
An Adaptive Learning Approach for Noisy Data Streams

Fang Chu Yizhou Wang Carlo Zaniolo
Technical Report, TR040029

Computer Science Department, UCLA

{fchu,wangyz,zaniolo}@cs.ucla.edu

Abstract

Two critical challenges typically associated with mining
data streams are concept drift and data contamination. To
address these challenges, we seek learning techniques and
models that are robust to noise and can adapt to changes
in timely fashion. In this paper, we approach the stream-
mining problem using a statistical estimation framework,
and propose a fast and robust discriminative model for
learning on noisy data streams. We build an ensemble of
classifiers to achieve timely adaptation by weighting classi-
fiers in a way that maximizes the likelihood of the data. We
further employ robust statistical techniques to alleviate the
problem of noise sensitivity. Experimental results on both
synthetic and real-life data sets demonstrate the effective-
ness of this new model learning approach.

1. Introduction

There is much current research interest in continuous
mining of data: i.e., data that arrives continuously in high
volume and speed. Applications involving stream data
abound and include network traffic monitoring, credit card
fraud detection and stock market trend analysis. Practical
situations pose three fundamental issues to be addressed by
any continuous mining attempt.

• Adaptation Issue.

In traditional learning tasks, data is stationary and
the underlying concept that maps the attributes to
class labels is unchanging. With data streams, how-
ever, the concept is not static but drifts with time due
to changes in the environment. For example, cus-
tomer purchase preferences alter with seasons, fash-
ion, and the emerging of competing products and ser-
vices. These changes cause the model learned from old
data obsolete and inconsistent with the new data, and
updating the model becomes necessary. This is com-
monly known as the concept drift problem [20]. It is

considered to be one of the core issues of data stream
mining [8].

• Robustness Issue.

Data contamination is a serious problem since noise
can severely impair the quality and speed of learn-
ing. This problem is encountered in many applications
where the source data can be unreliable, and also errors
can be injected during data transmission. This problem
is even more challenging for data streams, where it is
difficult to distinguish noise from data caused by con-
cept drift. If an algorithm is too eager to adapt to con-
cept changes, it may overfit noise by mistakenly inter-
preting it as data from a new concept. If the algorithm
is too conservative and slow to adapt, it may overlook
important changes (and, for instance, miss out on the
opportunities created by a timely identification of new
trends in the marketplace).

• Performance Issue.

Constrained by the requirement of on-line responses
and by limited computation and memory resources,
continuous data stream mining should conform to the
following criteria: (1) learning should be done very
fast, preferably in one pass of the data; and (2) al-
gorithms should make light demands on memory re-
sources, for the storage of either the intermediate re-
sults or the final decision models. These “fast and
light” requirements exclude computationally expen-
sive algorithms, such as support vector machines, or
very large models, such as decision trees with thou-
sands of nodes.

1.1. Related Work

The concept drift problem has been addressed in both
machine learning and data mining communities. The first
systems capable of handling concept drift were STAGGER
[15], ib3 [2] and the FLORA family [20]. These algorithms
provided valuable insights. But, as they were developed and

tested only on small datasets, they may not be suitable for
data streams which is on a significantly larger scale than
previously studied.

Several scalable learning algorithms designed for data
streams were proposed recently. They either maintain a
single model incrementally, or an ensemble of base learn-
ers. The first category includes Hoeffding tree [10], which
grows a decision tree node by splitting an attribute only
when that attribute is statistically predictive. Hoeffding-tree
like algorithms need a large training set in order to reach
a fair performance, which makes them unsuitable to situa-
tions featuring frequent changes. Domeniconi and Gunop-
ulos [7] designed an incremental support vector machine
algorithm for continuous learning.

The second category of scalable learning algorithms are
ensemble-based approaches. Kolter and Maloof [11] pro-
posed to track concept drift by an ensemble of experts. The
poor experts are weighted down or discarded, and the good
experts are updated using recent examples incrementally.
Their method is limited to situations where the values of
each attribute follow a Gaussian distribution. This assump-
tion is necessary to get an efficient incremental algorithm,
but not practical in many situations.

