UCLA Computer Science Department Technical Report CSD-TR No. 030053 1

CMTreeMiner: Mining Both Closed and
Maximal Frequent Subtrees*

Yun Chi, Yirong Yang, Yi Xia, and Richard R. Muntz

University of California, Los Angeles, CA 90095, USA
{ychi,yyr,xiayi,muntz}@cs.ucla.edu

Abstract. Tree structures are used extensively in domains such as com-
putational biology, pattern recognition, XML databases, computer net-
works, and so on. One important problem in mining databases of trees is
to find frequently occurring subtrees. However, because of the combina-
torial explosion, the number of frequent subtrees usually grows exponen-
tially with the size of the subtrees. In this paper, we present CM Tree M-
iner, a computationally efficient algorithm that discovers all closed and
maximal frequent subtrees in a database of rooted unordered trees. The
algorithm mines both closed and maximal frequent subtrees by traversing
an enumeration tree that systematically enumerates all subtrees, while
using an enumeration DAG to prune the branches of the enumeration tree
that do not correspond to closed or maximal frequent subtrees. The enu-
meration tree and the enumeration DAG are defined based on a canonical
form for rooted unordered trees—the depth-first canonical form (DFCF).
We study the performance of our algorithm through extensive experi-
ments using both synthetic data and datasets from real applications. We
also compare the performance of our algorithm with that of PathJoin, a
recently published algorithm that mines maximal frequent subtrees. The
experiments show that our algorithm avoids the exponential explosion
and therefore has better performance than PathJoin for large tree sizes.
keywords: frequent subtree, closed subtree, maximal subtree, enumera-
tion tree, rooted unordered tree.

1 Introduction

Graphs are widely used to represent data and relationships. Among all graphs, a
particularly useful family is the family of rooted trees: in the database area, XML
documents are often rooted trees where vertices represent elements or attributes
and edges represent element-subelement and attribute-value relationships; in
web page traffic mining, access trees are used to represent the access patterns
of different users; in analysis of molecular evolution, an evolutionary tree (or
phylogeny) is used to describe the evolution history of certain species[10]; in
computer networking, multicast trees are used for packet routing[8]. From the
above examples we can also see that trees in real applications are often labeled,

* The materials in this technical report have been subsumed by an extended technical
report—CSD-TR No. 040020

with labels attached to vertices and edges where these labels are not necessar-
ily unique. In this paper, we study one important issue in mining databases of
labeled rooted unordered trees—finding frequently occurring subtrees. This issue
has practical importance. For example, in multiple multicast groups, frequent
occurring subtrees can be used to find the common parts among different mul-
ticast events; in [22], frequently occurring subtrees are used to classify XML
data.

However, as we have discovered in our previous study|[7], because of the com-
binatorial explosion, the number of frequent subtrees usually grows exponen-
tially with the tree size. This is the case especially when the transactions in the
database are strongly correlated. This phenomenon has two effects: first, there
are too many frequent subtrees for users to manage and use, and second, an algo-
rithm that discovers all frequent subtrees is not able to handle frequent subtrees
with large size. To solve this problem, in this paper, we propose CM TreeMiner,
an efficient algorithm that, instead of looking for all frequent subtrees, only
discovers both closed and maximal frequent subtrees in a database of rooted
unordered trees.

1.1 Related Work

Recently, there has been growing interest in mining databases of labeled trees,
partially due to the increasing popularity of XML in databases. There are three
categories of methods for mining frequent subtrees. The first (and by far the
most common) category of algorithms are based on enumeration trees: In [21],
Zaki presented an algorithm, TREEMINER, to discover all frequent embedded
subtrees, i.e., those subtrees that preserve ancestor-descendant relationships, in
a forest or a database of rooted ordered trees. The algorithm was extended
further in [22] to build a structural classifier for XML data. In [2] Asai et al. pre-
sented an algorithm, FREQT, to discover frequent rooted ordered subtrees. For
mining rooted unordered subtrees, Asai et al. in [3] and we in [7] both proposed
algorithms based on enumeration tree growing. Because there could be multiple
ordered trees corresponding to the same unordered tree, similar canonical forms
for rooted unordered trees are defined in both studies. The second category of
frequent subtree mining algorithms are Apriori-like algorithms. For example, in
[6] we have studied the problem of indexing and mining free trees and developed
an Apriori-like algorithm, FreeTreeMiner, to mine all frequent free subtrees.
The third category of algorithms for mining frequent subtrees adopt the idea of
F P-tree[9] in frequent itemsets mining and construct a concise in-memory data
structure that preserves all necessary information. This data structure is then
used for mining frequent subtrees. In [18], Xiao et al. presented such an algo-
rithm called PathJoin. In addition, to the best of our knowledge, PathJoin is the
only algorithm that mines mazimal frequent subtrees. However, PathJoin uses
a subsequent pruning that, after obtaining all frequent subtrees, prunes those
frequent subtrees that are not maximal.

