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Abstract— We have developed a new optimization
paradigm for solving computationally intractable combina-
torial optimization and synthesis problems. The technique,
named Probabilistic Constructive (PC), combines the ad-
vantages of both constructive and probabilistic optimization
mechanisms. Since it is a constructive approach, it has a
relatively short runtime and is amenable for the inclusion
of insights through heuristic rules. The probabilistic na-
ture facilitates a flexible trade-off between runtime and the
quality of solution, suitability for the super imposition of
a variety of control strategies, and simplicity of implemen-
tation. After presenting the generic technique, we apply
it to two generic NP-complete problems (maximum inde-
pendent set) and two synthesis and compilation problems
(sequential code covering). Extensive experimentation indi-
cates that the new approach provides very attractive trade-
offs between the quality of the solution and runtime, often
outperforming the best previously published approaches.

I. Introduction

A. Motivation

In order to develop effective synthesis software, a num-
ber of components need to be in place. For example, one
has to build proper abstractions of synthesis problems that
capture the important features of the problem and elim-
inate the non-important ones, and build models that ac-
curately characterize the design parameters such as delay,
area, and early power prediction. Also, synthesis software
must be modular and written in such a way that it can be
easily reused and modified. Furthermore, there is a strong
demand for convenient and intuitive user interfaces that
simplify the designer’s interaction with CAD tools during
the design process. While the list of desired CAD soft-
ware properties is long, at the heart of all synthesis soft-
ware are optimization algorithms for solving computation-
ally intractable problems. In the market place, the most
important decision factor for purchasing a certain tool is its
performance on standard benchmarks. Similarly, in the re-
search world, one of the most important factors in judging
new synthesis techniques is the experimental results with
respect to the previously published papers on the same set
of benchmarks. Therefore, it is not surprising that histor-
ically the CAD community has placed a strong emphasis
on developing efficient algorithms [17].

Optimization algorithms used for synthesis have a great
variety of features and, therefore, are difficult to be ad-
dressed in a fully systematic way. Nevertheless, it is inter-
esting and enlightening to classify optimization algorithms.
Figure 1 shows the classification according to two main cri-
teria: (i) the way in which the solution is built and (ii)
the presence or absence of randomness during optimiza-
tion. More specifically, all algorithms can be classified
as either deterministic or probabilistic in one dimension,
and as constructive or iterative improvement in the other
dimension. The largest group of algorithms are construc-

tive deterministic. For example, many CAD algorithms are
based on the force-directed paradigm [49] or use dynamic
programming [36]. In the last three decades, determin-
istic iterative improvement algorithms [35] were proposed
for many problems and were able to produce excellent re-
sults. In particular, deterministic iterative improvement
algorithms are widely and frequently used for partitioning
[4]. Simulated annealing [38] and other probabilistic iter-
ative improvement approaches have attracted a great deal
of attention for solving CAD problems. Techniques such
as genetic algorithms, tabu search, and simulated evolu-
tion, due to their programming simplicity and flexibility,
have been used for a variety of synthesis tasks. Their main
disadvantage, however, is usually long runtime [30].

While numerous algorithms populate three of the quad-
rants in Figure 1, the probabilistic constructive (PC) quad-
rant appears empty. There are some algorithms that can be
interpreted in a way that is close in spirit to this quadrant
(e.g randomized deterministic algorithms [47]). Our goal is
to explore techniques to develop algorithms which are si-
multaneously constructive and probabilistic, by leveraging
on the noble properties of both constructive and proba-
bilistic algorithms. The main advantage of constructive
algorithms is their relatively short runtime and flexibility
to incorporate a variety of insights as efficient heuristics.
On the other hand, the main advantage of probabilistic
algorithms is their inherent flexibility that facilitates the
trade-off between quality of solution and runtime. They
are also suitable for augmentation with a variety of control
strategies such as multi-start and delayed binding.

The new approach can be explained at the intuitive level
in the following way. We start by searching for a small part
of the problem that can be solved effectively, in such a way
that the remainder of the problem is as suitable as possi-
ble for further optimization. For this search, we propose a
probabilistic methodology, where parts of the solution are
considered and the decision of which part to select is made
in a probabilistic manner, so that the likelihood of obtain-
ing a high quality solution is maximized. The quality of
the solution is evaluated using an objective function. Af-
ter the small part is solved, we eliminate it from further
consideration and solve the remaining problem iteratively
using the same approach.

We conclude this subsection be presenting informal spec-
ifications for the four demonstration optimization and syn-
thesis problems.

The maximum independent set (MIS) problem and
graph coloring problems are optimization problems defined
on an undirected graph. The goal of the MIS problem is to
select the largest number of vertices in the graph in such a
way that there is no edge between any pair of the selected
vertices. For the graph coloring problem, the goal is to use
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Fig. 1. Classification of Optimization Algorithms.

the minimum number of colors to color all the nodes. The
constraint in the problem is that no two vertices with an
edge between them can be colored the same color.

Sequence covering is defined on a sequence of symbols
and a set of templates created using the same set of sym-
bols. The templates are short sequences of symbols which
are to be used to cover the long sequence. The problem
is to cover as much of the long sequence as possible, using
the templates provided as many times as necessary, with-
out overlapping any of the templates.

Finally, the scheduling problem can be defined in many
different ways even if we restrict our attention only on
behavioral synthesis. Often it is defined on a directed
graph where each vertex represents an operation and edges
indicate execution dependencies between the operations.
Scheduling is usually formulated to optimize one of two
different cases. The objective of the first case is to min-
imize the amount of functional units (hardware that exe-
cutes operations) used when scheduling the graph in a given
number of clock cycles while keeping all the dependencies
satisfied. The second case is the dual problem formulation
of the first case. The goal is to minimize the number of
clock cycles used to schedule all the operations with de-
pendencies given the amount of operation hardware. We
apply the PC approach to the first formulation in Section
IV-B.

II. Related Work

The related work in terms of its scope can be classified in
two broad groups. The first one consists of generic algorith-
mic techniques, specifically, deterministic constructive al-
gorithms, deterministic iterative improvement algorithms,
and probabilistic iterative improvement algorithms. We re-
strict our scope to discrete optimization problems. The sec-
ond part is related to state-of-the-art techniques for solving
specific generic NP-complete (MIS and Graph Coloring)
and CAD problems (Sequence Covering and Scheduling)
discussed in this paper.

By far the most popular and widely used generic al-
gorithmic paradigm is the deterministic constructive ap-
proach. Algorithms of this type have been applied on a
vast variety of problems, starting from sorting and basic

graph algorithms such as Breadth First Search and Topo-
logical Sort, to more complex graph algorithms, such as
All-Pairs Shortest Path and Maximum Flow [15]. This
paradigm has also been applied to string matching, com-
putational geometry problems and a number of theoretic
algorithms in many other fields. Several generic algorith-
mic techniques of the constructive deterministic approach
have found many applications. For example, Greedy Al-
gorithms, Dynamic Programming, and Branch-and-Bound
are used to solve many problems. There are a number of
excellent textbooks on this topic including [15], [9], [47].

In 1970, Kernighan and Lin introduced the first itera-
tive improvement heuristic, which they applied to Graph
Partitioning [35]. The algorithm uses pair swap moves to
iteratively reassign elements to different partitions. It pro-
ceeds in a series of passes, during which each component
is moved exactly once. A number of improvements on the
basic strategies have been proposed over the years [23].
The most notable are the ones proposed by Fiduccia and
Mattheyses [19], Sanchis [57], and Krishnamurthy, and an
excellent survey of this work is given in [4]. The iterative
improvement paradigm has been applied to many other
optimization problems, including the Travelling Salesman
problem [42].