Other ensemble-based approaches simply partition the
data stream into sequential blocks of fixed size and learn an
ensemble from these blocks. Base models are constructed
once at a time and never updated incrementally, so that any
off-the-shelf learning algorithm can be used. These ensem-
bles adopt different voting schemes to reach a final deci-
sion. Street et al. [17] let their ensemble vote uniformly,
while Wang et al. [18] prefer a weighted voting, assigning
classifier weights proportional to their accuracy on the latest
data block. These two approaches, [17] and [18], are most
closely related to what we will present in this paper, as our
method also builds an ensemble from sequential blocks. For
ease of later reference in comparative study, we name them
asBaggingandWeighted Bagging, respectively. (The name
“bagging” derives from their analogy to traditional bagging
ensembles [4].)

What is missing from the above mentioned work is a
mechanism for noise identification, or often indistinguish-
ably calledoutlier detection (as what we will use there-
after). Although there have been a number of off-line al-
gorithms [1, 14, 5, 12, 6] for outlier detection, they are un-
suitable for stream data as they assume a single unchang-
ing data model, hence unable to distinguish noise from data
caused by concept drift. In addition, outlier detection with
stream data faces general problems such as the choice of a
distance metric. Most of the traditional approaches use Eu-
clidean distance, which is unable to treat categorical values.

1.2. Our Method

To address the three above mentioned issues, we pro-
pose a novel discriminative model for adaptive learning on
noisy data streams, with modest resource consumption. For
a learnable concept, the class of a sample conditionally fol-
lows a Bernoulli distribution. Our method assigns classifier
weights in a way that maximizes the training data likeli-
hood with the learned distribution. This weighting scheme
has theoretical guarantee for adaptability. In addition, as
we have verified experimentally, our weighting scheme can
also boost a collection of weak classifiers into a strong en-
semble. Examples of weak classifiers include decision trees
with very few nodes. It is desirable to use weak classifiers
because it learns faster and consumes less resources.

Our outlier detection differs from previous approaches in
that it is tightly integrated into the adaptive model learning.
The motivation is that outliers are directly defined by the
current concept, so the outlier identifying strategy needs to
be modified whenever the concept drifts away. In our inte-
grated learning, outliers are defined as samples with a small
likelihood given the current model, and then the model is re-
fined on the training data with outliers removed. The overall
learning is an iterative process in which the model learning
and outlier detection mutually reinforce each other.

Another advantage of our outlier detection technique is
the general distance metric for identifying outliers. We de-
fine a distance metric based on predictions of the current
ensemble, instead of a function in the data space. It can
handle both numerical and categorical values.

In section 2 and section 3 we describe the discrimina-
tive model with regard to adaptation and robustness, respec-
tively. Section 4 gives the model formulation and computa-
tion. Experimental results are shown in section 5.

2. Adaptation to Concept Drift

Ensemble weighting is the key to fast adaptation. Here
we show that this problem can be formulated as a statistical
optimization problem solvable by logistic regression.

We first look at how an ensemble is constructed and
maintained. The data stream is simply partitioned into small
blocks of fixed size, then classifiers are learned from blocks.
The most recentK classifiers comprise the ensemble, and
old classifiers retire sequentially by age. Besides a set
of training examples for classifier learning, another set of
training examples are also needed for classifier weighting.
If training data is sufficient, we can reserve part of it for
weight training; otherwise, randomly sampled training ex-
amples can serve the purpose. We only need to make the
two data sets as synchronized as possible. When sufficient
training data is collected for classifier learning and ensem-
ble weighting, the following steps are conducted: (1) learn a

new classifier from the training block; (2) replace the oldest
classifier in the ensemble with this newly learned; and then
(3) weight the ensemble.

The rest of this section gives a formal description of en-
semble weighting. A two-class classification setting is con-
sidered for simplicity, but the treatment can be extended to
multi-class tasks.

The training data for ensemble weighting is represented
as

(X ,Y) = {(xi, yi); i = 1, · · · , N}
xi is a vector valued sample attribute andyi ∈ {0, 1} the
sample class label. We assume an ensemble of classifiers,
denoted in a vector form as

f = (f1(x), · · · , fK(x))T

where eachfk(x) is a classifier function producing a value
for the belief on a class. The individual classifiers in the
ensemble may be weak or out-of-date. It is the goal of our
discriminative modelM to make the ensemble strong by
weighted voting. Classifier weights are model parameters,
denoted as

w = (w1, · · · , wK)T

wherewk is the weight associated with classifierfk. The
modelM also specifies for decision making a weighted vot-
ing scheme, that is,

wT · f
Because the ensemble predictionwT · f is a continuous

value, yet the class labelyi to be decided is discrete, a stan-
dard approach is to assume thatyi conditionally follows a
Bernoulli distribution parameterized by a latent scoreηi:

yi|xi; f ,w ∼ Ber(q(ηi))
ηi = wT · f (1)

whereq(ηi) is the logit transformation ofηi:

q(ηi) , logit(ηi) =
eηi

1 + eηi

Eq.1 states thatyi follows a Bernoulli distribution with
parameterq, thus the posterior probability is

p(yi|xi; f ,w) = qyi(1− q)1−yi (2)

