
UCLA Computer Science Department Technical Report CSD-TR No. 030043 1

Mining Frequent Rooted Trees and Free Trees Using Canonical Forms

Yun Chi, Yirong Yang, Richard R. Muntz
Department of Computer Science

University of California, Los Angeles, CA 90095
{ychi,yyr,muntz}@cs.ucla.edu

Abstract

Tree structures are used extensively in domains such as

computational biology, pattern recognition, XML databases,

computer networks, and so on. In this paper, we present

HybridTreeMiner, a computationally efficient algorithm that

discovers all frequently occurring subtrees in a database of

rooted unordered trees. The algorithm mines frequent sub-

trees by traversing an enumeration tree that systematically

enumerates all subtrees. The enumeration tree is defined

based on a novel canonical form for rooted unordered trees–

the breadth-first canonical form (BFCF). By extending the

definitions of our canonical form and enumeration tree to free

trees, our algorithm can efficiently handle databases of free

trees as well. We study the performance of our algorithms

through extensive experiments based on both synthetic data

and datasets from real applications. The experiments show

that our algorithm is competitive in comparison to known

rooted tree mining algorithms and is faster by one to two or-

ders of magnitudes compared to known algorithms for min-

ing frequent free trees.

1 Introduction.

Graphs are widely used to represent data and relation-
ships. Among all graphs, a particularly useful fam-
ily is the family of trees. Trees in some applications
are rooted: in the database area, XML documents are
often rooted unordered trees where vertices represent
elements or attributes and edges represent element-
subelement and attribute-value relationships; in web
page traffic mining, access trees are used to represent
the access patterns of different users. Trees in other
applications are unrooted, i.e., they are free trees: in
analysis of molecular evolution, an evolutionary tree
(or phylogeny), which can be either a rooted tree or
a free tree, is used to describe the evolution history of
certain species [12]; in pattern recognition, a free tree
called shape axis tree is used to represent shapes [16];
in computer networking, unrooted multicast trees are
used for packet routing [10]. From the above examples
we can also see that trees in real applications are often
labeled, with labels attached to vertices and edges where

these labels are not necessarily unique. In this paper, we
study some issues in mining databases of labeled trees,
where the trees can be rooted unordered trees or free
trees.

1.1 Related Work. Recently, there has been grow-
ing interest in mining databases of graphs and trees.
Inokuchi et al. [14] presented an algorithm, AGM,
and Kuramochi et al. [15] presented another algo-
rithm, FSG, both for mining subgraphs in a graph
database. The two algorithms used a level-wise Apri-
ori [2] approach: the AGM algorithm extends subgraphs
by adding a vertex per level and the FSG algorithm by
adding an edge. Yan et al. [22, 23] and Huan et al. [13]
presented subgraph mining algorithms based on travers-
ing different enumeration trees. However, to check if a
transaction supports a graph is an instance of the sub-
graph isomorphism problem which is NP-complete [11];
to check if two graphs are isomorphic (in order to avoid
creating a candidate multiple times) is an instance of
the graph isomorphism problem which is not known to
be in either P or NP-complete [11]. Therefore without
taking advantage of the tree structure, these graph al-
gorithms are not likely to be efficient for the frequent
tree mining problem.

Many recent studies have focused on databases
of trees because the increasing popularity of XML in
databases. Chen et al. [8] provided data structures and
algorithms to accurately estimate the number of occur-
rences of a small tree (twig) in a large tree. Termier
et al. [21] presented an algorithm, TreeFinder, which
finds a subset of frequent trees in a set of tree-structured
XML data. Shasha et al. [20] gave a detailed survey on
keytree and keygraph searching in databases of trees and
graphs and the survey focused mainly on approximate
containment queries. The work in [21, 20], however,
does not guarantee completeness, i.e., some frequent
subtrees may not be in the search results. In a recent
paper, Zaki [24] presented an algorithm called TreeM-
iner to discover all frequent embedded subtrees, i.e.,
those subtrees that preserve ancestor-decedent relation-

2

ships, in a forest or a database of rooted ordered trees.
In [5] Asai et al. presented algorithm FREQT to dis-
cover frequent rooted ordered subtrees. They used a
string encoding similar to that defined by Zaki [24] and
built an enumeration tree for all (frequent) rooted or-
dered trees. The rightmost expansion is used to grow the
enumeration tree. In [9] we have studied the problem of
indexing and mining free trees. We defined a canonical
form, which is applicable to both rooted unordered trees
and free trees, and developed an Apriori-like algorithm
to mine all frequent free trees. Independent of our work,
Asai et al. [6] defined a canonical form for rooted un-
ordered tree, which is equivalent to our canonical form
in [9], and built an enumeration tree for all rooted un-
ordered trees. Again, the rightmost expansion is used
to grow the enumeration tree. However, there was no
implementation given in [6]. Note that all the string en-
codings and canonical forms in these papers [24, 5, 9, 6]
are based on the depth-first traversal of a tree.

1.2 Contributions of This Paper. The main con-
tributions of this paper are: (1) We introduce a new
canonical form, which is based on breadth-first traver-
sal, to uniquely represent a rooted unordered tree. (2)
In order to mine frequent rooted unordered subtrees,
based on our canonical form, we define an enumeration
tree to systematically enumerate all (frequent) rooted
unordered trees. We use two operations, extension and
join, to grow the enumeration tree. (3) Then we ex-
tend our definition of canonical form to free trees. As
a result, using the same enumeration tree, with certain
additional constraints, we can enumerate all (frequent)
free trees efficiently. (4) Finally, we have implemented
all of our algorithms and have carried out extensive ex-
perimental analysis. We use both synthetic data and
real application data to evaluate the performance of our
algorithm.

2 Background.

In this section, we provide the definitions of the concepts
that will be using in the remainder of the paper.

