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Abstract

Node compromise poses severe security threats in sensor networks.
Unfortunately, existing security designs can address only a small, fixed
threshold of compromised nodes; the security protection completely breaks
down when the threshold is exceeded. This paper studies how to achieve
resiliency against an increasing number of compromised nodes. To this
end, we propose a novel location-based approach where the secret keys are
bound to geographic locations, and each node stores a few keys based on
its own location. The location-binding property constrains the purposes
for which individual keys can be used, and decouples the keys bound to dif-
ferent locations, thus limiting the damages caused by a group of compro-
mised nodes. We illustrate this approach through the problem of report
fabrication attacks, where compromised nodes forge non-existent events.
We evaluate our approach through extensive analysis, implementation,
and simulations, and demonstrate its graceful performance degradation
when more and more nodes are compromised.

1 Introduction

Wireless sensor networks are ideal candidates to monitor the environment and
enable a variety of applications such as military surveillance, forest fire monitor-
ing, etc. In such a network, a large number of sensor nodes are deployed over a
remote terrain to detect events of interest (e.g., enemy vehicles, forest fires), and
deliver data reports over multihop paths to the user. Security is essential for
these mission-critical applications working in an adverse or hostile environment.

One severe security threat in sensor networks is node compromise. Sen-
sor nodes are typically unattended and subject to security compromise, upon
which the adversary can obtain the secret keys stored in the nodes, and use
the compromised nodes to launch insider attacks. This threat is aggravated as
the adversary compromises more nodes and secret keys. Unfortunately, most
existing security designs [32, 28, 4] exhibit a threshold behavior: The design is
secure against t or less compromised nodes, but completely breaks down when



more than ¢ nodes are compromised, where ¢ is a fixed threshold. In reality,
however, there is little constrait that prevents the attacker from compromising
more than the threshold number of nodes.

In this work, our goal is to overcome the threshold limitation and achieve
graceful performance degradation to an increasing number of compromised
nodes. To this end, we exploit the static and location-aware nature of sen-
sor nodes, and propose a novel approach of location-based security through two
techniques: location-binding keys and location-based key assignment. In this
approach, we bind secret keys to geographic locations, as opposed to sensor
nodes, and assign such location-binding keys to nodes based on their locations.
We illustrate these concepts in the context of report fabrication attacks, where
compromised nodes forge non-existent events that cause both false alarms and
network resource waste (more details in Section 2). Our design, a Location-
Based Lie Detector (LBLD), demonstrates that such a location-based approach
can effectively limit the damage caused by a group of compromised nodes.

In LBLD, the terrain is divided into a regular geographic grid, and each cell
on the grid is associated with multiple keys. Based on its location, a node stores
one key for each of its local neighboring cells and a few randomly chosen remote
cells. To limit the damage of false alarms, we require that a detected event be
endorsed through keys bound to the specific location of the event. An attacker
compromising multiple nodes may obtain keys bound to different cells, but he
cannot combine such keys to fabricate any events without being detected. To
limit the damage of resource waste, each node uses its keys of remote cells to
verify and drop forged reports passing through it.

Our location-based security design is highly resilient to compromised nodes
for three reasons. First, it prevents the attacker from arbitrarily abusing a com-
promised key, because a key bound to a geographic location can only be used
for purposes related to that particular location (e.g., to endorse events detected
there). Second, it constraints the damage when the attacker compromises mul-
tiple nodes and accumulates their keys, because a collection of keys bound to
different locations cannot be used together for any meaningful purpose. Finally,
it limits the keys stored by individual nodes. because each node is randomly as-
signed only a few keys based on its location. As a result, the security protection
offered by our design degrades gracefully, without any threshold break-down,
when more and more nodes are compromised.

We have evaluated our design through extensive analysis, implementation,
and simulations. The results shows that LBLD is resilient, efficient and scalable.
For example, in a network of 4,000 nodes with each node storing less than 8
keys, LBLD can drop fabricated reports after 4.2 hops on average. When the
adversary have compromised 100 nodes scattered in the network, LBLD can
still prevent false alarms in 99% of the field.

1.1 Related Work

Key management is a fundamental problem in large-scale, resource-limited sen-
sor networks. Several pairwise key establishment schemes [4, 7, 8, 9, 14, 31] have



been proposed to enable mutual authentication between sensor nodes. However,
these designs use node-based keys and do not handle insider attacks such as re-
port fabrication, because the compromised nodes possess the required keying
material to authenticate its messages. Our design differs from them in both the
nature and the usage of secret keys.

SEF [28] and Hop-by-Hop Authentication [32] provide limited defense against
report fabrication attacks through key space partitioning and interleaved au-
thentication, respectively. However, both schemes completely lose their security
protection when the number of compromised nodes exceeds a fixed threshold.
In contrast, LBLD eliminates such threshold behavior and achieves graceful
performance degradation against an increasing number of compromised nodes.

Numerous security solutions have been proposed to address different prob-
lems in sensor network, to name a few, secure broadcast [16], secure routing
[12], secure in-network processing [17, 5], and DoS countermeasures [24]. Our
design is complementary to the literature in securing the protocol stack in sensor
networks.

A few recent security designs also involve geographic locations. Echo [19]
uses an on-site verifier with ultrasound transceiver to verify a location claim.
TRANS [22] monitors the node behavior and bypass the areas of misbehaving
nodes in a routing protocol. A location-aware deployment model is used in [7]
to establish pairwise keys between nearby nodes. However, to the best of our
knowledge, this is the first work that exhibits graceful performance degradation
and provides resiliency against an increasing number of compromised sensor
nodes.

