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Abstract

Mobile ad hoc networks (MANETs) are vulnerable to a myriad of attacks. Purely cryptographic countermeasures
are effective against outsiders, but not non-cooperative members including selfish and compromised members. Non-
cryptographic means like intrusion detection must be devised to answer the challenge. However, as recently studied
in “jellyfish attack” [1], the effectiveness of wireless intrusion detection systems (IDS) are limited when security
attacks can be “cloaked” under protocol-compliant actions. For instance, since packet loss is common in mobile
wireless networks, the adversary can exploit this fact by hiding its malicious intents using compliant packet losses
that appear to be caused by environmental reasons.

In this paper we study two routing disruption attacks that use non-cooperative network members and disguised
packet losses to deplete ad hoc network resources and to reduce ad hoc routing performance. These two routing
attacks have not been fully studied in previous research. We propose the design of “self-healing community” to
counter these two attacks. Our design exploits the redundancy in deployment which is typical of most ad hoc
networks; namely, it counters non-cooperative attacks using the probabilistic presence of nearby “good” cooperative
network members.

To realize the new paradigm, we devise localized simple schemes to maintain self-healing communities. The
localized design virtually constructs a “localized hospital” (L’Hospital) to save the (optimal) route discovered by
the underlying routing protocol. We develop an analytic model to prove the effectiveness of our design. Then we
design and implement our secure ad hoc routing protocols in simulation to verify the cost and overhead incurred
by maintaining the communities. Our study confirms that the community-based security is a cost-effective strategy
to make off-the-shelf ad hoc routing protocols secure.

I. INTRODUCTION

A mobile ad hoc network (MANET) is an infrastructureless mobile network formed by a collection of peer
nodes using wireless radio. It can establish an instant communication structure for civilian and military applications.
Unfortunately, the mobility and radio broadcast medium make MANETs very vulnerable to malicious attacks. First,
outsiders (or non-network members) can monitor the open wireless medium to intercept legitimate traffic or to inject
illegitimate traffic. Fortunately, cryptographic schemes can protect the network from such external attacks. Second,
some previously cooperative mobile nodes may turn selfish due to various reasons (like resource deprivation); or,
some mobile nodes with inadequate physical protection may be captured and compromised. Purely cryptographic
countermeasures are not effective against compromised or selfish members because cryptographic trust is rendered
to whoever owns the cryptographic keys, independent of node’s networking behavior. The network must rely on
non-cryptographic means like intrusion detection systems (IDS) to cope with these non-cooperative (compromised
or selfish) members. However, as studied in [1], the non-cooperative members may try to hide their attacks under
protocol-compliant behaviors. In this case, behavior discrimination is not an effective countermeasure. For example,
it is very hard to discriminate between losses caused by normal network and environmental conditions and those
caused by selfish and malicious behaviors as they could all appear to be protocol-compliant.

In this paper our goal is to propose a new intrusion protection mechanism, namely community-based security,
and evaluate its effectiveness in defending ad hoc routing protocols against non-cooperative nodes. The basic idea is
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to mitigate the adverse (albeit seemingly protocol-compliant) actions of selfish and malicious nodes by distributing
the network service in question (e.g., packet forwarding) to a community of neighboring nodes. We will call such a
community the localized “self-healing community”. At the node level, the service provisioning is untrustworthy and
is allowed to be disrupted. However, at the community level, the service provisioning becomes trustworthy—even
if some of the community members are selfish or malicious, the self-healing service remains available and reliable
if there is at least one “good” cooperative community member that can provide the needed service.

The concept of “self-healing” is inherently consistent with self-organizing mobile ad hoc networks. Self-organization
refers to the ability of an ad hoc network to construct and change its internal organization on its own account—
neither in response to conditions in another system nor as a consequence of its membership in a larger metasystem.

In a self-organizing network, it is possible to realize self-reconfigurability which means the network actively
reconfigures the arrangement of its constituent parts. In the MANET context, this implies that each ad hoc node
must autonomously monitor and adapt its properties to environmental conditions (rather than rely on design-time
pre-configuration and manual reconfiguration) in order to achieve a robust network in any environment.

In a self-reconfigurable network, self-healing means the network adapts automatically to defects and attacks
in its node connectivity, service provisioning and performance disturbances to provide the best possible level of
service to the communicating parties. In this paper, the term “self-healing routing” refers to a MANET’s capability
of achieving following three goals: (1) monitoring and detection of routing failures; (2) immediate healing of the
failed routes to avoid significant disruption; and (3) fully distributed implementation without centralized system
control.

Clearly, there are challenges in realizing such self-healing communities. In particular,

• Community creation and configuration: A self-healing community can be created and configured anywhere
and anytime, but the related process should only incur reasonably low overhead.

• Community reconfiguration: The self-healing community must adapt to changes in the network topology and
other dynamics. The impact of mobility, channel fluctuation, community member join and leave, and selfish
and malicious nodes must be addressed and resolved.

In balance, the contributions of this paper are in two areas:

1) Development of a new network security concept based on “self-healing community”. We build self-healing
routing communities between each source and destination pair. The conventional “per node forwarding” is
replaced by the “community forwarding” concept: a chain of self-healing communities along the path will
forward the packet, where each community is comprised of multiple peer members each of which can provide
the needed packet forwarding service. The proposed scheme tolerates the presence of non-cooperative nodes
and stops disruption attacks immediately. Such self-healing strategy has not been studied previously in the
context of secure routing.

2) Easy integration of community-based security with conventional routing schemes. Our localized design realizes
a “localized hospital” (L’Hospital) to save the (optimal) route discovered by the underlying routing protocol.
In this paper we use the IETF standard AODV [23] as the example. We implement the new design in network
simulators and study the new design’s impact on the underlying routing protocol.

The rest of the paper is organized as follows. In Section II, we present security threats that have not been fully
addressed by existing secure routing schemes. In Section III, we describe the concept of “self-healing community”
as well as related self-configuration and self-reconfiguration protocols. An analytic model is presented in SectionIV
to verify the effectiveness of community-based secure routing. Simulation results in Section V confirm the efficiency
of community-based secure routing. In Section VI we compare our work with related work. Finally Section VII
concludes this paper.

II. PROBLEM: ROUTING DISRUPTION

On-demand routing in MANET In this paper we apply the “community” concept to protect on-demand routing.
Though the attacks and countermeasures are also applicable to proactive routing schemes, they are treated as future
work for the ease of presentation. While proactive routing protocols exchange routing information even when there
is no data transmission, the on demand approach pays the cost of routing overhead only when it is needed. An
on-demand routing protocol is composed of two parts: route discovery and route maintenance. In route discovery,
the source sends out a route request (RREQ) to the network when it needs a route to destination. A neighbor either
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forwards the RREQ if it does not know the route to the destination, or sends back the needed routing information
to the source. Upon receiving one or more RREQs, the destination sends back at least one route reply (RREP)
to the source. Contrary to RREQ flooding, an RREP message is typically forwarded by a limited set of chosen
forwarders, which are called “RREP forwarders” (or “RREP nodes”) in this paper. Although various on-demand
routing protocols use different algorithms to process RREQ and RREP messages, the combination of RREQ and
RREP processing establishes a route between the source and the destination. Due to mobility and network dynamics,
an established route may be broken at any time. On-demand routing schemes use route error (RERR) notification to
inform the source or the destination about the status. Then the source will initiate a new route discovery procedure
to find new routes towards the destination. To overcome the overhead of a fresh restart from the source after each
route outage, local recovery techniques are often applied (e.g., cached routes at neighbors are used when available).

Limitations of cryptographic protection Cryptography is an essential building block of network security. It relies
on secrecy of keys, which are secret random variables maintained by each individual network member. Qualitative
cryptographic algorithms ensure that any computationally bounded adversary cannot break the cryptosystem if these
secret keys are not compromised.

However, in a self-organizing ad hoc network the power of cryptographic protection is limited. First, purely
cryptographic solutions cannot answer the challenge imposed by non-cooperative (either compromised or selfish)
network members. An autonomous ad hoc node who has earned cryptographic trust from other ad hoc nodes is not
necessarily protocol-compliant, though it appears to be so. (1) If adequate physical protection cannot be guaranteed
for all mobile nodes, then node compromise is inevitable in a long time window. After that, cryptosystems cannot
differentiate compromised members from uncompromised ones. (2) Moreover, selfish nodes are uncompromised,
but they will not provide the needed service. The network has to rely on non-cryptographic means like intrusion
detection system (IDS) to cope with these non-cooperative members.

Second, as pointed out in [1], it is hard to differentiate various packet loss scenarios, for example, to identify
those protocol-compliant cases caused by natural reasons (e.g., channel interference or node mobility) and those
cases caused by non-cooperative behaviors (e.g., selfishness or maliciousness). A malicious sender can intentionally
corrupt at least 1 random bit in the packet being transmitted, then it is hard for a good receiver to judge whether
the corruption is caused by environmental reasons or otherwise. A malicious node can also selectively drop some
critical packets, so that its packet loss pattern appears to be random as expected. In route discovery, a mobile node
participated in RREQ forwarding may fail to forward RREP and data packets due to all kinds of reasons—random
mobility, selfishness or maliciousness. There is no fail-safe method for loss discrimination between environmental
reasons and non-cooperative behaviors.