Notice that in addition to the work we have mentioned above, there are other
studies on mining frequent subtrees, such as those given in [17,16], that do not

guarantee completeness, i.e., some frequent subtrees may not be in the search re-
sults. Moreover, closely related to mining frequent subtrees, many recent studies
have focused on mining frequent subgraphs and closed frequent subgraphs [11-
13,19, 20], which are much more difficult problems than mining frequent subtrees
(e.g., the subgraph isomorphism is an NP-complete problem while the subtree
isomorphism problem is in P).

1.2 Owur Contributions

The main contributions of this paper are: (1) We introduce the concept of closed
frequent subtrees and study its properties and its relationship with mazimal
frequent subtrees. (2) In order to mine both closed and maximal frequent rooted
unordered subtrees, we present an algorithm—CM TreeMiner, which is based on
the canonical form and the enumeration tree that we have introduced in [7]. We
develop new pruning techniques based on an enumeration DAG. (3) Finally, we
have implemented our algorithm and have carried out extensive experimental
analysis. We use both synthetic data and real application data to evaluate the
performance of our algorithm. We compare the performance of our new algorithm
with that of previous algorithms (including the PathJoin algorithm[18] and our
previous Hybrid TreeMiner algorithm|7]).

The rest of the paper is organized as follows. In section 2, we give the back-
ground concepts. In section 3, we present our CMTreeMiner algorithm. In sec-
tion 4, we show experiment results. Finally, in Section 5, we give the conclusion
and future research directions.

2 Background

2.1 Basic Concepts

In this section, we provide the definitions of the concepts that will be used in
the remainder of the paper.

A labeled Graph G = [V, E, X, L] consists of a vertex set V, an edge set E, an
alphabet X for vertex and edge labels, and a labeling function L : VUE — X that
assigns labels to vertices and edges. A rooted tree is an undirected, connected,
acyclic graph with a distinguished vertex that is called the root. In a rooted tree,
if vertex v is on the path from the root to vertex w then v is an ancestor of w
and w is a descendant of v. If in addition v and w are adjacent, then v is the
parent of w and w is a child of v. A rooted tree is called an ordered tree if there
is a predefined ordering among children of each vertex and is called an unordered
tree otherwise. A rooted tree t is a (proper) subtree of another rooted tree s if
the vertices and edges of ¢ are (proper) subsets of those of s. If ¢ is a (proper)
subtree of s, we say s is a (proper) supertree of t. Two labeled rooted unordered
trees t and s are isomorphic to each other if there is a one-to-one mapping from
the vertices of ¢ to the vertices of s that preserves vertex labels, edge labels,
adjacency, and the root. A subtree isomorphism from t to s is an isomorphism

from ¢ to some subtree of s. For convenience, in this paper we call a rooted tree
with k vertices a k-tree.

Let D denote a database where each transaction s € D is a labeled rooted
unordered tree. For a given pattern ¢, which is a rooted unordered tree, we
say t occurs in a transaction s if there exists at least one subtree of s that is
isomorphic to ¢. The occurrence §:(s) of t in s is the number of distinct subtrees
of s that are isomorphic to t. Let o.(s) = 1 if d¢(s) > 0, and 0 otherwise. We
say s supports pattern t if o4(s) is 1 and we define the support of a pattern ¢
as supp(t) = > cp ou(s). A pattern ¢ is called frequent if its support is greater
than or equal to a minimum support (minsup) specified by a user. The frequent
subtree mining problem is to find all frequent subtrees in a given database.

One nice property of frequent trees is the apriori property, as given in the
following:

Property 1. Any subtree of a frequent tree is also frequent and any supertree of
an infrequent tree is also infrequent.

We define a frequent tree ¢ to be mazimal if none of t’s proper supertrees
is frequent, and closed if none of t’s proper supertrees has the same support
that ¢t has. For a subtree ¢, we define the blanket of ¢ as the set of subtrees
B; = {t'|removing a leaf or the root from ¢’ can result in ¢}. In other words, the
blanket B; of ¢ is the set of all supertrees of ¢ that have one more vertex than
t. With the definition of blanket, we can define maximal and closed frequent
subtrees in another equivalent way:

Property 2. A frequent subtree ¢ is maximal iff for any t' € By, supp(t’) <
minsup; a frequent subtree ¢ is closed iff for any t' € By, supp(t’) < supp(t).