1.2 Organization

The rest of the paper is organized as follows. In Section 2 we describe our models
and assumptions, and highlight the design challenges. We present our location-
based security design in details in Section 3, and analyze its performance in
Section 4. We further evaluate our design using implementation and simulations
in Section 5, and discuss a few design issues in Section 6. We conclude the paper
in Section 7.

2 Background

In this section, we describe our network, threat models and the problem context,
overview an en-route filtering framework, and highlight the design challenges.

2.1 Network Model

We consider a static sensor network that monitors a remote terrain using a
large number of sensor nodes. Each node is battery-powered and embedded with
limited sensing, computation and wireless communication capabilities. The user
queries the network through a data collection unit, called the sink, which can



be a powerful workstation. The nodes detect events of interest in the field, and
deliver data reports over multihop paths to the sink. The sensor deployment
is dense to support fine-grained collaborative sensing and provide robustness
against node failures.

We assume that a sensor node can obtain its geographic location soon after
it is deployed. Sensor localization is required by many applications to determine
the locations of the events, and is currently an active research field [20, 21, 30].
We also assume that some form of geographic routing [10, 13] is used to deliver
the reports to the sink. There are only a small number of static sinks in the
network, and their locations are known when the nodes are deployed. Finally,
we assume that a rough estimation on the size and shape of the terrain is known
a prior.

2.2 Threat Model

We consider an attacker who can compromise multiple nodes in the network,
and we do not impose any bound on the number of compromised nodes. The
attacker can extract all secret keys, data, and codes stored on a compromised
node, and have full control over its actions. The attacker can aggregate the
secret keys obtained from multiple nodes, and store these keys back into each
node. We term this as collusion among compromised nodes.

We assume that the attacker cannot compromise the sink, and it takes him
longer time to compromise a node than it takes for a node to bootstrap itself,
including obtaining its location and deriving location-binding keys. Given the
state-of-art fast localization protocols [10], this can be done in a short period
of time because key derivation only requires local computation'. Similar as-
sumptions are also adopted in an earlier proposal [31]. We also assume that the
localization protocol is secure.

As a show-case example, we focus on one specific attack, namely report fab-
rication attack, in which the compromised nodes inject many fabricated reports
on non-existent events into the network. Such forged reports not only cause false
alarms that deceit the application into wrong reactions , but also waste network
resources (e.g., energy) along the forwarding paths. Note that the forged events
could “appear” not only where nodes are compromised, but also at arbitrary
locations because the compromised node can pretend to be “forwarding” the re-
ports. We do not consider other attacks such as DoS [24] (e.g., channel jamming,
packet dropping) in this work. More security analysis is provided in Section 4.

2.3 En-route Filtering

We adopt a general en-route filtering framework to defend against event fabrica-
tion attacks. The injected bogus reports are dropped en-route as they traverse
the network to save network resources, and the eluded ones are rejected at the
sink to prevent false alarms. In this framework, each node is assigned several

1Our implementation shows that it takes less than 3 seconds for a node to derive all keys.



symmetric keys. The node uses its keys to endorse its own reports and verify
other nodes’ reports passing through itself. The sink further verifies any reports
that it receives. The en-route filtering part of our design, as well as SEF [28]
and Hop-by-Hop Authentication [32], are all specific instances using different
approaches under this framework.

2.4 Challenges

In the above framework, there exists a fundamental tradeoff between the en-
route filtering power and the resiliency to compromised nodes. Intuitively, to
increase the filtering power, each node should store more keys so that it has
larger chances to detect and drop fabricated reports. However, to improve the
resiliency, each node should store less keys to minimize the damage of com-
promise nodes, which may abuse their keys to endorse bogus reports. How to
resolve this conflict and achieve both resiliency and effective en-route filtering
is the primary challenge that our design faces.

The characteristics of sensor networks also pose scalability and efficiency
challenges on our design. The design should scale well to a large network (e.g.,
with tens of thousands of sensor nodes), and work well with low-end sensor
nodes that have stringent computation and storage limitations.

3 Design

In this section, we present the design of a Location-Based Lie Detector (LBLD)
that defends against report fabrication attacks. LBLD achieves resiliency to
compromised nodes through two novel techniques: location-binding keys and
location-based key assignment.

As shown in Figure 1, we bind multiple keys to each cell on a geographic
grid that covers the terrain, and assign these location-binding keys to nodes in a
location-based manner. Specifically, each node stores one key for each local cell
in its sensing range, which is used to endorse its own reports. In addition, each
node also stores one key for each of a few randomly chosen remote cells, which
is used to verify the reports passing through it. A legitimate report is endorsed
by multiple distinct MACs, jointly generated by the detecting nodes using the
keys bound to the event’s cell. The forwarding nodes verify the MACs based on
the claimed event location, and probabilistically filter the fabricated reports.

The rest of this section will answer the following questions: How are keys
bound to locations, and what are their advantages? How are the keys assigned
to nodes in a location-based manner? How are the reports generated? How are
the fabricated reports filtered?

3.1 Location-Binding Keys

In order to assign keys, we divide the terrain into a wvirtual, pre-defined geo-
graphic square grid. Note that we do not build or maintain any grid infrastruc-
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Figure 1: Each square cell on the geographic grid is associated with multiple keys.
Each node stores a few local and remote cell keys based on its own location.

ture [27] in the network; instead, we only use the grid to delineate cells and bind
keys. The square grid is uniquely defined by two parameters: a cell size ¢ and
a reference point (Xo,Yp). Accordingly, we denote a cell by the location of its
center (see Figure 1), which is (X;,Y;) such that

(Xi=Xo+i-¢,Y;=Yo+j-ci,j=0,+1,42 .}

We bind L distinct keys to each cell on the grid. The keys of a cell are
determined by the cell location (X;,Y;), together with L master secret keys K1,
through a secure one-way function H(-)[23]:

Kx,y,s = Her (Xi|Y5) (1)

where s is an index ranging from 1 to L, and || denotes concatenation.