Not fully-addressed ad hoc routing threats Although many secure ad hoc routing protocols [13][27][20][33][3]
have been proposed to secure on-demand routing schemes, the following security attacks are not fully addressed
in the existing proposals.

Attack 1: (RREQ resource depletion) A malicious node can attempt to deplete network resource by repeatedly
initiating superfluous RREQ. In this attack, an attacker sends RREQ packets, which the underlying on-demand
routing protocol floods throughout the network. If the attacker is not a network member, cryptographic authentication
can be added to RREQ packets to filter out those forged route discovery requests. However, if the attacker is a
compromised or selfish network member, non-cryptographic countermeasures must be used. 2

A rate-limit approach is proposed in [13][23] to reduce number of RREQ packets each node is allowed to
initiate. In this paper we seek to achieve this goal without compromising routing performance. Approaching the
ideal case, where a routing protocol only incurs one initial RREQ flooding for each end-to-end connection, the
community-based design significantly reduces the number of RREQ packets that each node initiates.

Attack 2: (RREP and data packet loss) A malicious or selfish node may cause the loss of certain critical packets.
In a route discovery procedure initiated by a good network member, an attacker can use “wormhole attack” [13] or
“rushing attack” [15] to surpass other nodes with respect to the underlying routing metric. Then when the RREP
comes back it may not forward or may forward a corrupted one. The result is equivalent to RREQ resource depletion
attack, except now the RREQ initiator is not the one to blame. In “jellyfish attack” [1], an attacker can severely
degrade data delivery performance by selectively dropping data packets during certain periods of time. 2

We will show how the proposed self-healing approach can counter all such attacks, including non-cooperative
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RREP forwarders and data forwarders. When an RREP or data packet is lost, the damaged route is locally healed
within minimal latency.

III. COMMUNITY-BASED SECURE ROUTING PROTOCOLS

A. Network assumptions

At the routing layer, community-based security is applicable to a broad variety of routing schemes. Backward
compatibility is one of our design goal. Given an underlying on-demand routing scheme (e.g., AODV [22], ARAN
[27], DSR [16], Ariadne [13]), all original RREQ/RREP packet formats and packet forwarding requirements are
accounted for in our design. This will make it possible to seamlessly integrate the proposed community-based
paradigm with most existing ad hoc routing protocols.

At the link layer, L’Hospital assumes that a node can always monitor ongoing transmissions even if the node
itself is not the intended receiver. This typically requires the network interface stay in the “receive mode” (i.e.,
promiscuous reception mode) during all transmissions, which is less energy efficient than listening only to packets
directed to oneself. L’Hospital also assumes radio links are symmetric; that is, if a node X is in transmission range
of some node Y , then Y is in transmission range of X . In an 802.11 style MAC protocol, this can be enforced by
CSMA/CA using RTS/CTS handshake.

At the physical layer, transmissions are vulnerable to jamming. Fortunately, mechanisms like erasure coding,
spread spectrum, and directional antenna have been extensively studied as means of improving resistance to jamming.
In addition, jamming attackers are more easily to be detected and counter-attacked. In this work we consider
packet loss attacks rather than jamming attacks. L’Hospital explores physical node redundancy in a self-organizing
network as a method to stop route disruptions. L’Hospital assumes that in a network locality there are redundant
network members with high probability. These peer members will have identical capabilities and responsibilities in
community-based communication. No centralized control or hierarchical control is assumed.

B. Network security assumptions

L’Hostipal assumes every packet transmission is protected by data origin authentication service. Every packet is
authenticated and the packet sender’s identity is unforgeable (of course, when the packet sender is uncompromised).
This can be implemented by signing each packet by the sender’s digital signature or using efficient symmetric key
protocols like TESLA [24][13]. Therefore, the adversary cannot forge packet transmissions from uncompromised
nodes, and cannot launch Sybil attack [10] by faking uncompromised nodes’ identities.

L’Hostipal also assumes that the ad hoc nodes are equipped with hardware needed by packet leashes [14] or
Brands-Chaum protocols [7]. Hence by secure distance bounding, any pair of topological neighbors in ad hoc
routing are indeed physical neighbors.

C. Design principles

Local monitoring with minimized monitoring coverage A significant distinction between secure routing and
robust routing is the threat model. In many robust routing schemes, it is assumed that ad hoc nodes are motivated
to forward packets and actively fix a damaged route using local queries. Unfortunately, in a secure routing scheme,
we are facing malicious and selfish nodes who would not follow this cooperative assumption at all. Instead,
local monitoring must be used to identify any anomalous packet forwarding, and the monitoring range must be
minimized—each “good” node should monitor a minimal number of local nodes—otherwise the incurred monitoring
overhead can be explored by adversarial nodes to launch denial-of-service attacks. We call this principle the “minimal
monitoring principle for secure routing”.

Localized and immediate self-healing When a packet forwarder is a non-cooperative node that loses the packet,
we use a localized, immediate and efficient self-healing scheme to elect a substitution within minimal time. The
“healed” path is a close approximation of the (optimal) path discovered by the underlying on-demand routing
protocol. Extra self-healing overheads are incurred only in the localized apposite areas around the damaged links.

Limit the frequency of flooding (either network-wide or limited-scope) Control packet flooding, either network-
wide or limited-scope, incurs tremendous energy expense and wireless channel contention. Malicious nodes can
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explore this feature to deplete needed network resource. L’Hospital seeks to realize a secure routing paradigm that
only requires a single initial RREQ flood per end-to-end connection (in the ideal case), despite of unpredictable
node mobility and wireless packet loss.

End-to-end maintenance Due to the possible presence of non-cooperative nodes, the intermediate forwarders
cannot be trusted. Therefore, the two ends of a connection should pay reasonable cost to maintain the intermediate
self-healing communities (whose shape degenerates due to node mobility). End-to-end maintenance may include
monitoring end-to-end data delivery ratio, implementing end-to-end probing, maintaining fresh routes, and finding
new routes when a community en route is empty (e.g., completely compromised).

D. Community-based security (CBS)

Configuring and reconfiguring self-healing communities is the central part of our community-based scheme.
For each end-to-end connection, a chain of self-healing communities along the optimal path (discovered by the
underlying routing protocol) are established to thwart route disruption. This section details how a secure community
at each forwarding step is created and how the secure communities are maintained facing network dynamics and
possible attacks.

 

RtREP forwarding nodesLegend:

Other ad hoc nodes

B CA

Ad hoc nodes in self−healing community

Self−healing community

Fig. 1. A self-healing community between a 2-hop source and destination pair

1) Self-healing community overview: The concept of “self-healing community” is based on the observation that
wireless packet forwarding typically relies on more than one immediate neighbor to relay packets. Figure 1 shows
the simplest case that node B relays packets from node A to node C. Typically, node B is within the intersection
of node A and C’s radio range while A and C cannot hear each other. In principle, all nodes within the “moon”-
shape intersection can relay packets from A to C. Nodes in such an intersection1 form our self-healing community.
Figure 2 depicts a chain of self-healing communities along a multi-hop path. Community-based security explores
node redundancy at each forwarding step so that the conventional per-node based forwarding scheme is seamlessly
converted to a new per-community based forwarding scheme. We do not require unusually high node redundancy—a
self-healing community is functional as long as at least one cooperative “good” node is in the community. Intuitively,
a self-healing community is a “big virtual node” that replaces a single forwarding node in conventional routing
schemes (Figure 3).

1The actually community area in our design is the further intersection of the “moon”-shape and B’s one-hop transmission circle. For the
clarity of presentation we spare B’s one-hop circle in all depictions in this paper.
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RtREP forwarding nodesLegend:

Other ad hoc nodes

 
Self−healing communities

Ad hoc nodes in self−healing communities

source
dest

Fig. 2. Packet forwarding self-healing communities along a multi-hop path

2
 

source S

34 1 0

destination D

Fig. 3. Self-healing communities as “big” virtual nodes

2) Self-healing route discovery: A self-healing community must be formed properly. As a comparison to Figure 1,
Figure 4 shows an inappropriate community between A and C . Because A and C are one-hop neighbors, it is
inefficient to introduce an extra forwarder B and pay the overhead to configure the community around B, which
directly violates the “minimal monitoring principle for secure routing”.

To avoid such improper community configurations, we slightly change the underlying on-demand routing pro-
tocol’s RREQ packet format, so that when B forwards its RREQ packet, it adds its immediate upstream A in the
RREQ packet. The new RREQ packet format is2:

〈RREQ, upstream node, . . . 〉
where the underlined part is newly added. The distributed Algorithm A specifies each autonomous node’s action
during the RREQ phase. The distributed Algorithm B specifies how RREP forwarding can be healed by nearby
network members en route.

2We do not include detailed packet formats of the underlying on-demand routing protocol. Interested parties may check [23] for AODV
and [17] for DSR. Note that in DSR the upstream node is already in its forwarding list, thus RREQ packet format is unchanged for
community-based DSR.
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RtREP forwarding nodesLegend:

Other ad hoc nodes
Ad hoc nodes in partial trust community

A C

B

Self−healing community

Fig. 4. An inappropriate self-healing community

Algorithm A: During an RREQ flood, a node just received an RREQ packet V →∗ for the current route
discovery:
0 Insert V in my soft-state neighbor set;
1 U := the upstream node field in the RREQ packet;
2 In my soft-state, record U as V ’s upstream;
3 IF {(I have not forwarded RREQ for the S-D connection) AND
4 (I have not heard U in my neighborhood during the RREQ)}
5 Record V as my RREQ upstream for the connection. Change the packet’s upstream node field to V ;
6 Process the RREQ packet according to the underlying routing protocol;
7 Locally rebroadcast the RREQ packet.