For a subtree t and one of its supertrees ¢ € By, we define the difference
between t' and ¢ (#'\t in short) as the additional vertex of ¢’ that is not in t.
We say t' € B, and ¢ are occurrence-matched if for each occurrence of ¢ in (a
transaction of) the database, there is at least one corresponding occurrence of
t'; we say t' € By and t are support-matched if for each transaction s € D such
that o4(s) = 1, we have oy (s) = 1. It is obvious that if ¢’ and ¢ are occurrence-
matched, it implies that they are support-matched.

2.2 Properties of Closed and Maximal Frequent Subtrees

The set of all frequent subtrees, the set of closed frequent subtrees and the set
of maximal frequent subtrees have the following relationship.

Property 3. For a database D and a given minsup, let F be the set of all frequent
subtrees, C be the set of closed frequent subtrees, and M be the set of maximal
frequent subtrees, then M CC C F.

The reason why we want to mine closed and maximal frequent subtrees in-
stead of all frequent subtrees is that usually, there are much fewer closed or max-
imal frequent subtrees compared to the total number of frequent subtrees [14].

In addition, by mining only closed and maximal frequent subtrees, we do not
lose much information because the set of closed frequent subtrees maintains the
same information (including support) as the set of all frequent subtrees and the
set of maximal frequent subtrees subsumes all frequent subtrees:

Property 4. We can obtain all frequent subtrees from the set of maximal frequent
subtrees because any frequent subtree is a subtree of one (or more) maximal
frequent subtree(s); similarly, we can obtain all frequent subtrees with their
supports from the set of closed frequent subtrees with their supports, because
for a frequent subtree ¢ that is not closed, supp(t) = maxy {supp(t')} where ¢’ is
a supertree of ¢ that is closed.

2.3 The Canonical Form for Rooted Labeled Unordered Trees

From a rooted unordered tree we can derive many rooted ordered trees, as shown
in Figure 1. From these rooted ordered trees we want to uniquely select one as
the canonical form to represent the corresponding rooted unordered tree. Notice
that if a labeled tree is rooted, then without loss of generality we can assume
that all edge labels are identical: because each edge connects a vertex with its
parent, so we can consider an edge, together with its label, as a part of the child
vertex. So for all running examples in the following discussion, we assume that
all edges in all trees have the same label or equivalently, are unlabeled, and we
therefore ignore all edge labels.

™) ® ™)
S0 ol

©
@

Fig. 1. Four Rooted Ordered Trees Obtained from the Same Rooted Unordered Tree

Without loss of generality, we assume that there are two special symbols,
“$” and “#”, which are not in the alphabet of edge labels and vertex labels. In
addition, we assume that (1) there exists a total ordering among edge and vertex
labels, and (2) “#” sorts greater than “$” and both sort greater than any other
symbol in the alphabet of vertex and edge labels. We first define the depth-first
string encoding for a rooted ordered tree through a depth-first traversal and
use “$” to represent a backtrack and “#” to represent the end of the string
encoding. The depth-first string encodings for each of the four trees in Figure 1
are for (a) ABC$$BDSCH#, for (b) ABC$3BC3$D#, for (¢) ABDSC$3BCH#,
and for (d) ABC$D$$BC+#. With the string encoding, we define the depth-first
canonical string (DFCS) of the rooted unordered tree as the minimal one among
all possible depth-first string encodings, and we define the depth-first canonical

form (DFCF) of a rooted unordered tree as the corresponding rooted ordered
tree that gives the minimal DFCS. In Figure 1, the depth-first string encoding
for tree (d) is the DFCS, and tree (d) is the DFCF for the corresponding labeled
rooted unordered tree. Using a tree isomorphism algorithm given by Aho et al.[1,
6, 7], we can construct the DFCF for a rooted unordered tree in O(ck log k) time,
where k is the number of vertices the tree has and c is the maximal degree of the
vertices in the tree. The algorithm sorts the vertices of the rooted unordered tree
level by level bottom-up. When sorting vertices at a given level, we first compare
the labels of the vertices in that level, then the ranks (in order) of each of the
children (in their own level) of these vertices. Figure 2 is a running example for
the algorithm. In the figure, for each vertex, the symbols in the parentheses are
first the vertex label then, in order, the ranks of its children (“#” denotes the
end of the encoding); the symbol in front of the parentheses is the rank of the
vertex in its level. After sorting all levels, the tree is scanned top-down level by
level, starting from the root, and children of each vertex in the current level are
rearranged to be in the determined order.

1,(A1,23#)

1(E#) 3,G#H 2,(F# 1,(E#H

Fig. 2. To Obtain the DFCF of A Rooted Unordered Tree

Theorem 1. The above construction procedure gives the DFCF for a labeled
rooted unordered tree.*

For a rooted unordered tree in its depth-first canonical form (DFCF), we define
the rightmost leaf as the last vertex according to the depth-first traversal order,
and rightmost path as the path from the root to the rightmost leaf. The rightmost
path for the DFCF of the above example (Figure 1(d)) is the path in the shaded
area and the rightmost leaf is the vertex with label C' in the shaded area.