Randomized versions of the deterministic constructive
algorithms have been popular for a long time [47]. Ran-
domization often dramatically improves the average run-
time of algorithms. A typical example is Quicksort and it’s
randomized version [27]. There are two types of random-
ized algorithms, Las Vegas and Monte Carlo. Las Vegas
algorithms always generate the correct solution, but their
runtime varies depending on the distribution of inputs. In
contrast, Mote Carlo algorithms may sometimes produce
an incorrect solution, but execute in a predictable amount
of time. The probability of a Monte Carlo algorithm pro-
ducing an incorrect solution can be made arbitrarily small
by repetitively running the algorithm, each with indepen-
dent random choices.

Since 1953, a number of probabilistic iterative improve-
ment algorithms have been proposed. Two of them have
origins in statistical mechanics: the Metropolis algorithm
[45] and Simulated Annealing [38], [30]. Simulated An-
nealing found a spectrum of applications in engineering,
computer science and image recognition [1]. In contrast
to deterministic iterative improvement algorithms, Simu-
lated Annealing allows hill-climbing moves. Moves are not
accepted blindly, like in random search algorithms, but ac-
cording to criteria that takes the objective function and
runtime into consideration. Consequently, a number of
probabilistic iterative improvement algorithms that often
explore with analogy to both the physical and biological
world, have been proposed including Genetic Algorithms
[29], [26], Neural Networks, Simulated Evolution [20], and
Tabu Search [24], [25].

The new PC paradigm is different from all the above
paradigms. In some sense it is closest to randomized algo-
rithms. Conceptually, the difference is that PC uses exten-
sive probabilistic search to find an attractive way to solve
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an arbitrary small part of the problem and construct (as
opposed to improve) the solution.

A. Maximum Independent Set

Maximum Independent Set is one of the most popular
generic NP-complete problems [59], [22]. For example, it
was one of the first problems proved to be NP-complete
[22]. Most commonly MIS are used as a set during Graph
Coloring. As a matter of fact, it has been experimentally
demonstrated that in many domains, finding a MIS is suf-
ficient to make coloring popular benchmarks both fast and
provably optimal [16]. Nevertheless, there are a number
of intriguing maximum independent set problem applica-
tions such as the hereditary subset problem, determining
DNA sequence similarity [31], and efficient use of amor-
phous computers and wireless Ad-hoc Networks. Recently,
also several cryptographic and intellectual property protec-
tion techniques have been proposed which exploit the dif-
ficulty of finding the largest, intentionally placed MIS (or
clique) in a random graph to build security mechanisms [3],
[32].

A number of optimization algorithms for MIS problems
have also been proposed. The emphasis was mainly on
parallel [33] and randomized algorithms. In addition, sev-
eral algorithms for MIS discovery in special types of graphs
have been proposed, in particular, ones where an optimal
polynomial time solution can be found [22]. Furthermore,
a great variety of constructive heuristic and iterative im-
provement approaches has been reported.

Finally, note that the closely related Maximum Clique
problem also has a wide range of applications [8] and that
numerous algorithms have been developed to locate the
largest clique in the graph [5]. The MIS problem is equiva-
lent to the maximum clique problem in the complemented
graph [22]. An excellent survey on the maximum clique
problem is [8]. It presents several exact and heuristic ap-
proaches (including sequential, greedy, simulated anneal-
ing, neural networks, genetic algorithms, tabu search and
continuous domain-based heuristics) and a number of ap-
plications such as coding theory, geometry of tiling, fault
diagnosis, and vision and pattern recognition.

B. Sequence Covering

Sequence covering is a special case of template pattern
matching. A work by Hoffman and McDonald provided
major impetus research on this topic [28]. The most widely
used template matching technique in compilers is utilizing
the dynamic programming approach [2]. In CAD, the most
popular approach is also a dynamic programming based im-
plementation of the Dagon template matching at the logic
synthesis level system by Keutzer [36]. In high-level syn-
thesis, several approaches have been proposed, including
[48], [55]. Sequential code covering is also the main task in
some approaches for early power estimation [52].

III. Probabilistic Constructive Optimization

Approach

In this section, we describe a new generic method for
solving intractable optimization problems using the PC ap-
proach. The main idea is to search, probabilistically, for a
small part of the solution which can be solved well and
which leaves the remaining problem amenable for further
optimization. Essentially, during this step we probabilis-
tically search for the part of the problem that is under
relatively strict constraints and try to solve this part in
such a way that the reminder of the problem has the least
amount of additional constraints imposed. For example,
when we are searching for a Graph Coloring solution, we
can color a few nodes in a particular way and remove them
from further consideration. The basic premise of the new
paradigm is that a probabilistic search enables fast scan-
ning of parts of the design space while it preserves the speed
of the deterministic algorithms.

A. Generic Probabilistic Constructive Optimization Ap-

proach

The generic approach has the following nine components.
Note that some are specific for a particular problem, while
others are invariant over different problems.

Candidate Part (CP). The candidate part is a rela-
tively small portion of the problem that can be efficiently
solved in a particular way. In the general case, we must
make two choices regarding the CP: (i) which atomic com-
ponents of the problem to consider, and (ii) how to solve
that part of the problem. It is important that the CP is
not too small in order to avoid overly local and greedy so-
lutions. It is also important that the CP is not too large
in order to avoid long search times. For example, in Graph
Coloring, coloring a single node at a time is a CP decision
that is most often too local. However, it is difficult to find a
promising coloring solution if we decide to color too many
nodes simultaneously.

Probabilistic Search (PS). One of the more important
aspects of the algorithm is how to efficiently search the so-
lution space using probabilistic constructs. There are two
main alternatives: iterative improvement and constructive
techniques. The first defines a move that probabilistically
replaces a single component from the CP with the new
component. The second method is to generate a new CP
from scratch each time. From the implementation point
of view, random number generation is a computationally
intensive task in the PC algorithm. In our implementation
we use a stored list of randomly generated numbers that
is traversed starting from randomly selected points. While
this approach generates numbers that are not completely
compliant with the standard tests for randomness [15], [47],
the extensive experimentation implies that it can speed up
the performance of the algorithm by an order of magnitude
without sacrificing the quality of solution. Another impor-
tant component of the probabilistic search is the way in
which probabilities are assigned to each component of the
CP so that the component is either included or excluded.
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For this task, we use an additionally simplified objective
function (OF).

Candidate List (CL). The candidate list contains the k
best solutions for the CPs found using probabilistic search.
The most important criteria related to the CLs are the ones
that select which solutions should be included in the list.
The simplest approach is to include only the k best solu-
tions (with k best OFs). A more sophisticated approach
takes into account the overlap between the new proposed
solution and solutions in the candidate list. Another, inter-
esting alternative is to mainly target the parts of problem
that are most constrained. The intuition is that it is often
better to solve the difficult parts of the problem early, in
order to address this part of the problem while we still have
significant freedom in how we can address the constraints
of the problem.

Objective Function (OF). The objective function is a
heuristic measure of likelihood that a particular solution to
a particular part of the final solution is a promising choice.
This idea is similar to the scoring strategies used in game
playing [50], [56]. The main trade-off is between accuracy
(ability to estimate) and the runtime. This trade-off can
be systematically exploited by considering increasing levels
of neighbors of the elements of the CP and by increasing
the computational effort to form a more accurate picture.
For example, in Graph Coloring, one can consider all nodes
that are neighbors to a node in the CP, and then all the
neighbors from that set and so on. At the same time, one
could just count the number of edges in the considered set,
or their uniformity, or number of pairs that have a larger
number of neighbors and so on.

Comprehensive Objective Function (COF). The
OF is calculated for all proposed solutions and therefore
it is important that it be fast. Once the number of can-
didates is reduced to only a few, it is essential to evaluate
them as accurately as possible. Therefore, before the final
selection of a particular candidate from the CL, we calcu-
late the COF. Conceptually, the main difference between
the OF and COF is that the former involves calculations
of properties related only to properties of a small part of
the solution, while the latter takes into account properties
of the still remaining unsolved regions. Another important
criterion that needs to be taken into consideration is the
overlap between the selected CP and other CPs in the CL.
Clearly, less overlap implies that more of the current can-
didates can be reused in the next stages of the algorithm.
The same trade-off, accuracy and runtime, that was stated
for the OF also applies to the COF.