3.1.1 Why Location-binding Keys

The motivation of location-binding keys is to prevent the compromised nodes
from abusing their keys. As described later, each report must be endorsed by
multiple distinct MACs using keys bound to the claimed event location. To
successfully inject a bogus report, the attacker must collect enough keys from a
single cell, because a collection of keys from different cells are useless. This is
extremely difficult due to the randomized key assignment scheme (Section 3.2).
More importantly, even when the attacker has collected enough keys from one
cell, he can only fabricate reports “appearing” in that particular cell. Such con-
straints not only reveal diagnostic information to the sink, but also quarantine
the damaged area, in terms of false alarms, in the field. This is exactly why our
design can be highly resilient to node compromise.



In contrast, the traditional node-based keys are not as effective because there
is no such constraints on the key usage and accumulation. When a report is
required to be endorsed by multiple, say ¢, nodes, a group of ¢t + 1 or more
compromised nodes can freely collude to inject any reports on bogus events
“happening” at arbitrary locations. One may think that a complete map of
each node’s location could remedy this problem. However, in a large-scale sensor
network, the nodes may not afford the storage overhead of such a map, and the
construction and maintenance of this map are also very expensive.

We bind keys to cells instead of the locations of individual nodes, so that each
node can independently derive, without any message exchange, the keys based
on the pre-defined grid structure. The cell size ¢ is an important parameter,
which affects both the key storage overhead and the impact of compromised
nodes. We will analyze this in Section 4.

3.1.2 Deriving Keys from Locations

We exploit a short bootstrapping phase to allow a node to derive keys from
locations. Before deployment, each node is preloaded with one of the L master
secrets, K! as well as the grid parameters ¢ and (Xo, Yp). Once it is deployed
(e.g., via aerial scattering), it first obtains its geographic location through a
localization component [30, 20]. It then uses the location-based key assignment
scheme, which we will describe shortly, to pick up a few cells from the grid, and
derives one key for each cell using Equation 1. This ends the bootstrapping
phase, and the node permanently removes the master secret from its memory
[31].

The key derivation is efficient because it involves only local computation
of light-weight one-way functions, without any message exchange. This makes
the bootstrapping phase very fast, so that the attacker cannot compromise a
node before it finishes the bootstrapping. Therefore, the attacker never knows
the master secrets, and as long as the program loaded in sensor nodes works
correctly, a node will not derive additional cell keys.

3.2 Location-based Key Assignment

The cell keys that a node derives and stores in the bootstrapping phase are
chosen based on its own location. The node stores two types of keys. One type
is for the local cells within its sensing range, called sensing cells?. The node
determines its sensing cells based on its sensing range R, cell size ¢ and its
location, and derives one key for each sensing cell. These keys will be used to
endorse the events the node itself observes. The node also randomly picks up
a few remote cells, called verifiable cells, and derives one key for each of them.
These keys will be used by the node to verify the reports passing through it.
Now we describe which strategy the node should use in selecting its verifiable
cells. In the absence of any a priori information, perhaps the best strategy is

2A cell is a sensing cell if there exists a point in the cell that is covered in the node’s sensing
range.



I o

A'’s Upstream Region

S ° °
o ° b o o °
o o © o °

' (e} o
1) o
° o0 © ° 9
- Lo L
o o o o o
o NodeA © oio o
© o : o.: o
° °© 0 /g
o o ° o @ o ©
o : ° o S0/
0.0 oo o Beam Width b
- o /!
o o o © ° : O\O o o
o o 6 o/ :
: o o /O
jte) o o ’ o o
o ° ° ° J o o o
o o o, o
o o o0 ./0 o o
o .. ° 0. 009 O o o
o e VP
o ° o &'0 0O o
o © o ° °ro o :
: o © o 0
o ] o ,'O o o
o o ’ o o o
o . o
o © % o
o o r° . o 0.:0
o ‘o @ o Sink ° o

Figure 2: A report is forwarded inside a beam of width b from the source to the sink.
Thus each node can estimate its upstream region based on the locations of itself and
the sink.

to uniformly randomly select them from the grid. However, when the sink is
static and geographic routing protocols [10, 13] are used to deliver packets, we
can adopt more intelligent strategy to allow each node to store less keys, while
retaining the filtering power. Note that such reduction has two-fold benefits.
It decreases the key storage overhead yet retains the desirable filtering power,
and more importantly, it improves the system resiliency by limiting the keys
exposed to individual nodes.

The idea is that if a node can estimate its upstream region, i.e., those remote
cells for which it may potentially forward reports, it only needs to pick up a few
verifiable cells from this region. Below we describe how this can be achieved.

3.2.1 Estimating Upstream Region

We exploit the properties of geographic routing to estimate the upstream re-
gion of a node. Such routing protocols typically forward packets in a greedy
manner whenever possible, and use perimeter routing to bypass the “holes” en-
countered. The resulted forwarding paths statistically center around a straight
line connecting the source to the sink. Therefore, we model the forwarding path
using a general beam model. In this model, the possible forward paths form a
beam, the width of which is b, connecting from the source to the sink (illustrated
in Figure 2). The intuition here is to accommodate a “hole” up to a diameter
of b in the forwarding path. We will validate this model and discuss its impact
in Section 5.