3 Mining Closed and Maximal Frequent Subtrees

In this section, we describe our CM TreeMiner algorithm that mines both closed
and maximal frequent subtrees from a database of labeled rooted unordered
trees.

! The full proof is given in [7].

3.1 The Enumeration DAG and the Enumeration Tree

We first define an enumeration DAG that enumerates all rooted unordered trees
in their DFCFs. The nodes of the enumeration DAG consist of all rooted un-
ordered trees in their DFCFs and the edges consist of all ordered pairs (¢,t')
of rooted unordered trees such that ¢ € B;. Figure 3 shows a fraction of the
enumeration DAG. (For simplicity, we have only shown those trees with A as
the root.)

Next, we define a unique enumeration tree based on the enumeration DAG.
The enumeration tree is a spanning tree of the enumeration DAG so the two
have the same set of the nodes. The following theorem is key to the definition
of the enumeration tree.

Theorem 2. Removing the rightmost leaf from a rooted unordered (k+1)-tree
in its DFCF will result in the DFCF for another rooted unordered k-tree.

Proof. We prove that by removing the rightmost leaf from a rooted unordered
tree t in its DFCF, there is no change to the order among vertices (in the same
level) given by the normalization algorithm shown in Figure 2. Because t is in
DFCEF, for a given level, removing the rightmost leaf of ¢ will only change the
order of the vertex at the right end of the level. Let us call this vertex n. The
rightmost leaf of ¢ must be a descendant of n. By removing the rightmost leaf of
t from the subtree induced by n, we can only make the order of n larger in its
level. But because n is already at the right end, there will be no change to the
order among the vertices at this level. ad

Based on the above theorem we can build an enumeration tree such that the
parent for each rooted unordered tree is determined uniquely by removing the
rightmost leaf from its DFCF. Figure 4 shows a fraction of the enumeration tree
for the enumeration DAG in Figure 3.

In order to grow the enumeration tree, starting from a node v of the enumer-
ation tree, we need to find all valid children of v. Each child of v is obtained by
adding a new vertex to v so that the new vertex becomes the new rightmost leaf
of the new DFCF. Therefore, the possible positions for adding the new right-
most leaf to a DFCF are the vertices on the rightmost path of the DFCF. In
addition, because the enumeration tree enumerates all rooted unordered trees in
their canonical forms, we never need to convert an arbitrary rooted unordered
tree into its canonical form—after adding a new vertex to a rooted unordered
tree in its canonical form, we only need to check if the resulting new tree is
in the canonical form or not. As a result, the time complexity O(cklogk) for
normalizing a rooted unordered tree into the DFCF does not contribute to the
complexity of our mining algorithm.

3.2 The CMTreeMiner Algorithm

In the previous section, we have used the enumeration tree to enumerate all
(frequent) subtrees in their DFCFs. However, the final goal of our algorithm is

|

\

—

goe

©-®

@&~
©-&®
> =@
7“*@

“o
% .
«0350+® @

Fig.3. The Enumeration DAG for Fig.4. The Enumeration Tree for
Rooted Unordered Trees in DFCFs Rooted Unordered Trees in DFCFs

to find all closed and maximal frequent subtrees. As a result, it is not necessary
to grow the complete enumeration tree, because under certain conditions, some
branches of the enumeration tree are guaranteed to produce no closed or maximal
frequent subtrees and therefore can be pruned. In this section, we introduce
techniques that prune the unwanted branches with the help of the enumeration
DAG (more specifically, the blankets).

Let us look at a node v; in the enumeration tree. We assume that v; corre-
sponds to a frequent k-subtree ¢t and denote the blanket of ¢t as B;. In addition,
we define three subsets of B;:

B = {t' € B;|t is frequent}
BPM — {t' € B,|t' and t are support-matched}

BPM — [t € By|t' and t are occurrence-matched}

From Property 2 we know that ¢ is closed iff BS™ = (), that ¢ is maximal
ifft BF' = (), and that B®M C BYM. Therefore by constructing B and Bf
for t, we can know if ¢ is closed and if ¢ is maximal. However, there are two
problems. First, knowing that ¢ is not closed does not automatically allow us
to prune v; from the enumeration tree, because some descendants of v; in the
enumeration tree might be closed. Second, computing B} is time and space
consuming, because we have to record any ¢/ (and its support) that is potentially
a member of Bf". So we want to avoid computing B} whenever we can. In
constrast, computing B and BPM is not that difficult, because we only need
to record the intersections of all occurrences.