Stopping Criteria. The effectiveness of probabilistic
search for a promising CP is positively correlated with the
search time. Although to some extent only experimenta-
tion of a particular problem and particular instance of the
problem can accurately indicate this. Nevertheless, two
general guidance criteria can be stated: (i) longer search
time is required in the beginning when the problem is still
large, (ii) the best indication of finding a new quality so-
lution for a CP is that for a long period of time no new
superior CP is observed.

Procedure GPC(P) {
While (Overall Control Strategy is not satisfied) {

S=;
While (S(P) is not complete) {

While (stopping criteria is not satisfied) {
CPi = GenerateCP(); //using PS
OFi = CalculateOF(CPi);
If(OFi > OFmin)

UpdateCL(CPi);
}
For(all CPj in CL)

CalculateCOF(CPj);
BCS = BestCandidateSelection(CL);
S(P) = SolutionIntegration(S(P),BCS);

}
}

}

Fig. 2. Generic PC Algorithm (GPC).

Best Candidate Selection (BCS). The best candi-
date selection is the process of selecting the part of the CP
which will become part of the final solution. The simplest
strategy is to select the CP with the best COF. One can en-
vision a multitude of alternatives where information from
the previous runs of the algorithm or delayed binding are
used.

Solution Integration. Divide and conquer is a popu-
lar algorithmic paradigm. Its application is often restricted
due to the difficulty of integrating components. Therefore,
one of the most important aspects of the PC approach is
to develop mechanisms for integrating solutions to the CPs
into the solution of the overall problem. In a sense, this is
the most demanding aspect of the PC approach, which re-
quires the highest degree of creativity. Nevertheless, there
exists a generic technique for this task. The technique is
based on constraint manipulation, where the already solved
parts, are presented as constraints to the remaining prob-
lem. A small example may better explain this paradigm.
Consider the graph coloring problem. If we decide to color
two nodes n1 and n2 with the same color as a CP, all that
is needed is to replace n1 and n2 with a single node n′ in
the remainder of the problem. Note that n′ should have
edges to all the nodes that were connected to n1 and n2.

Overall Control Strategy. Since the new approach is
probabilistic, each run of the algorithm, in principle, pro-
duces different solutions and has different runtimes. One
can superimpose a variety of control strategies using the
generic algorithm as the building block. For example, one
can use multi-starts or keep statistics about the difficulty
of resolving some parts of the solution and use this as the
decision criteria of when to terminate an unpromising start.

The new problem-solving paradigm can be explained in
the following way. We attempt to find a small and readily
solvable part of an overall problem and find a high quality
solution to that part. The objective function is used to
evaluate the quality of the proposed solution. Examining
all parts of the problem is a procedure with exponential
time complexity and therefore is not a plausible approach.
This suggests the use of a randomized search algorithm.
The search should avoid visiting the same parts of the prob-
lem more than once. The parts with a high solution quality
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Fig. 3. Delayed Binding Example.

are stored for future considerations. In particular, diverse
solutions are very beneficial because they can be used con-
sequently to form other parts of the solution. Furthermore,
if possible, the CP should be flexible in order to allow the
imposing of additional control or search strategies later on.
The pseudo-code of a generic approach for the PC proce-
dure (GPC) is listed in Figure 2.

First, the algorithm finds a CL of promising solvable CPs
(CPi). Each CP is found after applying the probabilistic
search to the current instance of the problem, P. During
this probabilistic selection, the algorithm favors CPs that
are more likely to be solved efficiently (have higher OF
values), and adds only the best CPs to the CL. Next, the
comprehensive objective function, COF, is calculated for
each of the CPs in the CL. The BCS is selected from the
CL according to the rule for BCS. This selected BCS, or
CPi, which evaluated best according to the best candidate
selection rules, is then integrated as part of the solution and
eliminated from the problem. The procedure then repeats
on the remainder of the problem until a complete solution
is found.

B. Delayed Binding

One of the main advantages of the PC approach is its
flexibility. In particular, it is easy to superimpose a num-
ber of additional optimization mechanisms, such as multi-
ple OFs, on the generic technique in order to explore the
trade-off between quality of the solution and runtime of the
program. In this subsection, we explain how delayed bind-
ing can be used to enhance the performance of the generic
algorithm.

The basic idea behind delayed binding is the postpone-
ment of the ultimate selection of a particular partial so-
lution (BCS decision) until later search iterations. This
mechanism is illustrated in Figure 3. We assume that orig-
inally we make a pending commitment to two solutions A1

and A2. For each of them, we continue the search to find
several consequent CPs. Specifically, for A1, we find parts
b11, b12, and b13, and for A2 we find parts b21, b22, and b23.
Repeating this again results in 18 different CPs as shown
in Figure 3.

Now, we evaluate each CP corresponding to each path
in the trees. Specifically, we make the final decision for the
A1 or A2 selection based on the OF values the best cijk.
There are a number of strategies that can be adopted for
this task; for example, one can adopt Ai, which has the best
COF in its children. If C122 is the best, we would accept

Procedure Delayed Binding()
While (Problem is not solved) {

A1=Select Kd BCSs;
For(i=1 to K1)

GPC(Problem with Ai ∈ A1 removed);
A1i=Select K2 BCSs;
For (j=1 to K2)

GPC(Problem with Ai A1i removed)
A1ij=Select K2 BCSs;
CalculateOF (A1ij);
Save I value of best A1ij ;
Select Abest from A1i according to best i;
S = SolutionIntegration(S, Abest);
Remove Abest from the Problem;

}

Fig. 4. Algorithm for Delayed Binding.

A1 and then re-start the same procedure by eliminating
all branches that are not selected. Note, that selecting the
best potential child is not necessarily an optimal strategy
for finding the optimal solution. One potential alterna-
tive is to consider the weighted sum of the best children.
This mechanism is affected by several parameters such as
the depth of the search to which a decision is delayed, the
number of branches at each level. The delayed binding
mechanism can be summarized using the pseudo-code in
Figure 4.

Each time we apply the GPC approach as described
in the previous section, we obtain a different solution
(A1, A2, . . . , AK1

). In order to make a decision to accept
a particular Ai and proceed, we generate the first level
(bi1, bi2, . . . , biK2

) and the second level (cij1, cij2, . . . , cijK3
)

CPs, as they would occur as a consequence of selecting each
solution Ai. We then assign the solution Abest, as the so-
lution Ai that results in the CP with the best OF among
all leaf CPs in the expansion tree. The elimination and
solution integration operations on this Abest, is the same
as GPC.

C. Other Augmentation Mechanisms

In addition to the delayed binding, we can also have a
number of additional mechanisms that can be used to aug-
ment the generic strategy such as backtracking and hier-
archical application of the generic technique. Backtrack-
ing is a technique where we replace one or more of the
selected best candidates that are already included in the
solution by some other candidates which where previously
excluded from the further consideration. The hierarchical
PC approach enables that the PC approach itself is used
instead of the probabilistic search step. Also, the whole ap-
proach can be employed within a large optimization loop
and the information from previous runs about difficulty
to solve a part of the problem can be considered in later
attempts. Finally, and maybe most importantly, let us
mention that probabilistic search can be augmented using
some of the generic maximally constrained, minimally con-
straining heuristics to focus efforts on the most difficult
and sensitive parts [6], [51], [50].
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D. Application to Maximum Independent Set

Using the standard Garey-Johnson format [22], the MIS
problem can be defined formally in the following way:

Problem: Maximum Independent Set
Instance: Graph G=(V,E), positive integer K ≤ |V |.
Question: Does G contain an independent set V’, i.e. a
subset V’⊆ V such that for all pairs of vertices u,v ∈ V’
and the edge {u,v} not in E, with |V ′| ≥ K?