With the beam model, a node can estimate its upstream region using simple
geometry. As illustrated in Figure 2, a node A’s upstream region is the shaded



area between the two radiating lines /7 and ls, and away from the sink. From
geometry we can calculate the spanning angle between [; and [» as

a = 2arcsin ——— 2

max (b, 2d) @

where d is the distance from node A to the sink. We can see that a node’s

upstream region depends on the locations of both itself and the sink. In general,

a node closer to the sink has a larger upstream region. This is simply because
reports originating from different places will converge around the sink.

3.2.2 Random Selection of Verifiable Cells

After a node determines its upstream region, it randomly selects a few cells from
this region as verifiable cells. Specifically, a node picks up a cell as its verifiable
cell with a probability of
d
3
Dma;ﬂ ( )

where d is the node’s distance to the sink, and D, . is the maximum distance
between network edge and the sink. Given that the terrain size and shape are
known, D,,.. can be preloaded in the nodes.

There are several features in the above random distribution that are worthy
mentioning. First, the verifiable cells are chosen in a probabilistic manner. This
is because any deterministic scheme could be exploited by the attacker: If he
knows which verifiable cell a node selects, he can fool the node by fabricat-
ing events in other locations. Second, the probability is decided solely by the
node’s location. That is, all cells in the upstream region are considered equally
important and chosen with the same probability. This maximizes the worst-case
filtering performance. For any non-uniform strategy that gives more chance to
some upstream cells and less to others, the attacker can increase his chance
of success by fabricating events in the unfavored cells. Finally, the probability
increases as the node becomes farther away to the sink. This is because such a
node has a smaller upstream region, so it can pick up verifiable cells at a higher
probability without exceeding its storage budget.

We point out that Equation 3 is only one possible strategy in selecting ver-
ifiable cells; a full exploration is yet to be carried out. However, our evaluation
results show that it can indeed provide effective filtering, strong resilience, with
only moderate overhead.

P =

3.3 Report Generation

To be forwarded and accepted, a legitimate report must carry m distinct MACs,
generated using keys bound to the event’s cell. Because every node has one key
for each of its sensing cells, it can endorse any events itself has observed. When
a real event occurs, multiple detecting nodes can jointly generate the required
m MACs.



The detecting nodes first reach agreement on the event description, including
the event’s location, through techniques such as [26, 29]. After that, each node
independently generates a MAC using its own key bound to the event’s cell,
and broadcasts a tuple {s, M AC,}, where s is the key index (between 1 and
L). Each node also records all such tuples announced by its neighbors, and
constructs a complete report after it has received m distinct MAC tuples.

Nodes overhear to avoid duplicate reports. Each node sets a random timer,
and the first node that fires the timer sends out the final report to the sink.
An overhearing node checks the report and updates a counter about how many
tuples in its overheard list are sent. If the counter reaches m, it cancels the
timer because there are enough MACs in the report. Otherwise, upon timer
expiration, it sends out its own report that carries m distinct MAC tuples, with
higher priority on the unused ones.

Note that a legitimate node participates in report generation only when it
has sensed the event by itself. Thus a compromised node cannot deceit its
neighbors into endorsing a fabricated report. The number of MACs in a report,
m, provides a tradeoff between overhead and security strength, which will be
evaluated in Section 4.

3.4 En-route and Sink Filtering

When an intermediate node receives a report, it verifies the report as follows:
It first checks whether the report carries m distinct MACs and indexes. It then
retrieves the event’s location from the report, and checks whether the event
resides in its upstream region. If the event’s cell happens to be its verifiable
cell, i.e., it has a key for that cell, it checks the carried MACs when its own key
index appears in the report. It drops the report when any of the above checks
fail. Otherwise, it forwards the report as usual.

The probabilistic en-route filtering cannot guarantee to drop all fabricated
reports. The sink serves as the final guard in verifying and rejecting any eluded
ones. Because the sink knows all master secrets, it can derive any cell key. When
it receives a report, it retrieves the event’s location, derives the cell keys, and
checks how many correct MACs are carried. Note that there might be multiple
reports for a same event. The sink decides whether to accept the event based
on the total number of correct MACs it has received. If this number reaches m,
the event is accepted; otherwise it is rejected.

4 Analysis

In this section we analyze the performance of our design. We start with the
filtering power of LBLD against single compromised node, then analyze its re-
siliency when more and more nodes are compromised. We also provide an
overhead analysis and a security analysis on relevant attacks, and discuss on
the impact of several design para-meters. Our analysis results quantify the
resiliency, efficiency, and scalability of LBLD.
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Meaning Default
N | total number of nodes in the network | 4K ~ 400K
R | radius of the circular terrain 1Km ~ 10Km
p | node density (p = N/mR?) 0.0016 node/m?
C | width of the square cell 100 m
R, | communication range of a node 50 m
b width of the forwarding beam 150 m
L | number of keys bound to a cell 10
m | number of MACs carried in a report | 5
s length of each MAC in bytes 4

Table 1: Notations and default parameter settings

In the analysis, we consider a circular terrain with a radius of R, over which
N sensors are uniformly spread at random. The sink is located at the center
of the terrain, defined as the origin in the 2D coordinate space. Our analysis
can be applied to other forms of terrain shape, such as rectangle, and sink
location. However, the presentation will be more involved. Table 1 summarizes
the notations used hereinafter, and the default parameter settings in our numeric
evaluations.

4.1 Filtering Effectiveness Analysis

We first consider a base setting where there is one compromised node (or equiva-
lently, non-colluding compromised nodes), and analyze the filtering performance
of LBLD using two metrics: (1) detection ratio: how much chance does LBLD
have in filtering a fabricated report, and (2) filtering position: how far has a
fabricated report traversed when it is filtered. In other words, we are interested
in not only how many fabricated reports are filtered, but also where they are
filtered, to eliminate false alarms and save network resource (e.g., energy).

