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Abstract. Classification is one of the major tasks in knowledge dis-
covery and data mining. Naive Bayes classifier, in spite of its simplic-
ity, has proven surprisingly effective in many practical applications. In
real datasets, noise is inevitable, because of the imprecision of measure-
ment or privacy preserving mechanisms. In this paper, we develop a new
approach, LinEar-Equation-based noise-aWare bAYes classifier (LEE-
WAY ), for learning the underlying naive Bayes classifier from noisy ob-
servations. Using linear system of equations and optimization methods,
LEEWAY reconstructs the underlying probability distributions of the
noise-free dataset based on the given noisy observations. By incorpo-
rating the noise model into the learning process, we improve the classi-
fication accuracy. Furthermore, as an estimate of the underlying naive
Bayes classifier for the noise-free dataset, the reconstructed model can
be easily combined with new observations that are corrupted at different
noise levels to obtain a good predictive accuracy. Several experiments
are presented to evaluate the performance of LEEWAY. The experimen-
tal results show that LEEWAY is an effective technique to handle noisy
data and it provides higher classification accuracy than other traditional
approaches.
keywords: naive Bayes classifier, noisy data, classification, Bayesian
network.

1 Introduction

Classification is one of the major tasks in knowledge discovery and data mining.
Naive Bayes classifier, in spite of its simplicity, has proven surprisingly effective
in many practical applications, including natural language processing, pattern
classification, medical diagnosis and information retrieval [12]. The input dataset
for naive Bayes classifier is a set of structured tuples comprised of <feature vec-
tor, class value> pairs. The fundamental assumption of naive Bayes classifier is
that the feature variables are conditionally independent given the class value.
This classifier learns from the training dataset the conditional probability distri-
bution of each feature variable Xi given the class value c. Given a new instance
< x1, x2, ..., xn > of the feature vector < X1, X2, ..., Xn >, the goal of the classi-
fication then is to predict its class value c with the highest posterior probability
P (C = c|x1, x2, ..., xn).

The classification accuracy depends not only on the learning algorithm, but
also on the quality of the input dataset. In a real dataset, noise is inevitable,
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because of the imprecision of measurement or privacy preserving mechanisms [1].
In this paper, we develop a new approach, LinEar-Equation-based noise-aWare
bAYes classifier (LEEWAY ), for learning the underlying naive Bayes classifier
from noisy observations. Using linear system of equations and optimization meth-
ods, LEEWAY reconstructs the probability distributions as an estimate of the
underlying real naive Bayes classifier. By incorporating the noise model into the
learning process, we improve the classification accuracy. Furthermore, with new
observations that are corrupted at different noise levels, we obtain an extended
naive Bayes structure that combines the reconstructed probability distributions
with the noise information. From this extended naive Bayes structure, we obtain
a better classifier of the new observations. Since the noise model can be added
either on the class variable or on feature variables or both, we will study each
of the scenarios respectively in section 3.

1.1 Related Work

Noise identification and data cleaning have been studied in several different data
mining tasks, including classification ([10], [5], [17]), pattern discovery ([8], [20]),
privacy preserving ([1]), speech recognition ([19]), and Bayesian network learning
([16], [2]).

Different noise models are introduced for different purposes. In privacy pre-
serving data mining, [1] studied the distortion method, in which data are ran-
domly perturbed, and developed a way to reconstruct probability distribution
from distorted data. [2] defined the noise model as the conditional probability
distribution of the observed feature variable given the noise-free feature variable,
and analyzed the effects of noise on learning Bayesian networks. [20] introduced
compatibility matrix as a way to provide a probabilistic connection from the ob-
served data to the underlying true data, and developed methods to discover long
sequential patterns in a noisy environment. The notion of an uncertain database
was first introduced in [13] for association rule mining. In an uncertain dataset,
instead of giving explicit values, each tuple contains a tag value for each fea-
ture variable that gives the probability of the feature values appearing in the
underlying noise-free dataset given this observation.

There are several ways to represent and compensate for noise in the observed
dataset. One approach is to develop robust algorithms that allow for noise by
avoiding over-fitting the model to the data ([15], [6]). Another approach is to
pre-processing the input data before learning. [5] applied a set of learning algo-
rithms to create classifiers as filters to identify and eliminate mislabelled training
instances. [10] examined and extended C4.5 decision tree algorithm by pruning
the outliers. There are two weaknesses in eliminating corrupted tuples. First,
by eliminating the whole tuple, it also eliminates potentially useful information
such as the uncorrupted feature values. Secondly, when there is a large amount
of noise in the dataset, the amount of information in the remaining clean dataset
may not be sufficient for building the classifier. Therefore, new pre-processing
techniques have been developed to correct the corrupted data. [11] presented an
approach for identifying corrupted fields and using the remaining non-corrupted
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fields for subsequent modelling and analysis. [16] used Bayesian methods to clean
corrupted data that have dependencies among features. However, this technique
requires an expert to provide a model in the form of a Bayesian network for the
basic structure of the data, and a small amount of cleaned data. [17] presented a
method for correcting misclassified data to improve classification accuracy based
on the other predicted feature values and the remaining feature values. However,
in a noisy dataset where each value is corrupted, to correct the corrupted data
is neither easy nor effective. Thus, further techniques are developed. Instead
of correcting each value, [1] reconstructed the probability distributions of the
underlying noise-free dataset with continuous feature variables.