A labeled Graph G = [V,E, Σ, L] consists of a vertex
set V , an edge set E, an alphabet Σ for vertex and edge
labels, and a labeling function L : V ∪ E → Σ that
assigns labels to vertices and edges. A graph is directed
(undirected) when each edge is an ordered (unordered)
pair of vertices. A path is a list of vertices of the graph
such that each pair of neighboring vertices in the list is
an edge of the graph. A cycle is a path such that the
first and the last vertices of the path are the same. A
graph is acyclic if the graph contains no cycle. A graph
is connected if there exists at least one path between
any pair of vertices, disconnected otherwise. A free tree

is an undirected graph that is connected and acyclic.
A rooted tree is a free tree with a distinguished vertex
that is called the root. In a rooted tree, if vertex v
is on the path from the root to vertex w then v is
an ancestor of w and w is a descendent of v. If in
addition v and w are adjacent, then v is the parent
of w and w is a child of v. A rooted ordered tree is
a rooted tree that has a predefined left-to-right order
among children of each vertex. A labeled free tree t
is a subtree of another labeled free tree s if t can be
obtained from s by repeatedly removing vertices with
degree 1. Subtrees of rooted trees are defined similarly.
Two labeled free trees t and s are isomorphic to each
other if there is a one-to-one mapping from the vertices
of t to the vertices of s that preserves vertex labels, edge
labels, and adjacency. Isomorphisms for rooted trees
are defined similarly except that the mapping should
preserve the roots as well. An automorphism is an
isomorphism that maps from a tree to itself. A subtree
isomorphism from t to s is an isomorphism from t to
some subtree of s. For convenience, in this paper we
call a tree with k vertices a k-tree.

Let D denote a database where each transaction
s ∈ D is a labeled rooted unordered tree (or D is a
database of free trees). For a given pattern t, which is a
rooted unordered tree (or a free tree correspondingly),
we say t occurs in a transaction s (or s supports t) if
there exists at least one subtree of s that is isomorphic
to t. The support of a pattern t is the fraction of
transactions in database D that support t. A pattern t
is called frequent if its support is greater than or equal to
a minimum support (minsup) specified by a user. The
frequent subtree mining problem is to find all frequent
subtrees in a given database.

3 Mining Frequent Rooted Unordered Trees.

Two categories of algorithms are used in traditional
market-basket association rule mining. The first cat-
egory of algorithms put all frequent itemsets in an enu-
meration lattice and traverse the lattice level by level.
Apriori [2] is a representative algorithm of this cate-
gory. The second category of algorithms put all fre-
quent itemsets in an enumeration tree and traverse the
tree either level by level, as in [7], or following a depth-
first traversal order, as in [1]. Algorithms of the latter
type are usually called vertical mining algorithms. The
main advantage of the Apriori-like algorithms is efficient
pruning: an itemset becomes a potentially-frequent can-
didate only if it passes the “all subsets are frequent”
check. The main advantage of vertical mining algo-
rithms is their relatively small memory footprint: for
Apriori-like algorithms, in order to generate candidate
(k+1)-itemsets, all frequent k -itemsets are involved and

UCLA Computer Science Department Technical Report CSD-TR No. 030043 3

hence must be in memory; in contrast, in vertical min-
ing, only the parent of a candidate (k+1)-itemset in the
enumeration tree needs to be in memory.

In this section, we introduce a frequent subtree
mining algorithm that combines the ideas from both the
above categories of mining algorithms to take advantage
of both. First, we introduce a unique way to represent
a rooted unordered tree–the breadth-first canonical
form; then based on the canonical form we build an
enumeration tree and use two operations, extension and
join, to grow the enumeration tree efficiently.

Notice that if a labeled tree is rooted, then without
loss of generality we can assume that all edge labels
are identical: because each edge connects a vertex with
its parent, so we can consider an edge, together with its
label, as a part of the child vertex. (For the root, we can
assume that there is a null edge connecting to it from
above.) So for all running examples in the following
discussion, we assume that all edges in all trees have
the same label or equivalently, are unlabeled, and we
therefore ignore all edge labels.

3.1 The Canonical Form. From a rooted un-
ordered tree we can derive many rooted ordered trees,
as shown in Figure 1. From these rooted ordered trees
we want to uniquely select one as the canonical form to
represent the corresponding rooted unordered tree.

(d)

A

B

C

B

D C

(a)

A

C

B

C

B

D

(b)

A

B

C

B

D C

(c)

A

B

C D

B

C

Figure 1: Four Rooted Ordered Trees Obtained from
the Same Rooted Unordered Tree

We first define the breadth-first string encoding for
a rooted ordered tree. Assume there are two special
symbols, “$” and “#”, which are not in the alphabet
of edge labels and vertex labels. The breadth-first
string encoding of a rooted ordered tree is obtained by
traversing the tree in a breadth-first order, level by level.
Following the order of traversal, we record in the string
the label for each vertex. In addition, in the string we
use “$” to partition the families of siblings and use “#”
to indicate the end of the string encoding. We assume
that (1) there exists a total ordering among edge and
vertex labels, and (2) “#” sorts greater than “$” and
both sort greater than any other symbol in the alphabet
of vertex and edge labels.

Now, for a rooted unordered tree, we can obtain dif-

ferent rooted ordered trees and corresponding breadth-
first string encodings, by assigning different orders
among the children of internal vertices. The breadth-
first canonical string (BFCS) of the rooted unordered
tree is defined as the minimal one among all these
breadth-first string encodings, according to the lexico-
graphical order. The corresponding orders among chil-
dren of internal vertices define the breadth-first canon-
ical form (BFCF), which is a rooted ordered tree, of
the rooted unordered tree. The breadth-first string en-
codings for each of the four trees in Figure 1 are for
(a) ABBC$DC#, for (b) A$BBCCD#, for (c)
ABBDC$C#, and for (d) A$BBCDC#. The
breadth-first string encoding for tree (d) is the BFCS,
and tree (d) is the BFCF for the corresponding labeled
rooted unordered tree.