In Algorithm A, lines 4 and 5 ensure that a self-healing community is only formed between two nodes that are
two hops away. Line 0 exploits the RREQ flood as a precious chance to understand the current neighborhood. Each
mobile node will explore every wireless packet reception to maintain its soft-state neighbor set, which is separately
maintained from its soft-state routing states. Each node inserted into the neighbor set will be removed from the set
if not refreshed in a predefined timeout (e.g., R

v
where R is the well-known one-hop transmission range and v is

the estimated average node mobility speed).
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Algorithm B: During RREP, a node V ′(6= V ) just heard the first RREP packet E→V for the current route
discovery:
00 Remember E as my RREP upstream. Insert E in my soft-state neighbor set;
01 IF (V is not in my soft-state neighbor set)
02 End of the algorithm execution, no need to continue.

/* V must correctly ACK E, or I take over V via randomized competition */
03 WHILE {(My soft state for connection S − D is still alive) AND
04 (V didn’t correctly ACK E within the bounded 802.11 backoff window)}
05 Wait for an autonomously decided random time;
06 IF (During the waiting period nobody has taken over)
07 I take over; send a take-over ACK to E: V ′→E replacing V (e.g., put V ’s id in the ACK’s payload);
08 Quit Algorithm B; run line 02 and 03 of Algorithm BV .
09 ELSE
10 V := the node who is ACKing to E. Insert V in my soft-state neighbor set;

/* V must correctly forward and receive W ’s ACK, or I take over V via randomized competition */
11 W := the RREQ upstream node recorded for V ;
12 WHILE {(My soft state for connection S − D is still alive) AND
13 (Both V and W are in my soft-state neighbor set) AND
14 (V didn’t correctly forward within the bounded 802.11 backoff window) AND
15 (W didn’t correctly ACK V within the bounded 802.11 backoff window)}
16 Wait for an autonomously decided random time;
17 IF (During the waiting period nobody has taken over)
18 Transmit the RREP packet: V ′→W (i.e., I try to take over);
19 SWITCH (received ACK)
20 CASE (ACK: W→V ′)
21 I win the take-over.
22 CASE (ACK: W→V ′′)
23 V ′′ wins the take-over.
24 ELSE
25 V := the node who is forwarding the RREP packet. Insert V in my soft-state neighbor set.

If the node is V , then it follows the protocol specified in Algorithm BV for the first RREP3. For later RREPs of
the current route discovery, V simply does line 00 and 01 (see “Discussion:ACK” for reasons behind the design).

Algorithm BV : During RREP, a node V just received the first RREP packet E→V for the current route
discovery:
00 Remember E as my RREP upstream. Insert E in my soft-state neighbor set;

/* ACK back to E */
01 Transmit unicast ACK: V →E;

/* Forward the RREP */
02 W := my RREQ upstream node according to my soft-state;
03 Transmit the RREP packet: V →W .

3Remember in L’Hospital, topological neighbors are indeed physical neighbors due to secure distance bounding. Thus the first RREP is
forwarded on the optimal path discovered by the underlying routing protocol (rather than on paths with wormholes). Some readers may raise
questions saying the compromised malicious network members may send out RREP at any time to disrupt routing. Please see Section III-E
for a cryptographic countermeasure. In a nutshell, in L’Hospital, the first RREP received for the current route discovery is the valid RREP
delivered by the underlying routing protocol as if there is no attack.
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Algorithm BACK
V : During RREP, a node V just received an ACK packet W ′→V for the current route

discovery:
00 Insert W ′ in my soft-state neighbor set;
01 W := my RREQ upstream node according to my soft-state;
02 IF (W = W ′)
03 Immediately record that W has ACKed me;
04 ELSE
05 Wait a specific timeout (e.g., 100ms) for W ’s reply (this is for countering a rushing attacker W ′);
06 IF (My soft-state shows that W has not ACKed me)
07 Replace W by W ′ in my soft-state’s RREQ upstream record;
08 ELSE /* W has already ACKed me */
09 The ACK is redundant due to take-over competition (line 07, Algorithm B); re-transmit RREP: V →W .

The source S and destination D are special nodes in Algorithm BV . The destination D should only perform lines
02 and 03 of Algorithm BV ; the source S should only perform lines 00 and 01 of Algorithm BV . Both Algorithm
BV and BACK

V are for an actual RREP forwarder V , who can only receive two types of packets, RREP and ACK,
during the RREP phase.

Let’s use Figure 1 to describe a simple example of self-healing route discovery. If B is a malicious forwarder,
B can use rushing attack to make C believe that the best path between source A and destination C goes through
B. Therefore, C will unicast back an RREP packet to B. Fortunately, even though the malicious B will drop the
RREP packet or send a corrupted RREP packet, the other cooperative nodes in the community area will be able to
identify the situation and try to take over as the RREP forwarder.

• First, during RREQ phase any cooperative node Bc in the community area already remembered V = B as its
one-hop neighbor and U = A as V ’s upstream node.

• Second, during RREP phase any such cooperative Bc can detect V = B is not willing to forward the packet. In
CSMA/CA, this can be achieved by monitoring the channel idle time and estimating B’s exponential backoff
window size. If Bc is very near B and hears all B’s receptions, then the initial backoff windows size is 2, or
2n+1 after the n-th collision. However, some of B’s receptions cannot be heard by a slightly distant Bc due to
hidden terminals. To count B’s deferring, Bc must add the estimated defer time τdefer = l

w
to the estimation

where l is the estimated packet size (e.g. l =1500bytes) and w is the link capacity (e.g. 11Mbps for 802.11b).
If the channel is idle for more than the upperbound of the estimated backoff window size, then Bc concludes
B has dropped the RREP packet due to whatever reason (e.g., selfishness, maliciousness, route outage due to
mobility, etc.). So Bc initiates its take-over action.

• Third, multiple Bc nodes may compete to forward the RREP packet. Similar to the random delay imposed in
the DSR and AODV’s RREQ forwarding design, each node uses an autonomous random delay to alleviate the
chance of collision. Even if collision does happen, the node W = A determines who wins by sending back a
unicast ACK—the one who successfully receives the unicast ACK from A is the one who takes over.

If S and D are more than two hops away, then the single-hop self-healing procedure described above is executed
from D to S inductively. When the underlying on-demand route discovery selects at least one non-cooperative
RREP forwarder, then like what illustrated in Figure 5 and 6, each actual RREP forwarder depicted is the one who
is ACKed (i.e., the one who is selected by the next RREP forwarder if there are take-over competitors). Figure 6
clearly shows a community is the intersection area of three consecutive transmission circles. Finally it is guaranteed
a valid RREP comes back to S if at least one cooperative node physically presents in every community area en
route.

Discussion: ACK ACKs to the unicast control packets play an important role in community-based secure routing.
At the link layer, an 802.11 unicast is always ACKed. To make our design applicable to non-802.11 MAC schemes,
at the routing layer we implement dedicated short ACKs for RREP packets (also for other unicast control packets,
i.e., PROBE, PROBE REP and data packets piggybacked with probing message described in Section III-D.4).

The ACK design of Algorithm B, BV and BACK
V is justified below:

• If channel error and hidden terminal effect are strong (e.g., when node density is large and traffic load is
heavy), the chance of not overhearing the ACK transmission increases. A node in the community area who
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Other ad hoc nodes

Ad hoc nodes in self−healing communities

 

 
Self−healing communities (C’ takes over C)

Cooperative RREP forwarders

Non−cooperative RREP forwarders

Legend:

C

C’

source
dest

Fig. 5. The take-over design causes no ambiguity in community configuration along a multi-hop path

Ad hoc nodes in self−healing communities

Other ad hoc nodes

 

C

C’

C’’

 
Cooperative RREP forwardiers

Non−cooperative RREP forwarders

Legend:

Self−healing communities (for the non−cooperative C selected by underlying routing) 

Self−healing communities  (Competitors C’ and C’’ not in transmission range & C’ wins) 

B
D

E

source
dest

Fig. 6. A special case in take-over (multiple competitors C ′ and C′′ causes no trouble because of the ACK design)

missed the ACK transmission will try to take over after its own random latency. The action on line 09 of
Algorithm BACK

V is an omni-directional transmission to notify all such nodes about the previous ACK.
• When multiple take-overs are initiated by different nodes around a non-cooperative RREP forwarder. These

taking-over nodes may be out of one-hop transmission range (e.g., using Figure 6 as the example, two nodes
C ′ and C ′′ at the upper corner and the lower corner of the moon-shape community area cannot hear each
other). It is the ACK from the RREP downstream node (line 19–23, Algorithm B) that serves as the critical
notification to the competing nodes.

