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Abstract— Majority of modern multimedia and mobile sys-
tems have two common denominators: quality-of-service (QoS)
requirements, such as latency and synchronization, and strict
energy constraints. However, until now no synthesis techniques
have been proposed for the design and efficient use of such sys-
tems. We have two main objectives: conceptual and synthesis. The
conceptual objective is to develop a generic practical technique
for the automatic development of on-line adaptive algorithms
from efficient off-line algorithms using statistical techniques.

The synthesis objective is to introduce the first design tech-
nique for quality-of-service (QoS) low power synthesis. We
introduce a system of provably-optimal techniques that minimize
energy consumption of stream-oriented applications undertwo
main QoS metrics: latency and synchronization. Specifically,
we study how multiple voltages can be used to simultaneously
satisfy hardware constraints and minimize power consumption
while preserving the requested level of QoS. The purpose of
the off-line algorithm is three-fold. First, it is used as input
to statistical software which is used to identify important and
relevant parameters of the processes. Second, the algorithm
provides buffer occupancy rate indicators. Lastly, it provides
a way to combine buffer occupancy and QoS metrics to form
a fast and efficient on-line algorithm. The effectiveness ofthe
algorithms is demonstrated on a number of standard multimedia
benchmarks.

Index Terms— Quality of Service, Low Power, Synchronization

I. I NTRODUCTION

A. Motivation

In the last decade, low power synthesis and optimization
techniques received a great deal of attention. A variety of
techniques have been proposed for all steps of the synthesis
and compilation process. Combination of new logic families
and circuits, smaller feature sizes, more power efficient ar-
chitectures, power-aware CAD tools, and low power dynamic
run-time policies resulted in a dramatic increase in energy
efficiency. However, the power requirements of new product
generations have been constantly challenging the limits of
battery capacities.

An illustrative example of the technology or application
power trends is the evolution of the wireless phone. The
first generation of wireless phones is analog, the second is
digital, which is currently prevailing. As mezzanine genera-
tion wireless phones with microbrowsers have just emerged.
The imminently pending third generation includes powerful
Internet access. After that they will include numerous new
features encompassing streaming media. Laptops with wireless
modems already provide this type of service. The analysis
of communication and digital signal processing requirements

indicates that each wireless phone generation increases com-
putational requirements by at least two orders of magnitude.
Therefore, a need for new power minimization techniques has
been constant in wireless communications. In the last decade,
low power optimization techniques received a great deal of
attention.

The most popular mobile low power applications, such as
audio and video, are stream-oriented. The nature of these
applications impose a need for addressing the QoS require-
ments under energy constraints. Latency and synchronization
are the most relevant QoS metrics in these types of applica-
tions. Our goal is to develop a spectrum of techniques and
algorithms which minimize energy consumption under the
most important QoS metrics. Specifically, we study how to
use multiple voltage technologies to simultaneously satisfy
hardware requirements and minimize power consumption,
while preserving the requested level of QoS in terms of latency
and synchronization. Our starting point is a provably optimal
off-line algorithm for power minimization under QoS and
buffer constraints. In addition to buffer occupancy, a crucial
criteria for deciding which process to run at which voltage,we
identified four key properties of streaming processes (latency
slack, synchronization slack, relative burstiness, and number
of tasks (samples)). We plot a 5xm-dimensional space, where
m is the number of concurrent processes, and for each point
in this space we use the off-line algorithm as an indicator ofa
correct decision with respect to the task and voltage selection.
This space is analyzed to reduce context switching overhead
and speed up the decision process.

B. Objectives

Our primary goal is to present competitive on-line algo-
rithms for power minimization for streaming media appli-
cations for given hardware resource constraints: latency and
synchronization, as well as context switching overhead. We
aim to dynamically adjust the supply voltage in such a way
that an incoming statistical stream of data does not overflow
the buffer capacity of our processing system while expending
the least amount of energy. By considering the long and short
term statistics of the media streams and current buffer backlog,
we decide which supply voltage to apply. Furthermore, by
considering latency and synchronization constraints, we decide
which task to schedule at the current moment. Finally, we use
the new on-line algorithm to explore the trade-off between
buffer size (cost) and energy consumptions.

The first step is the development of two provably polyno-
mial time off-line algorithms for multiple voltage scheduling
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of single and multiple processes. The algorithm orders and
assigns packets of streaming media in such a way that energy
consumption is minimized, while storage requirements are
satisfied. The algorithm is dynamic programming-based and
can be used for compile time scheduling of movies and audio
or as starting point for the development of on-line algorithms
for the same task.

II. RELATED WORK

Our research results can be viewed in the context of four
related areas: low power modeling and optimization, quality
of service, on-line algorithms, and statistical techniques.

Mainly due to the demand for mobile applications, low
power research has attracted a great deal of attention in the
last decade. Both power modeling and optimization have been
addressed on many levels of the synthesis process [26]. More
recently, A number of researchers proposed the use of multiple
voltages in order to reduce power consumption [10], [22], [27],
[30]. Furthermore, several variable voltage techniques have
been reported [16], [17], [34]. Numerous algorithms for dy-
namic priority real-time systems have been proposed including
[21], [31], [18]. Also, several industrial multiple voltage low
power designs have been reported [17], [3] and prototypes [5],
[24], [38]. The common denominator in all the efforts has been
the fact that the operations on the critical path are scheduled
at higher voltage and therefore are executed faster and other
operations are scheduled on a lower voltage and therefore
the energy consumption is reduced. Another popular approach
to power minimization is dynamic power management which
aims to reduce the power consumption of electronic systems
by selectively shutting down idle components [11], [2]. From
one point of view our work can be interpreted as a combination
of these two techniques, multiple voltages and system-level
power management. A good survey on low power scheduling
is [19].

