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Abstract

Computational forensic engineering (CFE) aims to identify the entity that created a particular
intellectual property (IP). Specifically, our goal is to identify the synthesis tool or compiler which
was used to produce a specific design or program. Rather than relying on watermarking content or
designs, the generic CFE methodology analyzes the statistics of certain features of a given IP and
quantizes the likelihood that a well known source has created it. In this paper, we describe the generic
methodology of CFE and present a set of techniques that, given a set of compilation tools, identify
the one used to generate a particular hardware/software design. The generic CFE approach has four
phases: feature and statistics data collection, feature extraction, entity clustering, and validation.
In addition to IP protection, the developed CFE paradigm can have other potential applications:
optimization algorithm selection and tuning, benchmark selection, and source-verification for mobile
code.

1 Introduction

The rapid expansion of the Internet, and in particular e-commerce, has impacted the business model of
almost all semiconductor and software companies that rely on intellectual property (IP) as their main
source of revenues. In such a competitive environment, IP protection (IPP) is a must. Watermarking is
currently the most popular form of IPP. To enforce copyrights, watermark protocols rely on detecting
a hidden mark specific to the copyright owner. However, watermarking has a number of limitations, in
particular when it is applied to hardware and software protection: (i) impact on system performance,
(ii) robustness of watermark detection with respect to design modularity, and (iii) the threat of reverse
engineering.

Computational forensic engineering (CFE) copes with these problems by trying to identify the tool
used to generate a particular IP. In this paper, we present a set of techniques for CFE of design
algorithms. The developed CFE technique identifies a tool from a pool of synthesis tools that has been
used to generate a particular optimized design. More formally, given a solution SP to a particular
optimization problem instance P and a finite set of algorithms A applicable to P , the goal is to identify
with a certain degree of confidence that algorithm Ai has been applied to P in order to obtain solution
SP .

In such a scenario, forensic analysis is conducted based on the likelihood that a design solution,
obtained by a particular algorithm, results in characteristic values for a predetermined set of solution
properties. Solution analysis is performed in four steps: feature and statistics data collection, feature
extraction, clustering of heuristic properties for each analyzed tool, and decision validation.
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In order to demonstrate the generic forensic analysis platform, we propose a set of techniques for
forensic analysis of solution instances for a set of problems commonly encountered in VLSI CAD:
graph coloring and boolean satisfiability. Graph coloring is used for modeling many resource allocation
problems. It is widely used in both behavioral synthesis and software compilers for assignment of
variables to registers. Boolean satisfiability has equally wide applications for both optimization and
constraint satisfaction problems. We have conducted a number of experiments on real-life and abstract
benchmarks to show that using our methodology, solutions produced by strategically different algorithms
can be associated with their generators with relatively high accuracy.

2 Background Material

2.1 Related Work

We trace the related work along the following lines: forensic engineering in general, copyright infringe-
ment policies and law practice, forensic analysis of software and documents, stenography, and code
obfuscation.

Forensic analysis is a key methodology in many scientific and art fields, such as anthropology, science,
literature, and visual art. For example, forensics is most commonly used in DNA identification. Rudin
et al. present the details on DNA profiling and forensic DNA analysis [32]. In literature Thisted and
Efron used statistical analysis of Shakespeare’s vocabulary throughout his works to predict if a new
found poem came from Shakespeare’s pen [38]. They provided a high confidence statistical argument
for the positive conclusion by analyzing how many new words, words used once, twice, three times and
so on would appear in the new Shakespeare’s work.

Software copyright enforcement has attracted a great deal of attention among law professionals.
McGahn gives a good survey on the state-of-the-art methods used in court for detection of software
copyright infringement [30]. In the same journal paper, McGahn introduces a new analytical method,
based on Learned Hand’s abstractions test, which allows courts to base their decisions on well established
and familiar principles of copyright law. Grover presents the details behind an example lawsuit case [19]
where Engineering Dynamics Inc., is the plaintiff issuing a judgment of copyright infringement against
Structural Software Inc., a competitor who copied many of the input and output formats of Engineering
Dynamics Inc.

Forensic engineering has received little attention among the computer science and engineering re-
search community. To the best knowledge of the authors, to date, forensic techniques have been explored
for detection of authentic Java byte codes [2] and to perform identity or partial copy detection for digi-
tal libraries [7]. Recently, steganography and code obfuscation techniques have been endorsed as viable
strategies for content and design protection. Protocols for watermarking active IP have been developed
at the physical layout [9], partitioning [22], and behavioral specification [31] level. In the software
domain, good survey of techniques for copyright protection of programs has been presented by Coll-
berg and Thomborson [10]. They have also developed a code obfuscation method which performs code
transformations such that a program is converted into an equivalent program which is more difficult to
reverse engineer.

Integrated circuit reverse engineering techniques and the developed forensic engineering approach
have complementary roles in forming an overall intellectual property protection approach. The reverse
engineering techniques extract information about specification of the design and forensic engineering
establishes the proof of the authorship using this information.

The key difference between the research presented in this paper and all published forensic engineering
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research is that our goal is not to identify a copy of a program, text, or design among a large set of
entities but to establish the relationship between the design and tool that is used to produce the artifact.
Therefore, the previous research is essentially focused on rapid search for an entity with particular
properties in a large database. Our goal, on the other hand, is to find the likelihood that a specific
program is used to produce a particular solution and therefore the design of interest.

2.2 Other Applications of Forensic Engineering

Computational Forensic engineering has the potential to enable a large variety of applications. For
instance, computational forensic engineering can be used for the development of optimization algorithms,
as a basis for the development or improvement of existing IPP techniques, for the development of more
powerful benchmarking tools, for enabling security, and facilitating runtime prediction.

More specifically, computational forensic engineering can be used to perform optimization algorithm
tuning, instance partitioning for optimization, algorithm development, and analysis of algorithm scaling.
For example, forensic engineering can analyze the performance of the algorithm on various test cases and
pinpoint the types of instances on which the algorithm does not perform well. The technique can also
be used to partition instances into components each of which can be processed using algorithms which
will perform best with respect to the structure of each part. Furthermore, one can tune parameters of
heuristics with respect to the properties of the targeted instance.