• As we discussed in the “Discussions: ACK again” below, the formation of a self-healing community is
determined by three consecutive ACK packets (rather than the unicast control packets being ACKed, which
will cause ambiguity in self-healing community configuration). This way, since our design implements ACKed
forwarders at each hop, all self-healing communities en route are henceforth configured without any ambiguity
(as Figure 5 and 6 illustrate).
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Discussion: Fairness in taking over The current forwarder may take over for malicious purposes:

• Correct RREP unicast: If it sends out a correct RREP unicast and the take-over succeeds, then this is a
cooperative action. Even though the node is “malicious” by out-of-band evaluation criteria, the take-over action
fortunately heals the current round forwarding. Certainly this is not a permanent decision. If the forwarder
stops forwarding in the future, then another community member will take over at that moment.

• Intentionally corrupted RREP unicast: A malicious community member Bm may also try to prevent anybody
from taking over (Obviously a selfish community member won’t bother to commit this crime because this attack
consumes its system resource). It can skip Algorithm B (line 5 or 16) to “rush” its take-over unicast, then to
send out an intentionally corrupted take-over unicast. This take-over rushing attack is addressed by requiring
correct ACK contents (line 4 or line 15 of Algorithm B). In addition, a node who has just sent out a take-over
unicast should wait for a well-known timeout (e.g., 1 second) before its next take-over trial. In other words,
if a node Bc finds out another node Bm sends out RREP unicasts too frequently or always corrupted, then it
concludes Bm is a take-over rushing attacker. From now on, channel access requests (e.g., RTS) from Bm are
considered as jamming efforts.

3) Configuration of self-healing communities: A chain of self-healing communities is configured during the
self-healing RREP phase. Each node must maintain a 2-bit membership flag in its on-demand soft-state for an S-D
connection. Each RREP forwarder sets the membership flag to 2. A node overhearing three consecutive RREP
unicast packets sets the membership flag to 1. This is because a self-healing community member must be in the
transmission range of exactly three RREP forwarders: the immediate upstream forwarder, the forwarder in the same
community, and the immediate downstream forwarder. As a result, a new field is added to the existing RREP packet
format:

〈RREP, hop count, . . . 〉
where the underlined part is a counter4 for the purpose of community indexing. It is set to 0 by the destination
D, then increased by one by each RREP forwarder. From the three consecutive hop count values, any community
member can identify the index corresponding to its own community (i.e., the middle one). For example, if a mobile
node overhears three RREP packets (of the same connection) with consecutive hop count values 2, 3, and 4 in
the strict order specified, then it can conclude it is in the community indexed by 3. Finally, to correctly maintain
the communities immediately next to the source S and destination D, a community member only need to hear two
consecutive RREP packets and check whether S or D is involved in the RREP packet transmissions.

Discussion: ACK again For the ease of presentation, we lied a little in the above description. We said “hearing
three consecutive RREP unicast packets” will make a node set its membership flag. This is not true. Actually after
a node overhears the first RREP ACK (the ACK implies the unicast happened but could be missed by the listening
node due to network dynamics), it will set its membership flag only after hearing the next two RREP ACKs (plus
the corresponding RREP unicasts) instead of RREP unicasts only. As we explained in “Discussion: ACK”, an
ACK uniquely identifies the RREP forwarder at each hop when there are take-over competitions (here obviously
an un-ACKed RREP unicast is just a noise).

4) Reconfiguration of self-healing communities: The self-healing communities lose shape due to mobility and
other network dynamics. For each S-D connection, we use periodic end-to-end probing to reconfigure self-healing
communities. The probing interval Tprobe is adapted with respect to network dynamics. Figure 7 illustrates the reason
why self-healing routing is robust against node mobility, which translates existing communities into amorphous
shapes over time. Ideally, given a maximum mobility speed and assume Tprobe is adaptively adjusted to an appropriate
value, then the probing can successfully re-configure the self-healing communities en route if at each hop there
is at least one old community member (e.g., newF in the figure) still stay in the forwarding area. At the hop
such a community member bridges the gap between the old amorphous community and the new community.

4This counter is added only for the purpose of identifying the sequence in RREP forwarding. In a specific regular on-demand routing
protocol, this field again could be spared and no change is made to RREP. For example, in DSR the sequence of RREP packets can be
identified by looking at the decreasing source routing list.
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Therefore, upon an ideally adapted Tprobe there is no need to flood the network with RREQ for the purpose of
route maintenance.

 

S

oldF

newF

D

Newly re−configured community

Old community becomes amorphous
due to random node mobility

Node D’s roaming trace

Fig. 7. Reconfigurable self-healing communities are robust to node mobility

We firstly describe how Tprobe is selected in practice following a heuristic design. Whenever a take-over action
happens, the taking-over node Bc also sends a short report to the source S

〈TAKE OVER REPORT , (S,D, seq#), Bc, B〉
where (S, D, seq#) identifies the end-to-end connection and B is the forwarding node being taken over. Tprobe is
initialized to be R

v
where R is the well-known one-hop transmission range and v is the estimated average node

mobility speed. This initialization value approximates the time needed to roam out of one-hop transmission range.
Then the source decreases its Tprobe by τdec = 100ms upon receiving such a take-over report, and increases Tprobe

by τinc = 10ms if no take-over report is received in the most recent second.
As frequent take-over actions indicate more network dynamics or more non-cooperative behaviors, the heuristic

scheme seeks to maintain fresher self-healing communities by issuing more probing requests. Meanwhile it also
seeks to decrease probing overhead when the self-healing communities en route are relatively stable. As a result,
even if the number of RREQ flooding for each connection is not 1 (which is the ideal case), this heuristic scheme
significantly reduces the flooding frequency. This implies RREQ rate-limit proposals [13][23] are practical in
community-based security.

We then describe the probing protocol details. The source S is responsible to keeping the on-demand route
alive because it knows whether there is further data transmission. For every Tprobe timer, the source S sends out a
PROBE packet.

〈PROBE , (S,D, seq#), round#, upstream, hop count〉.
where round# is increased from 0 to 216 − 1 by 1 per probe (and wrap around since then), the meaning of
upstream or hop count is similar to the one used in RREQ/RREP packet format.

Upon receiving a PROBE message, the destination D replies with a PROBE REP packet (with D,S, seq# and
round# copied from the corresponding PROBE).

〈PROBE REP , (D,S, seq#), round#, hop count〉.
In general, like the RREP phase, probing packet forwarding follows a self-healing procedure which tolerates

malicious and selfish behaviors. Then self-healing communities en route are reconfigured by monitoring the for-
warding chain. That is, a node who forwards the PROBE or PROBE REP message sets its membership flag to
2 (i.e., the forwarding member), and any node overhearing three consecutive ACKs (of PROBE or PROBE REP
messages) should set its membership flag to 1 (i.e., the non-forwarding member). The hop count field, which is
increased by 1 at each stop, is similar to the same field in RREP packets to identify the indexes of self-healing
communities.
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Example 1: (Analogical example to show the reason why L’Hospital’s community design can cope with
mobility) To better understand the seemingly complex algorithms described below, let’s firstly present an intuitive
explanation. Intuitively, let’s say we do PROBE using a special RREQ flooding rather than unicasts. The special
RREQ packets are flooded in the network just like the initial RREQ flood except with one catch: the special
RREQ (of an S −D connection χ) is only forwarded by the current community members (of χ), which have been
set up previously in RREP phase or previous probing rounds. This way, the special RREQ flood does not incur
network-wide overhead. It only incurs forwarding overhead in the community areas. When Tprobe is small enough,
it is clear that the constrained RREQ floods can maintain ad hoc routes just like network-wide floods, but with
much less RREQ forwarding overhead. 2

Nevertheless, any flooding can be explored by the adversary to launch denial-of-service attacks. By changing
the constrained RREQ flooding into more efficient PROBE unicasts (like RREP, it is with self-healing take-over
protections), we obtain Algorithms P, PV , and PACK

V described below5.

Algorithm P: A node V ′(6= V ) just overheard the first PROBE packet E→V for the current round PROBE:
00 Insert E in my soft-state neighbor set; Remember E as V ’s upstream node.
01 IF (V is not in my soft-state neighbor set)
02 End of the algorithm execution, no need to continue.

/* V must correctly ACK E */
03 WHILE {(My soft state for connection S − D is still alive) AND
04 (V didn’t correctly ACK E within the bounded 802.11 backoff window)}
05 Wait for an autonomously decided random time;
06 IF (During the waiting period nobody has taken over)
07 I take over; send a take-over ACK to E: V ′→E replacing V ;
08 Quit Algorithm P; run line 02 and 03 of Algorithm PV .
09 ELSE
10 V := the node who is ACKing to E. Insert V in my soft-state neighbor set;

/* V must correctly forward and receive X’s ACK, or I take over V via randomized competition */
11 U := the upstream node field in the PROBE packet;
12 WHILE {(My community membership flag for the connection S − D is set) AND
13 (U is not in my soft-state neighbor set) AND
14 (V is in my soft-state neighbor set)}

/* I am a potential member to take over V */
15 IF {(V didn’t correctly forward within the bounded 802.11 backoff window) OR
16 ( (Heard a correct V →X unicast) AND
17 ( (X is in not my soft-state neighbor set) OR
18 ((X is in my soft-state neighbor set) AND (X didn’t ACK V within the bounded 802.11 backoff window))

)
)}

19 Wait for an autonomously decided random time;
20 IF (During the waiting period nobody has taken over)

/* I take over */
21 Change the PROBE packet’s upstream node field to E.
22 Unicast the PROBE packet to my next stop X (according to the underlying routing protocol).
23 ELSE
24 V := the neighbor node who is taking over. Insert V in my soft-state neighbor set.
25 ELSE

/* V →X is correctly forwarded and ACKed. Over. */
26 Break the loop.