The first QoS requirements, such as bounded delay, guaran-
teed resolution or synchronization have been addressed in the
network and real-time operating systems (RTOS) communi-
ties. The most sound and practically relevant QoS model in the
networking community was proposed by R. Cruz [13], [12].
The model assumes periodic segmentation of time. During
each period, each process receives a task of generally varying
complexity. The cumulative sum of tasks for a process forms
a demand curve imposed on the system. The system serves
the task sequentially by allocating resources during each time
period to one of the processes. The cumulative sum of the
processed data forms a service curve. The main conceptual re-
sult in RTOS literature was presented by Rajkumar et al. [28].
They introduced an analytical approach for satisfying multiple
QoS dimensions under a given set of resource constraints.
They proved that the problem is NP-hard and developed
an approximation polynomial algorithm for the problem by
transforming it into a mixed integer programming problem
[29]. A comprehensive survey of QoS research in these two
areas is given in [1]. Recently, the first efforts in QoS, and in
particular synchronization during the system design process,
has been reported in design automation literature [25].

A. On-line algorithms

The notion of an on-line algorithm was introduced in order
to define a class of algorithms for which part of the input is
unknown at the beginning of the algorithm execution. Most of
the research is focused on competitive (worst-case) analysis of
on-line algorithms [4], [15]. In particular, a strong emphasis is
on how to define competitive analysis to better reconcile the
theory and practice of on-line algorithms. A comprehensive
survey on the main research areas for on-line algorithms can
be found in [4].

B. Statistical Techniques

Statistical techniques can be broadly divided in two groups:
parametric and nonparametric [33]. Parametric techniquesas-
sume that the knowledge about underlying statical distribution
is available (often normal distribution is assumed) and that
the task is to confirm the assumption about the distribution,
calculate the corresponding parameters, and establish intervals
of confidence [32]. Nonparametric techniques do not make any
assumption about the statistical distribution. They aim tobuild
the conceptually and quantitatively the simplest (and therefore
best) model which fits the recorded data [6], [33]. There are
a number of validation techniques, such as histograms, Chi-
square tests, Kolmogorov-Smirnov test, and quantile-quantile
plots which can be used to validate statistical claims of the
model. We opted to use resubstitution techniques for validation
[9], [14] because these techniques enable the validation of
an arbitrary hypothesis while establishing and accurate confi-
dence interval.

There are three main conceptual novelties in the presented
research with the respect to the previous efforts. The first is
that we consider QOS requirements for the streaming media
task model. The second is that we have developed one or
rare probably optimal algorithms for power minimization at
the system level. The final novelty is that on-line algorithm
is developed using statistical methods starting from the off-
line algorithms and therefore they provide a generic paradigm
for rapid development of effective on-line algorithms. Com-
prehensive versions of this paper can be found at [35], [36],
[37].

III. PRELIMINARIES

In this section, we outline the abstraction and models used
for power consumption, and define latency, synchronization,
and context switch overhead.

The dominating component of power consumption is the
switching power. Switching power can be modelled asP =
α · CL · V 2

dd · f , where α · CL is the effective switching
capacitance. This results from the fact that greater throughput
comes with the cost of higher voltage. Specifically, the gate
delay of circuits is a function of applied voltage and can be
calculated using the formulaT = k(Vdd/(Vdd − Vt)

2) where
k is a constant [7].

We assume the design operates using multiple voltage
supplies and that the voltages change instantaneously withno
overhead. These changes in voltages are assumed to happen
only at the beginning or the end of a time unit. Furthermore,
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we assume that the voltage units are selected in such a way that
the use of two identical voltages,vi andvi, on two consecutive
points is more effective than the use of consecutive voltage
levels,vi and vi+1, due to the fact that power as a function
of voltage is convex.

The Demand-Supply model for QoS was developed by Cruz
et al. [12]. The model addresses the burstiness of QoS while
handling resource allocation. This model assumes periodic
segmentation of the time dimension. During each period, each
process receives a task of generally varying complexity. The
cumulative sum of tasks for a process can be depicted as
a demand curve imposed on the system. The system serves
the task sequentially by allocating resources during each time
period to one of the processes. The cumulative sum of the
processed data forms a supply curve. While the DS-Curve
explains many of the QoS metrics, such as latency, backlog,
and synchronization. The key problem with this DS-Curve is
that its representation of QoS for a small period can be large.

The demand curve measures the burstiness of the service
requirement. The service curve guides the resource allocation
with QoS guarantees. Backlog is defined as the amount of
demand that cannot be processed at that time point, and
must then be carried over to the next time unit. The backlog
in the QoS model is represented by the difference between
the vertical positions of the demand curve and the service
curve. Latency is the time between when the demand for
a task arrives, and when it is processed. This is shown in
the model by the horizontal difference between the demand
and service curve at any given vertical position. A process
is a program which assumes that it has independent use of
the CPU. A process is long, in the sense that it consists of
many tasks. These tasks are processed at periodic moments in
time. With each task, we associate a processing time and a
storage requirement. Note that periodicity is not reducingthe
generality of our formulation because the tasks of the process
could have a requirement of zero. Finally, note that satisfying
all latency implicitly implies that the throughput requirements
are also satisfied.

Latency is defined as the difference between the time when
the data is processed and the time the data arrived, i.e.
tp - ta. We denote the time in which a particular sample
(piece of date) arrives asta and the time when that piece
of data is completely processed astp. At the intuitive level,
synchronization indicates how well two or more processes
are correlated in their execution. The assumption is that for
each piece of data to be processed for one of the processes
there exists a corresponding piece of data in each of the other
processes which need to be processed at exactly the same time
in order to have complete synchronization. However, majority
of real life applications such as, movies playing with its video
and audio processes do not have to be fully synchronized due
to the imperfections of the human sensory system.

We define synchronization in the following way. For the
sake of simplicity, consider only two processes,p1 and p2.
We denote the tasks of the processesp1 by p1i andp2 by p2j,
where i, j = {1, . . . , n}. Perfect synchronization constraints
indicate which sample (task or piece of data) of processp1,
which is denoted byp1i, has to be executed at the same time

TABLE I

EXAMPLE OF SYNCHRONIZATION AND LATENCY FOR TWO TASKS

Time 0 1 2 3 4

Task Arrival

P1 a b c d -
P2 w x y z -

Task Processed

P1 - a - b c,d
P2 w x - y z

D, S

Time

Synchronized

τ1

τ2

Latency 2

Latency 1

Not Synchronized

τ2S

τ2D

τ1D

τ1S

Fig. 1. Latency and synchronization in the DS model.

as piece of datap2j . Synchronization tolerance (often for the
sake of brevity is solely called “synchronization”) indicates
the maximal amount of time by which the execution of fully
synchronized samplesp1i andp2j can maximally differ.