Additionally, computational forensic engineering can assist in the development of IPP techniques
such as watermarking, obfuscation, and reverse engineering. Watermarking techniques often add a
signature in the form of additional constraints into the instance structure. Forensic techniques can
be used to determine the proper type of additional constraints to embed in the instance in order to
ensure the uniqueness of the watermark without reducing the quality of the obtained solution. Reverse
engineering of algorithms can be facilitated by forensic analysis in several ways. For example, the
forensic technique can be used to determine which specific instances of the problem to analyze in order
to identify the key optimization mechanisms of the algorithm.

Benchmark sets can be built to accurately identify the benefits and limitations of an algorithm with
respect to particular type of instance. Forensic analysis can also be used to generate instances with
specific structures on which an algorithm does not perform well, performs exceptionally well, or to build
a compact, yet diverse benchmark set which fairly tests all competing algorithms/tools.

Security applications include the generation of secure mobile codes and runtime checks of code. For
example, one can check using computational forensic techniques whether or not a delivered piece of code
was indeed generated using a particular compiler by looking at the register assignment (graph coloring)
and scheduling. Lastly, forensic engineering can be used for the runtime prediction of a particular
algorithm. Proper resource allocation, such as memory, can be identified using forensic techniques by
examining the memory and runtime of an algorithm on instances with similar properties and of similar
size.

3 Forensic Engineering: The Generic Approach

Forensic engineering aims at providing both qualitative and quantitative evidence of substantial similar-
ity between the design tool and a solution. The generic problem that a forensic engineering methodology
tries to resolve can be formally defined as follows. Given a solution SP to a particular optimization
problem instance P and a finite set of algorithms A applicable to P , the goal is to identify with a
certain degree of confidence which algorithm Ai has been applied to P in order to obtain solution SP .
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Figure 1: Flow of the Generic Forensic Engineering Approach.

An additional restriction is that the algorithms (their software or hardware implementations) have to
be analyzed as black boxes. This requirement is based on two facts: (i) similar algorithms can have
different executables and (ii) parties involved in the ruling are not eager to reveal their IP even in
court. Another important assumption is that in order for a distinction to exist between the solutions
from different algorithms, the problem instance for which a solution is found must have a large number
of solutions of equal or similar quality. Note that this is almost always the case in real life. The global
flow of the generic forensic engineering approach, presented in Figure 1, consists of four fully modular
phases: feature and statistics collection, feature extraction, algorithm clustering, and validation.

Feature and Statistics Collection

The first phase can be divided into two subphases. The first subphase is to identify and analyze relevant
functional and structural properties of the problem solutions. The properties are obtained by analyzing
solutions produced by various algorithms and identifying common features in the solutions produced
by a particular algorithm. Alternatively, properties can be developed using general intuition presented
in Section 4.3. For example, the graph coloring RLF algorithm [28], which is explained in more detail
in the next section, is likely to have solutions with a large number of nodes in the graph to be colored
with the same color, as well as some colors which only color one or two nodes.

The next step is to quantify properties by abstracting them to their numerical values. The goal
is to eventually locate the solutions for each algorithm into n-dimensional space. The dimensions are
quantified properties which characterize solutions created by all considered algorithms. For example, for
graph coloring solutions, we can find the cardinality of the largest independent set (IS) and normalize all
other sets against it. Different coloring algorithms may produce solutions characterized by significantly
different probability distribution functions (pdfs) for this feature.

Then, we identify the relevant properties, and discard the ones for which all considered algorithms
display equivalent statistics. A property is considered as viable only if at least two algorithms have
statistically distinct pdfs under it. For example, in the experimental results, the feature clausal stability
for Satisfiability shows histograms which are different for each of the algorithms.
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In the fourth step, we conduct the principle component analysis [21, 24, 29]. We attempt to eliminate
any subset of features which will provide the same information about the algorithms. The goal is to
find the smallest set of features needed to fully classify the algorithms in order to improve efficiency
and more importantly, statistical confidence.

The second subphase is instance preprocessing. We make order and lexical perturbations format the
instance. This step is performed to eliminate any dependencies an algorithm may have on the naming
or form of the input, such as variable labels. We present the details of this phase for both graph coloring
and boolean satisfiability in Section 4.

Feature Extraction

We begin by running all the perturbed instances through each of the algorithms, and gathering all the
solutions. We apply fast algorithms for extraction of the selected properties from each of the solutions.
In some cases, extracting the features from the solutions is trivial. But in other cases, it can be complex
and time consuming. Additionally, given that a large number of solutions is produced for each of the
algorithms, this process can take a significant amount of time. The gathered property values are then
used in the algorithm clustering phase.

Algorithm Clustering

In this step, we begin by selecting the relevant properties. Once the irrelevant properties have been
eliminated, we place each of the remaining properties/features into n-dimensional space, and cluster the
results. This in itself is a NP-complete problem. The goal is to define areas in the n-dimensional space
which distinguishes each of the algorithms. If properties/features which capture each of the algorithms
have been used, the space will be divided into single subspaces for each algorithm. However, it is possible
that multiple subspaces are found for each algorithm as the result of properties which are not relevant
for each and every algorithm.

Validation

Our final step is the application of non-parametric resubstitution software [16] to establish the validity of
our ability to distinguish distinct algorithms. Specifically, we run five hundred resubstituitions of 80% of
the sample points. When a new solution is available, the generic flow and tools fully and automatically
determine which algorithm was used. The details of this phase and the algorithm clustering phase are
presented in Section 5.

4 Forensic Engineering: Feature and Statistics Collection

4.1 Graph Coloring

In this section, we demonstrate the developed forensic engineering methodology using the graph K-
colorability problem. We first define the problem and provide description of four widely used graph
coloring algorithms. The graph coloring problem is a well known optimization task that can be defined
in the following way.

PROBLEM: GRAPH K-COLORABILITY

INSTANCE: Graph G(V, E), positive integer K ≤ |V |.
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QUESTION: Is G K-colorable. i.e., does there exist a function f : V → 1, 2, 3, .., K such that
f(u) 6= f(v) whenever u, v ∈ E?