The above description leads to optimizing classifier
weights using logistic regression. Given a data set(X ,Y)
and an ensemblef , the logistic regression technique opti-
mizes the classifier weights by maximizing the likelihood
of the data. The optimization problem has a closed-form
solution which can be quickly solved. We postpone the de-
tailed model computation till section 4.

Logistic regression is a well-established regression
method, widely used in traditional areas when the regres-
sors are continuous and the responses are discrete [9]. In

our work, we formulate the classifier weighting problem as
an optimization problem and solve it using logistic regres-
sion. In section 5 we show that such a formulation and so-
lution provide much better adaptability than previous work.
(Refer to Fig.1-2, section 5 for a quick reference.)

3. Robustness to Outliers

Regression is adaptive because it always tries to fit the
data from the current concept. But, it can potentially overfit
outliers. We integrate the following outlier detection tech-
nique into the model learning.

We define outliers as samples with a small likelihood un-
der a given data model. The goal of learning is to compute
a model that best fits the bulk of the data, that is, the inliers.
Whether a sample is an outlier is hidden information in this
problem. This suggest us to solve the problem under the
EM framework, using a robust statistical formulation.

Previously we have described a training data set as
{(xi, yi), i = 1, · · · , N}, or (X ,Y). This is anincomplete
data set, as the outlier information is missing. Acomplete
data set is a triplet

(X ,Y,Z)

where
Z = {z1, · · · , zN}

is a hidden variable that distinguishes the outliers from the
inliers. zi = 1 if (xi, yi) is an outlier,zi = 0 otherwise.
ThisZ is not observable and needs to be inferred. After the
values ofZ are inferred,(X ,Y) can be partitioned into a
clean sample set

(X0,Y0) = {(xi, yi, zi),xi ∈ X , yi ∈ Y, zi = 0}

and an outlier set

(Xφ,Yφ) = {(xi, yi, zi),xi ∈ X , yi ∈ Y, zi = 1}

It is the samples in(X0,Y0) that all come from one under-
lying distribution, and are used to fit the model parameters.

To infer the outlier indicatorZ, we introduce a new
model parameterλ. It is a threshold value of sample like-
lihood. A sample is marked as an outlier if its likelihood
falls belowλ. Thisλ, together withf (classifier functions)
andw (classifier weights) discussed earlier, constitutes the
complete set of parameters of our discriminative modelM,
denoted asM(x; f ,w, λ).

4. Model Learning

In this section, we give the model formulation followed
by model computation. The symbols used are summarized
in table 1.

(xi, yi) a sample, withxi the sample attribute,yi the
sample class label,

(X ,Y) an incomplete data set without outlier information,
Z a hidden variable,

(X ,Y,Z) a complete data set with outlier information,
(X0,Y0) a clean data set,
(Xφ,Yφ) an outlier set,
M the discriminative model,
f a vector of classifier function, a model parameter,
w a vector of classifier weights, a model parameter,
λ a threshold of likelihood, a model parameter.

Table 1. Summary of symbols used

4.1. Model Formulation

Our model has a four-tuple representation
M(x; f ,w, λ). Given a training data set(X ,Y), an
ensemble of classifiersf = (f1(x), · · · , fK(x))T , we want
to achieve two objectives.

