Power Minimization in QoS Sensitive Systems

Jennifer L. Wongf, Gang Qii, Miodrag Potkonjak
T Computer Science Dept., University of California, Los Alege Los Angeles, CA 90095
¥ Department of Electrical and Computer Engineering, Umsiitgrof Maryland, College Park, MD 20742

Abstract— Majority of modern multimedia and mobile sys- indicates that each wireless phone generation increases co
tems have two common denominators: quality-of-service (8 putational requirements by at least two orders of magnitude
requirements, such as latency and synchronization, and St Tpgrefore, 4 need for new power minimization techniques has

energy constraints. However, until now no synthesis techgues b tant i irel icati In the last decad
have been proposed for the design and efficient use of such sys €en constant in wiréless communications. in the las ca

tems. We have two main objectives: conceptual and synthesiEhe  10W power optimization techniques received a great deal of
conceptual objective is to develop a generic practical tectique attention.

for the automatic development of on-line adaptive algoritims The most popular mobile low power applications, such as
from efficient off-line algorithms using statistical techriques. audio and video, are stream-oriented. The nature of these

The synthesis objective is to introduce the first design teech licati . df dd ina th S -
nique for quality-of-service (QoS) low power synthesis. We applications impose a need for addressing the QoS require-

introduce a system of provably-optimal techniques that miimize ~Ments under energy constraints. Latency and synchroofeati
energy consumption of stream-oriented applications undetwo are the most relevant QoS metrics in these types of applica-

main QoS metrics: latency and synchronization. Specificali  tions. Our goal is to develop a spectrum of techniques and
we study how multiple voltages can be used to simultaneously algorithms which minimize energy consumption under the

satisfy hardware constraints and minimize power consumptn . . -
while preserving the requested level of QoS. The purpose of most important QoS metrics. Specifically, we study how to

the off-line algorithm is three-fold. First, it is used as irput US€ multiple voltage technologies to simultaneously Batis
to statistical software which is used to identify importantand hardware requirements and minimize power consumption,
relevant parameters of the processes. Second, the algonth while preserving the requested level of QoS in terms of katen
provides buffer occupancy rate indicators. Lastly, it proides 54 synchronization. Our starting point is a provably optim

a way to combine buffer occupancy and QoS metrics to form . . O
a fast and efficient on-line algorithm. The effectiveness ofhe off-line algorithm for power minimization under QoS and

algorithms is demonstrated on a number of standard multimeda  buffer constraints. In addition to buffer occupancy, a @lc
benchmarks. criteria for deciding which process to run at which voltage,

identified four key properties of streaming processes fate
slack, synchronization slack, relative burstiness, anchber
of tasks (samples)). We plot a mxdimensional space, where
m is the number of concurrent processes, and for each point
. INTRODUCTION in this space we use the off-line algorithm as an indicata of
correct decision with respect to the task and voltage delect
This space is analyzed to reduce context switching overhead
In the last decade, low power synthesis and optimizati@nd speed up the decision process.
techniques received a great deal of attention. A variety of
techniques have been proposed for all steps of the synthesis = |
and compilation process. Combination of new logic familie8: OPiectives
and circuits, smaller feature sizes, more power efficient ar Our primary goal is to present competitive on-line algo-
chitectures, power-aware CAD tools, and low power dynamiithms for power minimization for streaming media appli-
run-time policies resulted in a dramatic increase in energgations for given hardware resource constraints: latemcl a
efficiency. However, the power requirements of new produsynchronization, as well as context switching overhead. We
generations have been constantly challenging the limits aifn to dynamically adjust the supply voltage in such a way
battery capacities. that an incoming statistical stream of data does not overflow
An illustrative example of the technology or applicatiorthe buffer capacity of our processing system while expemdin
power trends is the evolution of the wireless phone. Tlibe least amount of energy. By considering the long and short
first generation of wireless phones is analog, the secondtésm statistics of the media streams and current bufferlbgck
digital, which is currently prevailing. As mezzanine gemer we decide which supply voltage to apply. Furthermore, by
tion wireless phones with microbrowsers have just emergambnsidering latency and synchronization constraints, egedz
The imminently pending third generation includes powerfuvhich task to schedule at the current moment. Finally, we use
Internet access. After that they will include numerous nethe new on-line algorithm to explore the trade-off between
features encompassing streaming media. Laptops withegisel buffer size (cost) and energy consumptions.
modems already provide this type of service. The analysisThe first step is the development of two provably polyno-
of communication and digital signal processing requiret®iermial time off-line algorithms for multiple voltage schedhd

Index Terms— Quality of Service, Low Power, Synchronization

A. Motivation



of single and multiple processes. The algorithm orders aAd On-line algorithms

assigns packets of streaming media in such a way that energyne notion of an on-line algorithm was introduced in order

consumption is minimized, while storage requirements agg define a class of algorithms for which part of the input is

satisfied. The algorithm is dynamic programming-based apgknown at the beginning of the algorithm execution. Most of

can be used for compile time scheduling of movies and augigs research is focused on competitive (worst-case) asaiy’s

or as starting point for the development of on-line algamigh 5p_jine algorithms [4], [15]. In particular, a strong emplsais