If the node is V , then it follows the protocol specified in Algorithm PV and PACK
V .

5Note that the current community indexes derived from hop count do not affect Algorithms P, PV , and PACK
V . In L’Hospital, the

hop count field is merely used for setting up community membership flags.
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Algorithm PV : A node V just received the first PROBE packet E→V for the current round PROBE:
00 Remember E as my PROBE upstream. Insert E in my soft-state neighbor set;
/* ACK back to E */
01 Transmit unicast ACK: V →E;
/* Forward the PROBE */
02 X := my next stop (according to the underlying routing protocol);
03 Forward the PROBE packet: V →X ;

Algorithm PACK
V : A node V just received an ACK packet X ′→V for the current round PROBE:

00 Insert X ′ in my soft-state neighbor set;
01 X := my next stop (according to the underlying routing protocol);
02 IF (X = X ′)
03 Immediately record that X has ACKed me;
04 ELSE
05 Wait a specific timeout (e.g., 100ms) for X’s reply (this is for countering a rushing attacker X ′);
06 IF (My soft-state shows that X has not ACKed me)
07 Replace X by X ′ in my soft-state’s PROBE upstream record;
08 ELSE /* X has already ACKed me */
09 The ACK is redundant due to competition (line 07 of Algorithm P); re-transmit PROBE: V →X .

The source S should only perform line 02 and 03 of Algorithm PV ; the destination D should only perform line
00 and 01 of Algorithm PV . Line 17 of Algorithm P is added for countering a malicious node V who lies about
its next stop (e.g., X is a non-existing node). Adding this line potentially causes a redundant transmission from
V ′. But this overhead is needed to counter the liars.

For processing probing replies, we specify Algorithm PR as the probing counterpart of Algorithm B, where
RREP is replaced with PROBE REP. Algorithms PRV and PRACK

V are similarly specified. It is straight-forward to
treat the initial RREP as a special round 0 of probing reply, and the successive rounds of probing replies as round
1, 2, and so on. The specifications of Algorithms PR, PRV and PRACK

V are spared in this report because they are
identical to Algorithms B, BV , and BACK

V except RREP is replaced by PROBE REP.

Discussion: Piggybacked probing for reducing overhead Since both PROBE and PROBE REP are short
messages, they can be piggybacked to ongoing data traffic (it is easy to see that the connection identifier field
(S, D, seq#) in piggybacked data packets is redundant and hence removed).

Discussion: Inconsistent states Due to wireless channel contentions and errors, it is possible that a de facto non-
forwarding community member fails to overhear at least one of the three consecutive ACKs (of RREP or PROBE
or PROBE REP or piggybacked data packets) of the current round. Fortunately, this unlucky node has the chance
to rectify its incorrect membership flag at the time of next probing round.

5) Self-healing data delivery: Community-based data delivery is a combination of conventional node-based data
forwarding plus community-based healing. At the source, the source node is unambiguously the current forwarder.
At each intermediate stop, the most recent RREP (or PROBE or PROBE REP or piggybacked data packet) forwarder
is supposed to be the current forwarder. Such a current forwarder plays the role of “core” in the associated self-
healing community. However, if this node fails to forward data packet due to maliciousness, selfishness, or network
dynamics, members in the associated self-healing community will make up.

Algorithm C: During data delivery, a node (6= V ) just overheard a unicast data
packet E→V for an S − D end-to-end connection:
0 Insert E in my soft-state neighbor set;
1 W := my next stop (according to the underlying routing protocol);
2 WHILE {(My soft state for connection S − D is still alive) AND
3 (My community flag in the soft state is set) AND
4 (V didn’t correctly forward within the bounded 802.11 backoff window)}
5 Waits for an autonomously decided random time;
6 IF (During the waiting period nobody has forwarded correctly)
7 Unicast the data packet to W .
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If the node is V , then it immediately performs lines 0,1 and 7 of Algorithm C.

Note that Algorithm C requires make-up but no take-over and no network layer ACKs for unicast data packets.
Another design choice is to follow Algorithm B so that each unicast data packet becomes a unicast control packet.
Although this ensures per-hop reliability and thus significantly changes the network’s data forwarding behavior, it
may be a good choice when per-hop data packet loss ratio is huge (e.g., when either the channel error rate or the
ratio of compromised nodes approaches 1).

Discussion: Why “core”? Multi-path routing [26][18] is an alternative choice of community-based routing. A
significant difference between multi-path routing and community-based routing is: when route healing occurs, no
coordination is considered in these designs, so the healed path could be separated and scattered. But in our design
the damaged path is healed towards the core node, i.e., the intended forwarders selected by the underlying routing
protocol. This achieves backward compatibility.

Discussion: Cryptography for community-based secure routing L’Hospital’s key management is straight-
forward based on conventional key management schemes: a cryptographic key is shared between two neighboring
communities rather than two neighboring nodes. The key is used in encryption and message authentication to
protect message privacy and integrity against external adversary. In particular, every packet that is transmitted to a
community member must be seen/decrypted by other community members so that they can monitor misbehaviors.

Some simple solutions for community-based key management are available now. Recently Deng et al. [9] proposed
a cluster key design based on a global key and a distributed echo-back scheme. This key management design can
be used to protect our self-healing communities—the RREQ/RREP route discovery phases are protected by the
global key, then each RREP forwarder treats its community as a cluster in [9]. Currently we are investigating more
resilient methods to avoid the use of global key and more efficient methods to reduce the incurred key management
overhead.

E. General discussions on the protocol design

Soft-state design In MANET routing an adaptive soft-state strategy is used to cope with the highly dynamic
network. For example, routing states are maintained using timeouts, and all unicasts and ACKs are tried for a
threshold number of time (then errors will be reported to upstream if necessary). In the community-based secure
routing, various new states are added to the underlying routing protocol’s soft-state. These include set of current
neighbors, community membership flags and probing interval Tprobe. These records are maintained in the same way
that DSR and AODV maintain their routing states.

Wormhole attack In [14] Hu et al. proposed to use “wormholes” to attack ad hoc routing schemes. Compared
to active jamming, wormhole attack [14] is more “covert” in nature and harder to detect. A wormhole attacker
tunnels messages received in one location in the network over a low latency link and replays them in a different
location. This typically requires at least two adversarial devices colluding to relay packets along a fast channel
available only to the attackers, so that a temporal-spatial “wormhole” is realized with respect to multi-hop routing.
The “wormholes” nodes can selectively let routing messages get through. Then the “wormhole” link has higher
probability to be chosen as part of multi-hop routes due to its excellent packet delivery capability. Once the attacking
nodes know they are en route, they can launch “black hole” attack to drop all data packets or “gray hole” attack
to selectively drop some critical packets.

In MANET, a typical countermeasure against wormhole attackers is to verify neighbor relation. This is due to the
fact that radio propagation speed is the maximum in physics. Hence wormholes shorter than one-hop transmission
range impose little threat as the original transmission (which is to be replayed by the short-range wormhole devices)
features better routing metrics. (1) Physical layer countermeasures, such as RF watermarking, seek to prevent
wormholes by increasing the difficulties to capture the signal patterns. The data bits are transferred in some special
modulating method known only to the neighbor nodes. (2) Packet leash is a solution proposed by Hu, Perrig and
Johnson for wormhole detection [14]. The leash is the information added into a packet to restrict its transmission
distance. It requires either geographical location service support, or time synchronization amongst neighboring
nodes. In the geographical leashes, the location information and loosely synchronized clocks together verify the
neighbor relation. In the temporal leashes, the TIK protocol efficiently bounds a packet’s transmission distance
given tightly synchronized clocks. (3) An approach to detect wormholes without clock synchronization is proposed
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by Capkun et al. [32]. Every node is assumed to be equipped with a nano-second hardware that can use variants
of Brands-Chaum protocol [7] to securely measure one-hop distance bound. (4) Another approach is based on the
use of directional antennas. In [12], neighboring nodes examine the directions of the received signals from each
other and a shared witness. Only when the directions of both pairs match, the neighbor relation is confirmed.

In this paper we assume that the network is already protected by either packet leashes or variants of Brands-Chaum
protocol. This way, any pair of topological neighbors in ad hoc routing are indeed physical neighbors.

Directional and variable-power transmissions As described in [1], malicious nodes may use directional antenna
and variable-power transmissions to attack ad hoc routing. In the context of community-based secure routing, the
essence of such attacks is to break our design assumption that all nodes use omnidirectional radio with (nearly)
identical transmission range.

A B C
D

RREQ broadcast forwarding

RREP unicast forwarding

X1

X2

Fig. 8. Attackers using directional or variable-power transmissions

Fortunately, such misbehavior can be fixed in community-based secure routing. We divide the discussion into
two major cases: in CASE I the malicious nodes do not use directional or variable power transmission during the
initial RREQ flooding procedure; and in CASE II the malicious nodes do.