1.2 Our Contributions

The main contributions of this paper are: (1) We focus on learning naive Bayes
classifier from noisy dataset, where each value is corrupted and noise is added
on either feature values or class values or both. For such noisy dataset, neither
eliminating nor correction technique will be effective or easy for pre-processing.
(2) We introduce extended naive Bayes structures, which combine the naive
Bayes classifier for the noise-free dataset and the noisy observations. (3) Instead
of pre-processing the noisy observations, we incorporate the noise model into
the learning process and develop a new approach, LinEar-Equation-based noise-
aWare bAYes classifier (LEEWAY ), to reconstruct the conditional probability
distribution of the feature variables given the class value for the underlying noise-
free dataset. LEEWAY is a general method in the sense that it is suitable for
any noise model. (4) We have performed several experiments to evaluate the
performance of LEEWAY on different noisy datasets. The experimental results
show that LEEWAY is an effective technique to handle noisy data and it provides
higher classification accuracy than other traditional approaches.

The rest of the paper is organized as follows. In section 2, we give a brief
description of the problem and introduce extended naive Bayes structures. In
section 3, we develop LEEWAY approach for learning the naive Bayes classifier
from noisy training data in three scenarios according to whether noise is added on
feature variables or class variable or both. In section 4, we present experimental
results. Finally, section 5 gives conclusions and future research work directions.

2 Problem Description

Let D be the noise-free dataset that contains feature vector < X1, X2, ..., Xn >
and the class variable C. Let Xi be the domain of feature variable Xi (i =
1, ..., n) and S be the domain of C. Then each tuple in D has the structure
< x1,j1 , x2,j2 , ..., xn,jn , ci >, where xi,ji(∈ Xi) is a value of Xi and ci(∈ S) is a
class value. Let |Xi| be the size of domain Xi and |S| be the size of domain S.
After adding noise on D, the observed noisy dataset D′ contains a set of tuples
in the form of < x′1,j1

, x′2,j2
, ..., x′n,jn

, c′i >, where x′i,ji
(∈ Xi) is a value of the

observed feature variable X ′
i and c′i(∈ S) is a value of observed class variable
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C ′. We assume that a noisy variable takes its values from the same domain as
the corresponding noise-free variable. Given D′, our goal is to constitute the
naive Bayes classifier for D, and apply the learned classifier to new observations
for classification. Based on the fundamental assumption of naive Bayes classifier
that the feature variables are independent given the class value,

P (X1, X2, ..., Xn|C = c) =
n∏

i=1

P (Xi|C = c) (1)

the conditional probabilities P (Xi|C = c) for each feature variable Xi can be
estimated separately and independently. Therefore, in the following analysis,
we will focus on one feature variable and all the analysis is applicable to other
feature variables. Let X be a feature variable ranging over the feature vector in
D and X be the domain of feature variable X. In this paper, we consider only
discrete feature variables and discrete class variable.

In a noisy environment, the underlying naive Bayes classifier structure can be
extended to include the observed noisy variables. We assume that noise is added
on each value of each tuple independently, and each tuple in the noisy dataset
is observed independently. Under this assumption, the extended structures for
three scenarios, according to whether noise is added to feature variables or the
class variable or both, are shown in Fig. 1. As we can see from these extended
structures, the observed feature variables preserve the conditional independen-
cies given the class value.

(b)

add noise on 
both feature variables

and class variableX1 Xn...

C X1 Xn

X1’ Xn’...

...

C

C’

(c)

feature variables
add noise on 

X1 Xn...

C

X1’ Xn’...

X1 Xn...

C

X1 Xn...

C
add noise on 
class variable

C

X1 Xn C’...

(a)

Fig. 1. Extended naive Bayes classifier structures: (a) case of noisy feature variables
with noise-free class variable; (b) case of noise-free feature variables with noisy class
variable; (c) case of noisy feature variables and noisy class variable.
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3 Learning Naive Bayes Classifier from Noisy Data

In the following subsections, we study each of the three scenarios presented in
Fig. 1 and describe our LEEWAY method for learning naive Bayes classifiers
from noisy data.