We now give a bottom-up procedure to construct
the BFCF for a labeled rooted unordered tree. Starting
from the bottom, level by level, for each vertex v at
the level, because by recursion all the subtrees induced
by the children of v have been in the correct forms,
we can compare the string encodings of these subtrees
and order them from left to right from small to large.
We repeat the procedure until finally all the children of
the root vertex are re-ordered . Figure 2 gives a running
example on how to obtain the BFCF for a labeled rooted
unordered tree. In the figure, the levels surrounded by
the dashed boxes are the corresponding levels of vertices
we are working on in each stage.

(d) BFCF

A

B

C D

H G FH

E C

BB

A

B

C D E C

BB

HG F H

A

B

C D

BB

HG

C

F H

E

C D

HG

B B

EC

F H

B

A

B

A

C D

HG

BB

EC

F H

(a) (b) (c)

(e) DFCF

Figure 2: To Obtain the BFCF of a Labeled Rooted
Unordered Tree

Theorem 3.1. The above construction procedure gives
the BFCF for a labeled rooted unordered tree.

Proof. For a rooted unordered tree t, we denote the
root of t by r, the children of r by r1, . . . , rm, and the
subtrees induced by r1, . . . , rm by tr1 , . . . , trm . Because

4

of the recursive construction procedure and because of
the fact that a tree consisting of a single vertex is in its
BFCF, we only have to prove the following statement:
If all tr1 , . . . , trm

are in their BFCFs and we rearrange
the order among tr1 , . . . , trm from left to right in non-
decreasing order (according to the lexicographical order
among their BFCSs) to get the rooted ordered tree t′,
then t′ is the BFCF for t. We prove this statement
by contradiction. If, for the sake of contradiction,
the BFCF of t is t′′, such that there are a pair of
BFCF trees among tr1 , . . . , trm

(say tri
and trj

) with
BFCS(tri

) < BFCS(trj
), but tri

is to the right of trj

in t′′. We cut the BFCS of tri
into segments si1, . . . , sih

where each segment sip represents the part of the BFCS
of tri

at level p of the tree t′′. We do the same to trj

to get sj1, . . . , sjh. Because BFCS(tri) < BFCS(trj),
there is an integer q, where 1 ≤ q ≤ h, such that
sip = sjp for 0 ≤ p < q and siq 6= sjq. With sip = sjp for
0 ≤ p < q, there are the same number of “$” symbols in
siq and sjq. (Actually, for both tri

and trj
, the number

of “$” symbols at level q is the same as the number of
vertices at level q-1.) In addition, both siq and sjq end
with a “$”. Therefore siq is not a prefix of sjq, which
implies siq < sjq because BFCS(tri) < BFCS(trj). As
a result, if we switch the order of tri and trj in t′′, we
will get a breadth-first encoding that is smaller than the
string encoding of t′′, hence a contradiction. ¤

Theorem 3.2. The above BFCF construction proce-
dure has time complexity O(k2c log c), where k is the
number of vertices the tree has and c is the maximal
degree of the vertices in the tree.

Proof. For each vertex v, to order all its children takes
O(c log c) comparisons and because the comparisons are
among subtrees induced by the children of v, each
comparison takes O(k) time. The tree has k vertices
therefore the total time complexity for normalization is
O(k2c log c). ¤

Theorem 3.3. The length of the BFCS for a labeled
rooted unordered tree is at most 3k where k is the
number of vertices of the tree.

Proof. The symbols in the BFCS for a labeled rooted
unordered tree include vertex labels, edge labels, “$”
symbols, and a “#” symbol. The number of vertices is k
and the number of edges is k-1, so the number of symbols
in the BFCS for edge/vertex labels is 2k-1. There is one
“$” at the root level. For all levels below, the number
of “$” symbols at each level is at most the number of
vertices at the level above. In addition, the last “$” will
be replaced by a “#”. So the BFCS contains one “#”
and at most k “$” symbols. Therefore the length of the
BFCS is at most 3k. ¤

It is interesting that there is a different way to define
a canonical form. We can define a string encoding for a
rooted ordered tree through a depth-first traversal and
use “$” to represent a backtrack and “#” to represent
the end of the string encoding. The depth-first string
encodings for each of the four trees in Figure 1 are
for (a) ABC$$BD$C#, for (b) ABC$$BC$D#, for
(c) ABD$C$$BC#, and for (d) ABC$D$$BC#. If
we define the depth-first canonical string (DFCS) of
the rooted unordered tree as the minimal one among
all possible depth-first string encodings, then we can
define the depth-first canonical form (DFCF) of a rooted
unordered tree as the corresponding rooted ordered tree
that gives the minimal DFCS. In Figure 1, the depth-
first string encoding for tree (d) is the DFCS, and tree
(d) is the DFCF for the corresponding labeled rooted
unordered tree. We can construct the DFCF for a
rooted unordered tree in O(ck log k) time, using a tree
isomorphism algorithm given by Aho et al.[3]. The
algorithm sorts the vertices of the rooted unordered tree
level by level bottom-up. When sorting vertices at a
given level, we first compare the labels of the vertices
in that level, then the ranks (in order) of each of the
children (in their own level) of these vertices. Figure 3
is a running example for the algorithm. In the figure,
for each vertex, the symbols in the parentheses are first
the vertex label then, in order, the ranks of its children
(“#” denotes the end of the encoding); the symbol in
front of the parentheses is the rank of the vertex in its
level. After sorting all levels, the tree is scanned top-
down level by level, starting from the root, and children
of each vertex in the current level are rearranged to be
in the determined order.