For example, consider the two processes shown in Table
III. For each process,p1 and p2, there are four tasks which
arrive one at each time unit. For processp1, we have tasks ’a’
through ’d’, and forp2, we have ’w’ through ’z’. The latency,
or the time between when a task arrives and is processed, of
task ’b’ is two units (it arrives at time one and is processed
at time three). The synchronization between two tasks, for
example ’b’ and ’x’ orp11 andp21, is two. However, ’d’ and
’z’ or p13 andp23 is zero because both tasks are processed in
the same time unit.

One approach for illustrating the Demand-Supply model and
synchronization and latency is the use the DS-based approach.
Synchronization is the timing relationship between interacting
media, which is one of the most important metrics for QoS,
such as jitter and burstiness. The synchronization of two
processes can be seen in the DS-Curve (Fig. 1). The figure
displays two tasks,τ1 & τ2, and their corresponding service
(dotted lines) and demand curves (solid lines) for the two
tasks. We say thatτ1 & τ2 are synchronized when bothτ1

& τ2 are serviced at the same time. The latency is the time
between when the demand arrives and when it is processed.
The amount in which tasksτ1 & τ2 are not synchronized is
the difference between the latencies.

Note that the DS-Curve model is actually not an accurate
abstraction of the media data delivery process [9]. The major
limitation is that during delivery the initial periodic nature of
tasks can be made either highly dense or very sporadic in short
time intervals. Nevertheless, there is an easy way to make the
DS-Curve model adequate. Essentially all that is needed to
consider all tasks which arrive during our time unit (eg. in the
case of MPEG 40ms) as a single task is to create a new tasks
which has processing time and storage requirements equal to
the sum of the processing times and storage requirements of
all tasks which have arrived.
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A context switch is the time overhead which is incurred by a
multitasking kernel when it decides to process different tasks.
The amount of context switching time dramatically depends
on the processor. Context switching time for a typical DSP
processor is fairly low, around ten cycles, while for a RISC
processor it is much higher, approximately 100 cycles. In our
experimentation, we used ten cycles.

IV. OFF-LINE OPTIMAL ALGORITHM

In this section, we formulate the off-line QoS low power
problem and present our optimal algorithm. We use a single
processor that can operate at multiple supply voltages. The
goal is to service multiple processes with minimal energy con-
sumption and the minimal amount of memory while meeting
various QoS requirements.

A process consists of a sequence of tasks. With each task
ti, we associate:

• ai: The arrival time, the time when a task is generated
from the process and makes the CPU request;

• pi: The time needed to complete this task at the nominal
voltagevref ;

• si: The storage demand which is the minimal amount of
memory to store this task on its arrival.

Each of the tasks may have QoS requirements such as
latency and synchronization. Latencydi is the time that task
ti has to be served after its arrival, that is, the actual finish
time of taskti must be earlier thanai + di. Synchronization
measures the interaction among tasks in different processes.
We say that taskti from one process and tasktj from another
arek-synchronized if the difference of their finishing times is
within k CPU units. We denote this bysyn(ti, tj) ≤ k.

The variable voltage processor has multiple supply voltages
among which it can switch. The processor’s processing speed
varies as the voltage changes, so will the actual execution time
for a task to receive its required amount of service. Supposea
task needs one CPU unit at the nominal voltagevref , then the
execution time to accumulate the same amount of processing
at voltagevdd is given by [8]:

(vref − vt)
2

vref

·
vdd

(vdd − vt)2
(1)

wherevt is the threshold voltage.
Given n processesτ1, τ2, · · · , τn, each τk consists of a

sequence of taskstk1 , tk2 , · · · , t
k
n. A scheduleis a set consisting

of the starting time, finishing time, and the voltage level for
each task. A schedule isfeasibleif the processor starts each
task after its arrival, finishes it before the latency constraint,
and satisfies all synchronization requirements. The quality of a
schedule is measured by its energy consumption and the mem-
ory requirement. Since these two metrics are non-comparable
to each other, we introduce the concept of competitiveness.We
say two schedules arecompetitiveif neither outperforms the
other in both energy consumption and memory requirement.
We formulate the problem as:
On a processor with multiple voltages, for a given set of
processes, find all the feasible competitive schedules.

We make the following assumptions:

Tasks from the same process have to be executed and
completed in the FIFO fashion; The common processes
that we consider are audio, video, and streams generated by
sensor networks. For this type of applications, there is a natural
intrinsic order in which consecutive tasks have to be executed.
For example, obviously when we talk on the telephone it is
required that speech packets are processed and presented to
the user in exactly the same order as they are generated.

A task’s processing demand,pi, is proportional to its
storage demand,si; In general, of course, this assumption
is not necessarily correct. However, in many situations, the
amount of processing required for a specific set of data is
proportional to the amount of data. We mainly adopt this
assumption for the sake of simplicity during presentation.
However, it is important to notice that this assumption can
be removed in a straight forward way without increasing the
complexity of the optimal algorithm. This assumption is also
needed in many practical situations where the main modeling
obstacle is that often it is not possible to predict exactly the
amount of time needed to process a particular amount of data.
In many situations, it is often adequate to estimate the required
computational effort as a linear function of the amount of data.

The memory occupied by a task can be partially freed,
but only at the end of a CPU unitit occupies is freed and
we can start immediately next task that arrives before the start
of this unit of time1 This assumption is a direct consequence
of the way how current operating systems function. operating
system updates the requirements of consumption for each type
of resources only once per operating system cycle. Operating
system cycle is an atomic period of time that is allocated
by the operating system to a given task. In the modern
operating systems, this cycle is usually long, several hundred
milliseconds. Before a new cycle starts, the operating system
makes decisions on the next action.