for the same task. on how to define competitive analysis to better reconcile the

theory and practice of on-line algorithms. A comprehensive

Il. RELATED WORK survey on the main research areas for on-line algorithms can

) ) be found in [4].
Our research results can be viewed in the context of four

related areas: low power modeling and optimization, qyali
of service, on-line algorithms, and statistical technigue
Mainly due to the demand for mobile applications, low Statistical techniques can be broadly divided in two groups
power research has attracted a great deal of attention in Bametric and nonparametric [33]. Parametric technigses
last decade. Both power modeling and optimization have be@#ne that the knowledge about underlying statical distiobu
addressed on many levels of the synthesis process [26]. Méyeavailable (often normal distribution is assumed) and tha
recently, A number of researchers proposed the use of ,J,mmﬁhe task is to confirm the assumption about the distribution,
voltages in order to reduce power consumption [10], [227],[2 calculate the corresponding parameters, and establistviis
[30]. Furthermore, several variable voltage techniquege ha0f confidence [32]. Nonparametric techniques do not make any
been reported [16], [17], [34]. Numerous algorithms for dyassumption about the statistical distribution. They airbuid
namic priority real-time systems have been proposed ifetpd the conceptually and quantitatively the simplest (andefvee
[21], [31], [18]. Also, several industrial multiple voltagow best) model which fits the recorded data [6], [33]. There are
power designs have been reported [17], [3] and prototypes [8 number of validation techniques, such as histograms, Chi-
[24], [38]. The common denominator in all the efforts hasrbeesquare tests, Kolmogorov-Smirnov test, and quantile-tilean
the fact that the operations on the critical path are scleeduplots which can be used to validate statistical claims of the
at higher voltage and therefore are executed faster ana otf@del. We opted to use resubstitution techniques for viidida
operations are scheduled on a lower voltage and therefé?b [14] because these techniques enable the validation of
the energy consumption is reduced. Another popular approa arbitrary hypothesis while establishing and accuratgico
to power minimization is dynamic power management whic$ence interval.
aims to reduce the power consumption of electronic systemsfhere are three main conceptual novelties in the presented
by selectively shutting down idle components [11], [2]. Fro research wnh the respect tq the previous efforts. T_he first i
one point of view our work can be interpreted as a combinatiéfat we consider QOS requirements for the streaming media
of these two techniques, multiple voltages and system-ley@sk model. The second is that we have developed one or
power management. A good survey on low power schedulif@f® Probably optimal algorithms for power minimization at
is [19]. the system level. The final novelty is that on-line algorithm
The first QoS requirements, such as bounded delay, guar%developed using statistical methodg starting fr(_)m tHe pf
teed resolution or synchronization have been addressdein {n€ algorithms and therefore they provide a generic pgradi
network and real-time operating systems (RTOS) commuf@" rapid development of effective on-line algorithms. Gom
ties. The most sound and practically relevant QoS modelkin tR'éhensive versions of this paper can be found at [35], [36],
networking community was proposed by R. Cruz [13], [121.37]-
The model assumes periodic segmentation of time. During
each period, each process receives a task of generallyngaryi IIl. PRELIMINARIES
complexity. The cumulative sum of tasks for a process formsin this section, we outline the abstraction and models used
a demand curve imposed on the system. The system serfagspower consumption, and define latency, synchronization
the task sequentially by allocating resources during eimel t and context switch overhead.
period to one of the processes. The cumulative sum of theThe dominating component of power consumption is the
processed data forms a service curve. The main conceptualswitching power. Switching power can be modelled/as=
sult in RTOS literature was presented by Rajkumar et al..[28} - C, - V2, - f, where a - Cf, is the effective switching
They introduced an analytical approach for satisfying ipldt capacitance. This results from the fact that greater thipug
QoS dimensions under a given set of resource constrairdsmes with the cost of higher voltage. Specifically, the gate
They proved that the problem is NP-hard and developeéelay of circuits is a function of applied voltage and can be
an approximation polynomial algorithm for the problem byalculated using the formul® = k(Vya/(Vaa — Vi)?) where
transforming it into a mixed integer programming problerk is a constant [7].
[29]. A comprehensive survey of QoS research in these twoWe assume the design operates using multiple voltage
areas is given in [1]. Recently, the first efforts in QoS, amd isupplies and that the voltages change instantaneouslynweith
particular synchronization during the system design meceoverhead. These changes in voltages are assumed to happen
has been reported in design automation literature [25]. only at the beginning or the end of a time unit. Furthermore,

I3. Statistical Techniques



TABLE |
EXAMPLE OF SYNCHRONIZATION AND LATENCY FOR TWO TASKS
[Tme JOJ1I[2]3] 4]

we assume that the voltage units are selected in such a way tha
the use of two identical voltages, andv;, on two consecutive
points is more effective than the use of consecutive voltage .

. | Task Arrival |
levels, v; andv;11, due to the fact that power as a function 7, —— T3
of voltage is convex. P Twixlylz| -

The Demand-Supply model for QoS was developed by Cruz | Task Processed |
et al. [12]. The model addresses the burstiness of QoS while Py - lal-|blcd
handling resource allocation. This model assumes periodic P Jlwlx|-]y| z
segmentation of the time dimension. During each periodh eac
process receives a task of generally varying complexitg Th
cumulative sum of tasks for a process can be depicted as
a demand curve imposed on the system. The system serves
the task sequentially by allocating resources during emocé t
period to one of the processes. The cumulative sum of the
processed data forms a supply curve. While the DS-Curve
explains many of the QoS metrics, such as latency, backlog,
and synchronization. The key problem with this DS-Curve is —
that its representation of QoS for a small period can be large 4

The demand curve measures the burstiness of the ser\g%gl_
requirement. The service curve guides the resource altocat
with QoS guarantees. Backlog is defined as the amountas piece of datas;. Synchronization tolerance (often for the
demand that cannot be processed at that time point, &ke of brevity is solely called “synchronization”) indiea
must then be carried over to the next time unit. The backld@e maximal amount of time by which the execution of fully
in the QoS model is represented by the difference betweg¥chronized samples; andp,; can maximally differ.
the vertical positions of the demand curve and the serviceFor example, consider the two processes shown in Table
curve. Latency is the time between when the demand fol. For each processp; and pz, there are four tasks which
a task arrives, and when it is processed. This is shown affive one at each time unit. For process we have tasks 'a’
the model by the horizontal difference between the dematitfough 'd’, and forp,, we have 'w’ through 'z’. The latency,
and service curve at any given vertical position. A proce®s the time between when a task arrives and is processed, of
is a program which assumes that it has independent usetask ‘b’ is two units (it arrives at time one and is processed
the CPU. A process is long, in the sense that it consists &f time three). The synchronization between two tasks, for
many tasks. These tasks are processed at periodic momengx@mple ‘b’ and X’ orp;; andps;, is two. However, 'd’ and
time. With each task, we associate a processing time andaor pi3 andpo3 is zero because both tasks are processed in
storage requirement. Note that periodicity is not redutirg the same time unit.
generality of our formulation because the tasks of the m®ce One approach for illustrating the Demand-Supply model and
could have a requirement of zero. Finally, note that satigfy synchronization and latency is the use the DS-based agproac
all latency implicitly implies that the throughput requinents Synchronization is the timing relationship between int&rey
are also satisfied. media, which is one of the most important metrics for QoS,