1. To infer about the hidden variableZ that distinguishes
inliers (X0,Y0) from outliers(Xφ,Yφ).

2. To compute the optimal fit for model parametersw and
λ in the discriminative modelM(x; f ,w, λ).

Each inlier sample(xi, yi) ∈ (X0,Y0) is assumed to be
drawn from an independent identical distribution belonging
to a probability family characterized by parametersw, de-
noted by a density functionp((x, y); f ,w). The problem
is to find the values ofw that maximizes the likelihood of
(X0,Y0) in the probability family. As customary, we use
log-likelihood to simplify the computation:

log p((X0,Y0)|f ,w)

A parametric model for outlier distribution is not avail-
able because outliers are highly irregular. We use instead
a non-parametric statistics based on the number of outliers
(‖(Xφ,Yφ)‖). Then, the problem becomes an optimization
problem. The score function to be maximized involves two
parts: (i) the log-likelihood term for the inliers(X0,Y0),
and (ii) a penalty term for the outliers(Xφ,Yφ). That is:

(w, λ)∗ = arg max
(w,λ)

(
log p((X0,Y0)|f ,w)

−ζ((Xφ,Yφ);w, λ)
)

(3)

where the penalty term, which penalizes having too many
outliers, is defined as

ζ((Xφ,Yφ);w, λ) = e · ‖(Xφ,Yφ)‖ (4)

w andλ affect ζ implicitly. The value ofe empirically
depends on the size of the training data. In our experiments
we sete ∈ (0.2, 0.3).

After expanding the log-likelihood term, we have:

log p((X0,Y0)|f ,w)

=
∑

xi∈X0

log p((xi, yi)|f ,w)

=
∑

xi∈X0

log p(yi|xi; f ,w) +
∑

xi∈X0

log p(xi)

Absorb
∑

xi∈X0
log p(xi) into the penalty term

ζ((Xφ,Yφ);w, λ), and replace the likelihood in Eq.3 with
the logistic form (Eq.2), then the optimization goal becomes
finding the best fit(w, λ)∗.

(w, λ)∗ = arg max
(w,λ)

(∑

xi∈X0

(
yi q + (1− yi)(1− q)

)

+ ζ((Xφ,Yφ);w, λ)
)

(5)

The score function to be maximized is not differentiable
because of the non-parametric penalty term. We have to re-
sort to a more elaborate technique based on the Expectation-
Maximization (EM) [3] algorithm to solve the problem.

4.2. Inference and Computation

The main goal of model computation is to infer the
missing variables and compute the optimal model param-
eters, under the EM framework. The EM in general is a
method for maximizing data likelihood in problems where
data is incomplete. The algorithm iteratively performs an
Expectation-Step (E-Step) followed by an Maximization-
Step (M-Step) until convergence. In our case,

1. E-Step: to impute / infer the outlier indicatorZ based
on the current model parameters(w, λ).

2. M-Step: to compute new values for(w, λ) that maxi-
mize the score function in Eq. 3 with currentZ.

Next we will discuss how to impute outliers in E-Step,
and how to solve the maximization problem in M-Step.
The M-Step is actually a Maximum Likelihood Estimation
(MLE) problems.

E-Step: Impute Outliers

With the current model parametersw (classifier
weights), the model for clean data is established as in
Eq.1, that is, the class label (yi) of a samplexi follows
a Bernoulli distribution parameterized with the ensemble
prediction for this sample (wT · f(xi)). Thus, yi’s log-
likelihoodp(yi|xi; f ,w) can be computed by Eq.2.

Note that the line between outliers and inliers is drawn
by λ, which is computed in the previous M-Step. So, the
formulation of imputing outliers is straightforward:

zi = sign
(
log p(yi|xi; f ,w)− λ

)
(6)

where

sign(x) =
{

1 if x < 0
0 otherwise

M-Step: MLE

The score function (in Eq.5) to be maximized is not dif-
ferentiable because of the penalty term. We consider a sim-
ple approach for an approximate solution. In this approach,
the computation ofλ andw is separated.

1. λ is computed using standard K-means clustering al-
gorithm on log-likelihoodp(yi|xi; f ,w). In our exper-
iments we chooseK = 3. The cluster boundaries are
candidates of likelihood thresholdλ∗ separating out-
liers from inliers.

2. By fixing each of the candidateλ∗, w∗ can be com-
puted using the standard MLE procedure. Running a
MLE procedure for each candidateλ∗, and the maxi-
mum likelihood will identify the best fit of(w, λ)∗.