Let node Z be the compromised node, with a distance of dy to the sink.
A fabricated report injected by node Z is forwarded along a multihop path to
the sink, denoted by Z — A; — .-+ — Ay — Sink, in which the h nodes A;
(1 <i < h) are intermediate forwarding nodes.

4.1.1 Detection Ratio

Because the compromised node has at most one key for any cell, it has to forge
at least m — 1 MACs, which will be detected either en-route or at the sink.
This leads to a detection ratio of 1 — 1/2%%(™=1)_ Given a secure hash function
in generating the MACs, and a security setting with reasonable number and
length of MACs, the brute-force MAC fabrication has almost negligible chances
to succeed.

11
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Figure 3: LBLD can quickly filter fabricated reports en-route, and its filtering power
scales well as the network size increases.
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Figure 4: LBLD significantly saves energy by filtering fabricated reports en-route,
especially in large-scale networks.

4.1.2 Filtering Position

LBLD can quickly filter the fabricated reports en-route by accumulating the fil-
tering power along the forwarding path. This is shown by the following theorem
(proof in Appendix).

Theorem 1 The filtering position h', defined as the expected number of hops
that a fabricated report can traverse, is upper bounded as:

— 1)(d0 B .]Rc)
B <1 o m 4
+ I eI @)
We illustrate the above results in Figure 3, which plots the filtering position
versus the compromised node’s location, specified by its relative distance to the
sink. In this figure, we fix the node density and vary the terrain radius R from
1 Km to 10 Km, and the node population N from 4K to 400K, respectively

12



(see Table 1 for other parameter settings). We can see that in a 1Km-radius
network, a forged report traverses only 4.2 hops on average, and 6 hops at most.
In contrast, without LBLD, a forged report can traverse as many as 20 hops.
Moreover, when the terrain radius increases from 1Km to 10Km, leading to an
100-fold increase in node population, the average distance traversed by a forged
report only doubles (from 4.2 hops to 7.2 hops), while the worst-case distance
only triples (from 6 hops to 18 hops). This shows that the filtering power of
LBLD scales very well when the network size increases.

4.1.3 Energy Saving

The early dropping of forged reports leads to significant energy savings, espe-
cially in large-scale sensor networks. Assuming that all nodes in the network use
the same transmission power, we plot in Figure 4 the energy consumption ratio
between the LBLD-protected paths and the unprotected paths, i.e., h’/h. The
figure shows that LBLD can save energy by a ratio of 43.7% in a 1Km-radius
network, and 81.3% in a 10Km-radius network. Such an increase in the energy
saving ratio is because the filtering position in LBLD increases much slower
than the network size.

Figure 4 also shows that the energy savings of LBLD also depends on the
compromised node’s location. This is because each node picks up its verifiable
cells in a probability proportional to its distances to the sink (Equation 3).
As a result, when the compromised node is further away from the sink, the
downstream nodes along the forwarding path have larger chances to detect the
fabricated reports, which are dropped more quickly.

4.2 Resiliency Analysis

Now we analyze the resiliency of LBLD to an increasing number of compromised
nodes. We consider a general case where the attacker compromises N, nodes and
fabricates reports on bogus events “happening” in cell (X, V). The results show
that the security protection offered by LBLD degrades gracefully, rather than
completely breaking down in the entire network as in existing designs [28, 32].

4.2.1 Graceful Performance Degradation

The attacker cannot arbitrarily abuse the keys due to their location-binding
nature. To fabricate reports without being detected, the attacker must collect
m distinct keys bound to cell (X, Y). We term this as cell compromise. Even
in such cases, the attacker cannot use these keys to forge events in other cells.
Thus the fabricated reports reveal important diagnostic information to the sink.
The sink can quarantine the compromised cells by informing the nodes not to
forward any reports for them. This way, the sink may lose monitoring capability
in a few cells, but the rest of the network is still protected by LBLD.

The location-based key assignment ensures that the compromised cells rep-
resent only a tiny fraction of the terrain. When the compromised nodes are

13
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Figure 5: The performance of LBLD degrades gracefully even in the worst-case sce-
narios.

randomly distributed, the simulation results in Section 5 show that the chance
of cell compromise decreases exponentially with respect to m. Each additional
MAC reduces the probability of comprosing a cell by 10 to 100 fold.

Below we consider the worst-case scenarios where all IV, compromised nodes
are local neighbors, with a distance of dy to the sink. Because neighboring
nodes have largest correlation in their keys, the attacker has largest chance in
compromising a cell. For example, when N, > m, the attacker can compromise
the cell where these nodes reside, and fabricate events in this cell without being
detected. In addition, he may compromise a few remote cells, but LBLD limits
the compromised remote cells within the upstream region of the compromised
nodes. Based on Equation 3 we know that the attacker can collect doév < keys of
a remote cell on average. When the attacker forges events in a remote cell, the
degradation of LBLD’s filtering power is characterized in Theorem 2 (proof in
Appendix).

Theorem 2 With N, neighboring compromised nodes, the filtering position h'
s upper bounded as:

W<i+> JJa- (mR‘doNc)(do—JRc)) )

Figure 5 illustrates the above graceful performance degradation in the worst-
case scenarios. In this figure, we fix the node population as 4K and terrain radius
as 1Km, and gradually increase N., the number of compromised nodes. The
figure shows that the expected number of forwarding hops for fabricated reports
increases only slightly as more nodes are compromised. For example, when N,
increases from 1 to 5, on average LBLD can still filter fabricated reports in 7.3
hops, leading to 27% energy savings. We emphasize that the above is a worst-
case analysis, and LBLD is much more effective in average cases, which we will
show in Section 5 using simulations.
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Figure 6: Each node stores only a small number of keys, and the key storage overhead
scales well in large networks.