Latency is defined as the difference between the time wheuch as jitter and burstiness. The synchronization of two
the data is processed and the time the data arrived, peocesses can be seen in the DS-Curve (Fig. 1). The figure
tp - to. We denote the time in which a particular sampldisplays two tasksr; & 72, and their corresponding service
(piece of date) arrives as, and the time when that piece(dotted lines) and demand curves (solid lines) for the two
of data is completely processed gs At the intuitive level, tasks. We say that; & 7» are synchronized when both
synchronization indicates how well two or more processés 2 are serviced at the same time. The latency is the time
are correlated in their execution. The assumption is that foetween when the demand arrives and when it is processed.
each piece of data to be processed for one of the procesEeg amount in which tasks; & m are not synchronized is
there exists a corresponding piece of data in each of the ottlee difference between the latencies.
processes which need to be processed at exactly the same tiniéote that the DS-Curve model is actually not an accurate
in order to have complete synchronization. However, mgjoriabstraction of the media data delivery process [9]. The majo
of real life applications such as, movies playing with itde® limitation is that during delivery the initial periodic nae of
and audio processes do not have to be fully synchronized dasks can be made either highly dense or very sporadic it shor
to the imperfections of the human sensory system. time intervals. Nevertheless, there is an easy way to make th

We define synchronization in the following way. For théS-Curve model adequate. Essentially all that is needed to
sake of simplicity, consider only two processes, and po.  consider all tasks which arrive during our time unit (eg.hie t
We denote the tasks of the procespedy pi; andps by ps;, case of MPEG 40ms) as a single task is to create a new tasks
wherei,j = {1,...,n}. Perfect synchronization constraintsvhich has processing time and storage requirements equal to
indicate which sample (task or piece of data) of progass the sum of the processing times and storage requirements of
which is denoted by;;, has to be executed at the same timall tasks which have arrived.
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Latency and synchronization in the DS model.



A context switch is the time overhead which is incurred by a Tasks from the same process have to be executed and
multitasking kernel when it decides to process differesk$a completed in the FIFO fashion; The common processes
The amount of context switching time dramatically dependbat we consider are audio, video, and streams generated by
on the processor. Context switching time for a typical DS&ensor networks. For this type of applications, there isarah
processor is fairly low, around ten cycles, while for a RIS@trinsic order in which consecutive tasks have to be exatut
processor it is much higher, approximately 100 cycles. In okor example, obviously when we talk on the telephone it is
experimentation, we used ten cycles. required that speech packets are processed and presented to
the user in exactly the same order as they are generated.

A task’s processing demand,p;, is proportional to its
_ i ) storage demand,s;; In general, of course, this assumption

In this section, we formulate the off-line Q0S low powefg ot necessarily correct. However, in many situations, th
problem and present our optimal algorithm. We use a singlé,ont of processing required for a specific set of data is
processor that can operate at multiple supply voltages. T;'.')‘l%portional to the amount of data. We mainly adopt this
goalis to service multiple processes with minimal energy-cogssumption for the sake of simplicity during presentation.
sumption and the minimal amount of memory while meetingq,ever, it is important to notice that this assumption can

IV. OFF-LINE OPTIMAL ALGORITHM

various QoS requirements. _ be removed in a straight forward way without increasing the
A process consists of a sequence of tasks. With each t@gfnplexity of the optimal algorithm. This assumption isoals
t;, we associate: needed in many practical situations where the main modeling
« a;: The arrival time, the time when a task is generategbstacle is that often it is not possible to predict exadtly t
from the process and makes the CPU request; amount of time needed to process a particular amount of data.
 pi: The time needed to complete this task at the nomingl many situations, it is often adequate to estimate theiredu
voltagev,.y; computational effort as a linear function of the amount dada
« s;. The storage demand which is the minimal amount of The memory occupied by a task can be partially freed,
memory to store this task on its arrival. but only at the end of a CPU unitit occupies is freed and

Each of the tasks may have QoS requirements such V4@ can start immediately next task that arrives before thet st
latency and synchronization. Latendy is the time that task of this unit of time* This assumption is a direct consequence
t; has to be served after its arrival, that is, the actual finisH the way how current operating systems function. opegatin
time of taskt; must be earlier than; + d;. Synchronization System updates the requirements of consumption for eaeh typ
measures the interaction among tasks in different prosess¥ resources only once per operating system cycle. Operatin
We say that task; from one process and task from another system cycle is an atomic period of time that is allocated
are k-synchronized if the difference of their finishing times i®y the operating system to a given task. In the modern
within k& CPU units. We denote this byyn(t;,¢;) < k. operating systems, this cycle is usually long, several heohd

The variable voltage processor has multiple supply vottag@illiseconds. Before a new cycle starts, the operatingesyst
among which it can switch. The processor’s processing spegakes decisions on the next action.
varies as the voltage changes, so will the actual executimt  There is no context switching overhead;Obviously, in
for a task to receive its required amount of service. Suppos@lmost all types of processors, there is context switching
task needs one CPU unit at the nominal voltagg, then the overhead. The key observation is that the operating system
execution time to accumulate the same amount of processiygle is significantly longer than the overhead and theesfor

at voltagev,q is given by [8]: in the first approximation the overhead does not have to be
(Vres — 1) Vag cons_ldergq. Common times for context_swnchlng overhea_ds