The PC algorithm can be applied to the maximum in-
dependent set (MIS) problem in at least two conceptually
different ways. The first is to select nodes to include in the
MIS. The other way is to select nodes which are to be ex-
cluded from the MIS. The solution is then the set of nodes
which remain unconnected in the final graph. For the first
approach where we select nodes to be included in the MIS,
we define the PC components in the following way.

Candidate Part (CP). We select any subset of nodes
which are not connected by any edges to be considered as
the CP. Each CP is a possible subset of the nodes in the
final solution, or MIS. The candidate part can be of size k,
where k is a variable or constant value. In our experimental
evaluations, we used k = 4 nodes. There are several simple
and good heuristics for selecting k. For example, k can be
a fraction of the number of nodes in the graph. Another
intuitive heuristic is to select k as a linear or polynomial
function of the number of edges in the graph.

Probabilistic Search. We search the solution space by
excluding a single node from a CP of size k, and including
another node that previously was not a member of the CP.
The node to exclude, Ne, and include, Ni, in the CP are
chosen according to the following equations calculated for
each node j.

Ne(j) = w1n(j) + w2nu(j) + w3n1(j)

where n1 =
∑# neib

i=0 n(i)

Ni(j) = 1
Ne(j)

We define n(j) as the number of neighbors of the node,
and nu(j) as the number of unique neighbors of node j, i.e.
neighbors that no other node in the CP have edges to. The
variable n1(j) is the total number of neighbors for all the
neighbors of the current node j. Essentially, the intuition
is to exclude nodes which have many neighbors, and in par-
ticular many unique neighbors, and to retain nodes whose
neighbors have many neighbors. We used the following val-
ues: w1 = 1, w2 = 5, w3 = −.01. The reason for inclusion
is exactly the opposite. We select probabilistically which
node to exclude or include according to the value Ne or Ni

for node j. Probability is assigned linearly proportional to
the nodes Ne and Ni values.

Candidate List (CL). We include k1 CPs to the CL
with the constraint that no node exists in more than 1/5
of the CPs in the CL. The intuition is that we do not
want many CPs in the CL which cover the same node,
because only one of them can be used. We also note that
if the OFs of the CPs are relatively consistent in value,

then we continue to add CPs to the CL to make it twice
as long as usual. On the other hand, the values of the
OF are distributed over long range, then we cease building
the list, assuming that we have satisfied the minimum list
size, kmin. Our intuition is that if the values of the OF are
relatively consistent, then most likely we should continue
to search further to find a good overall selection.

Objective Function (OF). The objective function is
the weighted sum of nr, the number of nodes in the re-
mainder of the graph that are still eligible to be included
in the MIS, and e is the total number of edges in the cur-
rent graph minus the number of incident edges. We give
preference to the CPs that leave a large number of nodes
eligible for selection in the next iteration. We also give
preference to the CPs which eliminate many edges for the
graph. The less edges in the graph the more likely we are
to be able to select more nodes to eventually include in the
MIS. Note that α2 is negative in the following formula for
the OF. Both α1 and α2 are set to 1.

OF(CPi) = α1nr + α2e

Comprehensive Objective Function (COF). For
the COF we combine the OF with an additional compo-
nent. This component penalizes a CP for having a large
number of neighbors. We denote the number of neighbors
of node i in the CP by ni. We denote the size of the CP
by k. Therefore, the COF has the following form.

COF(CPi) = OF(MISi) + α3

∑k

i=1n
2
i

We penalize CPs with nodes that have uniform numbers
of edges because they limit the number of possibly easy to
include nodes for the next iterations. Note that in this case
α3 is negative.

Stopping Criteria. We stop searching for new CPs for
the CL after knr attempts to find a CP with an improved
OF, where nr is the number of remaining nodes in the
graph. The idea is that if the recent searching efforts do
not bring in any improvement then most likely it will not
be found without significant additional search. We found
that knr = 5nr performs well in practice.

Best Candidate Selection (BCS). We select the best
CP by enhancing the COF with additional criteria - the
number of occurrences of the CP in nodes in the CL. If the
nodes in the BCS only appear in one CP in the CL, then
by selecting the CP we preserve a large number of already
found CPs and leave a large part of the solution space with
high potential untouched. We denote the total number of
appearances for node i in the CL as ai.

BCS(CPi) =w1COF(CPi)+
∑|CP |

i=0
1
ai

, where w1 is weight
factor set to value 3

Solution Integration. We integrate the BCS into the
solution and leave the remaining problem to be solved by
removing all nodes in the selected CP, as well as neighbors
of the nodes and all incident edges to these nodes.

Overall Control Strategy. For the overall control
strategy we conduct n/10 multi-starts given that n is the
number of nodes in the original instance. This number was
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determined experimentally.
The second approach, where we select nodes to exclude
from the MIS, uses many of the same component definitions
as the first approach. The definitions of the candidate part,
candidate list, comprehensive objective function, stopping
criteria, best candidate selection, solution integration and
overall control strategy all stay the same. We define the
remaining components in the following way.

Probabilistic Search. We again select any one of the
four nodes to be excluded from the CP and replaced with
another node. The nodes to be included and excluded are
selected probabilistically using the following values.

Ne = 1
Ni

, Ni =
∑# neib

j=1

∑# neib(j)
k=1

1
nijk

We define the neighbor of node ni as nij , and the neigh-
bor of nij as nijk. Therefore, we eliminate the nodes with
many neighbors of neighbors, because these neighbors will
greatly harm a potential solution by eliminating a signifi-
cant number of nodes from consideration.

Objective Function (OF). In this case we use the ob-
jective function that includes only the number of edges
which remain in the resulting graph, e. We experimentally
set α to 1.

OF(CPi) = α e
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Fig. 5. Example of PC approach applied to the MIS problem.

In order to better explain how the PC approach is ap-
plied to the maximum independent set problem consider
the instance of the problem shown in Figure 5. We have
a graph G, with 12 vertices and 34 edges, shown in the
top left of the figure. For the sack of simplicity and clar-
ity, we select pairs of vertices for our candidate parts. For
the sake of brevity, instead of doing iterative probabilistic
search, we use the constructive approach to create CPs.

For each pair of vertices (CP) which we consider to in-
clude in the CL, we evaluate the OF. The OF is equal to
the number of nodes in the remainder of the graph after
the selection of the CP as part of the MIS. For example,

if we consider the pair, K and C, we see that the OF will
evaluate to zero. By selecting these two vertices, we elim-
inate all the remaining vertices in the graph. In figure 5,
we build the CL to include four different CPs with their
OFs. Next, for each of the CPs in the CL, we evaluate
their COFs. Again for the sake of simplicity and clarity,
we assume that the COF is equal to the number of vertices
remaining in the graph. Furthermore, we define the BCS
as the CP with the largest number of remaining vertices in
the graph. The first iteration of the PC algorithm is shown
in Step one. In this case, we see that the last CP in the list,
pair of vertices B and J, has the highest COF. Therefore,
these vertices are selected as part of the solution. To con-
duct solution integration, we remove the selected vertices
from the graph along with all their neighboring vertices and
all incident edges to these vertices. The resulting smaller
instance is shown in Step two of Figure 5.

In the next iteration of the algorithm, we conduct exactly
the same procedure. We first eliminate all CPs from the
CL which are no longer valid, and replace them with new
pairs of vertices. In this case, the only CP which is still
valid consists of vertices E and G. Next, we reevaluate the
COF for each CP in the CL. As a result, we find that the
CP consisting of vertices H and E has the highest COF and
therefore is selected as the BCS. After solution integration,
we have the resulting graph with 3 vertices as shown in Step
three.