1

A

B

D

E

C

G F

B

E

D

B

D

E E

D

B B

A

B

C

F G

1,(A,1,2,3,#)

1,(C,2,3,#)2,(D,1,#) 2,(D,1,#)

1,(E,#) 3,(G,#) 2,(F,#) 1,(E,#)

1,(B,1,2,#)3,(B,#)2,(B,2,#)

1

321

1 2 2

2 3 1

Figure 3: To Obtain the DFCF of A Rooted Unordered
Tree

Theorem 3.4. The above construction procedure gives
the DFCF for a labeled rooted unordered tree.

Proof. For a rooted unordered tree t, we denote the
root of t by r, the children of r by r1, . . . , rm, and the
subtrees induced by r1, . . . , rm by tr1 , . . . , trm . Because
of the recursive construction procedure and because of

UCLA Computer Science Department Technical Report CSD-TR No. 030043 5

the fact that a tree consisting of a single vertex is in
its DFCF, we only have to prove the following two
statements: (1) If all tr1 , . . . , trm are in their DFCFs
and we rearrange the order among tr1 , . . . , trm

from
left to right in non-decreasing order (according to the
lexicographical order among their DFCSs) to get the
rooted ordered tree t′, then t′ is the DFCF for t; (2)
The rank among r1, . . . , rm, which is given by the above
construction procedure, is the same as the order of
tr1 , . . . , trm according to the lexicographical order of
their DFCSs. For statement (1), we note that in order to
construct the string encoding of t, we combine, in order,
the vertex label of the root r, the string encoding of the
subtree induced by r’s first child, ..., the string encoding
of the subtree induced by r’s last child. (Note that
there are some “$”s in between to represent backtracks.)
Obviously, if all tr1 , . . . , trm

are in their DFCFs, and
if we order them from left to right in non-decreasing
order according to the lexicographical order among their
DFCSs, we will get the minimal string encoding (hence
the DFCS) for t. We can prove statement (2) by
recursion: it is trivially true for the bottom level; for
each level above, the rank among the vertices in the
level is obtained by first comparing vertex labels, then
the rank (in order) of their children. From the argument
in the proof of statement (1) we can see the resulting
rank among the vertices at each level is the same as the
order of the corresponding subtrees induced by these
vertices according to the lexicographical order of their
DFCSs. ¤

Theorem 3.5. The above DFCF construction proce-
dure has time complexity O(ck log k), where k is the
number of vertices the tree has and c is the maximal
degree of the vertices in the tree.

Proof. Assuming there are kh vertices in level h of
the tree for h = 0, 1, 2, . . . , to sort vertices at level
h takes O(kh log kh) comparisons; the total num-
ber of comparisons for normalizing the whole tree
is

∑
h O(kh log kh), which is O(k log k) (notice that∑

h(kh log kh) ≤ ∑
h(kh log k) = k log k); the time for

each comparison is bounded by the maximal fan-out c
of the tree because we can consider c as the length of
the “keys” to be compared. ¤

Theorem 3.6. The length of the DFCS for a labeled
rooted unordered tree is at most 3k − 1 where k is the
number of vertices of the tree.

Proof. In a DFCS, in addition to the 2k-1 symbols
representing edge/vertex labels, there are “$” symbols
to represent backtracks, and a “#” symbol to represent
the end of the DFCS. If we look at the procedure of

depth-first traversal, we can see that each edge is visited
at most twice: one forward visit and one backtrack.
A backtrack will introduce a “$” into the DFCS. In
addition, there is no backtrack on the last-visited edge,
but a “#” will be introduced into the DFCS instead.
Because there are k-1 edges in the tree, there are
one “#” and at most k-2 “$” symbols in the DFCS.
Therefore the length of the DFCS is at most 3k−2. For
a special case, if the tree consists of a single vertex, the
length of its DFCS is 2. So we change the bound on the
DFCS to 3k-1. ¤

The DFCF and the BFCF for a labeled rooted
unordered tree may or may not be the same. The
example in Figure 1 is a case in which they are the
same and the example in Figure 2 is a case in which
they are not.

Depth-first string encoding was first introduced by
Zaki [24] for enumerating all rooted ordered trees. In
[9], we defined the DFCF, as defined above, for both
rooted unordered trees and free trees. Independent of
our work in [9], Asai et al. [6] used a string encoding
equivalent to depth-first string encoding to define the
canonical form for rooted unordered tree in order to
enumerate them. It will be seen later that with the
BFCF, we are able to extend our algorithm to handle
free trees easily. We will compare our algorithm based
on the BFCF with algorithms based on the DFCF in
the section on experiment results.

3.2 The Enumeration Tree. In this section we
define an enumeration tree that enumerates all rooted
unordered trees based on their BFCFs. For convenience,
we call a leaf (together with the edge connecting it to its
parent) at the bottom level of a BFCF tree a leg. Among
all legs, we call the rightmost leaf at the bottom level
the last leg. The following lemma provides the basis for
our enumeration tree:

Lemma 3.1. Removing the last leg, i.e., the rightmost
leg at the bottom level, from a rooted unordered (k+1)-
tree in its BFCF will result in the BFCF for another
rooted unordered k-tree.