3.1 Noisy Feature Variables with Noise-free Class Variable

In this scenario, noise is added on each feature value in each tuple independently,
while the observed class value is noise free. A good example would be a dataset
perturbed for privacy preserving purpose. As shown in Figure 1 (a), the observed
feature variables preserve the conditional independencies given the class value.
In this case, the major task of learning the naive Bayes classifier is to estimate
the conditional probability P (X|C) based on the noisy observation < X ′, C >
in D′. According to probability theory, we have

P (X ′|C) =
∑

xi∈X
P (X ′, X = xi|C)

=
∑

xi∈X
P (X ′|X = xi, C) · P (X = xi|C)

=
∑

xi∈X
P (X ′|X = xi) · P (X = xi|C) (2)

The last equation holds due to the assumption that X ′ is independent of C given
X = xi. Specifically,

P (X ′ = xj |C) =
∑

xi∈X
P (X ′ = xj |X = xi) · P (X = xi|C), xj ∈ X (3)

For each fixed class value, there are |X | equations, one for each P (X ′ = xj |C).
In matrix form, these equations are:



P (X′=x1|X=x1) P (X′=x1|X=x2) ... P (X′=x1|X=x|X|)

P (X′=x2|X=x1) P (X′=x2|X=x2) ... P (X′=x2|X=x|X|)

...
...

...
...

P (X′=x|X||X=x1) P (X′=x|X||X=x2) ... P (X′=x|X||X=x|X|)


·




P (X=x1|C)

P (X=x2|C)

...
P (X=x|X||C)


 =




P (X′=x1|C)

P (X′=x2|C)

...
P (X′=x|X||C)




(4)
Let P (X ′ = xj |X = xi) = pji, xi, xj ∈ X . Then the matrix (pji)|X |×|X| gives

a clear representation of the likelihood of value distortion. Then Eq. 4 can be
rewritten as




p11 p12 . . . p1,|X |
p21 p22 . . . p2,|X |
...

...
. . .

...
p|X |,1 p|X |,2 . . . p|X |,|X |


 ·




P (X = x1|C)
P (X = x2|C)

...
P (X = x|X ||C)


 =




P (X ′ = x1|C)
P (X ′ = x2|C)

...
P (X ′ = x|X ||C)


 (5)
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Since P (X ′ = xj |C) (xj ∈ X ) can be estimated from the observed dataset
and pji can be obtained from the noise model, the solution to the above set of
linear equations will give the values of P (X = xi|C), (xi ∈ X ). If 0 ≤ P (X =
xi|C) ≤ 1, then this set of values is a feasible solution.

As an illustration, we assume a simple noise model on the feature variable
X as follows1:

P (X ′ = xj |X = xi) =
{

1− t, if i = j
t

|X |−1 , if i 6= j
for all xi, xj ∈ X (6)

That is, for noise level t, the observed value of a feature variable is the same
as its real value with probability 1 − t and other values with equal probability

t
|X |−1 . Then, Eq. 4 can be rewritten as:




(1− t) t
|X |−1 . . . t

|X |−1
t

|X |−1 (1− t) . . . t
|X |−1

...
...

. . .
...

t
|X |−1

t
|X |−1 . . . (1− t)



·




P (X = x1|C)
P (X = x2|C)

...
P (X = x|X ||C)


 =




P (X ′ = x1|C)
P (X ′ = x2|C)

...
P (X ′ = x|X ||C)


 (7)

After a series of linear transformation, we have




(1−t)− t
|X|−1 0 ... 0

0 (1−t)− t
|X|−1 ... 0

...
...

...
...

0 0 ... (1−t)− t
|X|−1


·




P (X=x1|C)

P (X=x2|C)

...
P (X=x|X||C)


 =




P (X′=x1|C)− t
|X|−1

P (X′=x2|C)− t
|X|−1

...
P (X′=x|X||C)− t

|X|−1




(8)

Therefore,

P (X = xi|C) =
P (X ′ = xi|C)− t

|X |−1

(1− t)− t
|X |−1

=
1

1− |X |
|X |−1 t

· P (X ′ = xi|C)−
t

|X |−1

1− |X |
|X |−1 t

(9)

for all xi ∈ X .

First, it is obvious that Eq. 9 satisfies the normalization condition that∑
xi∈X P (X = xi|C) = 1.

1 The following analysis can be applied to other noise models.
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Secondly, in order to be a feasible solution, the values in Eq. 9 must satisfy
the condition that 0 ≤ P (X = xi|C) ≤ 1, for any xi ∈ X . That is,





P (X ′ = xi|C) ≥ t
|X |−1 (a)

P (X ′ = xi|C) ≤ 1− t (b)
0 ≤ t < 1− 1

|X | (c)
or 




P (X ′ = xi|C) ≤ t
|X |−1 (d)

P (X ′ = xi|C) ≥ 1− t (e)
1− 1

|X | < t ≤ 1 (f)
(10)

– For condition (c) and (f): If t = 1− 1
|X | , then P (X ′ = xj |X = xi) = 1

|X | , for
any xi, xj ∈ X . It means, given the real value of X, its observation X ′ takes
any value in X with the same probability 1

|X | . Thus, X ′ is independent of X,
and the matrix of coefficients of Eq. 7 is singular. Since (1− 1

|X | ) increases as
|X | increases, t < 1− 1

|X | holds as long as t < 0.5 (0.5 is the threshold when
|X | = 2). To have noise level t < 0.5 is also reasonable in practice. Actually,
when t < 0.5, the matrix of coefficients of Eq. 7 is a strictly diagonally
dominant matrix, and Eq. 7 has a unique solution, not necessary a feasible
one though. When condition (f) is satisfied for higher noise level, similarly,
Eq. 7 has a unique solution, not necessary a feasible one though.