" : (Vad — 02)? (1) are in milliseconds or less and as we just stated, oper_atlng

ref dd =t system cycles are commonly at least two orders of magnitude

wherew, is the threshold voltage. longer. Another reason for this assumption is that it is nec-
Given n processes!,72,---, 7", eachr” consists of a essary in order to produce the optimal algorithm. Note that
sequence of taskg, t5, - - -, t*. A schedulds a set consisting the considered problem is NP-complete if context switching

of the starting time, finishing time, and the voltage leval fooverhead is taken into account. Another important obsienvat
each task. A schedule feasibleif the processor starts eachis that we use the optimal algorithm mainly as a lower bound
task after its arrival, finishes it before the latency caaist; and the assumption makes the lower bound more optimistic,
and satisfies all synchronization requirements. The qualia.  and therefore all conclusions for our on-line algorithm are
schedule is measured by its energy consumption and the memaservative.
ory requirement. Since these two metrics are non-comparabl The processor can instantaneously switch the supply
to each other, we introduce the concept of competitiveWss. voltage, but only at the beginning of each CPU unit;
say two schedules amompetitiveif neither outperforms the Physical laws in current technology imply that the change of
other in both energy consumption and memory requiremestipply voltage can not be done instantaneously. Recendise t
We formulate the problem as:
On a processor with multiple voltages, for a given set of tMemory can be partially freed means that, for instance, If béthe
find all the f ibl . hedul processing demand is fulfilled at the end of one CPU unit, therare able
processes, find all t e_ easible competltlve schedules. to free half of the space used to store this task. Our propakgtithm can
We make the following assumptions: be easily modified when this is not allowed.



TABLE Il TABLE Il

MEMORY REQUIREMENTS FOR THE MOTIVATIONAL EXAMPLE STORAGE REQUIREMENTS FOR THE MOTIVATIONAL EXAMPLE
0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11
O[ 4] B[I7[I7[19[I7 [ 14|11 [8[5] 2] 0] O[ 4] 8[I7[17[19[19[10[19[19[19]19] 19]
L[ 7[12[12[14[10] 7| 4] 10 1 7[12[12[14[ 191919 19| 19
2[12[ 5] 7] 5] 2] 0© 2[12[12[ 12| 14| 14| 14
3[ 5[ 5[ 1[0 3[12[12[12[ 14
4 5[ 1[0 4[T2[12[ 12
5[ 1] 0 51212
6 0 6 [12

have been several efforts to take this time into account [23erefore we need a total ¢f —3)+ 12 = 16 units of memory
However, in modern technologies, context switching timase storet; andt,. In the second casey, thenw;,,;, we can
are usually two to three orders of magnitude shorter thamly finish 3 out of the 4 processing demand of tagkby

the operating system cycle. Therefore, this approximaionthe end of the first unit of time due to the slow processing
sound and impacts overall results only nominally. alganith speed at;,; however, after raising the voltage tg; during
assigns a high priority to the reduction of context switchinthe second unit, we are able to finish both the remaining of
time. Another important observation is that this assummptia, and entiret;; the storage for task& andt, are freed and
again makes the lower bound more optimistic and therefatgerefore whent, arrives, we only need 12 units of storage
all our conclusions about the relative performance of the oto store this new task. Thus, we fill entry (1,1) with 12, the

line algorithm more pessimistic. smaller storage requirement of the two different strategie
Let m(4, ) be the content of entryi, j). We can reach this
A. Optimal Solution for Single Process entry from entry(i — 1,j) by applyingv; or from its left

In this section, we show how to find all feasible competitivge'ghbor(ivj — 1) by applyingu;,, hence we have:

solutions for a single process. Syppose the referencegeolta m(i,j) =min (s;4; +max (0,m(i — 1,5) — spni),
vres 1S 0.8v, and there are two @fferent voltage Ie\{ezl;g- = sij +max (0,m(i,j — 1) — spo)) (2)
3.3v andv;, = 1.8v. From equation (1), we approximate the
processing speeds to be 3 and 1Qgtand v, respectively. Where spi, and sp,; are the processing speed af and
Consider a process with six tasks, t1, - - - , ts. For simplicity, Uhi respectively. The innemax is introduced to enforce that
we further assume that tagk arrives at timei, and there are €XCess processing resource cannot be used for future werk. W
no deadline constraints. Finally, we assume that the psiggs build Table Il based on formula (2), where every row ends with
and memory requirement afe 7, 12, 3, 5and1 respectively an entry of 0 meaning that there are no tasks left.
for the six tasks. The goal is to determine the voltage to useWhile m(i, j) gives the minimal storage requirement at the
for each unit time, such that the energy consumption is midfistanti + j, we may have used more storage already before
mized. Even for two different levels of voltages, an exhiest this time. We further denoté/ (i, j) as the minimal amount
search will take exponential tifieWe developed a dynamic ©f storage that has been used up to tiime; after running:
programming-based algorithm which achieves polynomiad ruunits of time atv;,; and; atv,. Considering the voltage being
time for this task. used in the(i + j)-th unit, we observe that if we use,;, we
Table Il shows the memory requirement at the end &Rn finish at mostax(m(i —1,7), spr:) and need a storage
each unit time, which is the minimal amount of memorﬁf Si+j +max(0,m(i—1,j) — sppi). Moreover, previously we
required to store all the arrived but unfinished tasks. Thieta have already required a storage at the amount/¢f — 1, j).
uses the time (in terms of CPU units) that the processor §8is implies that
operatiljg ab;, andvy,; to label th'e hqrizontal _aujd vertical axis M(i,5) > max(M(i — 1,5), s+
respectively. For example, ent(y, j) is the minimal memory '
requirement after running at,; for ¢ CPU units and at,, for
4 units. Similar inequality holds if we use,,, therefore we have
Consider entry (1,1), whose content is the storage we need
at the end of the second unit of time after we uggefor one o )
unit of time anduy,; for one unit. We can either apply,; in _ , ,M(”?) = min(
the first unit andv;, in the second unit, or start af, and maX(MQ - 1,7), $i+j + max (O,m(z. - 1,7) — $pni),
switch towvy; after one CPU unit. In the first case, since taskmaX(M(w —1),8i1; + max (0,m(i,j — 1) — spio))  (4)
to’s processing demand is 4 and we are able to process 1@ased on the recursive formulas (2) and (4), we calculate
at vp,;, we will finish ¢, free the memory, and wait far;  p/(;, j)'s and store them in Table Ill, where the last entry of
then atu, in the next unit of time, we can finish 3 out ofthe;-th row gives the minimal storage requirement to complete
the 7 units of processing demand frdm now ¢, is arriving, g the tasks by usingy, for exactlys units.
2For example, if one best solution is to use high voltagerfounits and The power consumption aﬁ” = 3.3v is 1, then the power
low voltage forn units, then there exis@m;g”) different ways of findingn con.sumptlon a, = 1-8” is 0.1 from our power.moldel.
units and applying high voltages. Unlike the storage requirement, energy consumption is path