In CASE I, the initial RREQ flood is done as described in previous sections. As depicted in Figure 8, the
destination D is cooperative with its own connections so it uses standard omni-directional radio in its transmissions.
Then every cooperative forwarder en route follows the same rule, until the moment the RREP packet meets an
adversarial forwarder. Without loss of generality, let’s assume the adversarial node is C , who uses a directional (or
variable-power) transmission to unicast back ACK to D.

• Algorithm B is triggered on the de facto community members X1 and X2 once they receive the RREP
transmission D→C . Algorithm B (line 04) ensures that X1, X2 will invoke their take-over actions as they
cannot hear C’s ACK.

• If C has ever ACKed D by directional ACK transmission, D will resend D→C due to Algorithm BACK
V (line

09). C must eventually let X1 and X2 hear its ACK to D, or is trivially detected as a malicious node.
Or C uses a directional (or variable-power) transmission to forward the RREP packet to its RREQ upstream

node B.
• Algorithm B is triggered on the de facto community members X1 and X2 once they receive the RREP

transmission D→C .
• Now that both C (the receiver in RREP transmission D→C) and B (recorded RREQ upstream node of C) are

in X1, X2’s neighbor lists (e.g., the list is maintained during the initial RREQ flood), Algorithm B (line 13)
ensures that X1, X2 will be invoked no matter what C does. If B has ever ACKed C , B will notify X1, X2
about its decision. Therefore, the case is same as the one when X1 or X2 missed C→B transmission due to
channel error or hidden terminal contention (see “Discussion: ACK” in Section III-D.2).

In a nutshell, in Algorithm B we have already considered CASE I.

In CASE II, a malicious node V uses directional antenna in RREQ forwarding. Such misbehavior can be countered
by secure neighbor detection protocols, which have been studied in many secure routing literatures [15][20]. In
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the example depicted in Figure 8, C has to authenticate itself to its one-hop neighbors using a secure neighbor
detection protocol when it roams into a new neighborhood, otherwise nobody will forward its packets (including
RREQ packets). Although C uses directional transmission in its RREQ forwarding, by changing Algorithm B line
13 to “V is in my soft-state neighbor set”, it is guaranteed that the de facto community members X1 and X2
will initiate the take-over process as usual. Now that X1 and X2 do not know B is C’s upstream node because
they did not hear C’s directional RREQ forwarding. In this case each of them will forward to its own upstream
node recorded for the end-to-end connection. This results in a furcation and eventually multiple healed paths to
the source. The source has the choice to use the best one (e.g., the one with first coming-back RREP) in unicast
routing.

Packet modification attacks It is possible that a malicious network member attacks L’Hospital by using a
random node in the upstream field. We add a simple enhancement in secure neighborhood discovery to detect such
forged upstream nodes: the secure neighborhood discovery is rendered for 2-hop neighborhood rather than 1-hop
neighborhood. This requirement incurs more neighborhood discovery overhead, but is needed to counter a more
insidious adversary.

For another field hop count used in L’Hospital, a malicious network member can launch attacks by not following
the “increment-by-1” rule during unicast control packet forwarding. This anomaly is detectable by a simple intrusion
detection system monitoring the field.

Collaborative adversarial RREP forwarders It is possible that there are collaborative adversarial nodes in
the network. All algorithms specified in this report are unaffected if the adversarial nodes are not consecutive
RREP forwarders (i.e., at most every other RREP forwarder is non-cooperative). If two or more consecutive RREP
forwarders are adversarial, then the situation is similar to the one of directional RREQ forwarding. Again we use
Figure 8 as the example. When X1 is taking over and B is adversarial, B does not correctly ACK X1 (otherwise
X1’s take-over succeeds). Right now X1 uses its own upstream node recorded for the connection. Similarly, X2
will do the same thing. This results in a route furcation and eventually multiple healed paths to the source, who
will make the final decision on how to use the result.

Enforcing end-to-end route discovery (or ensuring RREP is from the destination) In L’Hospital, topological
neighbors are indeed physical neighbors assuming an underlying secure distance bounding protocol. Therefore, if
RREP is indeed from the destination, then the first RREP received must be the valid RREP used in the underlying
ad hoc routing protocol because

• RREP is unicast. There is no competition if an RREP forwarder behaves properly. Rushing attack [15] is not
applicable here.

• By induction, for the base case the destination is cooperative with its own connections, so the first RREP is
the valid RREP to the next cooperative RREP forwarder; if this is also true for the i-th cooperative RREP
forwarder, then the (i + 1)-th RREP forwarder will receive the valid RREP as its first RREP (of the current
route discovery).

The following problem statement and cryptographic countermeasure can be used to protect route discovery.
Given two ends S and D of a connection, how does S ensure that an RREP packet must be originated from D?

The answer is that S adds a commitment field commit in its RREQ packets,

〈RREQ, upstream node,KD(Kreveal),Kreveal(α), . . . 〉
where K(M) means using key K to encrypt message M , KD is the public key of D (or an end-to-end symmetric
key shared between S and D if available), α can be fixed to any well-known plaintext (e.g., “ad hoc routing”), and
Kreveal is a random nonce selected for each route discovery.

Then D presents a de-commitment field in its reply. In the previous case, the de-commitment field Kdecommit =
Kreveal. In other words, RREP packet has a newly added field

〈RREP, hop count,Kdecommit, . . . 〉
Any community node can verify whether

Kreveal(α)
?
= Kdecommit(α).

If it is a match, then the RREQ reply does originate from the destination D. Otherwise, the RREP packet must
be ignored.
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Similar technique is also applicable to PROBE and PROBE REP packets, so that each probe is rendered end-to-
end. The source can also set up a commitment in the current PROBE round, then open the decommitment in the
next PROBE round. An exemplary protocol to commit next round in the current round is Guy-Fawkes protocol [2].
In particular, the RREQ phase is 0-th round probing, and the RREP phase is 0-th round probing reply. In i-th
round probing, the source selects a random nonce Xi, computes its hash h(Xi) using a cryptographic one-way hash
function, appends h(Xi) and Xi−1 to the the current probing packet Mi, finally computes Zi = h(Mi, h(Xi), Xi−1)
and appends Zi to the current probing packet. Each verifying node only needs to cache or obtain Xi to authenticate
the probing packet (by comparing the computed Zi and the embedded Zi in the packet). The first nonce X−1 used
in RREQ needs to be bootstrapped by some external mechanisms, for example, a conventional digital signature.

Energy efficiency Community-based security requires each ad hoc node to constantly monitor its neighborhood
(including configured communities if there is any). This implies the network interface must be ready for packet
reception all the time. Real measurements [31][11] have shown that various network interfaces consume much less
energy in the “receive mode” than in the “transmit mode”, and on some popular interface cards the energy consumed
in the “receive mode” is comparable to the “idle mode” (though there is no standard definition, “idle mode” typically
refers to an energy efficient quasi-active mode so that the device’s energy consumption is minimal and the device
can be made active in minimal latency). Various schemes [30] have also been proposed to significantly decrease
energy expense for the “receive mode” without affecting wireless packet reception guarantee.

IV. ANALYTIC STUDY ON L’Hospital’S EFFECTIVENESS

In this section we use an analytic model to verify the effectiveness of community-based secure routing. We define
a quantity “effectiveness gain” EG to quantify the gained routing effectiveness.

A. Underlying spatial model

We divide the network area into a large amount of small (virtual) grids, so that the grid size is even smaller than
the physical size of the smallest network member. This way, each grid is either empty, or is occupied by a single
node. Also because the network area is much larger than the sum of all mobile nodes’ physical size, the probability
that a grid is occupied by a mobile node is very small.

Now a bionomial distribution B(n, p) defines the probabilistic distribution of how these grids are occupied by each
mobile ad hoc node. Here n, the total number of grids, is very large; and p, the probability that a grid is occupied by
the single node, is very small. When n is large and p is small, it is well-known that a bionomial distribution B(n, p)
approaches Poisson distribution with parameter λ = n·p. Hence this bionomial spatial distribution is translated into
a spatial Poisson point process [8] to model the random presence of the network nodes. In other words, suppose
that L events occur in area A (here an event is an ad hoc node’s physical presence). If the node density ρ

L
= |L|

A
(where | · | denotes the cardnality of a set, and ρ

L
= |L| · ρ1 if nodes roam independently) is equivalent to a random

sampling of A with rate ρ
L

. Let x denote the random variable of number of related network member nodes. Then
the probability that there are exactly k nodes in a specific area A is

Pr [x = k] =
(ρ

L
A)k

k!
·e−ρ

L
A (1)

The choice of ρ1 depends on the underlying mobility model. Some stochastic mobility models which directly
choose a destination direction rather than a destination point and allow a bound back or wrap-around behavior at the
border of the system area are able to achieve a uniform spatial distribution [4]. However, the others are not. Let’s
use random way point (RWP) model, the most popular one currently used in simulation studies, as the underlying
mobility model. The probability of mobile node’s spatial distribution in RWP model has been extensively analyzed
in various literatures [5] [6] [25]. For a network deployed in a bounded system area, let the random variable
Ω = (X,Y ) denote the Cartesian location of a mobile node in the network area at an arbitrary time instant t. The
spatial distribution of a node is expressed in terms of the probability density function

ρ1 = fXY (x, y)

= lim
δ→0

Pr [(x − δ
2 < X≤x + δ

2 ) ∧ (y − δ
2 < Y ≤y + δ

2 )]

δ2
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The probability that a given node is located in a subarea A′ of the system area A can be computed by integrating
ρ1 over this subarea

Pr [node in A′] = Pr [(X,Y )∈A′] =

∫∫

A′

fXY (x, y)dA

where fXY (x, y) can be computed given geometric properties of the network. For example, as suggested in [6],
we can use the analytical expression

ρ1 = fXY (x, y) ≈ 36

a6

(

x2 − a2

4

)(

y2 − a2

4

)

for a square network area of size a×a defined by −a/2 ≤ x ≤ a/2 and −a/2 ≤ y ≤ a/2.