The standard MLE procedure for computingw is de-
scribed as follows. Taking the derivative of the inlier likeli-
hood with respect tow and set it to zero, we have

∂

∂w

∑

yi∈Y0

(
yi

eηi

1 + eηi
+ (1− yi)

1
1 + eηi

)
= 0

To solve this equation, we use the Newton-Raphson pro-
cedure, which requires the first and second derivatives. For
clarity of notation, we useh(w) to denote the first deriva-
tive of inlier likelihood function with regard tow. Starting
from wt, a single Newton-Raphson update is

wt+1 = wt −
(∂2h(wt)

∂w∂wT

)−1 ∂h(wt)
∂w

Here we have

∂h(w)
∂w

=
∑

yi∈Y0

(yi − q)f(xi)

and,

∂2h(w)
∂w∂wT

= −
∑

yi∈Y0

q(1− q)f(xi)fT (xi)

The initial values ofw is important for computation con-
vergence. Since there is no prior knowledge, we can ini-
tially setw to be uniform.

5. Experiments and Discussions

We use both synthetic data and a real-life application to
evaluate our discriminative model’s adaptability to concept

shifts and robustness to noise. Our model is compared with
the two previously mentioned approaches:Bagging [17]
andWeighted Bagging[18]. We show that although the em-
pirical weighting inWeighted Baggingperforms better than
unweighted voting, the robust regression weighting method
is more superior, in terms of both adaptability and robust-
ness.

C4.5 decision trees are used in our experiments, but in
principle our method can be used with any base learning
algorithm.

5.1. Data Sets

Synthetic Data
In the synthetic data set for controlled study, a sample

(x, y) has three independent featuresx =< x1, x2, x3 >,
xi ∈ [0, 1], i = 0, 1, 2. Geometrically, samples are points
in a 3-dimension unit cube. The real class boundary is a
sphere defined as

B(x) =
2∑

i=0

(xi − ci)2 − r2 = 0

wherec =< c1, c2, c3 > is the center of the sphere,r the
radius.y = 1 if B(x) ≤ 0, y = 0 otherwise. This learning
task is not easy due to the continuous feature space and the
non-linear class boundary.

To simulate a data stream with concept drift, we move
the centerc of the sphere that defines the class boundary
between adjacent blocks. The movement is along each di-
mension with a step of±δ. The value ofδ controls the
level of shifts from small, moderate to large, and the sign
of δ is randomly assigned independently along each dimen-
sion. For example, if a block hasc = (0.40, 0.60, 0.50),
δ = 0.05, the sign along each direction is(+1,−1,−1),
then the next block would havec = (0.45, 0.55, 0.45). The
values ofδ ought to be in a reasonable range, to keep the
portion of samples that change class labels reasonable. In
our setting, we consider a concept shift small ifδ is around
0.02, and relatively large ifδ around0.1.

To study the model robustness, we insert noise into the
training data sets by randomly flipping the class labels with
a probability ofp, p = 10%, 15%, 20%. Clean testing data
sets are used in all the experiments for accuracy evaluation.

Credit Card Data
The real-life application is to build a weighted ensem-

ble for detection of fraudulent transactions in credit card
transactions, data contributed by a major credit card com-
pany. A transaction has 20 features, including the transac-
tion amount, the time of the transaction, and so on. Detailed
data description is given in [16, 18]. Same as in [18], con-
cept drift in our work is simulated by sorting transactions
by the transaction amount.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100 120 140 160

A
cc

ur
ac

y

Data Blocks

Robust Logistic Regression
Weighted Bagging

Bagging

Figure 1. Adaptability comparison of the ensemble meth-
ods on data with three abrupt shifts.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100 120 140 160

A
cc

ur
ac

y

Data Blocks

Robust Logistic Regression
Weighted Bagging

Bagging

Figure 2. Adaptability comparison of the ensemble meth-
ods on data with three abrupt shifts mixed with small shifts.

5.2. Evaluation of Adaptation

In this subsection we compare our robust regression en-
semble method withBaggingandWeighted Bagging. Con-
cept drift is simulated by moving the class boundary cen-
ter between adjacent data blocks. The moving distanceδ
along each dimension controls the magnitude of concept
drift. We have two sets of experiments with differentδ
values, both have abrupt large changes occurring at block
40, 80 and 120. In one experiment, data remains station-
ary between these changing points. In the other experi-
ment, small shifts are mixed between abrupt ones, with
δ ∈ (0.005, 0.03). The percentage of positive samples fluc-

Figure 3. Robustness comparison of the three ensemble
methods for different noise levels.