max (0,m(i — 1,) — spni) (3



TABLE IV Input: m processes with their arrival time, processing load, and

MEMORY AND ENERGY FOR DIFFERENT SCHEDULES other timing requirement(deadline, synchronization,)gtc
k different supply voltages.
| || (6.0) | (5.1) | (4.2) | (3.3 | (2,9) | 1.8) | (0,11) | Output: All competitive pairs of memory requirement and
M 12 12 12 14 14 19 19 energy consumption, and one schedule for each such pair.
E 6.0 5.1 4.2 3.3 2.5 1.8 1.1 Algorithm :

Phase I: Configuration for all states.

. : | 1. ComputeNexi(S) for the initial stateSo;
independent. I.E., it depends on the total number of CPUsunit| 5 o anchs gxﬁlei?(s‘;; © (nital stateso

that we have used at,, andwvy;, not the voltage at every 3. { Pre(s) =
individual time unit. For instance, if we have useg for 2 ;‘ hile ZSS 7£S¢L,;S}
units andu;, for 4 units, then the total energy consumptionis | g = { for eachs € s
calculated ad x 2+ 0.1 x 4 = 2.4. 7. { currentmax.memory for stateS = oo;
. . !
Table IV gives the memory requirements and total energy g' for eachS” € Prey(S) .
. . . .. . . { calculate the maxnemory requirement

consumptions by different scheduling policies, wherg) in it S follows S:
the first row indicates a schedule that usgs for i units 10. if ( maxmemory < currentmaxmemory )
anduy, for j units. Clearly from this table, we see that there | 7 { Cg&;ree”&';‘%g‘jg‘s‘t’;i’ezzg?"';‘emory’
exist three competitive optimal solutionét, 2), (2,5), and ' } '
(0, 11). They consume different amounts of energy and requirg 13. maxmemory for stateS = currentmaxmemory;
different amounts of memory. We can then choose the one * y previousstate for.5 = currentpreviousstate;
that fits our preference of memory and energy, and retrieve 15, ComputeNex{(S);
the actual schedule (i.e., the voltage for each CPU unit) by is . S=hi>;U Nﬁxf(f))—

; ; ; . or eachS’” € Nex(S
using simple backtracking. 18, Prev(s’) — Prev(s’) U S }

Fig. 2 shows the algorithm of finding all the competitive [Phase II: calculation for energy consumption.
optimal solutions for multiple processes. A schedule irs thi | 19. for each final stat&

- . . 20. calculate the energyonsumption forS;
case has to determme,. for each CPU unit, which process to 5, compute all the compeitive final Stat&s
be executed and at which voltage level. Phase III: determine one schedule for each competitive.stat
Definitions: Assuming that there aren processes and: 22. for each competitive Statg = (e1, -+, em;u1, -+, up) € 7
different voltages, we haven - k choices: running theth 23, {index =i=3""  uj

. : 24, S; =S;

1 < < < . 'Ln_dez - ,
process at voltagey; (1 < i < m,1 < j < k) .A o5 while ( index # 0)
state S = (e1, -+, em;ur, -+, Uk) means that theith 26. { S’ = previousstate forS;, e ;
process has been allocated CPU units, and the proces- | 27. index:inng- 1

i ; . i 28. Sindew =S ) }
sor has been working at voltage; for w; CPU units. o9, report the scheduleo, S1, - -, 51) for S: }

Notice thatd> ", e; < Z’Zl u; and the equality holds

if and only if at any tlme there exists unfinished proFlg 2. Algorithm for all off-line competitive schedules.

cess(es). We say stat§é = (ela ", emiul, o, uk) Pre- computeNextS), we consider all the timing requirements. For
cedesS’ = (e, -, epiun, -, up) 'f ie; > 6““)“7 = example, if process has a deadline at the end of next CPU
uj, i)y in g e — e < 1, andiv) Zle u’ —u; = 1. If S unitand its remaining process requirement can be fulfillelgt o
precedess’, we say thatS’ follows S. We define Pre\S) = when we use the highest voltage, thidex(S) will contain

{8’ : S'precedesS}, andNex{(S) = {S' : S € PreMS’)}. only one state, which assigns the current CPU unit to process
A state S is reachableif Pre(S) # ¢. A final state is a ; and applies the highest voltage. Because all other schedule
state when all processes’ requests are satisfied. A schisdulgill fail to meet process’s deadline. The memory requirement
a sequence of statgsSy, So, - - -} such thatS; € Pre\(S;11) for each state is calculated using formulas similar to (2,4)
and all processes’ processing loads are satisfied at the fingtrom the table built in the first phase, we can easily see
state. the total memory requirement for each schedule, which is the
Correctness of the algorithm: value at its corresponding final state. In Phase I, we cateul
The off-line optimal algorithm consists of three phasegheir energy consumption. Recall that the energy consumpti
First, we build anm x k dimensional table which stores theis path-independent. L&®; be the power for voltage;, then
minimal memory requirements. For example, when there fisr final stateS = (e1, -, em;u1, -, ux), all schedulers
only one process and two voltages, then we will have a tatylmh this final state will consume energy in the amounfbf=
like Table IIl. Step 1 computes thé\ext set for the initial Z -1 Pj-u;. So for each final state, we associate with the pair
stateSy, if all m processes require CPU time at the begmnmgM E), the memory requirement and the energy consumption.
then this set will haven x k elements. Steps 2-4 makes alRecall also that two final state$ and S’ are competitiveif
the states inNex{.Sy) reachable, since each state is one moveM < M’ andE > E’, orii)M > M’ andE < E'.
away from the initial state5,. We denote the set of reachable In the third phase, we find a schedule for each competitive
states byS. Steps 5-18 build the table recursively until theréinal state. We achieve this by using backtracking as shown in
is no reachable state. We keep all the reachable states iBtaps 23-29. The existence of statein Step 26 is guaranteed
qgueue, we calculate thhext set for the head of the queueby the way in which we build the memory requirement table
(state S) in Step 15, deleteS from the queue and put all in Phase I. Therefore, we have:
elements ofNex{(S) into the queue in Step 16. When weTheorem 4.1: The algorithm in Fig. 2 finds all the feasible
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competitive schedules.