– Condition (a) is satisfied if

t ≤ (|X | − 1) ·minxi∈XP (X ′ = xi|C) (11)

Condition (d) is satisfied if

t ≥ (|X | − 1) ·maxxi∈XP (X ′ = xi|C) (12)

– Condition (b) is satisfied if

t ≤ 1−maxxi∈XP (X ′ = xi|C) (13)

Condition (e) is satisfied if

t ≥ 1−minxi∈XP (X ′ = xi|C) (14)

From the above analysis, we can see that the unique solution given in Eq. 9
is a feasible solution if t satisfies the following bounds:




0 ≤ t < min {(|X | − 1) ·minxi∈XP (X ′ = xi|C), 1−maxxi∈XP (X ′ = xi|C)}
or
max {(|X | − 1) ·maxxi∈XP (X ′ = xi|C), 1−minxi∈XP (X ′ = xi|C)} < t ≤ 1

(15)
However, in practical applications, only the frequencies of (X ′ = xi|C) can

be counted from the sampled dataset as an estimate of the probabilities P (X ′ =
xi|C). Thus, the equations in Eq. 4 do not always hold exactly. In this case and
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the situation when noise level t is beyond the bound in Eq. 15, we can get a
feasible approximation by minimizing the deviation between both sides of Eq.
4. We use square-error to measure the distance, and take the constraints defined
by probability theory as the constraints of the objective function. Putting in a
mathematical way, this becomes an optimization problem described as follows:




min P (X=xi|C)
xi∈X

∑
xj∈X

( ∑
xi∈X P (X ′ = xj |X = xi) · P (X = xi|C)− P (X ′ = xj |C)

)2

subj. to 0 ≤ P (X = xi|C) ≤ 1, for any xi ∈ X∑
xi∈X P (X = xi|C) = 1

Given a new observation < X ′
1 = x1, X

′
2 = x2, ..., X

′
n = xn >, the classi-

fication task is to decide which class this new instance belongs to. If the new
observation has noise different from the training dataset, which is also common
in practice such as a series of real-time noisy observations, simply applying the
naive Bayes classifier of the noisy training dataset can not fit in all the noise
levels and will decrease the predictive accuracy. However, if we consider the fea-
ture values in the new observation as instances of some noisy variables, we can
combine the naive Bayes classifier structure of the noise-free dataset with the
newly-observed variables. The extended structure with parameters is shown in
Fig. 2.

P(C)
C

X1 Xn

X1’ Xn’...

...

P(Xn|C)P(X1|C)

P(X1’|X1) P(Xn’|Xn)

Fig. 2. Naive Bayes classifier structure combined with new noisy observations.

The class value with the highest posterior probability P (C = c|X ′
1 = x1, X

′
2 =

x2, ..., X
′
n = xn) gives the classification of the new observation. Based on the ex-

tended structure shown in Fig. 2, the maximal posterior probability P (C =
c|X ′

1 =′ x1, X
′
2 = x2, ..., X

′
n = xn) can be estimated as follows:

maxci∈SP (C = ci|X ′
1 = x1, X

′
2 = x2, ..., X

′
n = xn)

= maxci∈S
P (X′

1=x1,X′
2=x2,...,X′

n=xn|C=ci)×P (C=ci)
P (X′

1=x1,X′
2=x2,...,X′

n=xn)

= maxci∈SP (X ′
1 = x1, X

′
2 = x2, ..., X

′
n = xn|C = ci)× P (C = ci)

= maxci∈S
∏n

j=1 P (X ′
j = xj |C = ci)× P (C = ci)

= maxci∈S
∏n

j=1

(∑|X |
k=1 P (X ′

j = xj |Xj = xk)P (Xj = xk|C = ci)
)
× P (C = ci)

(16)
Therefore, from the learned naive Bayes classifier for the noise-free dataset,

we can get a good estimate of the posterior probability P (C = c|X ′
1 = x1, X

′
2 =

x2, ..., X
′
n = xn), and thus give a good prediction.
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3.2 Noise-free Feature Variables with Noisy Class Variable

In this scenario, noise is added on the class variable, while the feature variables
are noise free. A good example is the dataset generated from one or more machine
learning algorithms. The tuples in such dataset are also known as “mislabelled
training instances” [5]. An empirical dataset is the medical records which are
classified by the patient’s symptom. Some cases are likely to be confused, because
they have similar symptoms. The extended naive Bayes classifier structure in this
case is shown in Figure 1 (b). As we can see from the figure, the observed class
variable C ′ depends directly on its real value ci and the noise model. In this case,
the major task of learning the naive Bayes classifier is to estimate the conditional
probability P (X|C) based on the noisy observation < X, C ′ > in D′. Similar to
the analysis in section 3.1, we have

P (X|C ′) =
∑

cj∈S
P (X|C = cj) · P (C = cj |C ′) (17)

Specifically,

P (X|C ′ = ci) =
∑

cj∈S
P (X|C = cj) · P (C = cj |C ′ = ci), ci ∈ S (18)

For each fixed value of a feature variable, there are |S| equations, one for
each P (X|C ′ = ci), i = 1, 2, ..., |S|. In matrix form, these equations are



P (C=c1|C′=c1) P (C=c2|C′=c1) ... P (C=c|S||C′=c1)

P (C=c1|C′=c2) P (C=c2|C′=c2) ... P (C=c|S||C′=c2)

...
...