Figure 4. In the outliers detected, the normalized ratio of
(1) true noisy samples (the upper bar), vs. (2) samples from
an emerging concept (the lower bar). The bars correspond
to blocks 0-59 in the experiments shown in Fig.2

tuates between(41%, 55%). Noise level is10%.
As shown in Fig.1 and Fig.2, the robust regression model

always gives the best performance. The unweighted bag-
ging ensembles has the worst predictive accuracy. Both
bagging methods are seriously impaired at the concept
changing points, but the robust regression is able to catch
up with the new concept quickly.

5.3. Robustness in the Presence of Outliers

Noise is the major source of outliers. Fig. 3 shows the
ensemble performance for the different noise levels: 0%,
5%, 10%, 15% and 20%. The accuracy is averaged over 100
runs spanning 160 blocks, with small gradual shifts between

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

8 16 32 fullsize

A
ve

ra
ge

 A
cc

ur
ac

y

terminal nodes of base decision trees in ensembles

Robust Logistic Regression
Weighted Bagging

Bagging

Figure 5. Performance comparison of the ensemble meth-
ods with classifiers of different size. Robust regression with
smaller classifiers is compatible to the others with larger
classifiers.

blocks. We can make two major observations here:

1. The robust regression ensembles are the most accurate
for all the noise levels, as clearly shown in Fig. 3.

2. Robust regression also gives the least performance
drops when noise increases. This conclusion is con-
firmed using paired t-test at 0.05 level. In each case
when noise level increases by 10%, 15% or 20%, the
decrease in accuracy produced by robust regression is
the smallest, and the differences are statistically signif-
icant.

To better understand why the robust regression method
is less impacted by outliers, we show the outliers it detects
in Fig.4. Outliers consist mostly noisy samples and samples
from a newly emerged concept. In the experiments shown
in Fig.2, we record the outliers in blocks 0-59 and calcu-
late the normalized ratio of the two parts. As it shows, true
noise dominates the identified outliers. At block 40 where
concept drift is large, a bit more samples reflecting the new
concept are mistakenly reported as outliers, but still more
true noisy samples are identified at the same time.

5.4. Discussions on Performance Issue

Constrained by the requirement of on-line responses and
by limited computation and memory resources, stream data
mining methods should learn fast, and produce simple clas-
sifiers. For ensemble learning, simple classifiers help to
achieve these goals. Here we show that simple decision
trees can be used in the logistic regression model for bet-
ter performance.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100

A
cc

ur
ac

y

Data Blocks

Robust Logistic Regression
Weighted Bagging

Bagging

Figure 6. Performance comparison of the ensembles on
credit card data. Base decision trees have no more than 16
terminal nodes. Concept shifts are simulated by sorting the
transactions by the transaction amount.

The simple classifiers we use are decision trees with 8,
16, 32 terminal nodes. Full grown trees are also included for
comparison and denoted as “fullsize” where referred. Fig.5
compares the accuracies (averaged over 160 blocks) of the
ensembles. First to note is that the robust regression method
is always the best despite of the tree size. More importantly,
it boosts a collection of simple classifiers, which are weak
in classification capability individually, into a strong en-
semble. Actually the robust regression ensemble of smaller
classifiers is compatible or even better than the two bag-
ging ensembles of larger classifiers. We observed the above
mentioned superior performance of the robust regression
method under different levels of noise.

For the computation time study, we verify that robust
regression is compatible to weighted bagging in terms of
speed. In a set of experiments where the three methods
run for about 40 blocks, the learning together with evalu-
ation time totals a 138 seconds for unweighted bagging. It
is 163 seconds for weighted bagging, and 199 seconds for
the robust regression. The running time is obtained when
full grown decision trees are used. If small decision trees
are used instead, logistic regression learning can further be
sped up yet still perform better than the other two methods
with full grown trees.

5.5. Experiments on Real Life Data

The real-life application is to build a classification model
for detection of fraudulent transactions in credit card trans-
actions. A transaction has 20 features including the trans-
action amount, the time of the transaction, etc.

We study the ensemble performance using different
block size (1k, 2k, 3k and 4k), and different base mod-

els (decision trees with terminal nodes no more than 8, 16,
32 and full-size trees). We show one experiment in Fig.6,
where the block size is 1k, and the base models have at most
16 terminal nodes. Results of other experiments are similar.
The curve shows fewer and smaller drops in accuracy for the
robust regression than for the other methods. These drops
occur when the transaction amount jumps. Overall, the ro-
bust regression ensemble method performs better than the
other two ensemble methods.