There is no context switching overhead;Obviously, in
almost all types of processors, there is context switching
overhead. The key observation is that the operating system
cycle is significantly longer than the overhead and therefore
in the first approximation the overhead does not have to be
considered. Common times for context switching overheads
are in milliseconds or less and as we just stated, operating
system cycles are commonly at least two orders of magnitude
longer. Another reason for this assumption is that it is nec-
essary in order to produce the optimal algorithm. Note that
the considered problem is NP-complete if context switching
overhead is taken into account. Another important observation
is that we use the optimal algorithm mainly as a lower bound
and the assumption makes the lower bound more optimistic,
and therefore all conclusions for our on-line algorithm are
conservative.

The processor can instantaneously switch the supply
voltage, but only at the beginning of each CPU unit;
Physical laws in current technology imply that the change of
supply voltage can not be done instantaneously. Recently, there

1Memory can be partially freed means that, for instance, if half of the
processing demand is fulfilled at the end of one CPU unit, thenwe are able
to free half of the space used to store this task. Our proposedalgorithm can
be easily modified when this is not allowed.
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TABLE II

MEMORY REQUIREMENTS FOR THE MOTIVATIONAL EXAMPLE.

0 1 2 3 4 5 6 7 8 9 10 11
0 4 8 17 17 19 17 14 11 8 5 2 0
1 7 12 12 14 10 7 4 1 0
2 12 5 7 5 2 0
3 5 5 1 0
4 5 1 0
5 1 0
6 0

have been several efforts to take this time into account [23].
However, in modern technologies, context switching times
are usually two to three orders of magnitude shorter than
the operating system cycle. Therefore, this approximationis
sound and impacts overall results only nominally. algorithm
assigns a high priority to the reduction of context switching
time. Another important observation is that this assumption
again makes the lower bound more optimistic and therefore
all our conclusions about the relative performance of the on-
line algorithm more pessimistic.

A. Optimal Solution for Single Process

In this section, we show how to find all feasible competitive
solutions for a single process. Suppose the reference voltage
vref is 0.8v, and there are two different voltage levelsvhi =
3.3v andvlo = 1.8v. From equation (1), we approximate the
processing speeds to be 3 and 10 atvlo andvhi respectively.
Consider a process with six tasks,t0, t1, · · · , t5. For simplicity,
we further assume that taskti arrives at timei, and there are
no deadline constraints. Finally, we assume that the processing
and memory requirement are4, 7, 12, 3, 5, and1 respectively
for the six tasks. The goal is to determine the voltage to use
for each unit time, such that the energy consumption is mini-
mized. Even for two different levels of voltages, an exhaustive
search will take exponential time2. We developed a dynamic
programming-based algorithm which achieves polynomial run-
time for this task.

Table II shows the memory requirement at the end of
each unit time, which is the minimal amount of memory
required to store all the arrived but unfinished tasks. The table
uses the time (in terms of CPU units) that the processor is
operating atvlo andvhi to label the horizontal and vertical axis
respectively. For example, entry(i, j) is the minimal memory
requirement after running atvhi for i CPU units and atvlo for
j units.

Consider entry (1,1), whose content is the storage we need
at the end of the second unit of time after we usevlo for one
unit of time andvhi for one unit. We can either applyvhi in
the first unit andvlo in the second unit, or start atvlo and
switch tovhi after one CPU unit. In the first case, since task
t0’s processing demand is 4 and we are able to process 10
at vhi, we will finish t0, free the memory, and wait fort1;
then atvlo in the next unit of time, we can finish 3 out of
the 7 units of processing demand fromt1; now t2 is arriving,

2For example, if one best solution is to use high voltage form units and
low voltage forn units, then there exist

(

m+n

m

)

different ways of findingm
units and applying high voltages.

TABLE III

STORAGE REQUIREMENTS FOR THE MOTIVATIONAL EXAMPLE.

0 1 2 3 4 5 6 7 8 9 10 11
0 4 8 17 17 19 19 19 19 19 19 19 19
1 7 12 12 14 19 19 19 19 19
2 12 12 12 14 14 14
3 12 12 12 14
4 12 12 12
5 12 12
6 12

therefore we need a total of(7−3)+12 = 16 units of memory
to storet1 and t2. In the second case,vlo then vhi, we can
only finish 3 out of the 4 processing demand of taskt0 by
the end of the first unit of time due to the slow processing
speed atvlo; however, after raising the voltage tovhi during
the second unit, we are able to finish both the remaining of
t0 and entiret1; the storage for taskst0 and t1 are freed and
therefore whent2 arrives, we only need 12 units of storage
to store this new task. Thus, we fill entry (1,1) with 12, the
smaller storage requirement of the two different strategies.

Let m(i, j) be the content of entry(i, j). We can reach this
entry from entry(i − 1, j) by applyingvhi or from its left
neighbor(i, j − 1) by applyingvlo, hence we have:

m(i, j) = min (si+j + max (0, m(i − 1, j) − sphi),
si+j + max (0, m(i, j − 1) − splo)) (2)

where splo and sphi are the processing speed atvlo and
vhi respectively. The innermax is introduced to enforce that
excess processing resource cannot be used for future work. We
build Table II based on formula (2), where every row ends with
an entry of 0 meaning that there are no tasks left.

While m(i, j) gives the minimal storage requirement at the
instanti + j, we may have used more storage already before
this time. We further denoteM(i, j) as the minimal amount
of storage that has been used up to timei + j after runningi
units of time atvhi andj at vlo. Considering the voltage being
used in the(i + j)-th unit, we observe that if we usevhi, we
can finish at mostmax(m(i − 1, j), sphi) and need a storage
of si+j +max(0, m(i−1, j)−sphi). Moreover, previously we
have already required a storage at the amount ofM(i− 1, j).
This implies that

M(i, j) ≥ max(M(i − 1, j), si+j+
max (0, m(i − 1, j) − sphi) (3)

Similar inequality holds if we usevlo, therefore we have

M(i, j) = min(
max(M(i − 1, j), si+j + max (0, m(i − 1, j) − sphi),
max(M(i, j − 1), si+j + max (0, m(i, j − 1) − splo)) (4)

Based on the recursive formulas (2) and (4), we calculate
M(i, j)’s and store them in Table III, where the last entry of
thei-th row gives the minimal storage requirement to complete
all the tasks by usingvhi for exactly i units.