Proof. We prove that by removing the last leg l from a
BFCF, there is no change to the order between any two
subtrees induced by a pair of sibling vertices. Assume
t1 and t2 are two subtrees induced by a pair of sibling
vertices and l belongs to t2 (then l must be the last
leg of t2). In the first case if BFCS(t1) ≤ BFCS(t2),
by removing the last leg, we change BFCS(t2) from
“. . . l2$. . . $l1#” into “. . . l2#”, where l1 is the vertex
label of the last leg, l2 is the vertex label of the second-
to-last vertex in the BFCF, and there are 0 or more

6

“$”s in between. Therefore BFCS(t2) is increased so
the original order between t1 and t2 still holds. In the
second case if BFCS(t1) > BFCS(t2), then because
t1 is to the right of t2 in the BFCF, there is no leg of
the BFCF belonging to t1. So the order between t1 and
t2 is determined at some level above the bottom level.
In this case, removing a leg from the bottom level of
t2 does not change the original order between t1 and
t2. (Notice that for the second case, in some extreme
situations, removing the last leg from t2 will result in
BFCS(t1) = BFCS(t2).) ¤

Based on the above lemma we can build an enumer-
ation tree in which the nodes of the enumeration tree
consist of all rooted unordered trees in their BFCFs and
the parent for each rooted unordered tree is determined
uniquely by removing the last leg from its BFCF. Fig-
ure 4 shows a fraction of the enumeration tree (for all
rooted unordered subtrees with A as the root) for the
BFCF tree at the bottom of the figure. (Ignore the
dashed lines in the figure for now.)

A

B

A

C

A

A

B C

A

B C

E

A

B C

F

A

B C D

A

B

E

D

A

DB

A

B C

E F

A

B C D

E

A

B C D

F

A

B

E
A

C D

F

D

A

A

C

F

A

C D

A

B C D

E F

Figure 4: The Enumeration Tree for Rooted Unordered
Trees in Their BFCFs

3.3 Two Operations on the Enumeration Tree.
We want to grow the enumeration tree efficiently. The
most straightforward method is to start from a node
v of the enumeration tree, try to add all possible last
legs in order to find all valid children of v. However, if
we only use the extension method for enumeration tree
growing, it could be inefficient because the number of

potential last legs can be very large, especially when
the cardinality of the alphabet for vertex labels is
large. Therefore, in our algorithm we adopt an idea,
which was first introduced by Huan et al. in [13] for
frequent subgraph mining, that allows a special local
join operation in addition to the extension. If we look at
Figure 4 carefully we can see that all children of a node v
in the enumeration tree can be obtained by either of two
methods (assume the height of the BFCF corresponding
to v is h): by extending a new leg at the bottom level,
which gives a BFCF with height h+1, or by joining
a pair of siblings (indicated by the dashed arrows in
Figure 4), which gives a BFCF with height h. In
addition, all the children of a node v in the enumeration
tree are partitioned naturally into two families: those
children derived from v by the extension method and
those by joining v with one of its siblings. Moreover, two
children of v can be further joined only if they are in the
same family. With these observations in mind, we apply
a hybrid enumeration tree growing algorithm, which is
based on two operations–extension and join, that takes
advantage of both Apriori-like mining algorithms and
vertical mining algorithms.

3.3.1 Extension The first operation is the extension
as described above. However, we use the extension only
when the resulting BFCF tree has height one more than
its parent, i.e., a new leg only grows from an old leg.

Definition 3.1. (Extension) For a node v in the
enumeration tree, we call the BFCF tree that v repre-
sents tv and we assume the height of tv is h. The ex-
tension operation is applied on v to obtain a new node
v′ in the enumeration tree that represents a new BFCF
tree tv′ , where tv′ has height h+1 and a single (new) leg.
The new leg is the child of one of the legs of tv. v′ is
the child of v in the enumeration tree.

3.3.2 Join Join is an operation on a pair of sibling
nodes in the enumeration tree. The resulting BFCF tree
has the same height as its parent but with one more leg.

Definition 3.2. (Join) Assume two sibling nodes v1

and v2 in the enumeration tree share the same parent
v, and both the BFCF tree tv1 represented by v1 and
the BFCF tree tv2 represented by v2 have height h. In
addition, we assume that tv1 sorts lower than (or equal
to) tv2 . The join operation is applied on this pair of
nodes in the enumeration tree to obtain a new node v′1,
which corresponds to a BFCF tree tv′1 . v′1 is a child of
v1 in the enumeration tree and tv′1 has height h. tv′1
is constructed by adding the last leg of tv2 to tv1 . So
in certain respects, the join operation is just a guided
extension that grows legs on the leaves at level h-1 of

UCLA Computer Science Department Technical Report CSD-TR No. 030043 7

tv1 .

3.4 Automorphisms. Automorphisms of a tree are
the non-identity isomorphisms of the tree to itself. If
the BFCF represented by the parent of a pair of sibling
nodes in the enumeration tree has automorphisms, the
join procedure will become more complicated. For
example, the pair of BFCFs in Figure 5 create 9
candidate BFCFs because of the automorphisms of
the parent shared by the pair of sibling nodes in the
enumeration tree. From Figure 5 we can also see that
self-join is necessary in growing an enumeration tree.

=

C C

A

C C

BB

C C

A

C C

BB

D D D D D D

C C

A

C C

BB

C C

A

C C

BB

C C

A

C C

BB

C C

A

C C

BB

C C

A

C C

BB

C C

A

C C

BB

D D D

C C

A

C C

BB

C C

A

C C

BB

C C

A

C C

BB

E E E E E E

EEE

D E

+

Figure 5: Automorphisms

Therefore, we need an efficient scheme to record all
possible automorphisms of a BFCF and consider them
while growing the enumeration tree. In order to record
the information on tree automorphisms, we introduce
the equivalence relation in the sense of automorphisms
among vertices of a tree in its BFCF:

Definition 3.3. Vertices of a given tree in its BFCF
belong to the same equivalence class if and only if

(1). They are at the same level of the tree; and,

(2). Attaching the same leaf to any of these vertices will
result in a tree with the same BFCF.

The information on automorphisms can be obtained
through the DFCF normalization procedure: after or-

dered vertices at all levels, we apply the following proce-
dure top-down recursively: the root is the only member
in its equivalence class; all children with the same order
at a given level belong to the same equivalence class if
their parents belong to the same equivalence class. Fig-
ure 6 gives a running example for obtaining automor-
phisms. It’s obvious that this procedure of obtaining
automorphisms has time complexity O(ck log k). Notice
that the definition of automorphism is about equality,
not about order, therefore it is independent of whether
we choose the BFCF or the DFCF to uniquely represent
a rooted unordered tree.