Now the problem is reduced to the extent that the only
feasible CP consists of vertices L and G. Also in this mo-
ment the CP algorithms is terminated. We combine all
the selected CPs to build our final solution shown in the
bottom right of the figure. The resulting MIS contains 6
nodes: B, E, G, H, J, and L. Exhaustive search indicates
that this the optimal solution.

E. The Graph Coloring Problem

In this section, we explain how the new PC paradigm can
be applied to the Graph Coloring problem. A Graph Col-
oring solution is an assignment of colors to each vertex in
a graph such that no two vertices that are connected with
an edge have the same color. Using the standard Garey-
Johnson format [22], the problem can be defined formally
in the following way:

Problem: Graph K-Colorability
Instance: Graph G(V,E), positive integer K ≤ |V |
Question: Is G colorable, i.e., does there exist a function
f: V → 1,2,3,. . .,K such that f(u) 6= f(v) whenever u,v ∈ E?

We use the GPC algorithm for Graph Coloring at two
levels of abstraction: i) to identify good set of nodes that
can be colored with a single color and ii) for the overall
assignment of all colors. First, we use it to find a maximal
independent set with the largest number of incident edges
(mIS). Note the difference between a mIS and a MIS. A
mIS is a maximal independent set in the graph that en-
compasses the nodes that are suitable to be colored with
a single color, while a MIS is the maximum independent
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set. The importance of the mIS is a consequence of the fact
that all nodes that belong to a mIS, can be colored with the
same color and that they will eliminate the largest number
of constraints for coloring the remainder of the graph. All
components of the mIS used for graph coloring are identical
to the components of the MIS CP algorithm from the pre-
vious subsection. The only difference is that the OF and
COF are now defined in the following way. OF is equal
to the sum of edges incident to the nodes in the CP. The
COF, in addition to this component, also considers the sum
of the squares of the number of neighbors for each node in
the CP. The intuition is that if the remainder of the graph
has nodes with high degrees it is more difficult to be col-
ored. In the COF both components are scaled to a value
between 0 and 1 by normalizing them respectively against
the number of edges and the overall sum of squares of the
number of neighbors for all nodes in the initial graph.

Once when we have a mean to select mIS, we can ap-
proach the second part of the problem, that is to start to
select a few mISs that will form an efficient graph color-
ing solution. The components of the PC algorithm for this
part of the problem are defined in the following way.

Candidate Part (CP). We select k mISs as a single
CP. Experimentally, we found that k = 5 performs well.

Probabilistic Search. The first phase generates a large
number of different mISs. We probabilistically (with prob-
abilities directly proportional to their relative perceived
quality) select one mIS at a time according to two cri-
teria. The first criterion is the number of outgoing edges
from the nodes in the mIS. The second is the amount of
overlap the mIS has with other mISs in the CL. If the mIS
overlaps with many of the other CPs in the CL, then by se-
lecting the CP which contains this mIS, we eliminate many
of the future possibilities for finding large mISs with many
incident edges.

Candidate List (CL). The size of the candidate part
depends on the size of the instance. In this case we allow
the user to specify the size of the list. For all our exper-
imentation, we used as the default value a list of length
25.

Objective Function (OF). The objective function is
the sum of two weighted components:

OF( mISi) = α1P1 + α2P2

The first component directly comes from the following cri-
teria. The main problem in coloring graphs is the number
of edges in the graph. This component can be summarized
using the following formula.

P1(mISi) =
∑|mISi|

j=1 d(vj)

where d is the degree of the node vi in mISi. This prop-
erty has already been used for evaluating the quality of
nodes colored with the same color in two exceptionally well-
performing algorithms by Leighton [41] and by Kirovski
[39]. The second component is a variation of the first com-
ponent only it emphasizes on the uniform density of edges

in the graph, the reason being that it is much more difficult
to color a graph with non-uniform edge density [39].

P2(mISi) =
∑|mISi|

j=1 d2(vj)

Comprehensive Objective Function (COF). The
comprehensive objective function (COF) aims to ensure
that as many as possible mutually exclusive mIS CPs from
the CL are used simultaneously. In order to accomplish
this, we introduce a mIS conflict graph illustrated using
a small example in Figure 6. The conflict graph has as
nodes CPs (mIS) from CL. An edge between two nodes in-
dicates that at least one node is shared between the two
CPs (mIS). The weight on the edge is proportional to the
number of nodes in the original graph that are common to
both mISs. The COF for Graph Coloring has two compo-
nents: P3 and P4. The first component can be expressed as:

P3 =
∑# neib mIS

j=1 wij

where wij =
∑|Vk|

m=1 nm , Vk= (mISi ∩ mISj),
and nm= # of neighboring vertices for vm ∈ VK .

Essentially, P3 is proportional to the number of neigh-
bors of nodes that are in mISi and mISj . The second
component is formally defined in the following way:

P4=
∑|Si|

j=1 nj , where Si= (V \U) ∩ mISi,

U =
⋃# of mIS

i=1 mISi,
nj = # of neighboring vertices for vij ∈ Si

The intuition is the following. We find all nodes that
are not elements of any mIS in the candidate list. If some
mIS has more of this type of nodes, than it is considered
more important for immediate inclusion in the final solu-
tion because it colors a node which is otherwise difficult to
be colored simultaneously with the other nodes.

Stopping Criteria. We stop searching for new CPs for
the CL after ksc attempts to find a CP with an improved
OF. We found that ksc = 100 achieves strong results in
practice.

Best Candidate Selection (BCS). We select the best
CP simply by finding the CP with the best COF evaluation.
In this case, the COF examines all needed aspects of the
CP.

Solution Integration. To integrate the BCS into the
solution and find the remaining problem to be solved, we
merge all the nodes in the CP into a single new node, and
reassign all incident edges to this node. The final solution
will consist of a fully connected graph, or a clique. Each of
the nodes in this graph will be assigned a different color.
All nodes encompassed in these final nodes will be colored
with the same color.

Overall Control Strategy. For the overall control
strategy we do kocs multi-starts. Experimentally we found
kocs = 3 to work well. Note that one can envision numer-
ous more sophisticated strategies that take into account
how close were previous runs in terms to eliminate at least
one color with additional effort.
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Fig. 6. mIS Conflict Graph.

IV. Applications to CAD Problems

In this section, we apply the generic PC approach to two
CAD problems: sequence covering and scheduling. We
start by formulating the sequence covering problem and
establishing its relation to the power modelling task. In
addition, we also discuss the relationship between sequen-
tial code compression and the sequence covering problem.
Next, we employ the PC heuristics to solve the formulated
problem. Furthermore, we illustrate the new approach on
a small, but illustrative example. Finally, we apply the CP
approach to the scheduling problem.

A. The Sequential Code Covering Problem

The goal is to solve the following problem. Given a pro-
gram at the assembly level and a set of functions (small pro-
grams) that are well characterized in terms of their power
consumption, find an accurate estimation of the power con-
sumption of the program by covering the program using the
functions.

In order to make the treatment of the problem more for-
mal, and hence provide a sound analysis, we abstract the
sequential code covering problem into the sequence cover-
ing problem.

Problem: Sequence Covering
Instance: Finite set of symbols D = {d1, d2, . . . , dn}, set
of templates T = {t1, t2, . . . , tk} s.t. each template ti is
formed by concatenating an arbitrary number of symbols
from set D, sequence S formed using concatenation of sym-
bols from set D and integer U.
Question: Can S be covered using multiple instances of
templates T s.t. not two templates overlap and the number
of uncovered symbols in S is less than U?

We now summarize the relationship between the power
estimation problem and the sequence covering problem.
The sequence covering problem can be mapped to the high-
level power estimation problem and therefore optimization
problems in programmable processors in the following way.
The set T is the set of basic program instructions at the
assembly level. The sequence, S, is a program written by
using those instructions. Each of the k templates is well
characterized in terms of its power consumption [52]. It
has been experimentally verified that this procedure yields
extremely accurate power prediction within 3% for Toshiba
R3900 microprocessor [52]. The goal is to define a way to
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Fig. 7. Sequence Covering Example.

cover the instruction sequence S with templates from the
instruction set T, in such a way that the amount of un-
covered instructions is minimized. No two templates can
overlap when they cover the instruction sequence.