We analyze the complexity of the algorithm, for a fixed
processor that hak supply voltages to execute processes,
in terms of the total processing demands. Suppose that wé
needX CPU units to service all the processes at the reference [ """ HB”"“"““”"
voltage. In Phase I, we essentially fill in the entries ohar k& Now Tout Buter Space
dimensional table. (Table Ill is an example with = 1 and
k = 2), where entries along dimensieni, j > represent the @
storage requirements when ti¢h process is processed with | Buffer pace Allocation
the j-th voltage. If thei-th process needX; ; units under the
j-th voltage, when all the other x k—1 dimensions are fixed,
the number of entries we need to fill along this dimension will
be X, ;, which is in the order ofO(X). Since the table is
m x k dimensional, and the cost for computing each entry
constant, the run-time in Phase | will lg&( X ™*).

The calculation of energy consumption in Phase Il tak
constant time for each final states. According to how maf§*S€S: ) ] .
units we have run at the reference voltage, it is clear that weNext, the buffer size and the optimal solutions are used
will have at mostX different final states (c.f. Table IIl for an t0 build the on-line algorithm. The initial on-line algdrin
example). Thus, the cost here@¥ X). In the last phase, we builds a statistical model f_rc_)m the optimal _off-l_lne sobuts
determine a feasible schedule for each competitive fina st&Nd creates an on-line decision strategy, which is usedderor
by backtracking. In step 27, we move one entry closer to il select the proper task and voltage in which to execute in

starting point, and the total number of steps we need is aBCh Situation. The decision strategy is then evaluated on a
in the order ofO(X). Therefore, we have: set of on-line test cases. If the decision strategy does not

Theorem 4.2:  If we needX CPU units to service all the Provide the level of QoS specified, then modification of not

processes at the reference voltage, the run-time of theopeap only the statistical model and the decision strategy, bst al
algorithm isO(X™*). the allocated buffer space is conducted. We continue to make

modifications until the desired level QoS is reached.

The initial on-line algorithm is created using the pseudo-
code shown in Figure 4. The initial on-line algorithm is

In this section, we present the on-line algorithm for poweareated in five steps. In the first step, we identify the reieva
minimization under the QoS constraints, synchronizatiot aproperties for the QoS requirement. For example, in the case
latency. of latency and synchronization, we define properties such as

We have multiple on-line streaming processes, with taskgerage latency, maximum synchronization delay, and buffe
which arrive at periodic time intervals. For each task ofrea®ccupancy. We evaluate the relevance of these properties in
process, we have memory and CPU requirements. Eachteims of the off-line optimal algorithm in the second step.
these tasks have a given latency constraint, and on sowile eliminate all properties which show little relevance to
subset of these tasks additional synchronization conssrare the outcome of the optimal off-line solutions. Followingsth
imposed. We are given multiple supply voltage levels in Wwhicstep, both the optimal off-line solutions and the relevant
to execute these tasks. The goal of the on-line algorithro isproperties are used to build the statistical model. We baild
decide which task from the stream processes to executelat eaxm-dimensional space, whereis the number of properties
time interval and at which voltage in such a way that all laten and m is the number of processes. The resolution of each
and synchronization constraints are satisfied. Additignat property is specified, and for each subspace we determine the
no point of time the requirements for storage should excestitistical values for task selection. Each subspace icwrifze
the memory size (buffer space). percentage of time the optimal off-line algorithm seleatadh

In order to solve the overall problem, we must answef the tasks under the defined property conditions. In a aimil
the following three questions: (i) how much buffer space igay, the statistical values for all situations and eachagmuit
needed, (ii) which task to execute, and (iii) which voltage tlevel is calculated.
apply. The answer to each of these questions is determine@efore we evaluate the effectiveness of the model, we
by our synthesis and on-line scheduling approach which have to develop the on-line decision strategy. The strategy
presented in Fig. 3. The on-line approach uses the optinmlresponsible for making the decision as to which task and
off-line algorithm to determine its decision mechanism. which voltage to select according to the particular comtiama

The on-line approach begins with the assembly of a divers€ property values. The strategy is reliant on the context
set of test cases. The off-line optimal algorithm provides switch time or penalty. For each subspace, in the task safect
lower bound on the memory requirement for the system alostatistical model, the decision strategy must decide vé#k t
with the optimal QoS solution for the test set. The lower burto select based on the values in the subspace and the context
memory requirement is used to determine the proper buff@witch penalty. If there was no penalty for context switch-
allocation size for the on-line algorithm. In this phasejraaby ing, then for each situation we would select the statidical
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Fig. 3. Overall Flow for the creation of the on-line algonth
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Eearch on the size of the buffer is conducted. Each iteration
tests the new buffer size on a new set of test cases, until the
@yﬁer space allocated is sufficient to handle all considere

V. ON-LINE HEURISTICS
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strongest task from the statistical model. However, if the @ (0)

context switch penalty is high, we would like to continue. o . _
ig. 5. Example of the statistical model and decision gjsat the on-line

to run the tasks of the currently selected process as log itm.