In general, graph coloring is an NP-complete problem [17]. Due to its applicability to a wide range
of areas, a number of exact and heuristic algorithms for graph coloring have been developed. For the
sake of brevity and diversity, in this paper, we focus our attention on a set of algorithms that consists
of sequential greedy (SEQ), backtrack DSATUR, MAXIS (RLF-based), and Tabu search.

• Sequential Greedy (SEQ) is one of the oldest and simplest constructive algorithms for graph
coloring. It was originally proposed by Welsh and Powell [40]. The algorithm colors nodes sequen-
tially, one at the time. The key factor in the effectiveness of the algorithm is the order in which
the vertices are colored and by which color. Most commonly, the vertices are ordered by highest
degree (number of adjacent vertices) following the popular and effective most-constrained generic
heuristic rule. Additionally, each of the potential color classes is numbered. The algorithm colors
each vertex, in the selected order, with the lowest numbered color class which is not used by its
adjacent vertices.

• MAXIS is a recursive, large first (RLF) algorithm based on a approach developed by Bollobas
and Thomason [5]. It is an exponential backtrack algorithm which searches and tries to build large
maximal independent sets (MISs). Each of these sets represents a set of nodes that can be colored
using a single color. In order to build large MIS, the algorithm employs backtrack (depth first)
search by selecting single vertices to add to the current independent set (IS). Following the widely
used minimally constraining heuristic paradigm, the algorithm always adds the node that has the
minimal negative impact on the remaining nodes in the instance which still can be included in
the current independent set. After the addition of each vertex, several different choices may arise
as possible next selections. In this case, specific search tree pruning rules are determined by the
user to eliminate exponential growth. For example, if the graph has more than 300 vertices in it,
then only two different options are considered, however if there are 200 vertices, then we would
follow three of the branches. Once a large maximal independent set is found, the set of vertices is
colored using a single color, removed from the instance, and the process is recursively repeated.

A basic example of how MAXIS colors graphs is presented in Figure 2. The algorithm begins by
building a independent set (IS), which may be maximal. In this case, the starting vertex, vertex 6,
is randomly selected. Both vertices 1 and 5 are adjacent, or neighbors, to this vertex and therefore
can not be considered to add to the set. Of the remaining vertices, we examine the vertices which
are adjacent to the neighbors (1 and 5) of the current IS. In this case, we find vertices 2 and 4,
and vertex 4 has the highest degree, and is therefore added to the current IS. We again eliminate
all vertices adjacent to the current IS, which leaves vertex 2 as the only remaining option, and is
added to the IS. All the nodes in the set are colored black. The second iteration, or IS is built by
randomly selecting a new starting node, we chose vertex 1. vertex 5 is the only remaining node
not adjacent to vertex 1, we add it to the current IS, and color the vertices using grey color. The
only remaining vertex, 3 forms the final IS, and is colored white.

• Backtrack DSATUR was originally proposed by Brelaz [6] as a greedy algorithm which aims
at coloring denser regions, or regions with high connectivity, of the graph first. The decision
mechanism of the algorithm is the saturation degree of a vertex, which is the number of color
classes used by adjacent vertices. DSATUR begins by applying Color 1 to the vertex with the
largest number of adjacent vertices. At each step the algorithm selects the vertex with the highest
saturation degree and colors the vertex with the lowest numbered color which is not used by
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Figure 2: Example of how MAXIS and DSATUR algorithms create their solutions. MD - maximal degree;
MSD - maximal saturation degree.

the adjacent vertices. If there is a tie in saturation degree, the vertex with the largest number
of uncolored adjacent vertices is selected. If a tie still exists, one of these vertices is selected at
random. The backtracking version of the algorithm uses dynamic reordering of the vertices during
each backtrack step.

A simple example of the DSATUR algorithm is shown in Figure 2. The algorithm begins by
selecting the vertex with the highest degree, or maximum number of adjacent vertices, Vertex 1,
and colors it with Color 1 (Black). The saturation degree (SD) of each of the adjacent vertices is
calculated. In this situation, vertices 2, 4, and 6 all have the maximal saturation degree (MSD), 1.
However, vertex 4 has the highest number of adjacent vertices (3) and therefore is colored with the
next available color, Color 2 (light gray). The saturation degree of all the vertices is updated and
vertex 3 has the largest, therefore it is selected and colored with the next available non-conflicting
color, Color 3 (dark gray). Vertex 5 is selected next, and we color it with the lowest possible color,
Color 1. Finally, we color vertex 6 with Color 2.

• Tabu Search belongs to a family of probabilistic iterative improvement algorithms. It assigns
colors to nodes at random, and then tries to correct the conflicts by reassigning conflicting vertices
to different colors [20]. The algorithm selects options from the current state by randomly selecting
vertices which are in conflict, i.e. adjacent to other vertices with the same color. For each of the
options, the color of the vertex is changed to the color which has the least number of conflicts in
the graph. The option which decreases the largest number of conflicts in the graph is selected. A
list of k previous moves is kept to assist the algorithm from oscillating and moving out of local
minima.

A successful forensic technique should be able to, given a colored graph, distinguish whether a
particular algorithm has been used to obtain a particular solution. The key to the efficiency of the
forensic method is the selection of the properties used to quantify algorithm-solution correlation. We
have developed the following properties that aim at analyzing the structure of the solution for the GC
problem:

[π1] Color class size. A histogram of IS cardinalities is used to filter greedy algorithms that focus on coloring
graphs constructively (e.g. RLF-like algorithms). Such algorithms tend to create large initial independent
sets at the beginning of their coloring process. To quantify this property, we compare the cardinality
of the largest IS normalized against the size of the average IS in the solution. Alternatively, as a slight

7



generalization, in order to achieve statistical robustness, we use 10% of the largest sets instead of only the
largest. Interestingly, on real-life applications the first metric is very effective, and on random graphs the
second one is strong indicator of the coloring algorithm used.