Therefore, the node density ρ
L

is a location dependent variable. In particular for the random waypoint model,
ρ

L
is higher at the central area and lower at the boundary area [5][6]. For location dependent distributions, the

probability of (1) that there are exactly k nodes in a subarea A′ of the system area A (with respect to a tiny unit
area) is changed to

Pr [x = k] =

∫∫

A′

(

ρk
L

k!
·e−ρ

L

)

dA

where ρ
L

is the node’s spatial distribution function with respect to the underlying mobility model.

B. Geometric properties of self-healing community

In Section III we enforce the policy that the minimal distance between two 2-hop forwarders cannot overhear
each other, that is, their distance is larger than 1-hop transmission range. Figure 9 depicts the maximum case when
the distance between two 2-hop forwarders is (1 + ε)·R (where ε is a negligible quantity). On the other hand,
Figure 10 depicts the minimum case when the distance between two 2-hop forwarders is (2 − ε)·R.

 

A C
B

Fig. 9. Self-healing community: maximum case
 

A CB

Fig. 10. Self-healing community: minimum case

In the minimum case the area is approximately 0. And in the maximum case the area occupied by the self-healing
community is approaching

Aheal =

(

2π

3
−
√

3

)

R2.

Suppose the RREQ procedure is a truly random process where the distance between 2-hop forwarders randomly
distributes over the range between (1 + ε)·R and (2− ε)·R. We expect the size of a self-healing community is the
average case:

E(Aheal) ≈
(

π

3
−

√
3

2

)

R2.

Therefore, the probability that the expected self-healing community area E(Aheal) has exactly k nodes is

Pr [x = k] =

∫∫

E(Aheal)

(

ρk
L

k!
·e−ρ

L

)

dA.
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C. Spatial model with adversarial presence

We adopt a probabilistic adversarial model. Amongst L authenticated network members, there are θ·L non-
cooperative nodes and (1 − θ)·L cooperative nodes. If the network is protected by cryptographic authentication
schemes (e.g., by KDC in Ariadne [13] or by certification in ARAN [27]), non-network member nodes cannot join
the network to be forwarders. Here θ becomes the non-cooperative ratio that quantifies the number of compromised
or selfish network members.

Let y denote the random variable of number of cooperative network members in the expected self-healing
community area. The probability that the expected area has k cooperative nodes is

Pr [y = k] =

∫∫

E(Aheal)

((1 − θ) · ρ
L
)
k

k!
·e−(1−θ)·ρ

L dA

In a community-based secure routing scheme, the per-hop route discovery success ratio is

Pcommunity = Pr [y≥1] = 1 − Pr [y = 0]

=

∫∫

E(Aheal)

(

1 − e−(1−θ)ρ
L

)

dA. (2)

D. Effectiveness gain

In regular on-demand routing, if (at least) one non-cooperative “bad” node presents in the community area and
launches rushing attack [15] in route discovery, then with a high probability prush the bad node will be selected as an
RREP forwarder. For simplicity of analysis, let’s assume prush = 1 and the bad forwarder drops its RREP packet.
Let z denote the random variable of number of non-cooperative network members in the expected self-healing
community area. The probability that the expected area has k non-cooperative nodes is

Pr [z = k] =

∫∫

E(Aheal)

(−θ · ρ
L
)
k

k!
·e−θ·ρ

L dA

In a regular on-demand routing scheme without protection, the per-hop route discovery success ratio is computed
from knowing all nodes in the forwarding area are cooperative. The ratio is only

Pregular =
∞

X

k=1

Pr [y = k|x = k]

=
∞

X

k=1

Pr [x = k|y = k]

Pr [x = k|y 6= k]Pr [y 6= k] + Pr [x = k|y = k]Pr [y = k]

=
∞

X

k=1

Pr [z = 0, y = k]

Pr [x = k|y < k]Pr [y < k] + Pr [z = 0, y = k]Pr [y = k]

=
∞

X

k=1

Pr [z = 0, y = k]
“

Pk−1

i=0
Pr [z = k − i, y = i]

”

Pr [y < k] + Pr [z = 0, y = k]Pr [y = k]

Since random variables y and z are independent, it is true that Pr [y = a, z = b] = Pr [y = a] · Pr [z = b]. Now we
can compute Pregular. However, it is a complex formula and we use the following equation to approximate the
result.

Pregular ≈
∞
∑

k=1

Pr [x≥1] · Pr [z = 0]

=

∫∫

E(Aheal)

(

(1 − e−ρ
L )·e−θρ

L

)

dA. (3)

The per-hop routing effectiveness gain for the community-based secure routing is defined as the ratio between
the two routing probabilities: the self-healing one with community-based security, and the regular one without the
protection.

EG =
Pcommunity

Pregular

≈ 1 − e−(1−θ)ρ
L

(1 − e−ρ
L )·e−θρ

L

EG is a simple metric that does not depend on the size of self-healing community and the number of hops.
Figure 11 and 12 illustrate EG for a very small non-cooperative ratio in a scalable network. The effectiveness gain
is huge. It is even more tremendous when either network scale or non-cooperative ratio increases.
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Fig. 11. Effectiveness gain EG (with normalized ρ1)
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Fig. 12. More details for Figure 11

V. SIMULATION STUDY

A. Simulation Environment

We implement community-based security routing scheme in QualNet [28], a detailed packet- level network sim-
ulator. For our simulations, we use CBR (Constant Bit Rate) application, UDP/IP (User Datagram Protocol/Internet
Protocol), IEEE 802.11 MAC and physical channel based on two-ray ground propagation model. For network device
parameters, we use 2Mbits/sec channel capacity (i.e., bandwidth) and 250 meter power range. Random waypoint
model [16] is used for scenarios with node mobility. The results are averaged over several simulation runs conducted
with various random seeds. In each simulation scenario, 150 nodes are randomly placed within a 2400m×600m
field. For each CBR session, data packets of 512 bytes are generated in a rate of 4 packets per second for 2 minutes.
The source-destination pairs are chosen randomly from all the nodes. During total 15 minutes simulation time, in
average, five short-lived randomly selected CBR sessions are maintained.

We evaluate community-based security routing that builds on top of AODV (denoted as CBS-AODV in the
results) with comparison to original AODV protocol. The following metrics are used for measurement. (i) packet
delivery ratio: the ratio between the number of data packets received and those originated by the sources. (ii)
routing overhead: total bytes of routing control packets. Each hop-wise transmission of a routing packet is counted
as one transmission and its size is counted. For CBS-AODV, new types of control packets are all calculated. (iii)
average end-to-end packet latency: the average time from when the source generates the data packet to when the
destination receives it. This includes: route acquisition latency, processing delays at various layers of each node,
queueing at the interface queue, retransmission delays at the MAC, propagation and transfer delay. Especially
community makeup back off delay is included for CBS-AODV. (iv) average route acquisition latency: the average
latency for discovering a route, i.e., the time elapsed between the first transmission of a route request and the first
reception of the corresponding reply. (v) number of triggered route request flooding: the number of route search
flooding initiated by the sources. This metric is used to show that using the community forwarding and self-healing
community maintenance, recourse depletion attack through excessive control packet flooding can be limited,

Our simulation will investigate (1) impact of internal adversaries on the performance and the resilience of
community forwarding against rushing attack and black hole attack; and (2) impact of node mobility on community-
forwarding scheme under these attacks. In the first simulation study (Figure 13 to 15), we use static network
scenarios to emphasize only the impact of these attacks. We vary the percentage (p) of internal adversaries from
0 to 10% (e.g., if p = 10, 15 nodes (0.1 * 150 nodes) are adversaries). In our second experiment (Figure 19 to
21), we fix the attacker ratio to 1 percent, and vary the node mobility from static to a speed of 10 m/s while the
minimum and maximum speeds are the same. The pause time is set to 30s.

B. Simulation Results

Figure 13 illustrates the delivery ratio as function of increasing attacker ratio in the network. With the increase of
the number of attackers in the network, more attackers will place themselves on the routing paths through rushing
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attacks and hence to perform black hole attacks on data transmission and also to perform resource depletion
attacks. The figure clearly shows that AODV is impaired by the attacks while CBS-AODV suffers little. The results
demonstrated in Figure 14 and Figure 15 further explains this observation. As shown in Figure 14, without a
remedy of community forwarding, in AODV the attacks successfully cause communication sources to issue more
route search-flood as a mean of launching resource depletion attacks. Figure 15 verifies that AODV generates very
high routing overhead when more attackers appear in the network.