The power consumption atvhi = 3.3v is 1, then the power
consumption atvlo = 1.8v is 0.1 from our power model.
Unlike the storage requirement, energy consumption is path
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TABLE IV

MEMORY AND ENERGY FOR DIFFERENT SCHEDULES

(6,0) (5,1) (4,2) (3,3) (2,5) (1,8) (0,11)
M 12 12 12 14 14 19 19
E 6.0 5.1 4.2 3.3 2.5 1.8 1.1

independent. I.E., it depends on the total number of CPU units
that we have used atvlo and vhi, not the voltage at every
individual time unit. For instance, if we have usedvhi for 2
units andvlo for 4 units, then the total energy consumption is
calculated as1 × 2 + 0.1 × 4 = 2.4.

Table IV gives the memory requirements and total energy
consumptions by different scheduling policies, where(i, j) in
the first row indicates a schedule that usesvhi for i units
andvlo for j units. Clearly from this table, we see that there
exist three competitive optimal solutions,(4, 2), (2, 5), and
(0, 11). They consume different amounts of energy and require
different amounts of memory. We can then choose the one
that fits our preference of memory and energy, and retrieve
the actual schedule (i.e., the voltage for each CPU unit) by
using simple backtracking.

Fig. 2 shows the algorithm of finding all the competitive
optimal solutions for multiple processes. A schedule in this
case has to determine, for each CPU unit, which process to
be executed and at which voltage level.
Definitions: Assuming that there arem processes andk
different voltages, we havem · k choices: running theith
process at voltagevj (1 ≤ i ≤ m, 1 ≤ j ≤ k). A
state S = (e1, · · · , em; u1, · · · , uk) means that theith
process has been allocatedei CPU units, and the proces-
sor has been working at voltagevj for uj CPU units.
Notice that

∑m

i=1
ei ≤

∑k

j=1
uj and the equality holds

if and only if at any time, there exists unfinished pro-
cess(es). We say stateS = (e1, · · · , em; u1, · · · , uk) pre-
cedesS′ = (e′1, · · · , e

′

m; u′

1, · · · , u
′

k) if i)e′i ≥ ei, ii)u
′

j ≥

uj , iii)
∑m

i=1
e′i − ei ≤ 1, and iv)

∑k

j=1
u′

j − uj = 1. If S
precedesS′, we say thatS′ follows S. We define Prev(S) =
{S′ : S′precedesS}, and Next(S) = {S′ : S ∈ Prev(S′)}.
A state S is reachableif Prev(S) 6= φ. A final state is a
state when all processes’ requests are satisfied. A scheduleis
a sequence of states{S1, S2, · · ·} such thatSl ∈ Prev(Sl+1)
and all processes’ processing loads are satisfied at the final
state.
Correctness of the algorithm:

The off-line optimal algorithm consists of three phases.
First, we build anm × k dimensional table which stores the
minimal memory requirements. For example, when there is
only one process and two voltages, then we will have a table
like Table III. Step 1 computes theNext set for the initial
stateS0, if all m processes require CPU time at the beginning,
then this set will havem × k elements. Steps 2-4 makes all
the states inNext(S0) reachable, since each state is one move
away from the initial stateS0. We denote the set of reachable
states byS. Steps 5-18 build the table recursively until there
is no reachable state. We keep all the reachable states in a
queue, we calculate theNext set for the head of the queue
(state S) in Step 15, deleteS from the queue and put all
elements ofNext(S) into the queue in Step 16. When we

Input : m processes with their arrival time, processing load, and
other timing requirement(deadline, synchronization, etc.);
k different supply voltages.

Output : All competitive pairs of memory requirement and
energy consumption, and one schedule for each such pair.

Algorithm :
Phase I: Configuration for all states.
1. ComputeNext(S0) for the initial stateS0;
2. for eachS ∈ Next(S0)
3. { Prev(S) = S0;
4. S = S ∪ S;}
5. while ( S 6= φ )
6. { for eachS ∈ S
7. { currentmax memory for stateS = ∞;
8. for eachS′ ∈ Prev(S)
9. { calculate the maxmemory requirement

if S follows S′;
10. if ( max memory≤ currentmax memory )
11. { currentmax memory = maxmemory;
12. currentpreviousstate =S′; }

}
13. maxmemory for stateS = currentmax memory;
14. previousstate forS = currentpreviousstate;

}
15. ComputeNext(S);
16. S = S ∪ Next(S) − S;
17. for eachS′ ∈ Next(S)
18. Prev(S′) = Prev(S′) ∪ S; }
Phase II: calculation for energy consumption.
19. for each final stateS
20. calculate the energyconsumption forS;
21. compute all the competitive final statesF ;
Phase III: determine one schedule for each competitive state.
22. for each competitive stateS = (e1, · · · , em; u1, · · · , uk) ∈ F

23. { index = l =
∑k

j=1
uj ;

24. Sindex = S;
25. while ( index 6= 0)
26. { S′ = previousstate forSindex;
27. index = index - 1;
28. Sindex = S′; }
29. report the schedule(S0, S1, · · · , Sl) for S; }

Fig. 2. Algorithm for all off-line competitive schedules.

computeNext(S), we consider all the timing requirements. For
example, if processi has a deadline at the end of next CPU
unit and its remaining process requirement can be fulfilled only
when we use the highest voltage, thenNext(S) will contain
only one state, which assigns the current CPU unit to process
i and applies the highest voltage. Because all other schedules
will fail to meet processi’s deadline. The memory requirement
for each state is calculated using formulas similar to (2,4).