6. Summary and Future Work

In this paper, we propose an adaptive and robust model
learning method that is highly adaptive to concept changes
and is robust to noise. The model produces a weighted en-
semble. The weights of classifiers are computed by logistic
regression technique, which ensures good adaptability. Fur-
thermore, this logistic regression-based weighting scheme
is capable to boost a collection of weak classifiers, thus
achieving the goal of fast and light learning. Outlier de-
tection is integrated into the model learning, so that classi-
fier weight training involves only the inliers, which leads to
the robustness of the resulting ensemble. For outlier detec-
tion, we assume that the inlier’s belonging to certain class
follows a Bernoulli distribution, and outliers are samples
with a small likelihood from this distribution. The classifier
weights are estimated in a way that maximizes the train-
ing data likelihood. Compared with recent work [17, 18],
the experimental results show that this statistical model
achieves higher accuracy, adapts to underlying concept drift
more promptly, and is less sensitive to noise.

References

[1] C. Aggarwal and P. Yu. Outlier detection for high di-
mensional data. InInt’l Conf. Management of Data
(SIGMOD), 2001.

[2] D. Aha, D. Kibler, and M. Albert. Instance-based
learning algorithms. InMachine Learning 6(1), 1991.

[3] J. Bilmes. A gentle tutorial on the em algorithm and its
application to parameter estimation for gaussian mix-
ture and hidden markov models. InTechnical Report
ICSI-TR-97-021, 1998.

[4] L. Breiman. Bagging predictors. InInt’l Conf. on
Machine Learning (ICML), 1996.

[5] M. Breunig, H. Kriegel, R. Ng, and J. Sander. LOF:
identifying density-based local outliers. InInt’l Conf.
Management of Data (SIGMOD), 2000.

[6] C. Brodley and M. Friedl. Identifying and eliminat-
ing mislabeled training instances. InArtificial Intelli-
gence, 1996.

[7] C. Domeniconi and D. Gunopulos. Incremental sup-
port vector machine construction. InInt’l Conf. Data
Mining (ICDM), 2001.

[8] G. Dong, J. Han, V. Lakshmanan, J. Pei, H. Wang, and
P. Yu. Online mining of changes from data streams:
Research problems and preliminary results. InInt’l
Conf. Management of Data (SIGMOD), 2003.

[9] T. Hastie, R. Tibshirani, and J. Friedman.The Ele-
ments of Statistical Learning, Data Mining,Inference
and Prediction. Springer, 2000.

[10] G. Hulten, L. Spencer, and P. Domingos. Mining time-
changing data streams. InInt’l Conf. on Knowledge
Discovery and Data Mining (SIGKDD), 2001.

[11] J. Kolter and M. Maloof. Dynamic weighted majority:
A new ensemble method for tracking concept drift. In
Int’l Conf. Data Mining (ICDM), 2001.

[12] J. Kubica and A. Moore. Probabilistic nise identifi-
cation and data cleaning. InInt’l Conf. Data Mining
(ICDM), 2003.

[13] S. Papadimitriou, H. Kitawaga, P. Gibbons, and
C. Faloutsos. Loci: Fast outlier detection using the
local correlation integral. InIRP-TR-02-09, 2002.

[14] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient al-
gorithms for mining outliers from large data sets. page
Int’l Conf. Management of Data (SIGMOD), 2000.

[15] J. Schlimmer and F. Granger. Beyond incremental pro-
cessing: Tracking concept drift. InInt’l Conf. on Arti-
ficial Intelligence, 1986.

[16] S. Stolfo, W. Fan, W. Lee, A. Prodromidis, and
P. Chan. Credit card fraud detection using meta-
learning: Issues and initial results. InAAAI-97 Work-
shop on Fraud Detection and Risk Management, 1997.

[17] W. Street and Y. Kim. A streaming ensemble al-
gorithm (sea) for large-scale classification. InInt’l
Conf. on Knowledge Discovery and Data Mining
(SIGKDD), 2001.

[18] H. Wang, W. Fan, P. Yu, and J. Han. Mining concept-
drifting data streams using ensemble classifiers. In
Int’l Conf. on Knowledge Discovery and Data Mining
(SIGKDD), 2003.

[19] W. Wang, J. Yang, and P. Yu. Mining patterns in long
sequential data with noise. InSIGKDD Explorations,
2000.

[20] G. Widmer and M. Kubat. Learning in the presence of
concept drift and hidden contexts. InMachine Learn-
ing, 1996.