@

Fig.5. Locations for an Additional Fig. 6. Computing the Range of a New
Vertex to Be Added To a Subtree Vertex for Extending a Subtree

To solve the first problem mentioned above, we use B | instead of ByM
to check if v; can be pruned from the enumeration tree. For a t° € BYM (i.e.,
t° and t are occurrence-matched), the new vertex t°\t can occur at different
locations, as shown in Figure 5. In Case I of Figure 5, t°\t is the root of ¢°; in
Case II t°\t is attached to a vertex of ¢ that is not on the rightmost path; in
Case III and case IV, t°\t is attached to a vertex on the rightmost path. The
difference between Case IIT and Case IV is whether or not t°\t can be the new
rightmost vertex of ¢°.

To distinguish Case IIT and Case IV in Figure 5, we compute the range of
vertex labels that could possibly be the new rightmost vertex of a supertree in
B;. Notice that this information is also important when we extend v; in the
enumeration tree—we have to know what are the valid children of v¢. Figure 6
gives an example for computing the range of valid vertex labels at a given position
on the rightmost path. In the figure, if we add a new vertex at the given position,
we may violate the DFCF by changing the order between some ancestor of the
new vertex (including the vertex itself) and its immediate left sibling. So in
order to determine the range of allowable vertex labels for the new vertex (so
that adding the new vertex will guarantee to result in a new DFCF), we can
check each vertex along the path from the new vertex to the root. In Figure 6,
the result of comparison (1) is that the new vertex should have label greater
than or equal to A, comparison (2) increases the label range to be greater than
or equal to B, and comparison (3) increases the label range to be greater than or
equal to C. As a result, before start adding new vertices, we know that adding
any vertex with label greater than or equal to C at that specific position will
surely result in a DFCF. Therefore, at this given location, adding a new vertex
with label greater than or equal to C' will result in case IV (and therefore the
new vertex becomes the new rightmost vertex), and adding a new vertex with
label less than C' will result in case III in Figure 5.

Now we propose a pruning technique based on Bto M

theorem.

, as given in the following

10

Theorem 3. For a node vy in the enumeration tree and the corresponding sub-
tree t, assume that t is frequent and BOM # (). If there exists a t° € BOM such
that t°\t is at location of Case I, II, or III in Figure 5, then neither v; nor any
descendant of vy in the enumeration tree correspond to closed or mazimal fre-
quent subtrees, therefore vy (together with all of its descendants) can be pruned
from the enumeration tree.

Proof. For case I, because t° € BPM | for all occurrences of ¢ in the database,
the roots of the occurrences have parents with the same label-t°\t. So for any
t'" where vy is a descendant of v; in the enumeration tree, the roots of all the
occurrences of ¢ in the database have parents with the same label (¢°\t) also.
Therefore ¢’ cannot be closed because we can extend ¢’ by adding the new vertex
t°\t to get ¢t which is a supertree of ¢’ with the same support as ¢’. Similar idea
applies to case II and case III, except that we need to prove that ¢°\t will not
be used by any ¢’ where vy is a descendant of v; in the enumeration tree. This is
obvious, because in the enumeration tree, ¢’ is obtained from ¢ by adding more
rightmost vertices, and we know that the vertices shown in case II and case III
will never be the newly added rightmost vertex. O

For the second problem mentioned above, in order to avoid computing B as
much as possible, we compute B?M and BZM first. If some t° € BPM is of Case
I, II, or III in Figure 5, we are lucky because v; (and all its descendants) can
be pruned completely from the enumeration tree. Even if this is not the case, as
long as BZM # (), we only have to do the regular extension to the enumeration
tree, with the knowledge that ¢ cannot be maximal. To extend v;, we find all
potential children of v; by checking the potential new rightmost leaves within the
range that we have computed as described above. Only when BM = (), before
doing the regular extension to the enumeration tree, do we have to compute B}’
to check if ¢ is maximal. Putting all the above discussion together, Figure 7 gives
our CMTreeMiner algorithm.

We want to point out two possible variations to the CM TreeMiner algorithm.
First, the algorithm mines both closed frequent subtrees and maximal frequent
subtrees at the same time. However, the algorithm can be easily changed to mine
only closed frequent subtrees or only maximal frequent subtrees. For mining only
closed frequent subtrees, we just skip the step of computing Bf". For mining only
maximal frequent subtrees, we just skip computing By™ and use B®™ to prune
the subtrees that are not maximal. Notice that this pruning is indirect: BYM
only prunes the subtrees that are not closed, but if a subtree is not closed then it
cannot be maximal. If B = (), for better pruning effects, we can still compute
BPM to determine if we want to compute B/ If this is the case, although we
only want the maximal frequent subtrees, the closed frequent subtrees are the
byproducts of the algorithm. For the second variation, although our enumeration
tree is built for enumerating all rooted unordered subtrees, it can be changed
easily to enumerate all rooted ordered subtrees—the rightmost expansion is still
valid for rooted ordered subtrees and we only have to remove the canonical
form restriction. Therefore, our CMTreeMiner algorithm can handle databases
of rooted ordered trees as well.