From the table built in the first phase, we can easily see
the total memory requirement for each schedule, which is the
value at its corresponding final state. In Phase II, we calculate
their energy consumption. Recall that the energy consumption
is path-independent. LetPj be the power for voltagevj , then
for final stateS = (e1, · · · , em; u1, · · · , uk), all schedulers
with this final state will consume energy in the amount ofE =
∑k

j=1
Pj ·uj. So for each final state, we associate with the pair

(M, E), the memory requirement and the energy consumption.
Recall also that two final statesS and S′ are competitiveif
i)M ≤ M ′ andE ≥ E′, or ii)M ≥ M ′ andE ≤ E′.

In the third phase, we find a schedule for each competitive
final state. We achieve this by using backtracking as shown in
Steps 23-29. The existence of stateS′ in Step 26 is guaranteed
by the way in which we build the memory requirement table
in Phase I. Therefore, we have:
Theorem 4.1: The algorithm in Fig. 2 finds all the feasible
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competitive schedules.
We analyze the complexity of the algorithm, for a fixed

processor that hask supply voltages to executem processes,
in terms of the total processing demands. Suppose that we
needX CPU units to service all the processes at the reference
voltage. In Phase I, we essentially fill in the entries of anm×k
dimensional table. (Table III is an example withm = 1 and
k = 2), where entries along dimension< i, j > represent the
storage requirements when thei-th process is processed with
the j-th voltage. If thei-th process needsXi,j units under the
j-th voltage, when all the otherm×k−1 dimensions are fixed,
the number of entries we need to fill along this dimension will
be Xi,j , which is in the order ofO(X). Since the table is
m × k dimensional, and the cost for computing each entry is
constant, the run-time in Phase I will beO(Xmk).

The calculation of energy consumption in Phase II takes
constant time for each final states. According to how many
units we have run at the reference voltage, it is clear that we
will have at mostX different final states (c.f. Table III for an
example). Thus, the cost here isO(X). In the last phase, we
determine a feasible schedule for each competitive final state
by backtracking. In step 27, we move one entry closer to the
starting point, and the total number of steps we need is also
in the order ofO(X). Therefore, we have:
Theorem 4.2: If we needX CPU units to service all the
processes at the reference voltage, the run-time of the proposed
algorithm isO(Xmk).

V. ON-LINE HEURISTICS

In this section, we present the on-line algorithm for power
minimization under the QoS constraints, synchronization and
latency.

We have multiple on-line streaming processes, with tasks
which arrive at periodic time intervals. For each task of each
process, we have memory and CPU requirements. Each of
these tasks have a given latency constraint, and on some
subset of these tasks additional synchronization constraints are
imposed. We are given multiple supply voltage levels in which
to execute these tasks. The goal of the on-line algorithm is to
decide which task from the stream processes to execute at each
time interval and at which voltage in such a way that all latency
and synchronization constraints are satisfied. Additionally, at
no point of time the requirements for storage should exceed
the memory size (buffer space).

In order to solve the overall problem, we must answer
the following three questions: (i) how much buffer space is
needed, (ii) which task to execute, and (iii) which voltage to
apply. The answer to each of these questions is determined
by our synthesis and on-line scheduling approach which is
presented in Fig. 3. The on-line approach uses the optimal
off-line algorithm to determine its decision mechanism.

The on-line approach begins with the assembly of a diverse
set of test cases. The off-line optimal algorithm provides a
lower bound on the memory requirement for the system along
with the optimal QoS solution for the test set. The lower bound
memory requirement is used to determine the proper buffer
allocation size for the on-line algorithm. In this phase, a binary

Assembly of
Test Case Set

Test Cases

Optimal Offline
Algorithm

Optimal
Solution

Lower Bound
Memory

Buffer Allocation

Buffer Space
Evaluation

Binary Search

New Test
Cases

Enough?
Build Initial On-
line Algorithm

On-line
Decision
Strategy

On-line Test
Cases

On-line
Algorithm
Evaluation

On-line
Algorithm
Correction

On-line
Algorithm

no yes

Buffer Space Allocation

On-line
Algorithm

Development

QoS?
no

yes

Fig. 3. Overall Flow for the creation of the on-line algorithm.

search on the size of the buffer is conducted. Each iteration
tests the new buffer size on a new set of test cases, until the
buffer space allocated is sufficient to handle all considered
cases.

Next, the buffer size and the optimal solutions are used
to build the on-line algorithm. The initial on-line algorithm
builds a statistical model from the optimal off-line solutions
and creates an on-line decision strategy, which is used in order
to select the proper task and voltage in which to execute in
each situation. The decision strategy is then evaluated on a
set of on-line test cases. If the decision strategy does not
provide the level of QoS specified, then modification of not
only the statistical model and the decision strategy, but also
the allocated buffer space is conducted. We continue to make
modifications until the desired level QoS is reached.

The initial on-line algorithm is created using the pseudo-
code shown in Figure 4. The initial on-line algorithm is
created in five steps. In the first step, we identify the relevant
properties for the QoS requirement. For example, in the case
of latency and synchronization, we define properties such as
average latency, maximum synchronization delay, and buffer
occupancy. We evaluate the relevance of these properties in
terms of the off-line optimal algorithm in the second step.
We eliminate all properties which show little relevance to
the outcome of the optimal off-line solutions. Following this
step, both the optimal off-line solutions and the relevant
properties are used to build the statistical model. We builda
nxm-dimensional space, wheren is the number of properties
and m is the number of processes. The resolution of each
property is specified, and for each subspace we determine the
statistical values for task selection. Each subspace contains the
percentage of time the optimal off-line algorithm selectedeach
of the tasks under the defined property conditions. In a similar
way, the statistical values for all situations and each voltage
level is calculated.