[π2] Number of edges incident to large independent sets. This property is used to enhance the accuracy of
π1 by excluding easy-to-find large independent sets from consideration in the analysis. Note that large MISs
are not necessarily good candidate to be colored with a single color, in particular when many constituent
nodes have low degrees. We use k% of the largest sets and measure the percentage of edges leaving the IS.

[π3] Number of vertices that can switch color classes. This criteria, in a sense, analyzes the quality of the
coloring. A good (in a sense of being close to a deep local minima) coloring solution will have more nodes
that are able to switch color classes. It also characterizes the greediness of an algorithm because greedy
algorithms commonly create many color classes that can absorb large portion of the remaining graph at the
end of their coloring process . Note that probabilistic algorithms will often create solution that have low
value for this property because they will terminate their search as soon as a solution with a given number
of colors is found. The percentage of nodes which can switch colors versus the number of nodes is used.

[π4] Color saturation in neighborhoods. This property is calculated using a histogram that counts for each
vertex the number of adjacent nodes colored with one color. Greedy algorithms and algorithms that tend
to sequentially traverse and color vertices are more likely to have node neighborhoods dominated by fewer
colors. We want to know the number of colors in which the neighbors of any node are colored. The Gini
coefficient of the histogram is used as well as the average value to quantify to single numbers this property.
The Gini coefficient is a measure of dispersion within a group of values, calculated as the average difference
between every pair of values divided by two times the average of the sample. The larger the coefficient, the
higher the degree of dispersion.

[π5] Sum of degrees of nodes included in the smallest color classes. The analysis goal of this property
is similar to π5 with the exception that it focuses on identifying algorithms that perform neighborhood look
ahead techniques [25]. The values are normalized against the average value.

[π6] Percent of maximal independent subsets. This property can be highly effective in distinguishing
algorithms that color graphs by iterative color class selection (RLF). Supplemented with property π3, it
aims at detecting fine nuances among similar RLF-like algorithms.

The itemized properties are effective only on relatively large instances, where the standard devi-
ation of histogram values is relatively small. Using standard statistical approaches [14], the function
of standard deviation for each histogram can be used to estimate the standard error in the reached
conclusion.

Although instances with small cardinalities cannot be a target of forensic methods, for the sake of
simplicity and clarity, we use a graph instance in Figure 3 to illustrate how two different graph coloring
algorithms tend to have solutions characterized with different properties. The applied algorithms are
DSATUR and MAXIS. Specified algorithms color the graph constructively in the order denoted in the
figure. If property π1 is considered, the solution created using DSATUR has a histogram χDSATUR

π1
=

{12, 23, 04}, where histogram value xy denotes x sets of color classes with cardinality y. Similarly, the
solution created using MAXIS results in χMAXIS

π1
= {22, 03, 14}. Commonly, extreme values point to

the optimization goal of the algorithm or characteristic structure property of its solutions. In this case,
MAXIS has found a maximum independent set of cardinality y = 4, a consequence of the algorithm’s
strategy to search in a greedy fashion for maximal ISs.

We further illustrate the intuition of how the defined properties contribute to the classification of
each of the algorithms in the statistical clustering phase by presenting a brief analysis of each algorithm’s
solution structure in terms of the properties.
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Figure 3: Example of two different graph coloring solutions obtained by two algorithms DSATUR and MAXIS.
The index of each vertex specifies the order in which it is colored according to a particular algorithm.

The MAXIS algorithm will build solutions to the graph coloring problem which contain many MISs.
Structurally, the algorithm selects vertices with a large number of adjacent vertices in the graph to add
to the current IS. As a result the solutions to the MAXIS algorithm will contain a higher number of MISs
than any of the other algorithms, and each MIS will have a large number of adjacent edges. Therefore, it
is expected that MAXIS solutions will have higher π6 and π2 values than the other considered algorithms.
Additionally, because MAXIS selects large MIS in the early stages of the algorithm, it is expected that
in the later stages, very few vertices will be selected per IS, and therefore will result in many color
classes of small size with very few adjacent edges. A larger normalized value is expected for property
π1 as a result.

For the Tabu algorithm, we expect very different solution structures than those found by the MAXIS
algorithm. The random initial assignment of the vertices, increases the likelihood that the solution will
have color class sizes which are close in size (π1 value close to 1). As a result, the likelihood of the
solution to have small color classes is very low compared to the other approaches. Additionally, as a
result of the initial random assignment, we expect that the likelihood of the algorithm finding MISs is
slim, resulting in a low π6 value. Tabu attempts to eliminate conflicts in the graphs by switching the
current color of a vertex to the color which has the least conflict. The resulting solutions should contain
very few vertices which have the flexibility to change colors. The reasoning is that the initially applied
coloring of the adjacent vertices to the conflict vertex are likely to be widely spread. Even though Tabu
will attempt to change the color of the node to the color which is causing the least amount of conflict,
the final solutions will result in many colors being used by the adjacent vertices, eliminating many
options for changing colors (low π3 value). This also results in the color saturation in neighborhoods of
the graph (π4) to be low.

While the color classes of the Tabu algorithm should be fairly even in size, for the DSATUR algo-
rithm, the color class size is expected to be wide spread (high π1). DSATUR begins with the vertex
which has the highest impact on the graph. And then continues coloring vertices which have a large
number of colored adjacent vertices. As a result we expect the colors applied to the early vertices of
the graph to be less likely applied than other colors, because they eliminate many adjacent vertices
from having the same color. Therefore, it is expected that small color classes will have a large number
of adjacent edges (high π5 value). The sequential coloring of the nodes, i.e. colored with the lowest
non-conflicting color, results in a large number of vertices which can be colored with the high colors
without conflict (π3). Only in highly dense areas of the graph will the vertices be unlikely to be able to
switch color classes.

It is expected that the greedy algorithm will find the largest MIS as a result of coloring the nodes
with the highest degrees first. However, it is unlikely that the algorithm will find many maximal
independent subsets (low π6 value). Again each of the selected nodes is colored with the lowest possible

9



color resulting in a high π3 value. We additionally expect that the color class sizes will be widely spread,
resulting in a high π1 value.