4.3 Overhead Analysis

Now we analyze the overhead of LBLD in terms of key storage, computation,
and communication overhead.

4.3.1 Key Storage

In LBLD, each node stores one keys for each sensing cell and a few remote
verifiable cells. The number of sensing cells is a constant, decided by the sensing
range and the cell size. Thus we count only the number of keys for remote
verifiable cells. Based on Equation 3, we can show the key storage overhead in
the following theorem (proof in Appendix).

Theorem 3 The number of keys stored by a node is:

M X arcsin# = O(E) (6)

Niey =
hey 2RC? mazx(b, 2d) C?

where d is the node’s distance to the sink.

Despite its strong filtering power, LBLD only requires the nodes to store
a small number of keys. As shown in Figure 6, when 4K nodes are spread
over a 1Km-radius terrain, each node stores only 3.35 keys (not including the
constant number of sensing cell keys) on average, and 8 keys at most. Note
that the terrain is divided into roughly 300 cells in this setting. This clearly
demonstrates the efficiency of LBLD. The key storage overhead is also location-
dependent. A node closer to the sink tends to store more keys, mainly because it
has a much larger upstream region. Moreover, the key storage overhead scales
well because it increases almost linearly with the terrain radius, i.e., O(v/N)
given a fixed node density. Even in a network with 400K nodes and 30K cells,
each node stores only 32.1 keys on average, and 50 keys at most, which is still
within the resource limitation of existing sensor hardware.
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4.3.2 Computation and Communication

LBLD uses light-weight one-way function as its cryptography primitive, thus
computationally efficient. The communication overhead of LBLD mainly comes
from the MACs carried in the reports. Existing MAC compression techniques,
such as Bloom filters [28], can be applied to reduce the communication overhead.
However, we do not further explore on this issue due to space limits.

4.4 Security Analysis

While LBLD is designed to address event fabrication attacks, it may be abused
by the attacker to launch other attacks. We provide below a security analysis
on two types of such attacks.

4.4.1 Report Disruption Attacks

The attacker may abuse LBLD to disrupt the generation of legitimate reports
on real events. Specifically, the attacker may launch the following attacks: 1)
MAC falsification attacks in which a compromised node announces an incorrect
MAC to its neighbors; 2) impersonation attacks in which a compromised node
impersonates another legitimate node; and 3) Sybil attacks [6, 15] in which
a compromised node presents multiple identities and announces one incorrect
MAC in each identity. As a result, the final report may be poisoned by such
incorrect MACs, and dropped in delivery or finally rejected by the sink.

Note that a compromised node cannot launch the above attacks against
a remote area due to its limited transmission range. Instead, it has to be
physically close the event’s location. A local authentication mechanism, e.g.,
pairwise keys [9] and pTESLA [16], or Sybil defense mechanism [15] can limit
the damage of such attacks: As long as we ensure that each node can announce
only one MAC, the chance that a legitimate report is properly generated is
large. Also, when the sensing range of the nodes is larger than half of their
communication range, the detecting nodes of an event may reside in different
communication neighborhoods. The legitimate nodes one-hop away from the
compromised nodes can still properly generate the report.

4.4.2 Sensor Relocation Attacks

The attacker may physically relocate some nodes from their original locations
to a new one. When a real event happens nearby the new location, these nodes
may generate an incorrect report using their original locations. There are two
cases: a) The attacker has already compromised the relocated nodes. Thus
the sensor relocation attacks do not incur additional damage to LBLD, because
the attacker are already able to control the compromised nodes to fabricate
any reports. b) The attacker has not compromised the relocated nodes. In
such cases, sensor relocation attacks can be defeated by local authentication
mechanisms, because the relocated nodes cannot establish trust with their new
neighbors, and hence their reports will not be forwarded.
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4.5 Impact of Design Parameters

Finally we analyze the impact of design parameters.

The cell size, C, affects the tradeoff between key storage and protection
granularity, but it does not change the filtering power. When C increases, the
number of keys stored by each node decreases in proportion to 1/C? (Equation
6), and it becomes harder for the attacker to collect enough keys of a cell.
However, when the attacker happens to have collected enough keys, e.g., through
compromising multiple local nodes, he can fabricate events in a larger area. The
cell size should not exceed the application requirement on the location accuracy
of event reports.

The number of keys bound to a cell, L, impacts filtering power and generation
of legitimate reports. As shown in Equation 4, a smaller value of L leads to larger
filtering power; however, it also increases the chance that two neighboring nodes
are preloaded with the same master secret. In such cases, they can contribute
only one distinct MAC when a real event occurs.

The number of MACs carried in a report, m, trades off communication
overhead for security protection. Clearly, the more MACs each report carries,
the stronger protection LBLD can provide. However, it comes at the price
of increased communication overhead. Typically, a value between 5 and 10
provides a good tradeoff point between the two extremes.

The choice of b, the width of forwarding beams, does not affect the filtering
power. However, it impacts both storage overhead and delivery ratio of legit-
imate reports. The key storage overhead linearly with respect to b (Equation
6), but a large beam width can improve the report delivery ratio by avoiding
unnecessary dropping of legitimate reports when they traverse outside the for-
warding beam, e.g., due to unexpected node failures. We will further evaluate
this in the next Section.

5 Performance Evaluation

In this section, we evaluate the performance of our design through implementa-
tion and simulations.

5.1 Simulation Results

We use simulations to study such performance aspects that cannot be evaluated
easily through analysis or experiments. Specifically, we evaluate the resiliency
of LBLD under random node compromise, and validate the practicality of the
beam model on geographic forwarding.