...
...

P (C=c1|C′=c|S|) P (C=c2|C′=c|S|) ... P (C=c|S||C′=c|S|)


·




P (X|C=c1)

P (X|C=c2)

...
P (X|C=c|S|)


 =




P (X|C′=c1)

P (X|C′=c2)

...
P (X|C′=c|S|)




(19)
Let P (C = cj |C ′ = ci) = pij , ci, cj ∈ S. Then the matrix (pij)|S|×|S|, also

known as the compatibility matrix in [20], gives a clear representation of the
likelihood of value substitutions. Then, Eq. 19 can be rewritten as




p11 p12 . . . p1,|S|
p21 p22 . . . p2,|S|
...

...
. . .

...
p|S|,1 p|S|,2 . . . p|S|,|S|


 ·




P (X|C = c1)
P (X|C = c2)

...
P (X|C = c|S|)


 =




P (X|C ′ = c1)
P (X|C ′ = c2)

...
P (X|C ′ = c|S|)


 (20)

Since P (X|C ′ = ci), (ci ∈ S) can be estimated from the observed dataset and
pij can be obtained from the noise model, the solution to the above set of linear
equations will give the values of P (X|C = cj), (cj ∈ S). If 0 ≤ P (X|C = cj) ≤ 1,
then this set of values is a feasible solution.

As an illustration, we assume a simple noise model on the class variable C
as follows2:

P (C = cj |C ′ = ci) =
{

1− t, if i = j
t

|S|−1 , if i 6= j
for all ci, cj ∈ S (21)

2 The following analysis can be applied to other noise models.
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According to this compatibility matrix, the probability of C taking the same
value as C ′ based on the observations is 1 − t, and other values different from
C ′ with the same probability t

|S|−1 . Then, Eq. 19 can be rewritten as:




(1− t) t
|S|−1 . . . t

|S|−1
t

|S|−1 (1− t) . . . t
|S|−1

...
...

. . .
...

t
|S|−1

t
|S|−1 . . . (1− t)



·




P (X|C = c1)
P (X|C = c2)

...
P (X|C = c|S|)


 =




P (X|C ′ = c1)
P (X|C ′ = c2)

...
P (X|C ′ = c|S|)


 (22)

After a series of linear transformation, we have



(1−t)− t
|S|−1 0 ... 0

0 (1−t)− t
|S|−1 ... 0

...
...

. . .
...

0 0 ... (1−t)− t
|S|−1


 ·




P (X|C=c1)

P (X|C=c2)

...
P (X|C=c|S|)




=




P (X|C′=c1)− t
|S|−1 ·

∑
ci∈S P (X|C′=ci)

P (X|C′=c2)− t
|S|−1 ·

∑
ci∈S P (X|C′=ci)

...
P (X|C′=c|S|)− t

|S|−1 ·
∑

ci∈S P (X|C′=ci)


 (23)

Therefore,

P (X|C = cj) =
P (X|C ′ = cj)− t

|S|−1 ·
∑

ci∈S P (X|C ′ = ci)

(1− t)− t
|S|−1

=
1

1− |S|
|S|−1 t

· P (X|C ′ = cj)−
t

|S|−1

1− |S|
|S|−1 t

·
∑

ci∈S
P (X|C ′ = ci)

(24)

for all cj ∈ S.
First, it is obvious that solutions in Eq. 24 satisfy the normalization condition

that
∑

x∈X P (X = x|C = cj) = 1, for any cj ∈ S.
Secondly, in order to be a feasible solution, the values in Eq. 24 must satisfy

the condition that 0 ≤ P (X|C = cj) ≤ 1, for any cj ∈ S. That is,





P (X|C ′ = ci) ≥ t
|S|−1 ·

∑
ck∈S P (X|C ′ = ck) (a)

P (X|C ′ = ci) ≤ 1 +
∑

ck∈S P (X|C′=ck)−|S|
|S|−1 t (b)

0 ≤ t < 1− 1
|S| (c)

or 



P (X|C ′ = ci) ≤ t
|S|−1 ·

∑
ck∈S P (X|C ′ = ck) (d)

P (X|C ′ = ci) ≥ 1 +
∑

ck∈S P (X|C′=ck)−|S|
|S|−1 t (e)

1− 1
|S| < t ≤ 1 (f)