Before we evaluate the effectiveness of the model, we
have to develop the on-line decision strategy. The strategy
is responsible for making the decision as to which task and
which voltage to select according to the particular combination
of property values. The strategy is reliant on the context
switch time or penalty. For each subspace, in the task selection
statistical model, the decision strategy must decide with task
to select based on the values in the subspace and the context
switch penalty. If there was no penalty for context switch-
ing, then for each situation we would select the statistically
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Build On-Line Algorithm(){
1. Identify Relevant Parameters;
2. Evaluate Relevant Parameters;
3. Build Statistical Model;
4. Develop Decision Strategy;
5. Validate Model;}

Fig. 4. Procedure for development of on-line algorithm.

strongest task from the statistical model. However, if the
context switch penalty is high, we would like to continue
to run the tasks of the currently selected process as long
as possible. In the moderate case, the proper time to switch
between processes needs to be defined, and therefore we
propose different points in the statistical model to switch
between processes. The final step is to evaluate each of these
proposed points to determine the proper switching point in the
model. Once the proper switching points has been defined, we
compact thenxm-dimensional table by combining subspaces
with the same task/process selected to execute. Statistically,
the subspaces should not be interleaved, and therefore we
shall have continuous subspaces. For each decision the on-
line algorithm determines which subspace the properties fall
into, and select the assigned task/process to execute. The same
process is applied to determining the voltage selection decision
strategy. This on-line decision strategy is then passed on to the
final stage of the overall on-line approach.

In order to better illustrate the algorithm and to make our
ideas more tangible, we use a small example shown in Fig.
5. For the sake of clarity and brevity, we consider only two
processes, A and B, and two properties, latency of process A
and synchronization lag between processes A and B. The lag
is positive if process A is in front of process B in terms of
its execution. Fig. 5(a) shows numbers that can be obtained in
principle by running the optimal off-line algorithm on a large
set of examples. Each defined region of the space contains the
percentage of cases in which the optimal off-line algorithm
selected task/process A to execute. For example, the top left
corner contains the value 100% and indicates that in all cases,
process A was selected. The intuition is that process A has
very high latency and is lagging behind synchronization with
process B.

These numbers are used by the on-line algorithm develop-
ment process to create the decision table shown in Fig. 5(b).
Note that the decision strategy must take into account the
context switching penalty, therefore not making the mapping
from Fig. 5(a) to 5(b) straightforward. Specifically, the value
40% from Fig. 5(a) was mapped to the decision that process
A should be executed in order to reduce context switching
overhead. For example, if the latency of task/process A is
high and the synchronization of A is behind B, we should
run task A with a likelihood of 100%. However, in the case of
task A with high positive synchronization lag, the likelihood
of running task A is very low, despite the level of latency of
task A.

The on-line algorithm builds a statistical model and an on-
line decision strategy based on thenxm-dimensional space
defined by the properties. The goal is to select properties which
provide strong indication of which task should be run at which

Latency

Synchronization Lag

100 100 100 100 100

100

100

100

50

0

0

060

40

2050

60

708090

80 70

6070

+-

Latency

Synchronization Lag

A A A A A

A

A

A

A

B

B

BA

A

BB

A

AAA

A A

AA

+-

(a) (b)

Fig. 5. Example of the statistical model and decision strategy of the on-line
algorithm.

voltage. We have defined the following five properties. For
each property, we state the typical reasonings and examplesof
why that property should be included in the decision strategy
of a high quality on-line algorithm.

Latency. If the latency of multiple tasks of a process are
close to their maximum allowed latency, this process shouldbe
selected. Additionally, a higher voltage should be run to ensure
each of the tasks meet their latency requirements. However,if
the latency for all tasks/processes are at lower levels, then the
task of the current process should be executed to eliminate a
context switching penalty.

Relative Burstiness. The recent burstiness of a process, or
rapid arrival of tasks for a process, can play an important role
in voltage and task selection. If a task has shown recent bursti-
ness, we should consider the execution of the task/process
due to the likelihood that this task will continue to be bursty,
therefore consuming more buffer space and extending the
latency of each of the tasks if they are not run.

Number of Tasks. The number of tasks which a process
has waiting also plays a key in the task and voltage selection
process. If the current selected process has more tasks than
the other processes, the tasks of the current process should
continue to be selected in order to eliminate context switching
penalties.

Synchronization. When the synchronization for any
task/process is nearing the maximum allowed level for QoS
this task should be selected. If the synchronization of the
currently selected task/process is high, the algorithm should
continue to run this process as long as possible to avoid context
switching. For voltage selection, if the selected task is close to
the maximum allowed synchronization level, a higher voltage
should be applied.

Buffer Occupancy. Buffer occupancy is an indiction of
the current demand of the processes as a whole. This property
looks at the percentage of the entire buffer in which each
process occupies. If the buffer is near capacity, the processes
with higher buffer occupancy should be selected.

VI. EXPERIMENTAL RESULTS

In this section, we present the experimental results ob-
tained using comprehensive simulation study. We first describe
the used examples (multimedia applications). After that, we
present our experimental setup and collected data. Finally, we
conduct the analysis of the experimental results.
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Fig. 6. Energy savings by off-line algorithm using multiplesupply voltage
assuming3.3V nominal voltage with the same amount of memory.

A. Experimental Study: Goals and Procedure

In order to evaluate the on-line heuristic, we adapt the
following procedure. We use four CPU units for the latency
constraints. For synchronization, we use eight CPU units. The
goals of the our experimentation and results analysis was to
answer the following questions: Are multiple voltages useful?
How many voltages are needed? What is the relative quality
of the on-line algorithm with comparison to the optimal off-
line scheme? How much benefit one can obtain for on-line
algorithms when the goal is to minimize design costs (buffer
storage) under energy consumption constraints?

We used six streaming applications [20] to evaluate the
effectiveness of the approach: IJG JPEG encoder and decoder,
MSG MPEG encoder and decoder, CCITT G.721 encoder, and
PGP encryption and description module.

In order to analyze the effectiveness of our approach, we
started with preliminary testing to determine the appropriate
number of voltage levels. We considered three cases, 2-
voltages at 3.3V and 1.8V, 3-voltages at 3.3.V, 1.8V, and
1.0V, and 4-voltages at 3.3V, 2.4V, 1.8V, and 1.0V. We used
the off-line algorithm to determine the energy savings of the
three cases on 1, 2, 3, 5, 6, 8, and 10 processes. All energy
consumption values were normalized to the single voltage case
at 3.3V, and we used the memory requirement for the single
voltage case as the basis for the other cases. We present the
results in Fig. 6. The figure shows the percentage of energy
savings versus the number of processes.