5.1.1 Resiliency to Random Node Compromise

Given that we have analyzed the worst-case resiliency of LBLD when multiple
compromised nodes are local neighbors, we are interested to use simulations to
study its average-case performance, when the attacker randomly compromise
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Figure 8: The difficulty to obtain more distinct keys of a cell increases exponentially.

multiple nodes in the network. For this purpose, we developed our own sim-
ulation platform using Parsec [1], mainly because the existing simulators scale
poorly when simulating a large number of nodes. Our simulator implemented
the basic geographic forwarding [13] and the LBLD protocol stack. We sim-
ulated rectangular terrains to complement our circular terrain based analysis.
The parameter settings are similar to the default values in Table 1, unless ex-
plicitly mentioned. Our simulation results show that LBLD is highly resilient
to random node compromises.

We first simulate how many distinct keys of a particular cell the attacker can
obtain by compromising multiple nodes, which is the key factor in evaluating
the resiliency of LBLD. In the simulations, 30K nodes are spread over a 5Km x
5Km field, divided into 100mx100m cells. The sink is located at the center
of the field. We vary the beam width b with 100m and 150m, and gradually
increase the number of randomly chosen compromised nodes from 10 to 100.
Each simulation setting is repeated 1000 times with different random network
topology and distribution of compromised nodes.
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The simulation results show that even with combining all keys stored at all
compromised nodes, it is still quite difficult for the attacker to obtain enough
keys bound to a same cell. This is illustrated in Figure 7, which plots the
number of fully compromised cells versus the number of compromised nodes.
Because we carry 5 MACs in each report, the attacker can fully compromise a
cell when it has collected 5 distinct keys bound to the cell. When the beam
width is chosen as 150m, 100 compromised nodes only lead to the compromise
of 17 cells, or 0.68% of the entire terrain. A decrease of the beam width to 100m
further constraints the damage as only 1.8 fully compromised cells on average.

Figure 8 provides a more detailed view on the aggregate effects of combining
the keys at multiple compromised nodes. We fix the number of compromised
nodes as 100 in these simulations. The figure plots, in a log-linear manner, the
histogram of cells versus their level of damages, i.e., how many distinct keys the
attacker has collected. The X axis is the number of distinct keys exposed to
the attacker, and the Y axis is the total number of cells with a corresponding
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number of keys being exposed. We can see that the chances of collecting ¢
distinct keys of a cell decreases exponentially with respect to ¢. Therefore, by
carrying more MACs in the reports, we can significant enhance the resiliency of
LBLD to even a very large set of compromised nodes.

Next we simulate how the filtering power of LBLD degrades when the at-
tacker happens to have multiple keys of a cell. In the simulations, we vary the
location where the fabricated reports is injected, from adjacent to sink to the
network edge. Since each report carries only 5 MACs, there is no needs to sim-
ulate the cases when the compromised nodes have 5 or more keys. The result
is shown in Figure 9. We can see that with each additional compromised key,
the decrease of filtering power is only marginal, leading to graceful performance
degradation.

5.1.2 Validity of Beam Model

Now we verify the validity of the beam forwarding model used in estimating the
upstream regions. In particular we want to confirm that the legitimate reports
would indeed be forwarded to sink without being accidentally dropped by a
node outside the forwarding beam. For this purpose, we vary the beam width
b with 100m, 150m, 200m, and 250m, and simulate different node density from
12 to 20 nodes per communication neighborhood.

The delivery ratio of legitimate reports is plotted in Figure 10, which shows
that with a moderate beam width of 200m, the delivery ratio can be as high
as 99.2% in a dense network, and 90.6% in a relatively sparse network. Note
that the transmission range of each node is 50m in the simulations. Thus the
beam width is roughly four-hop communication range. Clearly the delivery ratio
depends on the relationship between the beam width and the node density. The
beam width should be set based on the expected node density. With decreased
node density, the beam width should increase accordingly to ensure a high
delivery ratio.

5.2 Implementation and Measurement Results

We implemented the LBLD design on MICA2 motes developed by X-Bow [3].
These tiny computing devices are equipped with an 8-bit 4MHz microcontoller
running a microthread operating system, called TinyOS [2], from its internal
flash memory. The memory size available at each node is limited: 128KB of pro-
gram memory and 4KB of data memory. These stringent resource constraints
clearly require a compact implementation that can fit into the underlying hard-
ware platform.

We implemented a cryptographic primitive of secure hash function based on
a block cipher using RC5 algorithms [18]. This module facilitates the derivation
of location-binding keys, as well as generating and verifying MACs. We also
implemented a generic wireless communication module to exceed the packet
size limit of 29 bytes in TinyOS GenericComm interface. It directly reads
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Module ROM RAM

Bootstrapping 236 58
Report Generation 2820 225
Filtering 106 40
Radio Stack 4130 114
RC5-Crypto 646 128
Others(Timer, Sensing Drivers) 1420 100
Total 9358 665

Table 2: Code size breakdown (in bytes) in MICA2 Platform

and writes the buffer associated with the low-level radio device, and thus can
transmit packets of any length.

5.2.1 Code Size

Table 2 shows a breakdown of the implementation codes size on the MICA2
platform. The LBLD protocol stack (i.e., bootstrapping, report generation,
and filtering) consumes around 3.2K bytes in ROM and 323 bytes in RAM.
Together with the communication module, cryptography module, timer and
sensor drivers, the entire system consumes 9.4K bytes in ROM and 0.67K bytes
in RAM, or 7.3% and 16.6% in percentages for ROM and RAM, respectively.