as possible. In the moderate case, the proper time to switc

between processes needs to be defined, and therefore we

propose different points in the statistical model to switcfoltage. We have defined the following five properties. For
between processes. The final step is to evaluate each of theseh property, we state the typical reasonings and exarples
proposed points to determine the proper switching pointé twhy that property should be included in the decision strateg
model. Once the proper switching points has been defined, yfea high quality on-line algorithm.
compact thenxm-dimensional table by combining subspaces | atency. If the latency of multiple tasks of a process are
with the same task/process selected to execute. Stafisticaiose to their maximum allowed latency, this process shbald
the subspaces should not be interleaved, and therefore qugscted. Additionally, a higher voltage should be run tsuee
shall have continuous subspaces. For each decision the @ch of the tasks meet their latency requirements. Howiver,
line algorithm determines which subspace the propertigs fghe |atency for all tasks/processes are at lower levels, the
into, and select the assigned task/process to execute afie Stask of the current process should be executed to eliminate a
process is applied to determining the voltage selectiorser context switching penalty.
strategy. This on-line decision strategy is then passed et Reative Burstiness The recent burstiness of a process, or
final stage of the overall on-line approach. rapid arrival of tasks for a process, can play an importalet ro

In order to better illustrate the algorithm and to make oy, voltage and task selection. If a task has shown recentiburs
ideas more tangible, we use a small example shown in Figess, we should consider the execution of the task/process
5. For the sake of clarity and brevity, we consider only twgye to the likelihood that this task will continue to be byyst
processes, A and B, and two properties, latency of processtfsrefore consuming more buffer space and extending the
and synchronization lag between processes A and B. The Iaggncy of each of the tasks if they are not run.
is positive if process A is in front of process B in terms of Number of Tasks The number of tasks which a process
its execution. Fig. 5(a) shows numbers that can be obtamedhis waiting also plays a key in the task and voltage selection
principle by running the optimal off-line algorithm on ad@r process. If the current selected process has more tasks than
set of examples. Each defined region of the space contains#{¢ other processes, the tasks of the current process should

percentage of cases in which the optimal off-line algorith@ontinue to be selected in order to eliminate context sivigh
selected task/process A to execute. For example, the top |gfnalties.

corner contains the value 100% and indicates that in alls;ase gynchronization. When the synchronization for any

process A was selected. The intuition is that process A h@sk/process is nearing the maximum allowed level for QoS
very high latency and is lagging behind synchronizatiomwithis task should be selected. If the synchronization of the
process B. _ _ currently selected task/process is high, the algorithmukho
These numbers are used by the on-line algorithm develeRmtinue to run this process as long as possible to avoidgbnt
ment process to create the decision table shown in Fig. S(8itching. For voltage selection, if the selected task éselto
Note that the decision strategy must take into account ths maximum allowed synchronization level, a higher vaitag
context switching penalty, therefore not making the magpirshould be applied.
from Fig. 5(a) to 5(b) straightforward. Specifically, thelua  pyffer Occupancy. Buffer occupancy is an indiction of
40% from Fig. 5(a) was mapped to the decision that proc&sg current demand of the processes as a whole. This property
A should be executed in order to reduce context switchingpks at the percentage of the entire buffer in which each
overhead. For example, if the latency of task/process A y:iﬁocess occupies. If the buffer is near capacity, the pezses

high and the synchronization of A is behind B, we shoulgith higher buffer occupancy should be selected.
run task A with a likelihood of 100%. However, in the case of

task A with high positive synchronization lag, the likeldtb
of running task A is very low, despite the level of latency of
task A. In this section, we present the experimental results ob-

The on-line algorithm builds a statistical model and an onained using comprehensive simulation study. We first descr
line decision strategy based on th&m-dimensional space the used examples (multimedia applications). After that, w
defined by the properties. The goal is to select propertiéstwh present our experimental setup and collected data. Fjrvadly
provide strong indication of which task should be run at wahicconduct the analysis of the experimental results.

VI. EXPERIMENTAL RESULTS
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using Fig. 7. Here we evaluate how much the cost of the
system, measured in terms of buffer space, can be reduced
under the conditions that energy consumption is fixed. All
results are normalized against the base case where storage
requirements are first calculated for the set of tasks asgumi
that a single voltage is used. For the case when we use 2-
voltages we compare to 2.5V, and in the case for 3-voltages we
use 1.8V. Again, we present the normalized results for Hugh t
2-voltage case, and the 3-voltage case in Fig. 9. Additignal
we present the percentage difference between the optirfal of
line memory requirement and the on-line algorithm for both

1 2 3 5 6 8 10

Number of Tasks

the 2-voltage case and the 3-voltage case in Fig. 10.

Lastly, we consider the relationship between the drop rhate o
the on-line and off-line algorithm relative to their penficaince.
These results are presented in Table V. For both the 2 and 3-
voltage level cases, we varied the drop rate from 0.1 to 0.5
and considered and average and median percentage differenc

) o between the drop rates of the off-line and on-line approache
In order to evaluate the on-line heuristic, we adapt the

following procedure. We use four CPU units for the latency

constraints. For synchronization, we use eight CPU unhe TB- Analysis of Experimental Results

goals of the our experimentation and results analysis was toThe first important question that we analyze is what is the
answer the following questions: Are multiple voltages ut2f optimal number of voltage levels required to obtain esaéipti
How many voltages are needed? What is the relative qualgly potential benefits from the use of multiple voltages. In
of the on-line algorithm with comparison to the optimal offfig. 6, we analyze the potential benefit for the use of 2,3
line scheme? How much benefit one can obtain for on-lirghd 4-voltage levels with our off-line algorithm. Our resul
algorithms when the goal is to minimize design costs (buffghow a energy savings of at least 35% when 2-voltages are
storage) under energy consumption constraints? used, and at least 45% improvement in the 3-voltage case.