(25)
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– For condition (c) and (f): If t = 1 − 1
|S| , then P (C = cj |C ′ = ci) = 1

|S| ,
for any ci, cj ∈ S. It means, given the observed value of C ′, its noise-free
variable C takes any value in S with the same probability 1

|S| . Thus, C is
independent of C ′, and the matrix of coefficients of Eq. 22 is singular. Since
(1− 1

|S| ) increases as |S| increases, t < 1− 1
|S| holds as long as t < 0.5 (0.5

is the threshold when |S| = 2). To have noise level t < 0.5 is also reasonable
in practice. Actually, when t < 0.5, the matrix of coefficients of Eq. 22 is a
strictly diagonally dominant matrix, and Eq. 22 has a unique solution, not
necessary a feasible one though. When condition (f) is satisfied for higher
noise level, similarly, Eq. 22 has a unique solution, not necessary a feasible
one though.

– Condition (a) is satisfied if

t ≤ (|S| − 1) ·minci∈SP (X|C ′ = ci)∑
ck∈S P (X|C ′ = ck)

(26)

Similarly, condition (d) is satisfied if

t ≥ (|S| − 1) ·maxci∈SP (X|C ′ = ci)∑
ck∈S P (X|C ′ = ck)

(27)

– For condition (b), since

1 ≥ 1 +

∑
ck∈S P (X|C ′ = ck)− |S|

|S| − 1
t > 1 +

∑
ck∈S P (X|C ′ = ck)− |S|

|S| ≥ 0

(28)
and

1 +

∑
ck∈S P (X|C ′ = ck)− |S|

|S| − 1
t

=
t

|S| − 1
·

∑

ck∈S
P (X|C ′ = ck) + 1− |S|

|S| − 1
t

>
t

|S| − 1
·

∑

ck∈S
P (X|C ′ = ck) (29)

thus, condition (b) is satisfied if

t ≤
(|S| − 1) ·

(
1−maxci∈SP (X|C ′ = ci)

)

|S| −∑
ck∈S P (X|C ′ = ck)

(30)

Similarly, condition (e) is satisfied if

t ≥
(|S| − 1) ·

(
1−minci∈SP (X|C ′ = ci)

)

|S| −∑
ck∈S P (X|C ′ = ck)

(31)
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Because

|S| ·minci∈SP (X|C ′ = ci) ≤
∑

ck∈S
P (X|C ′ = ck) ≤ |S| ·maxci∈SP (X|C ′ = ci)

(32)
from the above analysis, we can see that the unique solution given in Eq. 24 is
a feasible solution if t satisfies the following bounds:





0 ≤ t < min





(|S|−1)·minci∈SP (X|C′=ci)∑
ck∈S P (X|C′=ck)

,
(|S|−1)·

(
1−maxci∈SP (X|C′=ci)

)

|S|−∑
ck∈S P (X|C′=ck)





or

max





(|S|−1)·maxci∈SP (X|C′=ci)∑
ck∈S P (X|C′=ck)

,
(|S|−1)·

(
1−minci∈SP (X|C′=ci)

)

|S|−∑
ck∈S P (X|C′=ck)



 < t ≤ 1

(33)

However, in practical applications, only the frequencies of (X|C ′ = ci) can be
counted from the sampled dataset as an estimate of the probabilities P (X|C ′ =
ci). Thus, the equations in Eq. 19 do not always hold exactly. In this case and
the situation when noise level t is beyond the bound in Eq. 33, we can get a
feasible approximation with the optimization method in the similar way as in
section 3.1:




min P (X=xk|C=cj)
cj∈S,xk∈X

∑
ci∈S
xk∈X

(∑
cj∈S P (X=xk|C=cj)·P (C=cj |C′=ci)−P (X=xk|C′=ci)

)2

subj. to 0≤P (X|C=cj)≤1, for any cj∈S∑
xk∈X P (X=xk|C=cj)=1, for any cj∈S

3.3 Noisy Feature Variables with Noisy Class Variable

In this scenario, noise is added on each feature value and class value in each
tuple simultaneously and independently. As shown in Figure 1 (c), the observed
feature variables preserve the conditional independencies given the class value.
Besides, the observed class variable C ′ depends directly on its real value ci and
the noise model. In this case, the major task of learning the naive Bayes classifier
is to estimate the conditional probability P (X|C) based on the noisy observation
< X ′, C ′ > in D′.

This can be done in two steps. First, we correct the noise in the feature
values. Given C ′ = ck(ck ∈ S), we have

P (X ′ = xj |C ′ = ck) =
∑

xi∈X
P (X ′ = xj |X = xi, C

′ = xk) · P (X = xi|C ′ = ck)

=
∑

xi∈X
P (X ′ = xj |X = xi) · P (X = xi|C ′ = ck) (34)

If P (X ′|X) is known, we can get an estimate of the probability distribution
P (X|C ′ = ck) for each ck ∈ S with the same method in section 3.1.
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Secondly, we correct the noise in the class values.