C

B

CC D

B

C

A

C

B

DC

B

CC D

B

C

A

1

1

1 2 1

1

1

1 2

2

1

C

B

D

Figure 6: Obtaining Automorphisms

We use the information on automorphisms in the
join operation. While joining two sibling nodes v1 and
v2 in the enumeration tree (which share a common
parent v in the enumeration tree), if the right most leg of
tv1 is the only child of its parent and the right most legs
of both tv1 and tv2 have the same location, then during
the join, we have to consider all the possible positions
the last leg of tv2 can take due to automorphisms of tv.
By doing this, all the cases given in Figure 5 will be
included in the enumeration tree. We will explain the
details further in the next section.

3.5 Why Extension and Join Are Enough.
Equipped with the two operations, extension and join,
together with the handling of automorphisms, we have a
systematic approach to efficiently growing the enumer-
ation tree therefore enumerating all (frequent) rooted
unordered trees. As we have seen from the previous
section, when the parent node v of two sibling nodes v1

and v2 has automorphisms, the join operation is more
complicated. In this section, we introduce the auto-
morphism variation of a tree in BFCF to define more
rigorously the join operation under automorphisms.

Definition 3.4. (automorphism variation) For a
tree tv in its BFCF, the automorphism variations of tv
are those rooted ordered trees that are isomorphic to tv
and different from tv only in the position of the last leg.

If we take the automorphism variations of a BFCF
tree into consideration while applying the join opera-
tion, our algorithm is complete, i.e., we can prove that

8

any k -BFCF is either the result of extending a (k-1)-
BFCF or the result of joining a pair of (k-1)-BFCFs (or
a BFCF with an automorphism variation of a BFCF).
The following lemma shows that a BFCF with 2 or more
legs is guaranteed to be the result of either joining a pair
of BFCFs or joining a BFCF with an automorphism
variation of a BFCF.

Case III

... ...

...

A B

A B A B A B

Case I Case II

Figure 7: Three Cases for the Last Two Legs

Lemma 3.2. For a BFCF tv of a rooted unordered tree
with 2 or more legs, removing the second-to-last leg will
result in a BFCF tv2 for another rooted unordered tree or
result in an automorphism variation of tv2 . In addition,
the BFCF tv1 obtained by removing the last leg from tv
and the BFCF tv2 share the same parent tv in the enu-
meration tree. Furthermore, BFCS(tv1) ≤ BFCS(t′v2

)
where t′v2

is either tv2 itself or any automorphism vari-
ation of tv2 .

Proof. In Figure 7, the tree at the top of the figure
is the BFCF for a rooted unordered k -tree. Let’s call
the two rightmost legs A and B. Let’s consider all the
possible cases. For case I, A and B are siblings. In
this case, it’s very obvious that the (k-1)-tree obtained
by removing A is still in its BFCF because removing
A is equivalent to increasing A to B and increasing B
to ∞. In case II, B does not have siblings and A has
siblings. If as in this case, leg B turns out to be on
the right side of leg A, then either the order of A’s and
B’s ascendants has been resolved at higher level, or A
and B have identical ascendants and A’s left sibling(s)
is less or equal to B. As a result, for case II, the (k-
1)-tree obtained by removing A is still in its canonical
form. In Case III, neither A nor B has siblings. Again,
since A is on the left of B, either the order of A’s and
B’s ascendants has been resolved at higher level, or A
and B have identical ascendants and A is less than or
equal to B. The only trouble is when A is less than B
because if so, removing A will not result in a canonical

form–for the canonical form, B should be moved to the
old position of A. But this case only happens when
A’s and B’s ascendants are identical and if that is so,
removing A will result in an automorphism variation of
a BFCF. ¤

Because of the above lemma, a BFCF with 2 or
more legs is guaranteed to be the result of joining its
parent and one of the siblings (or one of its automor-
phism variations) of its parent in the enumeration tree.
Therefore, together with the extension operation that
creates all BFCFs with one leg, our algorithm enumer-
ates all possible (frequent) rooted unordered trees in
their BFCFs.

3.6 Support Counting. The occurrence list L for
a rooted unordered k -tree tv in its BFCF is a list
that records information on each occurrence of tv in
the database. Each element of L is of the form
(tid, i1, . . . , ik), where tid is the id of the transaction
in the database that contains tv and i1, . . . , ik represent
the mapping between the vertex indices in tv and those
in the transaction. From the occurrence list of tv we
know if tv is frequent, because the support of tv is the
number of elements in L with distinct tid’s. For the
join operation, we “combine” a pair of occurrence lists
L1 and L2 for two BFCFs to get the occurrence list
L12 for a new (k+1)-tree. The combination happens
between any compatible pair of elements l1 ∈ L1 and
l2 ∈ L2, where we define l1 = (tid1, i1, . . . , ik) and
l2 = (tid2, j1, . . . , jk) to be compatible if tid1 = tid2 and
im = jm for m = 1, . . . , k − 1. The result of combining
l1 and l2 is l12 = (tid1, i1, . . . , ik, jk) ∈ L12. For the
extension operation, an occurrence list for a k -tree in
BFCF is “expanded” to get the occurrence list for a new
(k+1)-tree in BFCF. An element l = (tid, i1, . . . , ik) is
expanded to l′ = (tid, i1, . . . , ik, ik+1) if, in the tuple
identified by tid in the database, ik+1 6= im for m =
1, . . . , k and the vertex with index ik+1 is a child of the
vertex with index ik.