Another, probably even more widely applicable abstrac-
tion that leads to the sequence covering problem is mi-
crocode compression in processors with complex instruc-
tions. The goal is to make the code as compact as possible
and therefore as fast as possible by effectively using com-
plex instructions [43]. Also note that the sequence cover-
ing problem is a special case of the technology mapping
problem in logic synthesis [36] and the template matching
problem in behavioral synthesis [14].

We further clarify the sequence covering problem using
the example shown in Figure 7. Our set of symbols is D =
{1,2,3,4}. We have four templates T1, T2, T3, and T4. The
example is simple; therefore all the covering options can be
easily recognized. If we set U = 3 which implies that we
always have less than three instructions uncovered, O1, O2

and O3 are the covering options. O1 leaves one uncovered
instruction, O2 leaves two uncovered instructions, and O3

covers all the instructions.

We now briefly illustrate the key trade-offs during the
sequence covering problem. The best coverage is achieved
by option O3 where the number of uncovered instructions
is the least. The first interesting observation is that some
of the templates might contain all the elements of another
template in the sequence. In the example, T2 contains T1

and T3 contains T4. As we have seen from the best solu-
tion for this example, it is not always the case that the
template that is covering more symbols of the sequences
in the local area leads toward the best final solution. For
example, T3 has more local coverage in its immediate neigh-
borhood, but using this template would prevent us to use
T2 and thus finding the best solution for this particular ex-
ample. Therefore, the best selection for the covering tem-
plate is not only dependent on the coverage performance in
the immediate local neighborhood, but also on the comple-
mentary function of other templates for covering the most
possible number of symbols in the sequence.

When the sequence covering problem is address using
the PC approach, during each pass through the sequence,
the selection of new starting points is important because
it impacts the decision of which templates will be used for
immediate covering from that point on. In the example, if
we start the covering procedure from the first character of
the sequence, we will select template T2. However, if we
start from the second item in the sequence, we can never
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go back and use sequence T2. For this reason, we defined
our approach for sequence covering in such a way that the
starting point is randomly selected and a numerous num-
ber of attempts ensure high probability to select a suitable
starting point.

We define the components for the PC approach for se-
quence covering as follows:

Candidate Part (CP). We select any subsequence of
the sequence which can be covered by any number of tem-
plates such that there are no more than Umax uncovered
elements in the sequence. We found the value of Umax = 5
performs well in practice.

Probabilistic Search. We search the solution space
by analyzing subsets of the sequence S to be covered. For
each subsequence we calculate two values Oi and PS which
indicates the likelihood of adding the subset to the CL. Oi

represents the total number of occurrences of an element i
in all CPs in the CL. If we define KL as the length of the
CP, we can define PS for each element j as follows.

PS(j)= 1∑
KL

i
Oi

The intuition behind the definition is following. If element
j is difficult to be covered, any sequence that covers that
element should receive proportionally higher preference.

Candidate List (CL). We continue to add CPs to the
CL as long as each element appears less than k times.

Objective Function (OF). The objective function
takes into account the weighted sum of two components.
The first components, p1, is the length of the subset that
is covered by the CP and the second, p2, is the likelihood
that the elements in the subset are covered by other CPs.
A CP is more beneficial if it covers symbols in the sequence
which are hard to cover and also covers a large number of
symbols. Therefore, the objective function has the follow-
ing form.

OF(CPi) = α1p1 + α2p2

Comprehensive Objective Function (COF). In ad-
dition to the objective function, the COF has one more
weighted component. For each of the CPs, we calculate the
overlap between the CPs in the CL. We define the overlap
between two CPs A and B, OAB , as the number of identical
symbols covered by both CPs. For each CP we calculate
the COF as a weighted sum of the overlap and OF. We
penalize the CP if it overlaps significantly with other CPs
in the CL. The more overlap, the more we are constraining
the remaining problem. Therefore, we have

COF(CPj) =
w3OijOF (CPj)

|CPj |
, where w3 < 0

Stopping Criteria. We stop searching once each ele-
ment has been covered by CPs in the CL ksc times. By
doing this we give each element in the sequence a good
chance of being covered. Experimentally, we found ksc =
16 to work well in practice.
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Fig. 8. Sequence Covering Example.

Best Candidate Selection (BCS). We select the CP
with the best COF value. Note that the COF has a com-
ponent that ensures that the overlap between high quality
CPs is taken into account.

Solution Integration. We replace the BCS with a new
symbol d′i, which consists of a unique new symbol and we
also add a new template to the library t′i. This symbol can
never be covered in the sequence by any other template
other than t′i. We assume that this template has length 0.

Overall Control Strategy. If after kocs multi-starts
there is no improvement in the number of total uncovered
elements then we terminate search. In experimentation we
found kocs = 5 to provide the best results.

To clarify the key steps of the PC approach when applied
to the sequence covering problem, consider an instance of
the problem shown in Figure 8. The example contains two
symbols, ’a’ and ’b’. There are three templates, one of
length three (T1 - ’aba’), and two of length two (T2 - ’ba’ ,
T3 - ’bb’ ). The sequence, S, is composed of 20 symbols.

The goal is to cover the sequence using the templates T1,
T2 and T3 such that the largest number of symbols in the se-
quence is covered. In our definition of the CP for sequence
covering we select subsequences of the sequence which can
be covered with at most Umax elements uncovered. In this
case, we set Umax to zero. We randomly select a starting
point for building the CPs. In this case, we select positions
6, 2 and 1 in the sequence. We add each of the CPs to the
CL and evaluate each of them using the COF. In this small
example, for the sake of brevity, we simplify the COF to
only consider the length of the sequence covered. The three
resulting coverage are O1, O2, and O3 as shown in Figure
8. In this case, we select as our BCS, the sequence that
covers the longest continuous subsequence. O3 uses 6 tem-
plates to cover 14 symbols, O2 uses 6 templates to cover
13 symbols, and O1 uses 3 templates to cover 7 symbols.
Therefore, we select CP O3. Once we have selected our
BCS, we do solution integration by creating a new sym-
bol, c, and a new template T4 - ’c’. Then we replace the
entire covered subsequence in O3 with the symbol, c. The
resulting simplified sequence is O4.

Next, we repeat the whole procedure in exactly the same
way. First we select several new random starting points,
and rebuilding the CL. For the sake of brevity we omit
the elaboration of the steps of the algorithms which are
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identical to the ones explained in the previous paragraph.
The solution is shown in O5 of Figure 8. In this case, the
best coverage is 19 out of the 20 symbols.

B. The Scheduling Problem

Scheduling is a mandatory task in both behavioral and
software compilation [17]. We assume a synchronous data
flow model of computation [40]. The computation is repre-
sented as a directed graph, where nodes indicate operations
and edges represent data or control dependencies between
operations. Each operation may require one or more clock
cycles for its execution. The total execution time is given.
Note that this abstraction is not only well suited for opti-
mization, but more importantly it is fully adequate for nu-
merous computation intensive application in fields such as
digital signal processing and communication [40]. Schedul-
ing is a synthesis task that assigns operations to clock cy-
cles. Assignment is the process of assigning each operation
to one of the execution units. The goal is to schedule and
assign all nodes in the computation within the given time,
so that all data and control dependencies are satisfied and
the specified amount of hardware is used. In the simplest
case only functional units are specified. But in a more
realistic case the registers and interconnect are also speci-
fied. The scheduling problem in its simplifies form can be
formally stated in the following way.
Problem: Scheduling
Instance: Directed Graph G(V,E), positive integers T and
R, ∀vi ∈ V , and mapping f(vi) : vj → 1, . . . , n.
Question: Are there ∀vi ∈ V , g(vi) : vj → 1, . . . , T and
h(vi) : vi → 1, . . . , R s.t. ∀eij ∈ E, g(vi) + f(vi) ≤ g(vj)
and for all (i, j), i 6= j, if g(vi) + f(vi) ≥ g(vj) or
g(vj) + f(vj) ≤ g(vi) then h(vi) 6= h(vj)?