Note that Figure 15 also shows potentially higher overhead of CBS-AODV compared to AODV in an ideal
scenario, e.g., static network without attackers in order to maintain the self-healing community chains. However,
such extra overhead is quite limited so the packet delivery is not damaged. Recall that the probing frequency is
adjustable so that one can maintain the probing overhead to be minimized in the ideal network scenario. Notably, the
community maintenance overhead is not however affected by the percentage of attackers as illustrated in Figure 14.

Figure 16 shows the portion of forwarder and non-forwarder that actually performs packet forwarding. In CBS-
AODV, it is clear that with increasing attacker ratio, the forwarders fail more in forwarding, while the community
nodes forward more packets to make up for packet losses at attackers. The figure shows both cases for piggybacking
and not piggybacking probing message on data packets.

Figure 17 and Figure 18 collectively illustrate the delay performance of the community-based security scheme.
The impacts are two folds. On one hand, with the community support, initial route acquisition latency is small
for CBS-AODV due to the fact that any dropping of route reply packets will be backed up by community nodes.
While for AODV, sources have to re-send RREQ packets when replies are not received or not received in time.
This increases the route acquisition time (Figure 17). When attackers increase, the chances of losing RREPs are
higher. On the other hand, in the presence of packet losses, community nodes back up transmissions after a time
period in CBS-AODV. This mechanism produces very high packet delivery ratio in the cost of prolonged end-to-
end delay. The pace of increasing in delay is not fast though when attacker ratio increases. In contrast, Figure 18
shows rapid reducing in end-to-end delay for AODV. This is caused by rapid reduction in packet delivery while
the successfully delivered packets are the ones with closer destinations on average. Our results on path lengths
validates this reasoning (not shown here due to page limit) by showing that AODV reduces path length from 4.36
to 3.61 with the same x axis for this simulation configuration while CBS-AODV remains changes within 0.2 on
average.

Figure 19 to 21 show the impact of node mobility on community based security schemes. The attacker ratio is
set low at one percent so AODV works well when there is no mobility. As we observed from our simulation, the
members of community change frequently due to node mobility. In some extreme cases, a source has to reinitiate
a route request flooding to rebuild the chain.

Figure 19 shows the delivery ratio when only one percent of nodes are attackers. It shows that CBS-AODV
slightly degrades the delivery ratio when mobility increases. As expected, community nodes have forwarded many
packets when primary nodes failed to do so. The reduction in delivery ratio is due to the fact that CBS-AODV has
to rebuild the communities when mobility causes the chain to break. Unlike AODV, CBS-AODV does not have
packet buffering mechanism, thus during the reconstruction period, packets are lost. However, in this low threaten
scenario, AODV degrades quickly because mobility increases chances for link breakage and for attackers to rushing
to the routes.
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Figure 20 demonstrates that when there is mobility, both AODV and CBS-AODV initiated more route discovery
than in a static case. However CBS-AODV generates less flooding than AODV as the probe mechanism remedied
a lot of link breakage on the data paths. The sources are able to continue transmitting data using the new paths
repaired through take over messages. The figure shows that high mobility also increases the change of breakage of
the community chains, which leads to the increase of source initiated flooding.

Figure 21 shows the overall control overhead generated by both protocols when mobility increases. The increasing
trend in control overhead of CBS-ADOV is due to the fact that CBS-AODV adapts its probing interval to a shorter
period when mobility increases. In the current setting the interval changes from 2 second to 0.8 second when
mobility increases from zero to 10 m/s. In the meantime, more TAKEOVER messages are issued in higher mobility
for route repairs. In some cases, such repairs are performed in consecutive hops. After all, the figure shows that
CBS-AODV incurs less control overhead than AODV under the simulation parameters.
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VI. COMPARISON TO RELATED WORK

Recently many solutions are proposed for ad hoc routing schemes to mitigate the problem of routing disruption.
To resist attacks from non-network members, either public key based digital signatures [27] or symmetric key
based protocol (e.g., TESLA [24])[13] is used to differentiate legitimate members from external adversaries.
Afterwards network members refuse to accept or forward any unauthenticated packet. However, such cryptographic
countermeasures cannot fully answer the routing disruption challenge. As demonstrated in “wormhole attack” [14],
“rushing attack” [15] and the resource depletion attacks studied in this paper, malicious nodes can easily disrupt
ad hoc routing without breaking the cryptosystems in use. A wormhole attacker tunnels messages received in one
location in the network over a low latency link and replays them in a different location. The attacking nodes can
selectively let routing messages get through. Then the “wormhole” link has higher probability to be chosen as part
of multi-hop routes due to its excellent packet delivery capability. Once the attacking nodes know they are en route,
they can launch various attack against data delivery. In rushing attack, malicious nodes increase the chance to be
forwarder by rushing RREQ forwarding. Then they can launch similar attacks used by wormhole attackers.
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Network-based countermeasures must be devised to answer the new challenges. In Packet Leashes, Hu et al. [14]
explored geographical distance and synchronized timing to limit a node’s data delivery capability in terms of
temporal and spatial aspects. This mitigates route disruptions caused by “wormhole” attacks. An approach based on
secure distance bounding [7] is proposed by Capkun et al. [32] to detect wormholes without clock synchronization.
Hu and Evans [12] proposed another approach using directional antennas. Neighboring nodes examine the directions
of the received signals from each other and a shared witness. Only when the directions of both pairs match, the
neighbor relation is confirmed. To defeat rushing attackers, Hu et al. [15] proposed to form local communities by
a secure neighborhood discovery protocol. In a local community, RREQ forwarding is delayed and randomized
so that an RREQ rushing attacker cannot dominate other members during the RREQ phase. Route disruption is
mitigated because the chance of selecting a rush attacker on a path equals the chance of selecting a good member.
Our self-healing design adopts a different approach. We implement a faster RREQ phase, then in the RREP phase
we explore the presence of good network members to heal a damaged ad hoc route on the fly. Such self-healing
feature has not been explored in previous secure routing research to counter malicious nodes.

Multi-path routing [26][18] and route fix using local recovery query [29] are alternative choices of community-
based routing. In multi-path routing, more paths parallel (albeit some of them are near) to the optimal path are
maintained, a damaged path is replaced by another path rather than fixed locally. It incurs extra overheads to
maintain paths other than the optimal path and to deliver data on those non-optimal paths. In local recovery query,
the forwarders need to cooperatively query a larger recovery area to fix a damaged link. This cooperative assumption
does not apply to non-cooperative members studied in this work. In general, we adopt a very different approach
to fight against non-cooperative members–we build localized self-healing communities on the optimal path to
counter non-cooperative nodes. In the context of secure routing, Papadimitratos and Haas [21] studied a multi-path
approach to mitigate route disruption attacks. By encoding data packets into erasure codes, the destination is able
to recover the source’s data upon receiving a threshold subset of encoding symbols that have been delivered along
the multiple paths. Awerbuch et al. [3] proposed a multi-path evaluation and probing scheme to detect malicious
packet forwarders. If a malicious forwarder cannot differentiate the data packets without probing piggybacks from
those with, then the source can pinpoint the range of failure on a path. Nevertheless, none of the related work
adopts our localized approach to secure the optimal path discovered by the underlying ad hoc routing protocol.

Local monitoring also improves ad hoc routing security. In secure neighbor detection schemes [15][20], mobile
nodes constantly gather knowledge about its current neighborhood. Each node must prove its network membership
as well as its local presence. Control and data packets are only forwarded for verified neighbors. As we mentioned
in Section III-E, these secure neighborhood detection schemes help community-based routing to subdue attackers
with directional transmission capability. In neighbor monitoring, any wireless node can use “watchdog” [19] or
passive acknowledgement [17] to detect its neighbors’ forwarding misbehaviors. Inside a self-healing community,
members monitor each other’s behavior. We devised autonomous algorithms to guide each member’s actions and
reactions upon detecting non-cooperative events. Routing integrity is achieved if at least one cooperative member
is monitoring when a routing misbehavior occurs.

VII. CONCLUSIONS

In this paper we have studied how non-cooperative network members can threat the secure routing protocols by
various means. In particular, they can deplete network resource and reduce the routing performance to minimum.
These security threats have not been fully addressed in previous research. We propose the concept of “self-healing
community” and show how to use this concept to defend against the new security threats. Our design explores
redundancy in deployment, an inherent feature of ad hoc networking, to let nearby cooperative “good” network
members counter the attacks launched by the non-cooperative nodes.

We rely on localized simple schemes and end-to-end probing to configure and reconfigure “self-healing com-
munities”. The localized design realizes a “localized hospital” (L’Hospital) to save the (optimal) route discovered
by the underlying routing protocol. Ad hoc routes are healed locally within minimal latency. In the ideal case,
only a single initial RREQ flood is needed for each end-to-end connection. In practice, even though this ideal case
is impractical, the RREQ flooding frequency is minimized. By an analytic model we show the effectiveness gain
of community-based secure routing is tremendous. Then we design and simulate secure ad hoc routing protocols
to verify the cost and overhead incurred by reconfigurable self-healing communities. Our study shows that it is
effective and efficient to use the new paradigm to secure common ad hoc routing protocols.
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