According to these properties, we can distinguish each of the algorithms from each other using
these properties. We display the distinguishing properties in Figure 4. The distinction between
DSATUR/Greedy is difficult because of the similarities between how the algorithms color the ver-
tices with the lowest colors. However, in the majority of cases, properties π5 and π6 should distinguish
the algorithms. Also, the distinction between DSATUR/MAXIS most often can be distinguished by
properties π1 and π6, and in various cases by π2, π3, and π5.

MAXIS

DSATUR

GreedyTabu

MAXIS

Tabu

Π1,6

Π1,3

Π6

Π5,6

Π1,6

Π1,32,3,5

Figure 4: Property distinction between algorithms.

4.2 Boolean Satisfiability

We also present the key ideas for applying the forensic engineering methodology using the boolean
satisfiability (SAT) problem. The SAT problem can be formally defined in the following way [17].

Problem: SATISFIABILITY (SAT)

Instance: A set of variables V and a collection C of clauses over V .

Question: Is there a truth assignment for V that satisfies all the clauses in C?

Boolean satisfiability was the first problem to be defined as NP-complete problem [17]. It has been
proven that every other problem in NP can be polynomially reduced to the Satisfiability problem [17].
SAT techniques have been used in testing [37, 26], logic synthesis, and physical design [15]. There are
at least three broad classes of solution strategies for the SAT problem. The first class of techniques are
based on probabilistic search [36, 35], the second are approximation techniques based on rounding the
solution to a nonlinear program relaxation [18], and the third is a great variety of BDD-based techniques
[8]. For the sake of brevity, we demonstrate our forensic engineering technology on the following SAT
algorithms.

• WalkSAT is a local search algorithm which is enhanced by randomization. The algorithm selects
with probability p a variable occurring in some unsatisfied clause and flips its truth assignment.
Conversely, with probability 1-p, the algorithm performs a greedy heuristic such as GSAT. The
optimal value for p was found to be between 0.5 and 0.6 [34]. The GSAT algorithm, also developed
by Selman[33, 34], performs a greedy local search. It identifies for each variable v the difference
(DIFF) between the number of clauses currently unsatisfied that would be satisfied if the truth
value of v were reversed and the number of clauses currently satisfied that would become unsatisfied
if the truth value of v were flipped. The algorithm pseudo-randomly flips assignments of variables
with the greatest DIFF.

• NTAB developed by Crawford [11] consists of two phases. The first phase is local search. The
local search algorithm tries to weight the difficulty of clauses, and therefore variables in the clauses.
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This is done by applying a greedy approach similar to GSAT. The truth assignment of variables
in a random initial solution are flipped to try and increase the number of satisfied clauses in
the instance. (Note that this is similar to the greedy approach of GSAT). Once the random
assignment shows no additional improvement, the weights of the clauses which remain unsatisfied
are increased. The local search is performed multiple times, in order to identify the clauses which
are the most difficult. The second phase is the search tree. The search tree preferentially branches
on the variables that occur more often in clauses with higher weights.

• Rel SAT rand is an approach to the boolean satisfiability problem developed by Bayardo and
Schrag[3]. It is an enhanced version of the Davis-Putnam proof procedure [13]. The algorithm
incorporates CSP look-back techniques, specifically conflict directed backjumping, and learning
schemes.

In order to correlate an SAT solution to its corresponding algorithm, we have explored the following
properties of the solution structure.

[π1] Percentage of non-important variables. A variable vi is non-important for a particular set of clauses
C and satisfactory truth assignment t(V ) of all variables in V , if both assignments t(vi) = T and t(vi) = F

result in satisfied C. For a given truth assignment t, we denote the subset of variables that can switch
their assignment without impacting the Satisfiability of C as V t

NI
. In the remaining set of properties only

functionally significant subset of variables V0 = V − V t

NI
is considered for further forensic analysis.

[π2] Clausal stability - percentage of variables that can switch their assignment such that K%
of clauses in C are still satisfied. This property aims at identifying constructive greedy algorithms,
since they assign values to variables such that as many as possible clauses are covered with each variable
selection.

[π3] Ratio of true assigned variables vs. total number of variables in a clause. Although this property
depends by and large on the structure of the problem, in general, it aims at qualifying the effectiveness of
the algorithm. Large values commonly indicate usage of algorithms that try to optimize the coverage using
each variable.

[π4] Ratio of coverage using positive and negative appearance of a variable. While property π3

analyzes the solution from a perspective of a single clause, this property analyzes the solution from the
perspective of each variable. Each variable vi appears in pi clauses as positively and ni clauses as negatively
inclined. The property quantifies the possibility that an algorithm assigns a truth value to t(vi) = pi ≥ ni.

[π5] The GSAT heuristic. For each variable v the difference DIFF=a-b is computed, where a is the number
of clauses currently unsatisfied that would become satisfied if the truth value of v were reversed, and b is
the number of clauses currently satisfied that would become unsatisfied if the truth value of v were flipped.
This measure only applies to maximum SAT problems, where the problem is to find the maximum number
of clauses which can be satisfied at once.

As in the case of graph coloring, the listed properties demonstrate significant statistical proof only
for large problem instances. Instances should be large enough to result in low standard deviation of
collected statistical data.

We present a brief analysis of the SAT algorithms and property π1 and π3 in order to illustrate
how the boolean satisfiability properties assist in the classification of the algorithms in the statistical
clustering phase.

For property π1, we are analyzing the percentage of variables which can be assigned either True
or False in the solution without making the instance unsatisfiable. The WalkSAT algorithm builds a
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solution for a random initial solution. When a solution is found, it is highly probably that the solution is
dependent on variables which would have been non-important, because of the random initial assignment.
Therefore, it is expected for WalkSAT to have a lower π1 value than the other algorithms which build
structured solutions. For example, NTAB constructively builds its solution by building a search tree
which branches on the variables which appear in clauses which appear to be difficult. As a result, these
variables are assigned early in the search tree. When a solution is found, all the variables which were
not branched on in the search tree can be either True or False. Therefore, it is expected that the NTAB
algorithm will have a large number of non-important variables.