3.7 Putting It All Together. Figure 8 summarizes
our HybridTreeMiner algorithm. The main step in the
algorithm is the function Enum-Grow, which grows the
whole enumeration tree. Figure 9 gives the details
of the function Enum-Grow. We can see that in
the algorithm, two operations, join and extension, are
applied separately.

4 Mining Frequent Free Trees.

If the transactions in the database are free trees, then
the problem becomes mining all frequent free subtrees.
Because there is not a unique root, there are more ways

UCLA Computer Science Department Technical Report CSD-TR No. 030043 9

Algorithm HybridTreeMiner(D,minsup)
1: F1, F2 ← {frequent 1, and 2-trees};
2: F ← F1 ∪ F2;
3: C ← sort(F2);
4: Enum-Grow(C,F ,minsup);
5: return F ;

Figure 8: The HybridTreeMiner Algorithm

Algorithm Enum-Grow(C,F ,minsup)
1: for i ← 1, . . . , |C| do

B The Join Operation
2: J ← ∅;
3: for j ← i, . . . , |C| do
4: p ← join(ci, cj);
5: if supp(p) ≥ minsup
6: then J ← J ∪ p;
7: F ← F ∪ J ;
8: Enum-Grow(J ,F ,minsup);

B The Extension Operation
9: E ← ∅;

10: for each leg lm of ci do
11: for each possible new leg ln do
12: q ← ci plus leg ln at position lm;
13: if supp(q) ≥ minsup
14: then E ← E ∪ q;
15: F ← F ∪ E;
16: Enum-Grow(E,F ,minsup);

Figure 9: The Enumeration Tree Growing Algorithm

to represent free trees compared to that of rooted trees.
Therefore the problem of mining frequent free trees
seems to be a much more difficult problem compared
to mining frequent rooted unordered trees. However,
it turns out that by extending our definition for the
BFCF to free trees and by adding certain constrains to
our enumeration tree, the HybridTreeMiner algorithm
can efficiently handle free trees as well.

4.1 Extending the Canonical Form. Free trees do
not have roots, but we can uniquely create roots for
them for the purpose of constructing a unique canonical
form. Starting from a free tree in each step we remove
all leaf vertices (together with their incident edges), and
we repeat this step until a single vertex or two adjacent
vertices are left. For the first case, the free tree is called
a centered tree and the remaining vertex is called the
center; for the second case, the free tree is called a
bicentered tree and the pair of remaining vertices are
called the bicenters [4]. A free tree is either centered or

bicentered. The above procedure takes O(k) time where
k is the number of vertices in the free tree. Figure 10
shows a centered free tree and a bicentered free tree as
well as the procedure to obtain the corresponding center
and bicenters.

B

B

A

E

CB

ED

B

A

BA

C

F

BAB

F

A

C E

D

G

H

C D E F

A B

G H

B

E F G

C D

A

H

EA

C D

G

H

F

B

BFCF

(b) A Bicentered Free Tree

(a) A Centered Free Tree

Supplementary Canonical Form

BFCF/Supplementary Canonical Form

C

D

E E

B

B

A A

Figure 10: A Center Free Tree (above) and A Bicenter
Free Tree (below) together with Their Canonical Forms

If a free tree is centered, we can uniquely identify its
center and make it the root to obtain a rooted unordered
tree. Then we can normalize the rooted unordered
tree to obtain the BFCF for the centered free tree as
we did in previous sections. However, if a free tree
is bicentered, we can only identify a pair of vertices
(the bicenters). We can make each of these pair of
vertices the root to obtain a pair of rooted unordered
trees. We call the canonical forms (BFCFs) for the pair
of rooted unordered trees the supplementary canonical
forms for the bicentered free tree. Among the string
encodings of the two supplementary canonical forms,
one sorts lower (or they are identical). We call the
string encoding that sorts lower the BFCS and the
corresponding supplementary canonical form the BFCF
for the bicentered free tree. If we also call the BFCF for
the centered free tree a supplementary canonical form,
then we have a relation that a BFCF for a free tree is
a supplementary canonical form and a supplementary
canonical form for a free tree may or may not be the
BFCF for the free tree if the free tree is bicentered.
In Figure 10, for the centered free tree, the right most
tree is the supplementary canonical form as well as the

10

BFCF; for the bicentered free tree, the right most pair
of trees are the supplementary canonical forms and the
first tree in the pair is the BFCF.

Theorem 4.1. A BFCF for a rooted unordered tree
with 3 or more vertices and height h is a supplementary
canonical form for a free tree if and only if the following
two condition hold:

(1). There are at least 2 children for the root; and

(2). One subtree induced by a child of the root has height
h-1 and at least one subtree induced by another
child of the root has height greater than or equal
to h-2.

Proof. For a tree t in its BFCF, we denote the root of
t by r and the children of r by r1, . . . , rm. The only
if part: if t has 3 or more vertices and if r has only
one child, then r will be removed in the first step of
finding center/bicenter, so r cannot be the center or one
of the bicenters; if r has more than one child, obviously
the subtree induced by one of r1, . . . , rk has height h-
1, let’s assume this child is rj . If none of the subtrees
induced by other children of r has height greater than
or equal to h-2, then r cannot be the center or one of
the bicenters because the center (or the bicenters) must
be some vertex (or vertices) of the subtree induced by
rj . The if part: W.L.O.G., we assume the subtree
tr1 induced by r1 has height h-1 and the subtree tr2

induced by r2 has height h-1 or h-2, then the path from
a bottom-level leaf of tr1 to a bottom-level leaf of tr2

has length 2h or 2h-1 and r is the center or one of the
bicenters of the path. Obviously, r is the center or one
of the bicenters of the free tree. ¤

4.2 Extending the Enumeration Tree. With the
extended definition for the BFCF and the new concept
of a supplementary canonical form for a free tree, we
can build an enumeration tree for all free trees in their
supplementary canonical forms. The enumeration tree
for free trees is almost identical to that for rooted
unordered trees, except that we replace the BFCF with
the supplementary canonical form as given in Corollary
4.1 and Corollary 4.2.