5.2.2 Execution Time

Our measurement results show that, given a grid of 100x100 cells, it takes a
MICA2 mote 2.8 seconds to derive the cell keys in the bootstrapping phase.
The master key is permanently erased afterwards, posing high time constraints
for an attacker to compromise the critical master key. The MAC generation
and verification is also fast: 10 ms to generate or verify one MAC for a 24-bytes
report.

6 Discussion

In this section we comment on several design issues and identify future research
directions.

Secure Localization Our location-based security design relies on a secure
localization protocol, so that the sensor nodes can securely obtains their loca-
tions within certain accuracy. In fact, secure localization is required in most
monitoring applications to identify the correct location of events. We plan to
devise security solutions for sensor localization protocols [20, 30] in the future.
Asynchronous Deployment The deployment of a large sensor network may
take long time (e.g., a few hours). After the initial deployment, we may still
refill new nodes to replace the failed or out-of-battery ones. In such cases, the
location-aware anchor nodes should be deployed before or together with normal
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nodes to ensure fast localization, so that each node can bootstrap and erase
the master secrets on time, regardless of the global deployment status. We can
further protect the master secrets by setting a timer at each newly deployed
node, and erasing the master secret when the timer fires, even though it has not
been bootstrapped. This may lead some nodes to be useless; however, given the
high density, the network can still function well as a whole.

Terrain Shape The beam forwarding model, used in upstream region esti-
mation, works well with convex terrains. However, it may not hold in concave
terrains (e.g., half-moon shapes). In such cases, a node should use different
strategies, such as a uniform one, in selecting its verifiable cells. We will further
investigate this issue in the future.

Node Density Topology control protocols [29, 25] are commonly used to
prolong the sensor network lifetime by turning redundant nodes into sleeping.
However, our design requires multiple nodes to jointly generate a report. Thus,
a sleeping node should leave its sensing module on, while turning off the major
energy-consumer hardwares such as radio. Once an event happens, nearby nodes
wake up, triggered by the sensing module, and collaborate in generating the
reports. This way, we can achieve both energy efficiency and high sensing
density.

Routing The upstream region estimation scheme in LBLD is designed to
work with geographic routing protocols. Yet several non-geographic sensor rout-
ing protocols, such as Directed Diffusion [11] and GRAB [26], are also shown
to fit well with the beam forwarding model, and thus can potentially work with
LBLD. However, a careful investigation is needed and we leave it for future
research.

Key Update and Revocation One limitation of our current design is that
it does not include key update or revocation. In future research, we plan to
address this problem by binding keys to a spatial-temporal space, i.e., with
both time and location. Thus we can revoke the current keys by providing
forward security in the temporal key chain, e.g., through a reversed hash chain.

7 Conclusion

Node compromise presents severe security threats in sensor networks. To this
end, we have presented the design of LBLD that pursues a location-based ap-
proach in addressing report fabrication attacks launched by compromised nodes.
One salient feature of LBLD is that its security protection degrades gracefully to
an increasing number of compromised nodes. Such resiliency is mainly achieved
through two novel techniques: location-binding keys and location-based key as-
signment. In essence, LBLD provides a desirable balance between secret sharing
and secret separation. It enables the sensor nodes to collaborate in securing the
network by sharing symmetric keys, yet limits the scope and usage of individ-
ual keys, and exposes only a minimum set of keys to each node. We believe
that such a location-based design approach can be applied to tackle many se-
curity problems, such as secure routing and DoS quarantine, to defend against

22



compromised nodes in sensor networks.
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8 Appendix

PROOF of Theorem 1 Let the forwarding path of the fabricated report be
Z — Ay — -+ — A — Sink. The geographic distance from the compromised
node Z to the sink is denoted by dg, while the distance from an intermediate for-
warding node A; to the sink is denoted by d;. Since the maximum transmission
range of a node is R., we know that d; > dy — iR,.

Consider the action taken by node A; after it receives the fabricated report.
Node A; drops the report if the claimed event’s location is outside its upstream
region. Otherwise, node A; has a probability of d;/R (Equation 3)to have a key
bound to the event’s cell, thus able to verify the report. On the other hand, the
compromised node has to forge at least m — 1 MACs in the report. Therefore,
the probability that node A; drops the report, given then it has received the
report, is at least:

P - (m—1) " d; > (m —1)(dp —iR.)

L R RL

Because each forwarding node performs the same checking, the entire path col-
lectively exhibits strong filtering power. The filtering position h’, defined as the
expected number of hops that the fabricated report can traverse, can be derived
as follows.
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PROOF of Theorem 2 The proof is similar to the previous one. When the
attacker has compromised N. node in a local neighborhood, he can collect do—gc
keys bound to a remote cell on average, where dj is the distance from these
compromised nodes to the sink. Thus he needs to forge m — d“—é\lc MACs in the

report. Accordingly, the probability that node A; drops the report becomes:

(m - dONC/R) % i > (mR - dONC)(dO - ZRC)

Pi:
L R~ R2L

Similarly, the filtering position is upper bounded as:

h i—1
o= 14> JJa-P)
i=2 j=1
h i—1 .
(mR — dQNc)(dO — ch)
< 1 1- O
< +§j:1( L )
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PROOF of Theorem 3 Consider a node with a distance of d to the sink.
Let T' denote its upstream region, as defined in Section 3.2 (See Figure 2 for
a graphical illustration). Recall that we have derived the spanning angle of T,
denoted by «, in Equation 2.

Based on Equation 3, we know that the node stores one key for each cell in
I' with a probability of %. Thus, the number of verifiable cell keys stored by
the node is proportional to the number of cells within I'. That is,

d
Nkey = Z E

Cell (X;,Y;)€T

RO2 // rdrdé
= RC2// rdrdf

ad(R? —
2RC2
d(R? — d?) , b
- oRC? e max (b, 2d)
bR
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