The clausal truth percentage, property π3, tries to examine if the algorithm tries to satisfy multiple
variables in each clause. Because WalkSAT tries to improve on a random solution by flipping variables
which increase the number of clauses that are satisfied. When a solution is found, in most cases it will
be an inflexible solution, in the sense that very few variables can flip their assignment without making
the solution invalid. As a result, of these facts, the clausal truth percentage will be spread over the
spectrum. In the case of NTAB, the algorithm will most likely have an median π3 value. With a high π1

value, the algorithm will have a large number of variables which are non-important. These variables can
then be used to build a stronger satisfiability solution, which can be achieved by assigning the variables
such that multiple variables per clauses evaluate to True.

4.3 Generic Property Development

Identification and selection of solution properties is essential for the effectiveness of any forensic engi-
neering technique. While each problem may require one or more unique features, many of properties
can be applied to a wide set of problems. More importantly, there is a systematic way to identify the
corresponding features in different problems that can be used to identify adequate properties. As a
matter of fact, it appears that a small number of features guide this task. Our goal in this subsection
is not to present an ultimate set of properties for all possible problems, but more to provide intuition
how one can define relevant properties for a specific targeted problem. To make the discussion of the
technique complete, we demonstrate its instantiation on several canonical problems, such as scheduling
and partitioning.

In order to be self-contained, we briefly introduce the scheduling and partitioning problems. The
scheduling problem is defined on a directed graph where each vertex represents an operation and edges
indicate execution dependencies between the operations. The objective is to minimize the amount
and/or cost of functional units used while scheduling the graph in a given number of clock cycles
and keeping all the dependencies satisfied. The partitioning problem aims at dividing all nodes of an
undirected graph into k subsets, where the numbers of nodes in each set are as nearly equal as possible
and the number of edges between nodes in different sets is minimized.

One can identify at least three types of properties.

[P1] Perturbation-based Properties.

These types of properties try to identify the structure of the solution by analyzing its behavior using local
perturbations. The main focus is on perturbation of a solution. The goal is to identify features of the
neighborhood of the generated solution for a variety of definitions of neighborhood topology. Under the
assumption that the problem instances have many solutions with similar quality, these properties often
attempt to determine the strength of the solution with respect to a particular criteria. For example, in
the case of the SAT problem the solution only needs to satisfy the each clause using a single variable. If
the variable assignment for the solution can handle many changes i.e. flips of variable assignments, we can
assume that the solution is resilient on changes and that some implicit effort was placed by the algorithm
to produce the solution and to achieve this property.
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Definition of perturbation-based properties can be applied to instances in a variety of ways. For example, a
specific property of this type can focus on values while preserving the solution or for a given distance from
the solution. The entities of focus can be analyzed individually or in groups, and can be equally weighted
or compared with respect to their importance (difficulty) in the objective function and constraints.

Examples of this type of property for the SAT and GC problems are SAT π1, π2, and π5 and GC π3.
Each of these properties quantify the amount of flexibility in the solution. If we consider the partitioning
problem, an example of a perturbation property is the number of pairs of nodes which can switch partitions
without reducing the quality of the solution. Properties such as the number of operations which can change
clock cycles (without violating any constraints or a percentage of constraints) can be applied to solutions
of the scheduling problem.

[P2] Count. Alternatively, we can focus on the number of occurrences of specific feature in a solution. These
properties often correlate well with the tendencies of an algorithm when deciding assignment of the variables.
As in the case with the perturbation properties, one can select single entities, pairs, and subsets as scope of
consideration. Additionally, this class of properties can be augmented with a variety of statistical measure
mechanisms such as average, variance, mean, minimum, or maximum.

GC properties π1 and π5 along with SAT π3 are examples of count properties. Measurements concerning
both the variables and the constraints of the problem solutions are illustrated. For the scheduling problem,
the average or percentage of operations per cycle can be considered. One could determine the number of
saturated clock cycles or the number of operations on the critical path in clock cycles with small operation
counts. For the partitioning problem, meaningful properties could be the percentage of nodes with high
or low degree in each partition or the percentage of nodes which are in the same partition as all of its
neighbors.

[P3] Tendency to follow natural algorithm constructs. Natural algorithm constructs, such as greedy or
maximally constrained maximally constraining heuristic (MC/MC), are often as the underlying constructs
for combinatorial optimization algorithms. This class of properties has as the goal to identify to what
level these constructs were employed by a specific algorithm. For example, in GC property π2, number of
edges incident to large independent sets, tries to quantify the level of greedy optimization principle used
by the algorithm to select the largest number of nodes possible which can be colored with a single color.
In terms of MC/MC constructs, the GC property π4 tries to identify algorithms which focus on coloring
the neighbors of a node with the least constrained color as possible, implying the same color.

Variable in the SAT problem can have a natural tendency, in the sense that if the variable appears in
constraints more often complemented than uncomplemented, a greedy algorithm would prefer to assign
this variable to zero satisfying more constraints. The percentage of variables which follow this bias is
measured using property π4.

The MC/MC constructs try to identify if the algorithm groups together all the highly constrained (and
often more difficult) parts of the problem or are they spread throughout the solution. For example, in the
scheduling problem, one can consider the fan-in and fan-out of the nodes in a single cycle. If the transitive
fan-in and fan-out counts of the cycles are either very high or very low, we can assume that the algorithm
groups together the most constraining operations into a single cycle. On the other hand, if the counts per
clock cycle are often focused around a single value the algorithm aims at balancing the two. In the case of
the partitioning problem, the number of nodes with high degrees in each partition can be considered.

Note that we choose not to use runtime as a property due to the fact that we assume that only the
instances of the solutions are available for analysis, not the tool itself. However, in cases when the tool
is available, runtime can be a key differentiating property.
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5 Property Selection and Algorithm Clustering

In this section, we present our approach to algorithm classification. The first step is the identification of
relevant properties of solutions. Once the properties are selected, we conduct algorithm clustering. The
algorithm clustering task has two objectives: (i) to identify algorithms that are structurally similar, in
a sense that their solution have same crucial characteristics indicating that they are using essentially
identical mechanisms for optimization and (ii) to provide information required to determine which
algorithm is used to produce a particular solution on a particular instance.