P (X = xi|C ′ = ck) =
∑

cj∈S
P (X = xi|C = cj , C

′ = xk) · P (C = cj |C ′ = ck)

=
∑

cj∈S
P (X = xi|C = cj) · P (C = cj |C ′ = ck) (35)

If P (C|C ′) is known, we can get an estimate of the probability distribution
P (X|C) with the same method in section 3.2.

4 Experiments

In this section, we describe the experiments to evaluate LEEWAY in terms of
its classification accuracy according to different noise levels. We focus on the
scenario of noisy feature variables with the noise-free class variable. The other
two scenarios can be studied in the similar way. First we describe the dataset
used in the experiments and noise introduction mechanism. Then we explain
how the experiments are carried out and discuss the experimental results.

4.1 Dataset Description

We choose the Nursery dataset from UCI machine learning repository [4] as the
underlying noise-free dataset. The Nursery dataset was derived from a hierarchi-
cal decision model originally developed to rank applications for nursery schools.
It has 12960 complete instances, 5 classes, and 8 nominal attributes each with
3− 5 possible values. We take 2/3 of the dataset as the training dataset and the
remaining 1/3 as the testing dataset.

A probability t is introduced to control the noise level. We apply noise levels
of 0− 1 in increments of 0.05. In the following experiments, we use two different
noise models:
[Model U] This noise model is defined as follows:

P (X ′ = xj |X = xi) = pji =
{

1− t, if i = j
t

|X |−1 , if i 6= j
for all xi, xj ∈ X (36)

Similar to that defined in [2], the noisy dataset D′ at noise level t is generated
as follows: for each value xi of the noise-free feature variable X in the noise-free
dataset D, the observed feature value in D′ will remain as xi with probability
1− t, and will be replaced by other values in X , each with probability t

|X |−1 .
[Model R] The noise model is defined as follows:

P (X ′ = xj |X = xi) = pji =
{

1− t, if i = j
rji, if i 6= j

for all xi, xj ∈ X (37)

where rji is a random number and
∑

j,j 6=i rji = t.
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As a “random” version of Model U, the noisy dataset D′ at noise level t is
generated as follows: for each value xi of the noise-free feature variable X in
the noise-free dataset D, the observed feature value in D′ will remain as xi with
probability 1 − t, and will be replaced by another value in X with probability
rji.

4.2 Experimental Results

For each noise level, we generate 10 random samples of the noisy training datasets
or noisy testing datasets, and the results are averaged over all 10 samples. We
perform the following three sets of experiments.

Learning naive Bayes classifier from noisy training datasets In this case,
the noisy training datasets are generated from the two noise models described
above. In both models, different levels of noise are artificially introduced into the
feature values of the training dataset. After learning the underlying naive Bayes
classifier, we apply it to the clean testing dataset and evaluate its classification
accuracy. We compare the performance of LEEWAY with that of the traditional
naive Bayes classifier which takes the noisy observations as noise-free datasets.
The experimental results for noise Model U and Model R are shown in Fig. 3
and Fig. 4, respectively.
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Fig. 3. Classification accuracy
of naive Bayes classifier learned
from noisy training dataset with
noise Model U vs. noise level.
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Fig. 4. Classification accuracy
of naive Bayes classifier learned
from noisy training dataset with
noise Model R vs. noise level.

Both Fig. 3 and 4 demonstrate the following common properties:

1. The traditional naive Bayes classifier is quite tolerant to noise at lower lev-
els. For noise level t ≤ 0.5, the chance of the the observed variable X ′

keeping its correct value xi remains high. Thus, the conditional probability
P (X ′ = xi|C) is close to P (X = xi|C). Furthermore, under the conditional
independence assumption, the posterior probability distribution of the class
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variable given a new observation is:

P (C = ci|X1 = x1, X2 = x2, ..., Xn = xn)
= P (X1=x1,X2=x2,...,Xn=xn|C=ci)×P (C=ci)

P (X1=x1,X2=x2,...,Xn=xn)

=
∏n

j=1 P (Xj=xj |C=ci)×P (C=ci)

P (X1=x1,X2=x2,...,Xn=xn) , ci ∈ S
(38)

Thus, the order of the posterior probability P (C = ci|X1 = x1, X2 =
x2, ..., Xn = xn) for class variable does not change much. So, when tested
on a clean dataset, it will give a correct classification with high probability.
However, LEEWAY performs at least as well as the traditional method for
lower noise levels.

2. For noise level t = 0.6 ∼ 0.8, LEEWAY reaches its worst performance and
the results have a larger variance over all the random dataset samples. In
the Nursery dataset, each feature variable has 3 ∼ 5 possible values. When
t = 0.6 ∼ 0.8, 1− t ≈ t

|X |−1 , and the matrix of coefficients in Eq. 4 is close to
singular. Thus, neither equation system nor optimization method will give a
good estimate of P (X|C).

3. For noise level t ≥ 0.6, the classification accuracy of the traditional naive
Bayes classifier drops quickly to 0, because the chance of the observed vari-
able X ′ keeping its real value xi is no longer dominant. Thus, the probability
distribution of the noisy dataset is far from that of the noise-free dataset and
the classification accuracy greatly decreases. However, LEEWAY combines
the noise information with the learning procedure and recovers the underly-
ing probability distribution. Thus, its classification accuracy still stays high.