We used six streaming applications [20] to evaluate th&hile the energy saving increases with the number of voltage
effectiveness of the approach: 1JG JPEG encoder and decofisels used, the benefit of using 4-voltages over 3-voltiges
MSG MPEG encoder and decoder, CCITT G.721 encoder, arglatively small. Therefore, we see diminishing returnseewh
PGP encryption and description module. using more than 3-voltage levels.

In order to analyze the effectiveness of our approach, weThe comparison between the optimum off-line and the
started with preliminary testing to determine the apprateri heuristic on-line algorithms with respect to storage regui
number of voltage levels. We considered three cases, idents and energy savings indicates several important @oncl
voltages at 3.3V and 1.8V, 3-voltages at 3.3.V, 1.8V, arslons. Evaluation of the on-line and off-line memory congem
1.0V, and 4-voltages at 3.3V, 2.4V, 1.8V, and 1.0V. We usaibn is shown in Fig. 8. On average the on-line algorithm
the off-line algorithm to determine the energy savings & thindicates an overhead of 25%. However, it also saves energy
three cases on 1, 2, 3, 5, 6, 8, and 10 processes. All eneoggr the single voltage case with 36.5% savings for 2-velag
consumption values were normalized to the single voltage caand 44.4% savings for 3-voltages. Therefore, we see that
at 3.3V, and we used the memory requirement for the singlgnificant savings in energy can be achieved by applying
voltage case as the basis for the other cases. We presentntloétiple voltages.
results in Fig. 6. The figure shows the percentage of energye see that although the on-line algorithm is not capable of
savings versus the number of processes. completely matching the performance of the off-line algori

The first three questions are addressed using data from ihéig. 8, it nevertheless brings very significant improvese
experiments that are displayed in Fig. 7. The figure showser the single voltage case, and that this difference hjs on
that for different number of processes the normalized gnerimited additional potential for further energy reduction
requirements when the optimal off-line and on-line aldoris From Fig. 10, we see that the on-line algorithm is not able
are applied under the same memory requirement. All the completely match the performance of the optimal off-line
values are normalized to the single voltage (3.3V) casedoualgorithm, the reduction for storage requirements areifsign
using the off-line algorithm. Since the off-line algorithim cantly larger than the energy savings. This is a consequence
optimal, we use the off-line values as the lower bound. Tl the fact that energy consumption is dictated by the oberal
figure indicates the results after applying the optimallioi® average effectiveness of on-line and off-line algorithwlsile
algorithm and the on-line algorithm for both the 2-voltagela the storage requirements are primarily a function of how
3-voltage cases. The percentage by which the off-line aad tivell these algorithms can use high voltages to reduce storag
on-line algorithm differ in savings compared to the numbfer eequirements during bursty periods of processes.
processes is presented in Fig. 8. The standard procedure for the analysis of on-line al-

Fig. 9 presents the results for the dual problem evaluatgdrithms is competitive analysis. Competitive analysi$, [4

Fig. 6. Energy savings by off-line algorithm using multigapply voltage
assuming3.3V nominal voltage with the same amount of memory.

A. Experimental Study: Goals and Procedure
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[15] evaluates the on-line algorithm by comparing its per-
formance to the best results that could have been achieved VIlI. CONCLUSION
if all inputs had been known in advance. All competitive . o )
analysis techniques assume idealized probabilisticidiston ~ \We have developed an optimal polynomial-time algorithm
for inputs. Such distribution does not exist in closed foon f for power minimization of popular streaming media applica-
streaming media and therefore classical competitive aisalylions, such as audio, video, and sensor network data under
is not feasible. However, since we have an optimal algorith@0S requirements and hardware constraints using multiple
for the power minimization using multiple voltages, statisl  Voltages. Furthermore, we have developed an on-line agapti
competitive analysis is a proper alternative. Fig. 7 shdves t pohcy for power minimization in the same scenario. The.on—
at average the on-line heuristic is less effective than the line approach leverages the insights from the off-line ropt
off-line algorithm. algorithm. By exploiting both long and short term statiatic
The main reason for this situation is that we insist on havirlgformation and by bookkeeping the information about huffe
a very low drop rate and therefore we were conservative @¢cupancy, we created an on-line algorithm which performs
applying low voltage. If we increase the drop rate to twic&ell in @ variety of workload scenarios. Both the off-line
the level in which we used, the performance characterigtic 3d on-line algorithms are flexible and adaptable, in the
the on-line algorithms are only 15% lower than the optim&eNse that they can address a variety of dual-primal QoS
off-line algorithm. Further increase in the drop rate, shaw Problem formulations, as well as a variety of QoS dimensions
Table V, further reduces the discrepancy between the en-lift!Ch as latency and synchronization, as well as workload
and off-line algorithms. The average and median percentdggracteristics.
difference between the off-line and the on-line algorithems
shown for both the 2-voltage and 3-voltage cases. It is worth
noting that context switching of the on-line heuristics viogs
a factor of 8.9 times lower than the corresponding time of This material is based upon work partially supported by the
the off-line algorithm. Finally, note that the on-line atgbm National Science Foundation under Grant No. ANI-0085773.
takes less than 0.1% of the computational effort with respemther proper agency and grant). Any opinions, findings and
to actual data processing. The number indicates the pagentconclusions or recommendations expressed in this magesal
by which the on-line heuristic is inferior to the off-linetipal those of the author(s) and do not necessarily reflect thesview
algorithm. of the National Science Foundation (NSF).
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TABLE V -
RELATION BETWEEN DROP RATE AND RELATIVE PERFORMANCE OF THE [22]
ON-LINE AND OFF-LINE ALGORITHMS.
2-voltages 3-voltages (23]
(3.3v, 1.8V) (3.3v, 1.8V, 1.0V)
Drop Rate || average| median || average | median [24]
0.1 29.8 % | 34.5% 31.8% | 36.1%
0.2 14.7% | 15.6% 14.9% 17.6%
0.25 10.8% | 11.2% || 11.5%% | 12.3% [25]
0.3 9.1% 9.9% 10.1% 11.5%
0.4 4.8% 5.8% 6.2% 7.0%
0.5 2.8% 2.6% 2.8% 2.5% [26]
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