11

Algorithm CMTreeMiner(D,minsup)
1:CL— 0, MX «— 0;

2: C « frequent 1-trees;

3: CM-Grow(C,CL, M X, minsup);

4: return CL, M X,

Algorithm CM-Grow(C,CL, M X, minsup)
1: for i —1,...,|C| do
2: E « 0

3: compute BgM, BfiM;

4: if 3¢’ € BcOiM that is of case LII, or III then continue;

5. if BSM = () then

6: CL «— CL U c¢;

7 compute Bf;;

8: if BY =0 then MX «— MX Uc;

9: for each vertex v, on the rightmost path of ¢; do
10: for each valid new rightmost vertex v,, of ¢; do
11: e < ¢; plus vertex v,,, with v, as v,,’s parent;
12: if supp(e) > minsup then E «— E Ue;

13: if £ # 0 then CM-Grow(E,CL,M X ,minsup);
14: return;

Fig. 7. The CMTreeMiner Algorithm

4 Experiments

We performed extensive experiments to evaluate the performance of the CM TreeM-
iner algorithm using both synthetic datasets and datasets from real applications.
All experiments were done on a 2GHz Intel Pentium IV PC with 1GB main
memory, running Linux 7.3 operating system. All algorithms were implemented
in C4++ and compiled using the g++ 2.96 compiler.

4.1 Synthetic Datasets

Comparing with HybridTreeMiner HybridTreeMiner is an algorithm that
we have previously developed for mining all frequent subtrees from a database of
rooted unordered trees [7]. Here we use one of the datasets given in [7] to compare
the performance of CMTreeMiner with that of Hybrid TreeMiner. The detailed
procedure for generating the dataset is described in [7] and here we give a very
brief description. A set of |[N| (=100) subtrees are sampled from a large base
(labeled) graph. We call this set of |N| subtrees the seed trees. Each seed tree
is the starting point for |D| - |S| transactions where |D| (=10000) is the number
of transactions in the database and |S| (=1%) is the minimum support. Each
of these |D| - |S| transactions is obtained by first randomly permuting the seed
tree then adding more random vertices to increase the size of the transaction to
|T| (=50). After this step, more random transactions with size |T'| are added to

12

the database to increase the cardinality of the database to |D|. The number of
distinct edge and vertex labels is controlled by the parameter |L| (=10), which is
both the number of distinct edge labels and the number of distinct vertex labels.
The size of the seed trees |I| increases from 10 to 30.

¢

-
o

—— All —s— HybridTreeMiner

010 —=— Checked o -e- CMTreeMiner
] D 10%
o —— Closed (%)
5 —— Maximal °
>
N e £
§ 1071 l;
o £
£ £
=]
g IOAW/M E
Pl eSS et BN
= =
ZM . ‘ ‘ ‘
109 .15 20 25 30 104 .15 20 25 30
The Size of the Maximal Frequent Subtrees The Size of the Maximal Frequent Subtrees
(a) (b)

Fig. 8. Number of Frequent Subtrees and Running Time vs. Size of Maximal Frequent
Trees

Figure 8 shows the experimental results. Figure 8(a) gives the number of all
frequent subtrees obtained by HybridTreeMiner, the number of subtrees checked
by CMTreeMiner, the number of closed frequent subtrees, and the number of
maximal frequent subtrees. As we can see from the figure, the total number of
all frequent subtrees grows exponentially but the number of closed subtrees and
maximal subtrees do not. The number of subtrees that are checked by CMTree M-
iner grows in polynomial fashion. Therefore, as shown in Figure 8(b), the total
running time of CMTreeMiner grows in polynomial fashion while that of Hy-
brid TreeMiner grows exponentially.

Comparing with PathJoin As far as we know, PathJoin [18] is the only
algorithm for mining maximal frequent subtrees. However, because PathJoin
uses the paths from roots to leaves to help subtree mining, it does not allow any
siblings in a tree to have the same labels. In addition, PathJoin assumes no edge
labels. Therefore, we have generated a dataset that meets these requirements.
The parameters for the dataset are: |D|=100000, |N|=90, |L|=1000, |S|=1%,
|T|=|1|, and |I| varies from 5 to 50. (For |I| > 25, PathJoin exhausts all available
memory.)