Function f(vi) indicates the duration of operation vi.
Function g(vi) indicates in which clock cycle the operation
is scheduled and function h(vi) indicates on which execu-
tion unit each operation is assigned.

As a preliminary step to the PC approach for schedul-
ing, we compute ASAP (as soon as possible) and ALAP
(as late as possible) times for each operation using breadth
first search and dynamic programming [49]. After that, we
construct the distribution graph [49] for each type of op-
eration that calculates parallelism available in each control
step. Distribution graphs contain information about the
expected number of operations to be executed in a par-
ticular control step assuming that each operation has an
equal probability to be scheduled in any clock cycle within
its ASAP-ALAP timing interval. The distribution graph
is weighted by the cost (area) of an execution unit for a
particular type of operation. The distribution graph also
contains information about the required interconnects and
expected register requirements.

We will follow the following notations: S(vi) denotes
the slack of operation(vi) and it is defined as : S(vi) =
ALAP(vi) - ASAP(vi). The scheduling difficulty (inverse
slack) is defined in the following way:

I(vi) = 1
S(vi)+1

We define the components of the PC algorithm for
scheduling as follows.

Candidate Part (CP). We select a set of operations
which can be scheduled in the same control step as our
candidate part. We select the maximal possible number
of operations. We selected to define the CPs with respect
to the control step because it is conceptually simple and
facilitates both efficient implementation and effective ex-
ploitation of parallelism. Note that there are numerous
other ways in which the CP can be defined. For example,
one way is to select all operations which will be assigned
to the same resource. Another is to select k operations on
arbitrary k resources. We selected the first option for the
reason that it preformed best in practice and it is intuitively
appealing.

Probabilistic Search. For each control step we search
as long as no new CP can be added to the CL is found
in 5k attempts. We define k as the maximum number of
operations that can be assigned to the control step. We
select one operation at any time to remove and replace from
the CP probabilistically. We measure the percentage of
unscheduled operations in their transitive fan-in (TRI) and
transitive fan-out (TRO) of each operation, and we give
preference to operations that are expensive, have little slack
or flexibility, and have many TRI and TRO operations. If
the operation has all of these qualities, we want to schedule
the operation as early as possible in the scheduling process.
This way it will give us a better picture of the difficulty to
schedule and assign the remaining operations.

Candidate List(CL). For each control step we keep
ki candidates, where ki is the number of operations which
have ASAP and ALAP times which allow the operation to
be scheduled in control step i.

Objective Function(OF). We define the objective
function as the weighted sum of two components. The
first component P1, aims at giving benefit to CPs that as-
signs expensive operations with little slack. The second
component analyzes how well the CP preserves chances for
scheduling the remaining operations. Note that after we
schedule several operations, in principle, all operations in
their TRI may have altered their ALAP times and all op-
erations in their TRO may alter their ASAP times. There-
fore, the slack of TRI operations may be reduced and the
slack of TRO operations maybe increased. If the CP has
a large impact on other operations, then by scheduling the
operation in the control step may reduce the chances for
the scheduling the remaining operations. Also note that
if the operations in the TRI and TRO are expensive and
have small amounts of slack, the CP has very little benefit.
Therefore the OF has the following form:

OF(CPi) = α1p1 + α2p2

where the component p1 is the sum of the scheduling diffi-
culties of all operations in the CP and p2 is the sum of the
change in the scheduling difficult of operations that in TRI
and TRO of each operation in the CP. In both components
each operation is weighted by a factor that is proportional
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to the cost of execution units of which the operation may
be assigned. We set α1 to 1 and α2 to .5.

Comprehensive Objective Function (COF). We de-
fine the COF as an enhanced version of the OF in the sense
that we include the interconnect and register utilization
when calculating p1 and p2. We essentially use criteria and
mechanisms for treating interconnect and registers from
[49], [?]. For example, interconnect is treated in absolutely
the same way as operations after each transfer is explicitly
defined.

Stopping Criteria. We stop searching for new CPs for
the CL after having no success for 5ksc attempts. We de-
fine ksc as the number of operations which can be possibly
scheduled in the ith control step.

Best Candidate Selection (BCS). For the BCS we
consider two aspects, the quality of the CP according to it’s
COF and the amount of damage each CP does to other CPs
in the CL. The intuition behind the second component is
that we do not want to eliminate other good CPs for other
controls steps in the CL by selecting a CP. The damage is
done exactly in the same way as the objective function for
all operations which belong to a pair of considered CPs.

Solution Integration. We integrate our solutions by
scheduling the operations in our BCS and recalculating the
ASAP and ALAP values for all remaining operations.

Overall Control Strategy. As long as a solution is not
found we continue to restart. If we can find a schedule for
the operations, it is possible that less hardware is needed
to complete the task and we provide this information to
the designer as feedback. To avoid infinite loops, we count
the number of unassigned operations at the end of each
restart. If we do not find better solution in k attempts (k
is specified by the user), we terminate the search.

V. Experimental Results

In this section we present the experimental results con-
ducted on real-life examples, as well as specially prepared
examples for which an optimal solution is known. We ap-
plied the PC techniques to each of the four selected prob-
lems and compared the quality of our solutions to previ-
ously published results [16], [39], [?], [52]. All experimen-
tation of the PC approach was done on a 300-MHz Sun
Ultra-10 Workstation (SpecInt 12.1). In the cases where
we compare the new approach with previously published
results for which we had the software available, we executed
both programs on this machine. When we were not able
to obtain the software from the best previously published
result we scaled our obtained runtimes to the runtimes on
the originally used machine. For conversion we exploit the
ratio provided by SpecInt benchmarks on the Sun Ultra-10
workstation and machine which the original results were
obtained.

The PC approach and other heuristic techniques with a
larger number of tunable parameters are intrinsically dif-
ficult for experimental evaluation. The source of difficulty
is a well known ”curse of dimensionality”: there are an
exponentially large number of potential combination of pa-
rameters. To address this problem, we used two directions:

variety of example and the perturbation approach. The
idea of the perturbation-based validation is to randomly
perturbate each of the used parameters by a certain per-
centage. If the quality of the obtained solution is not signif-
icantly altered with a sizable change, it is a strong indicator
that the obtained results are indeed due to the effectiveness
of the employed optimization mechanisms and not conse-
quence of parameter overtuning. In our experimentations,
we altered the parameters by ± 25% and did not notice a
significant changes in the quality of the obtained solutions.

A. Maximum Independent Set

In the case of MIS, we ran testing on instances for the
problem of finding the maximum clique. The maximum
clique problem can be easily mapped to MIS by comple-
menting the graph. Complemented graph Gc of graph G
is a graph that has the same set of vertices as G. However,
Gc has edges between two vertices if and only if G does
not have edge between these two vertices. The MIS in a
graph is the maximum clique in the complemented graph
and vise versa. This decision was made due to the fact
that we were not able to locate experimental results for
MIS solvers, while a number of maximum clique programs
are readily available.

The first column of Table 1 indicates the name of the
maximum clique instance (the instances are from [13], [?],
while the next column states the number of vertices in the
graph. The next two columns give the number of edges
in the original graph and the number of edges in the com-
plemented graph respectively. The fifth column represents
the number of nodes in the MIS or maximum clique. The
sixth column indicates the runtimes reported by Coudert
on a 60 MHz SuperSparc (85.4 SpecInt). Finally, the sev-
enth column displays the runtime for finding the MIS using
the PC heuristic. These times are scaled using the SPEC
conversion to the original machine, and therefore are good
indicators of the real speed-up. The average speed-up is
approximately 5.5 times. Both our PC approach and the
Coudert approach find the optimal solution on all exam-
ples. The optimal solution is known from the implicit enu-
meration of the branch-and-bound approach.