The first three questions are addressed using data from the
experiments that are displayed in Fig. 7. The figure shows
that for different number of processes the normalized energy
requirements when the optimal off-line and on-line algorithms
are applied under the same memory requirement. All the
values are normalized to the single voltage (3.3V) case found
using the off-line algorithm. Since the off-line algorithmis
optimal, we use the off-line values as the lower bound. The
figure indicates the results after applying the optimal off-line
algorithm and the on-line algorithm for both the 2-voltage and
3-voltage cases. The percentage by which the off-line and the
on-line algorithm differ in savings compared to the number of
processes is presented in Fig. 8.

Fig. 9 presents the results for the dual problem evaluated

using Fig. 7. Here we evaluate how much the cost of the
system, measured in terms of buffer space, can be reduced
under the conditions that energy consumption is fixed. All
results are normalized against the base case where storage
requirements are first calculated for the set of tasks assuming
that a single voltage is used. For the case when we use 2-
voltages we compare to 2.5V, and in the case for 3-voltages we
use 1.8V. Again, we present the normalized results for both the
2-voltage case, and the 3-voltage case in Fig. 9. Additionally,
we present the percentage difference between the optimal off-
line memory requirement and the on-line algorithm for both
the 2-voltage case and the 3-voltage case in Fig. 10.

Lastly, we consider the relationship between the drop rate of
the on-line and off-line algorithm relative to their performance.
These results are presented in Table V. For both the 2 and 3-
voltage level cases, we varied the drop rate from 0.1 to 0.5
and considered and average and median percentage difference
between the drop rates of the off-line and on-line approaches.

B. Analysis of Experimental Results

The first important question that we analyze is what is the
optimal number of voltage levels required to obtain essentially
all potential benefits from the use of multiple voltages. In
Fig. 6, we analyze the potential benefit for the use of 2,3
and 4-voltage levels with our off-line algorithm. Our results
show a energy savings of at least 35% when 2-voltages are
used, and at least 45% improvement in the 3-voltage case.
While the energy saving increases with the number of voltage
levels used, the benefit of using 4-voltages over 3-voltagesis
relatively small. Therefore, we see diminishing returns when
using more than 3-voltage levels.

The comparison between the optimum off-line and the
heuristic on-line algorithms with respect to storage require-
ments and energy savings indicates several important conclu-
sions. Evaluation of the on-line and off-line memory consump-
tion is shown in Fig. 8. On average the on-line algorithm
indicates an overhead of 25%. However, it also saves energy
over the single voltage case with 36.5% savings for 2-voltages,
and 44.4% savings for 3-voltages. Therefore, we see that
significant savings in energy can be achieved by applying
multiple voltages.

We see that although the on-line algorithm is not capable of
completely matching the performance of the off-line algorithm
in Fig. 8, it nevertheless brings very significant improvements
over the single voltage case, and that this difference has only
limited additional potential for further energy reduction.

From Fig. 10, we see that the on-line algorithm is not able
to completely match the performance of the optimal off-line
algorithm, the reduction for storage requirements are signifi-
cantly larger than the energy savings. This is a consequence
of the fact that energy consumption is dictated by the overall
average effectiveness of on-line and off-line algorithms,while
the storage requirements are primarily a function of how
well these algorithms can use high voltages to reduce storage
requirements during bursty periods of processes.

The standard procedure for the analysis of on-line al-
gorithms is competitive analysis. Competitive analysis [4],
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[15] evaluates the on-line algorithm by comparing its per-
formance to the best results that could have been achieved
if all inputs had been known in advance. All competitive
analysis techniques assume idealized probabilistic distribution
for inputs. Such distribution does not exist in closed form for
streaming media and therefore classical competitive analysis
is not feasible. However, since we have an optimal algorithm
for the power minimization using multiple voltages, statistical
competitive analysis is a proper alternative. Fig. 7 shows that
at average the on-line heuristic is1

4
less effective than the

off-line algorithm.
The main reason for this situation is that we insist on having

a very low drop rate and therefore we were conservative in
applying low voltage. If we increase the drop rate to twice
the level in which we used, the performance characteristic of
the on-line algorithms are only 15% lower than the optimal
off-line algorithm. Further increase in the drop rate, shown in
Table V, further reduces the discrepancy between the on-line
and off-line algorithms. The average and median percentage
difference between the off-line and the on-line algorithmsare
shown for both the 2-voltage and 3-voltage cases. It is worth
noting that context switching of the on-line heuristics wasby
a factor of 8.9 times lower than the corresponding time of
the off-line algorithm. Finally, note that the on-line algorithm
takes less than 0.1% of the computational effort with respect
to actual data processing. The number indicates the percentage
by which the on-line heuristic is inferior to the off-line optimal
algorithm.
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VII. C ONCLUSION

We have developed an optimal polynomial-time algorithm
for power minimization of popular streaming media applica-
tions, such as audio, video, and sensor network data under
QoS requirements and hardware constraints using multiple
voltages. Furthermore, we have developed an on-line adaptive
policy for power minimization in the same scenario. The on-
line approach leverages the insights from the off-line optimal
algorithm. By exploiting both long and short term statistical
information and by bookkeeping the information about buffer
occupancy, we created an on-line algorithm which performs
well in a variety of workload scenarios. Both the off-line
and on-line algorithms are flexible and adaptable, in the
sense that they can address a variety of dual-primal QoS
problem formulations, as well as a variety of QoS dimensions,
such as latency and synchronization, as well as workload
characteristics.
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TABLE V

RELATION BETWEEN DROP RATE AND RELATIVE PERFORMANCE OF THE

ON-LINE AND OFF-LINE ALGORITHMS.

2-voltages 3-voltages
(3.3V, 1.8V) ( 3.3V, 1.8V, 1.0V)

Drop Rate average median average median

0.1 29.8 % 34.5% 31.8% 36.1%
0.2 14.7% 15.6% 14.9% 17.6%
0.25 10.8% 11.2% 11.5%% 12.3%
0.3 9.1% 9.9% 10.1% 11.5%
0.4 4.8% 5.8% 6.2% 7.0%
0.5 2.8% 2.6% 2.8% 2.5%
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