Figure 9 compares the performance of PathJoin with that of CMTree Miner.
Figure 9(a) gives the number of all frequent subtrees obtained by PathJoin, the
number of subtrees checked by CMTreeMiner, the number of closed frequent
subtrees, and the number of maximal frequent subtrees. As we can see from the
figure, the number of subtrees that are checked by CM Tree Miner and the number

13

—— Frequent —— PathJoin
D10t —— Checked || g —— CMTreeMiner
9] —=— Closed)
= . ~
g Maximal o
2 £
-
Z
o
510 2
£ £
=]
>
z o
2 5 <
E o
10 o
0

10 20 30 10 10 20 30
The Size of the Maximal Frequent Subtrees The Size of the Maximal Frequent Subtrees

40 50 40 50

(a) (b)

Fig. 9. CMTreeMiner vs. PathJoin

of closed subtrees grow in polynomial fashion. In contrast, the total number of
all frequent subtrees (which is a lower bound of the number of subtrees checked
by PathJoin) grows exponentially. As a result, as demonstrated in Figure 9(b),
although PathJoin is very efficient for datasets with small tree sizes, as tree
sizes increases beyond some reasonably large value (say 10), it becomes obvious
that PathJoin suffers from exponential explosion while CM TreeMiner does not.
(Notice the logarithmic scale of the figure.) For example, with tree size to be
25 in the dataset, it took PathJoin around 3 days to find all maximal frequent
subtrees while it took CM TreeMiner only 90 seconds!

4.2 Datasets from Real Applications

The Dataset of Web Log Trees In this section, we present an application on
mining frequent accessed webpages from web logs. We ran experiments on the
log files at UCLA Data Mining Laboratory (http://dml.cs.ucla.edu). First, we
used the WWWPal system [15] to obtain the topology of the web site and wrote
a program to generate a database from the log files. Our program generated 2814
user access trees from the log files collected over year 2003 at our laboratory that
touched a total of 310 web pages. In the user access trees, the vertices correspond
to the web pages and the edges correspond to the links between the webpages.
We take URLs as the vertex labels and each vertex has a distinct label. We do
not assign labels to edges.

Because the running time for this dataset is very short (within several sec-
onds), in Figure 10 we have only shown the growth of the sizes of the largest
maximal frequent subtrees as we reduce the support. As we can see, with larger
support (from 1% to 5%), there are no large frequent subtrees. However, as the
support decreases to extremely low value (which corresponds to just a few occur-
rences in the database), the sizes of the largest maximal frequent subtrees jump
dramatically to very large values. We believe that these large frequent subtrees

14

with low supports were created by web crawlers or robots as opposed of human
web surfers.

N
o
o
N
a
o

=

al

o
N
o
o

=
a1
o

P
o
o

a1

o
a1
o

Size of The Largest Maximal Trees
g
Size of The Largest Maximal Trees

O

4 3 2 1 0 oo 50_.65 4‘0. 20 0
Minimum Support (in %) Minimum Support (in %)

&)

Fig. 10. WebLog Dataset Results Fig. 11. Multicast Dataset Results

The Dataset of Multicast Trees Our second application dataset is a dataset
of IP multicast trees. IP multicast is an efficient way to send messages to a group
of users. In our experiment we have used the MBONE multicast data provided
in [4,5]. The data were measured during the NASA shuttle launch between 14th
and 21st in the February of 1999. It has 333 vertices where each vertex takes the
IP address as its label. We sampled the data from this NASA dataset with 10
minutes sampling interval and got a dataset with 1,000 transactions. Therefore
the transactions are the multicast trees for the same NASA event at different
time.

Figure 11 gives the change of the sizes of the largest maximal frequent sub-
trees versus the minimum supports. Our previous attempts to mine all frequent
subtrees from this dataset failed with support less than 80% [6] and now we know
why. Because this dataset of NASA multicast trees has very strong correlation
among its transactions (the difference between two consecutive transactions may
only consist of a couple of users who left the event and a couple of users who
just joined the event), the sizes of maximal frequent subtrees grow to very large
values even with very high supports.

5 Conclusion and Future Directions

In this paper, we have studied the issue of mining frequent subtrees from databases
of labeled rooted unordered trees. We have presented a new efficient algorithm
that mines both closed and maximal frequent subtrees. The algorithm is built
based on a canonical form that we have defined in our previous work. Based on
the canonical form, an enumeration tree is defined to enumerates all subtrees
and an enumeration DAG is used for pruning branches of the enumeration tree

15

that will not result in closed or maximal frequent subtrees. The experiments
showed that our new algorithm performs in polynomial fashion instead of the
exponential growth shown by other algorithms. Our experiments on datasets
from real applications revealed some new interesting facts in the datasets. For
future work, we believe that for many applications each vertex does not neces-
sarily have only a single label-each vertex can have multiple attributes. We will
extend our algorithm to handle multiple-attribute labels in the future.