A property used for forensic engineering can be irrelevant for one of the following two reasons. The
first is that it does not provide resolution capabilities, i.e. it does not facilitate differentiation between
the algorithms. The second is that a property should not be considered if it is correlated with another
property that provides better resolution capability.

The relevance of an individual property is evaluated in the following way. We use 100 different
instances of the problem and at least three different algorithms for this step. We denote the solution
of each instance for a given algorithm with a single letter that is unique for that algorithm. Next, we
establish an ordering among the obtained values for all instances by sorting them in non-decreasing
order. We then identify the leftmost and rightmost instance for each algorithm. The final step is to
calculate how many letters that are not identical to the boundary letters are contained in each region
that correspond to a given algorithm. We weight each letter that is not identical to the boundary letter
by its distance to the closest boundary. If that number is higher than a user defined value, the property
is eliminated from further consideration.

The information obtained in the above procedure is also used to establish the level of correlation for
two properties. Specifically, we calculate the correlation level for two properties as the extent to which
the regions labelled by identical letter are in the same range. The property that has better resolution
capability is retained, if the correlation level is above a user specified threshold.

The second step is algorithm clustering. Once statistical data is collected, algorithms in the initial
pool are partitioned into clusters. The goal of this partitioning is to join strategically similar algorithms
(e.g. with similar properties) into a single cluster. We present this procedure formally using the pseudo-
code in Figure 5.

The clustering process is initiated by setting the starting set of clusters to empty C = ∅. In order to
associate an algorithm Ax ∈ A with the original solution SP , the set of algorithms is clustered according
to the properties of SP . For each property πk of SP we compute its feature quantifier πk(SP ) → ω

SP

k and
compare it to the collected pdfs of corresponding features χi

k of each considered algorithm Ai ∈ A. The
clustering procedure is performed in the following way: two algorithms Ai, Aj remain in the same cluster,
if the likelihood z(Ai, Aj) that their properties are not correlated is greater than some predetermined
bound ε ¿ 1.

z(Ai, Aj) =

|π|∏

k=1

2 · min(Pr[πk(Ai) → ωi
k], Pr[πk(Aj) → ω

j
k])

Pr[πk(Ai) → ωi
k] + Pr[πk(Aj) → ω

j
k]

The function that computes the mutual correlation of two algorithms takes into account the fact
that two properties can be mutually dependent. Algorithm Ai is added to a cluster Ck if its correlation
with all algorithms in Ck is greater than some predetermined bound ε ≤ 1. If Ai cannot be highly
correlated with any algorithm from all existing clusters in C then a new cluster C|C|+1 is created with
Ai as its only member and added to C. If there exists a cluster Ck for which Ai is highly correlated
with a subset CH

k of algorithms within Ck, then Ck is partitioned into two new clusters CH
k ∪ Ai and

Ck − CH
k . Finally, algorithm Ai is removed from the list of unprocessed algorithms A. These steps are
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Given A, C = ∅
For each Ai ∈ A

For each Ck ∈ C

Similar = ∅
For each Aj ∈ Ck

If z(Ai, Aj) ≤ ε

Then Similar = Similar ∪Aj

End For

/* Ai is similar to all A ∈ Ck */
If |Similar| == |Ck| Then merge Ai with Ck

/* Ai is not similar to any A ∈ Ck */
Else If |Similar| == ∅
Then create new cluster Ck+1 with Ai as its only element.
/* Ai is similar to a subset of A ∈ Ck */
Else create two new clusters Similar ∪ Ai and Ck − Similar

End For

End For

Figure 5: Pseudo-code for the algorithm clustering procedure.

A3 A3 A3
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z=10-1

z=10-5

z=10
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z=10-3
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-1z=10
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A1A1 A2 A2A2

Figure 6: Two different examples of clustering three distinct algorithms. The first clustering (figure on the left)
recognizes substantial similarity between algorithms A1 and A3 and substantial dissimilarity of A2 with respect
to A1 and A3. Accordingly, in the second clustering (figure on the right) the algorithm A3 is recognized as similar
to both algorithms A1 and A2, which were found to be dissimilar.

iteratively repeated until all algorithms are processed.

According to this procedure, an algorithm Ai can be correlated with two different algorithms Aj ,
Ak that are not mutually correlated (as presented in Figure 6). For instance, this situation can occur
when an algorithm Ai is a blend of two different heuristics (Aj , Ak) and therefore its properties can
be statistically similar to the properties of Aj , Ak. In such cases, exploration of different properties or
more expensive and complex structural analysis of algorithm implementations is the only solution to
detecting copyright infringement.

Obviously, according to this procedure, an algorithm Ai can be correlated with two different algo-
rithms Aj , Ak that are not mutually correlated (as presented in Figure 6). For instance this situation
can occur when an algorithm Ai is a blend of two different heuristics (Ai, Ak) and therefore its properties
can be statistically similar to the properties of Aj , Ak. In such cases, exploration of different properties
or more expensive and complex structural analysis of algorithm implementations is the only solution to
detecting copyright infringement.

Finally, note that a natural way to define similarity between two algorithms A and B in our forensic
engineering framework is consider the size of the overlap between their clusters in the property space.
Specifically, if we denote the size of cluster C by S(C), the similarity of two algorithms with correspond-

ing clusters A and B is S(A∩B)
S(A∪B) . Furthermore, note that simultaneous analysis of all clusters yields a

statistical estimate of the likelihood that a specific solution is produced using the considered algorithm.
Specifically, this estimate for an algorithm A1 for the forensic decision model built considering algo-
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rithms Ai, i = 1, ..., n can be obtain using the following formula: S(A1)∑
S(Ai)

. Standard nonparametric test

techniques, such as percentile method, can be used to obtained an interval of confidence for our decision
process.

6 Experimental Results

In order to demonstrate the effectiveness of the proposed forensic methodologies, we have conducted
a set of experiments on both common benchmarks and real-life problem instances. In this section, we
present the obtained results for a large number of graph coloring and SAT instances.

The forensic analysis techniques for classifying algorithm used for creating solutions of SAT instances,
have been tested using a real-life and abstract benchmark set of instances adopted from [23, 39]. Parts
of the collected statistics are presented in Figure 7 and 8.