Name V E E γ CPU CPU
in Clique in MIS [16]

school1 nsh 358 16710 47193 14 0.92 0.22
keller4 171 9435 5100 11 4.87 0.9

sanr200 0.7 200 13868 6032 18 23.0 3.71
brock200 1 200 14834 5066 21 112.9 22.58

san200 0.7 2 200 13930 5970 18 1.66 0.31
P hat300-2 300 21928 22922 25 4.21 0.94
hamming8-4 256 20864 11776 16 0.18 0.006
san200 0.9 1 200 17910 1990 70 5.61 1.02
MANN a27 378 70551 702 126 98.4 12.3

TABLE I

Experimental Results for Maximum Independent Sets.
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Name V E χ PC # lmXRLF #
of Colors of Colors

c-fat200-1 200 1534 12 13 12
DSJC125.1 125 736 5 6 6

Ex3a 44 176 10 10 10
Exam1 200 17124 126 126 126
Exam3 300 36801 162 162 162

flat300 20 0 300 21375 20 40 20
flat1000 50 0 1000 245000 50 50 50
flat1000 60 0 1000 245830 60 61 61
flat1000 76 0 1000 246708 76 78 85

le450 15d 450 16750 15 24 21
le450 25c 450 17343 25 28 28
le450 5d 450 9757 5 8 5

MANN a9 45 918 18 18 18
queen7 7 49 476 7 10 9
queen9 9 81 2112 10 12 10

queen13 13 169 6656 13 17 18
R125.5 250 3838 36 38 37

sqelq2.I2 182 3254 26 26 26
school1 nsh 358 16710 14 24 14

TABLE II

Experimental Results for Graph Coloring.

B. Graph Coloring

Table II provides the experimental results for the appli-
cation of the PC heuristics to the graph coloring problem.
Testing was performed on instances from [39]. The first
column identifies the name of the instance and the second
and third show the number of vertices and edges, respec-
tively. The chromatic number for each instance is listed in
the fourth column. Finally, the results of the PC heuristic
are shown.

It is important to note that the Table II has two sharply
different types of examples: real-life easy to solve instances
and intentionally constructed difficult to solve benchmarks.
Flat300 20 0 is one of the well known Mycielski’s graphs
which are difficult to color due to the fact that their clique
number is 2, while the required number of colors sharply
increases as a function of the problem size. Lei450 xd are
Leighton’s graphs that are constructed by first creating a
clique of user specified size. Each node in the clique is
assigned to a separate group, that will be colored with one
color. Then all other nodes are randomly assigned to one
of the groups. Finally, a relatively larger number of edges
is added between nodes in the different groups. Coloring
this graph will the minimum number of colors is considered
so difficult that this class of problems is considered as a
good candidate for cryptographical one-way function, i.e.
essentially indicates that the difficulty of this problem is as
high as any other known problem [32].

To better quantify the effectiveness of the PC heuristic
for graph coloring we apply the approach to a set of ran-
dom R(V, p), p = 0.5 graphs. It is well known that these
graphs are exceptionally difficult for coloring. However,
there exists a long tradition in the algorithmic commu-
nity to conduct comprehensive experimentation using these
benchmarks. The lmRLF algorithm [39] reports superior
results over all previously published. In Table III, the first
row presents the size of the random coloring instance. The

second row is the chromatic number for each of these in-
stances. We present the average number of colors used to
color the graph and the average runtime in seconds for a set
of 10 graph instance for each random graph, for both the
lmRLF and the PC heuristic. On average, the PC heuristic
colors the random graphs 0.5 colors less and the runtime
was significantly lower than the lmRLF algorithm’s run-
time. As Table III indicates we significantly reduce the
required number of colors and approach the theoretically
expected minima indicated in the second row. In addition,
the runtime is reduced by a factor of more than five times.

C. Sequence Covering

For the sequence covering problem, we created instances
with a specified number of templates and the maximum
number of templates in the sequence S. The sequences are
created with the specified number of templates along with
random components which are not templates. Therefore,
the optimal solution is know a priori for all examples. This
optimal solution provides an upper bound for the evalu-
ation of the CP approach. The lower bound is provided
by a greedy heuristic. The greedy heuristic functions in
the following way. We begin by finding the first occur-
rence which can be covered with the longest template, and
we cover the sequence with this template. From the end
of this template, we continue through the sequence always
trying to cover the sequence with the longest possible tem-
plate until we detect a mismatch with respect to all the
templates. Fore each subsequence which is covered by a
template, we replace it with a character which is not used
in any template, and the procedure is iteratively continued
until no further matches can be found.

The first column of Table IV lists the number of tem-
plates used in the instance, while the next column lists the
number of templates in the sequence (the maximum of tem-
plates which can be matched). The third column represents
the trial number. The length of the sequences is presented
in the column four. The next four columns present the per-
centage of coverage for the optimal solution, by applying
the greedy heuristic, by applying the generic PC (GPC)
heuristic, and by applying the delayed binding approach,
respectively. The last row represents the average percent-
age for each of the techniques. The results show that the
delayed binding approach slightly outperforms the generic
approach in this case. For all examples the runtime was
within a few seconds.

D. Scheduling

We use the Hyper benchmark suite to test our PC heuris-
tic [53]. There are two major reasons for this decision. The
first is that Hyper is one of very few tools which are pub-
lic domain and is able to run a variety of real-life designs.
Second, and more importantly, the tool provides sharp es-
timation techniques which report accurate lower bounds on
what is achievable on a given instance. Therefore, we have
a means to accurately estimate the effectiveness of the PC
heuristic for Scheduling.

We consider both the area and bus reduction for each of
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R(125,0.5) R(250,0.5) R(500,0.5) R(1000,0.5)
16 27 46 80

Colors Time Colors Time Colors Time Colors Time

lmXRLF 18.2 46.2 29.9 172 49.7 4612 85.1 18083
ProbConstr 17.9 9.12 29.4 37.1 48.9 843.3 84.5 3004.3

TABLE III

Experimental Results of Random Graph Coloring Examples.

the design in our experiments. The results are presented
in Table V. The first column in the table presents the
name of the instance while the second gives the number of
nodes in the instance. The next three columns represent
the area found for each instance; the original, the area
found using the PC heuristic, and the lower bound found by
the HYPER tool. We present the percentage improvement
of the CP area over the HYPER area and the percentage
of the CP area over the lower bound next.

The eight, ninth, and tenth columns present the num-
ber of buses, for the HYPER tool, the PC approach, and
the lower bound found by the HYPER tool. The last two
columns contain the percentage difference for the buses.
On average, we observe a 10.45% improvement in terms of
area and a 14.4% improvement on the number of buses over
the HYPER tool. The runtime at average was less than 1

10
of the runtime of the Hyper default scheduler.

VI. Conclusion

We introduced a new PC algorithm paradigm. We search
for a small part of the problem that can be solved effi-
ciently and in such a way that the remaining problem is as
much as possible amenable for further optimization. The
approach proceeds in an iteration loop until the complete
solution is constructed. The method combines the rela-
tively short runtime of constructive algorithms and the
flexibility of probabilistic algorithms. We discussed the
main components of the new approach and how the generic
approach can be augmented with additional optimization
mechanisms. We applied the algorithm to both generic NP-
complete problems (maximum independent set and graph
coloring) and two design problems (sequential code cover-
ing and scheduling). Extensive experimentation indicates
that the new algorithm is capable of achieving competitive
or better results than previously published approaches, of-
ten with shorter runtimes.
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