Acknowledgements

Thanks to Professor Y. Xiao at the Georgia College and State University for pro-
viding the PathJoin source codes and offering a lot of help. Thanks to Professor
J. Punin, M. Krishnamoorthy, and Professor Zaki at the Rensselaer Polytech-
nic Institute for helping us with the WWWPal system. Thanks to Professor J.
Cui at the University of Connecticut for providing the NASA multicast event
data and offering many helpful suggestions. This material is based upon work
supported by the National Science Foundation under Grant Nos. 0086116 and
0085773. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views
of the National Science Foundation.

References

1. A.V. Aho, J. E. Hopcroft, and J. E. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

2. T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Satamoto, and S. Arikawa. Efficient
substructure discovery from large semi-structured data. In Proc. of the 2nd SIAM
Int. Conf. on Data Mining (SDM’02), April 2002.

3. T. Asai, H. Arimura, T. Uno, and S. Nakano. Discovering frequent substructures
in large unordered trees. In Proc. of the 6th International Conference on Discovery
Science (DS’03), October 2003.

4. R. Chalmers and K. Almeroth. Modeling the branching characteristics and effi-
ciency gains of global multicast trees. In Proceedings of the IEEE INFOCOM’2001,
April 2001.

5. R. Chalmers and K. Almeroth. On the topology of multicast trees. Technical
Report, UCSB, March 2002.

6. Y. Chi, Y. Yang, and R. R. Muntz. Indexing and mining free trees. In Proc. of the
2003 IEEE Int. Conf. on Data Mining (ICDM’08), November 2003. Full version
available as Technical Report CSD-TR No. 030041 at ftp://ftp.cs.ucla.edu/tech-
report/2003-reports/030041.pdf.

7. Y.Chi, Y. Yang, and R. R. Muntz. Mining frequent rooted trees and free trees using
canonical forms. Technical Report CSD-TR No. 030043, ftp://ftp.cs.ucla.edu/tech-
report/2003-reports/030043.pdf, UCLA, 2003.

8. J. Cui, J. Kim, D. Maggiorini, K. Boussetta, and M. Gerla. Aggregated multicast—a
comparative study. In Proceedings of IFIP Networking 2002, May 2002.

9. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
In 2000 ACM SIGMOD Intl. Conference on Management of Data, pages 1-12,
2000.

16

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

J. Hein, T. Jiang, L. Wang, and K. Zhang. On the complexity of comparing
evolutionary trees. Discrete Applied Mathematics, 71:153-169, 1996.

J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraph in the pres-
ence of isomorphism. In Proc. of the 2008 Int. Conf. on Data Mining (ICDM’03),
2003.

A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining
frequent substructures from graph data. In Proc. of the 4th European Conference
on Principles and Practice of Knowledge Discovery in Databases (PKDD’00), pages
13-23, September 2000.

M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Proc. of the 2001
IEEE Int. Conf. on Data Mining (ICDM’01), November 2001.

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed
itemsets for association rules. Lecture Notes in Computer Science, 1540:398-416,
1999.

J. Punin and M. Krishnamoorthy. WWWPal system—a system for analysis and
synthesis of web pages. In WebNet 98 Conference, November 1998.

D. Shasha, J. T. L. Wang, and R. Giugno. Algorithmics and applications of tree
and graph searching. In Symposium on Principles of Database Systems, pages
39-52, 2002.

A. Termier, M-C. Rousset, and M. Sebag. TreeFinder: a first step towards xml
data mining. In Proc. of the 2002 IEEE Int. Conf. on Data Mining (ICDM’02),
pages 450-457, 2002.

Y. Xiao, J-F Yao, Z. Li, and M. Dunham. Efficient data mining for maximal fre-
quent subtrees. In Proc. of the 2003 IEEE Int. Conf. on Data Mining (ICDM’03),
2003.

X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. In Proc. of
the 2002 Int. Conf. on Data Mining (ICDM’02), 2002.

X. Yan and J. Han. CloseGraph: Mining closed frequent graph patterns. In Proc.
of the 2008 Int. Conf. Knowledge Discovery and Data Mining (SIGKDD’08), 2003.
M. J. Zaki. Efficiently mining frequent trees in a forest. In 8th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, July 2002.
M. J. Zaki and C. C. Aggarwal. XRules: An effective structural classifier for
XML data. In Proc. of the 2003 Int. Conf. Knowledge Discovery and Data Mining
(SIGKDD’03), 2003.