Figure 7 shows a histogram of the property values for π1 for the NTAB, Rel SAT, and WalkSAT
algorithms. The value of the property is represented on the x-axis and the frequency of occurrence
on the y-axis. The non-important variables property has multi-modal distribution for the algorithms.
Subfigure (b) shows an enlarged portion of distribution. We can see that this property provides a clear
distinction between the Rel SAT and NTAB, as well as the WalkSAT and NTAB algorithms.

In Figure 8, we present histograms of the property values for π2 (top row) and π3 (bottom row)
for the NTAB, Rel SAT, and WalkSAT algorithms respectively. Each histogram presents the property
values for 100 different solutions. Each multi-shaded column represents the frequency of the property
values for all 100 solutions. For example, consider the histogram in the top left, clausal stability for the
WalkSAT algorithm. For property values between 0 and 0.1, the frequency of these values occurring in
each of the 100 solutions independently ranged between approximately 675 and 725.

The histograms indicate that solutions produced by NTAB can be easily distinguished from solutions
generated by the other two algorithms using any of these properties. However, solutions created by
Rel SAT, and WalkSAT appear to be similar in structure (which is expected because they both use
GSAT as the heuristic guidance for their prepositional search). Therefore, in order to distinguish
between these two algorithms one must compare the property values for each instance separately. We
have had success in distinguishing between the Rel SAT and WalkSAT solutions on a case by case basis.

For example, in the Figure 7(b) it can be noticed that solutions generated by Rel SAT have signifi-
cantly wider range for π1 and, therefore, according to the histogram, approximately 50% of its solutions
can be easily distinguished from WalkSAT’s solutions with high confidence. Significantly better results
were obtained using another set of structurally different instances (zoomed comparison presented in the
Figure 7(c)), where among 100 solution instances no overlap in the value of property π1 was detected
for Rel SAT, and WalkSAT.

We have focused our forensic exploration of graph coloring solutions on two sets of instances: random
(1000 nodes and uniform 0.5 edge existence probability) and register allocation graphs. The graphs in
Figure 9 depict the histograms of property value distribution for the following pairs of algorithms and
properties: DSATUR with backtracking vs. maxis for π3, DSATUR with backtracking vs. tabu search
for π7, iterative greedy vs. maxis for π1 and π4, and maxis vs. tabu for π1.

In order to evaluate the effectiveness of the GC properties, we compare the two histograms shown in
the center row of the diagram. In this cases, the maxis algorithm is compared with the iterative greedy
approach and tabu using the standard deviation of property π1. In the both graphs, the maxis algorithm
(with identical property values) is shown in white. From these two histograms we can conclude that
if a given solution has a π1 property value less than 1.8, the solution most likely was not produced by
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Figure 7: Property π1 for SAT applied to NTAB, Rel SAT, and WalkSAT

GC Solvers bktdsat maxis tabu itrgrdy

bkdsat 998 2 0 0

maxis 3 993 0 4

tabu 1 0 995 4

itrgrdy 1 2 0 997

Table 1: Experimental Results: graph coloring. Statistics for each solver were established. The thousand
instances were than classified using these statistical measures.

the maxis algorithm. However if this property has value between 1.8 and 2.1, it is highly unlikely the
solution is generated using the tabu algorithm. Therefore, by combining this property with the other
properties, we can classify the algorithms with higher accuracy.

Each of the diagrams can be used to associate a particular solution with one of the two algorithms
A1 and A2 with 1% accuracy (100 instances attempted for statistics collection). For a given property

value ω
Aj

i = x, j = 1, 2 (x-axis), a test instance can be associated to algorithm A1 with likelihood
equal to the ratio of the pdf values (y-axis) z(A1, A2). For the complete set of instances and algorithms
that we have explored, as it can be observed from the diagrams, on the average, we have succeeded to
associate 99% of solution instances with their corresponding algorithms with probability greater than
0.95. In one half of the cases, we have achieved association likelihood better than 1 − 10−6.

SAT Solvers WalkSAT RelSATR NTAB

WalkSAT 992 5 3

RelSATR 6 990 4

NTAB 0 2 998

Table 2: Experimental Results: boolean satisfiability. A thousand test cases were used. A thousand
test cases were used. Statistics for each solver were established. The thousand instances were than
classified using these statistics.
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Figure 8: Properties π2 (top row) and π3 (bottom row) applied to NTAB, Rel SAT, and WalkSAT

Using statistical methods, we obtained Table 1 and 2. A thousand test cases were classified using the
developed forensic engineering technique. The rows of the tables indicate the solver used to produce the
thousand test cases. The columns indicate the classification of the solution using the forensic engineering
technique. In all cases more than 99% of the solutions were classified according to their original solvers
with probability higher than 0.95. We see that the graph coloring algorithms differ in many of the
features, which resulted in very little overlap in the statistics. In the case of boolean satisfiability, both
WalkSAT and Rel SAT rand are based on the GSAT algorithm which accounts for the slightly higher
misclassification rate between the two algorithms.

7 Conclusion

Copyright enforcement has become one of the major obstacles to intellectual property (hardware and
software) e-commerce. We propose a forensic engineering technique that addresses the generic copyright
enforcement scenario. Specifically, given a solution SP to a particular optimization problem instance
P and a finite set of algorithms A applicable to P , the goal is to identify with certain degree of
confidence the algorithm Ai which has been applied to P in order to obtain SP . The application of the
forensic analysis principles to graph coloring and boolean satisfiability has demonstrated that solutions
produced by strategically different algorithms can be associated with their corresponding algorithms
with high accuracy. Since both graph coloring and boolean satisfiability are common steps in hardware
synthesis and software compilation, we implicitly demonstrated the effectiveness of forensic engineering
for authorship identification of IP.
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Figure 9: Histograms of property value distribution for Algorithm a (black) vs. Algorithm b (white) and
properties: DSATUR with backtracking vs. maxis for π3, DSATUR with backtracking vs. tabu search for π7,
iterative greedy vs. maxis for π1 and π4, and maxis vs. tabu for π1.
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