Testing the learned naive Bayes classifier on noisy testing datasets
In this case, different levels of noise are artificially introduced into the feature
values of the testing dataset. We use noise Model U to generate the noisy testing
datasets, and perform two experiments. In one experiment, we first learn the un-
derlying naive Bayes classifier from different noisy training datasets with noise
level varying from 0 to 1.0, and then apply these classifiers to a testing dataset
with noise level 0.2 to evaluate their classification accuracy. In the other exper-
iment, we first learn the underlying naive Bayes classifier from a noisy training
dataset with noise level 0.2 and then apply it to different noisy testing datasets
with noise level varying from 0 to 1.0 to evaluate their classification accuracy.
We compare the performance of LEEWAY with that of the traditional naive
Bayes classifier which takes the noisy observations as noise-free datasets. The
experimental results of testing the naive Bayes classifiers learned from different
noisy training datasets on a fixed noisy testing dataset is shown in Fig. 5. The
results of testing the naive Bayes classifier learned from a fixed noisy training
dataset on different noisy testing datasets is shown in Fig. 6.

Both Fig. 5 and 6 indicate that LEEWAY is applicable to the scenario
when the testing dataset is corrupted with noise level different from the training
dataset. Fig. 5 has similar properties as Fig. 3 and 4, except that its optimal
classification accuracy which occurs at t = 0 is degraded from 0.9 to 0.7 since
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Fig. 5. Testing the naive Bayes
classifiers learned from different
noisy training datasets on test-
ing dataset with 0.2 noise level.
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Fig. 6. Testing the naive Bayes
classifier learned from a training
dataset with 0.2 noise level on
different noisy testing datasets.

the testing dataset has 0.2 noise. Fig. 6 indicates that LEEWAY has similar
performance as the traditional naive Bayes classifier method for noise at lower
levels, and better performance for noise at higher levels.

Bayesian Method We also compare our performance with that of the Bayesian
method. If we view the extended naive Bayes structures in Fig. 1 as special
Bayesian networks and take the unknown noise-free variables as hidden variables,
the task here is to learn the posterior conditional probability distribution with
this known network structure and the hidden variables. Another technique is
to extend the training dataset by adding the unknown noise-free variables and
take the extended dataset as an incomplete dataset that does not have values for
the added unknown variables. Learning parameters of Bayesian networks from
incomplete data can be done by gradient methods discussed in [3] and [18], or
EM introduced in [7], or Gibbs sampling discussed in [9]. We use the Bayesian
network toolbox developed by Kevin Murphy at MIT [14]. The result of the
Bayesian method is shown in Fig. 7.

As shown in Fig. 7, the performance of Bayesian method for this problem
turns out to be worse. The two techniques described above are not suitable
to handle the noise data in this case. The extended naive Bayes structures in
Fig. 1 are not exactly Bayesian networks with hidden variables, because the
structure and the space of the unobserved variables are known but the learning
procedure does not take this prior information. The extended training dataset is
not exactly incomplete dataset, either, because there is not a single instance of
these unobserved variables. So, we expect its performance to be no better than
our approach. Besides, the complexity of learning Bayesian network parameters
with hidden variables or incomplete data is much higher.
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Fig. 7. Learning naive Bayes classifier from noisy data with Bayesian method.

5 Conclusion and Future Directions

In this paper, we addressed the problem of learning naive Bayes classifiers from
data where noise is added either on the class variable or on feature variables or
both. We proposed a new approach of reconstructing the underlying conditional
probability distributions from the observed noisy dataset. We experimentally
evaluated our approach on the Nursery dataset whose feature variables were
artificially corrupted with different levels of noise, and compared its performance
with the traditional naive Bayes classifier method and the Bayesian method. The
experimental results demonstrate that our approach improves the classification
accuracy for feature-corrupted data.

Several issues remain to be studied. One is to study the sample complexity
of learning naive Bayes classifier from noisy data. The probability distribution
of the observed dataset is approximated by counting the frequencies. Thus, its
estimation accuracy depends on the size of the training dataset. The more data
are sampled, the more accurate the estimates are. However, in real applications,
it is hard to get a large size dataset which also covers the whole feature variables.
So, a problem of interest is the sample size for a relatively reliable and stable
classifier. Another possible direction is to study an uncertain dataset introduced
in [13] and develop an approach of learning a naive Bayes classifier from the
uncertain data.

Naive Bayes classifier is a simple Bayesian classifier. In classification prob-
lems, the training dataset contains a distinguished class variable and conditional
independencies among feature variables. Making use of the independency rela-
tionship can simplify the learning process. However, dependencies among feature
variables do exist in real application datasets. As the issue of learning Bayesian
network from data becomes more and more popular, another extension of our
work is to learn general Bayesian network from noisy data which embeds the
dependencies among variables.
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