Peer-to-peer Lookup Service for Distributed Appli-
cations, I. Stoica, R. Morris, D. Karger, F. Kaashoek, D. Libel-Nowell,
F. Dabek Proceedings of ACM SIGCOMM, 2001

[5] Estimating Latency Between Arbitrary Internet End Hosts, K. Gummadi,
S. Saroiu, S. Gribble Proceedings of SIGCOMM IMW, 2002

[6] Exploiting Network Proximity in Peer-to-peer Networks, M. Castro, P.
Drushel, Y.C. Hu, Antony Rowstron Technical Report MS-TR-2002-82,
Microsoft Research, 2002

[7] Handling Churn in a DHT, S. Rhea, D. Geels, T. Roscoe, and J.
Kubiatowicz USENIX Annual Technical Conference Proceedings, June
2004

[8] Kademlia: A Peer-to-peer Information System Based on the XOR
Metric, P. Maymounkov, D. Mazieres Proceedings of IPTPS, 2002

[9] “King” Data Set. http://www.pdos.lcs.mit.edu/p2psim/kingdata
[10] Koorde: A Simple Degree-Optimal Hash Table, F. Kaashoek, D. Karger

Proceedings of IPTPS, 2003
[11] Locality Aware Mechanisms for Large-scale Networks, B. Zhao, A.

Joseph, J. Kubiatowicz Proceedings of FuDiCo, 2002
[12] One Hop Lookups for Peer-to-peer Overlays, A. Gupta, B. Liskov, R.

Rodrigues Proceedings of HotOS-IX, 2003
[13] Pastry: Scalable, distributed object location and routing for large-scale

peer-to-peer systems, A. Rowstron, P. Druschel IFIP/ACM International
Conference on Distributed Systems Platforms, November 2001

[14] PlanetLab. http://www.planet-lab.org
[15] The Impact of DHT Routing Geometry on Resilience and Proximity, K.

Gummadi, R. Gummadi, S. Gribble, S. Ratnasemy, S. Shenker, I. Stoica
Proceedings of ACM SIGCOMM, 2003

[16] Topologically-Aware Overlay Construction and Server Selection, S. Rat-
nasamy, M. Handley, R. Karp, S. Shenker Proceedings of INFOCOMM,
2002

[17] Vivaldi: A Decentralized Network Coordinate System, F. Dabek, R.
Cox, F. Kaashoek, R. Morris Proceedings of ACM SIGCOMM, 2004