Corollary 4.1. Removing the last leg, i.e., the right-
most leg, from a supplementary canonical form of a free
tree will result in a supplementary canonical form for
another free tree.

Proof. Because a supplementary canonical form tv of a
free tree is the BFCF of a rooted unordered tree, so by
Lemma 3.1 the tree tv1 obtained by removing the last
leg l from tv is still the BFCF for a rooted unordered

tree. Now if we can prove that tv1 satisfies the two
conditions in Theorem 4.1 then by that theorem tv1 is
a supplementary canonical form for a free tree. Assume
l belongs to tr1 , the subtree induced by r1, where r1

is a child of the root r of tv; then the height of tr1

is h-1. Removing l from tr1 may or may not change
the height of tr1 . If it does not, then none of the
subtrees induced by the children of the root r changes
its height; since tv is a supplementary canonical form,
by Theorem 4.1 tv1 is a supplementary canonical form
as well. If removing l from tr1 changes its height, the
height of tr1 is changed from h-1 to h-2. Because tv
is a supplementary canonical form, by Theorem 4.1 the
maximal height among all the subtrees induced by the
children of r other than r1 is either h-1 or h-2. It is easy
to see that in either case, the heights of the subtrees
of tv1 induced by the children of the root r satisfies
the two conditions in Theorem 4.1 therefore tv1 is a
supplementary canonical form. ¤

Corollary 4.2. For a supplementary canonical form
tv for a free tree with 2 or more legs, removing the
second-to-last leg will result in a supplementary canon-
ical form tv2 for another free tree or result in an auto-
morphism variation of tv2 . In addition, the supplemen-
tary canonical form tv1 obtained by removing the last leg
from tv and the supplementary canonical form tv2 share
the same parent tv in the enumeration tree. Further-
more, BFCS(tv1) ≤ BFCS(t′v2

) where t′v2
is either tv2

itself or any automorphism variation of tv2 .

Proof. Because a supplementary canonical form for a
free tree is a BFCF for a rooted unordered tree, by
Lemma 3.2, we only have to prove tv2 satisfies the two
conditions given in Theorem 4.1. But if we study the
second part of the proof of Corollary 4.1, we can see
that the second part of that proof does not depend on
whether l is the last leg. So we can use exactly the same
proof. ¤

Figure 11 is the enumeration tree for free trees
with A as the root of the supplementary canonical
forms. Comparing Figure 11 with Figure 4 we note
that Figure 11 has two fewer nodes because these two
nodes do not represent supplementary canonical forms.
There is a new constraint for growing an enumeration
tree for free trees: the node grown from its parent must
be a supplementary canonical form as well. As we can
see from Theorem 4.1, comparing to the BFCF for a
rooted unordered tree, supplementary canonical forms
for free trees have certain constraints on the heights
of the subtrees induced by the children of the root.
In other words, supplementary canonical forms have
constraints on the “shape” of the tree. As a result,

UCLA Computer Science Department Technical Report CSD-TR No. 030043 11

D

AA

B

A

C

A

A

C D

A

B C

A

B C

E

A

B C

F

A

B C D

A

C D

F

A

B

E

D

A

DB

A

B C

E F

A

B C D

E F

A

B C D

E

A

B C D

F

Figure 11: The Enumeration Tree for Free Trees in
Their Supplementary Canonical Forms

we need to revise the extension operation and the join
operation for growing the enumeration tree, to ensure
that the result of the operations are valid supplementary
canonical forms.

For a node v in the enumeration tree, we call the
supplementary canonical form that v represents tv. We
denote the root of tv by r and assume the height of tv
is h. We also denote the children of r by r1, . . . , rm.
First, let’s look at the join operation. It turns out
that we do not have to make any change to it: the join
operation does not change the height of the BFCF, so
it will not change the subtrees with height h-1, which
are induced by the children of the root. It may increase
the height of the subtree induced by a child of the root
from h-2 to h-1, but in this case by Theorem 4.1 the
result is still a supplementary canonical form. The join
operation, however, needs to be changed. We can apply
the extension operation on v to obtain a new node v′

that represents a supplementary canonical form in the
enumeration tree only if, among the subtrees induced by
r1, . . . , rm, at least two have height h-1. In other words,
we only apply the extension operation to supplementary
canonical forms that represent centered trees, because
extending supplementary canonical forms that represent
bicentered trees will not result in a supplementary
canonical form. Now with these two operations revised,
we can systematically grow the enumeration tree for
mining frequent free trees. The mining algorithm given

in Figure 8 and Figure 9 can be applied to mining free
trees without any change.

Notice that there exists redundancy in the enumer-
ation tree for free trees: because a bicentered free tree
has two supplementary canonical forms, it is represented
twice in the enumeration tree. At the time of outputting
frequent subtrees, we need check and only output the
supplementary canonical form that is a real BFCF.

5 Experiments.

We performed extensive experiments to evaluate the
performance of the HybridTreeMiner algorithm on both
rooted unordered trees and free trees, using both syn-
thetic datasets and datasets from real applications. All
experiments were done on a 2GHz Intel Pentium IV PC
with 1GB main memory, running Linux 7.3 operating
system. All algorithms are implemented in C++ using
the g++ 2.96 compiler.

5.1 Algorithms to Compare with. We want to
compare the performance of our algorithm with that of
other known algorithms. To the best of our knowledge,
the algorithm described in [6] is the only one that sys-
tematically mines all frequent subtrees in a database of
rooted unordered trees. Unfortunately, no implementa-
tion was given in [6]. As a result, we have implemented
the algorithm ourselves and call it DFCF-extension in
the following discussion. Our implementation uses an
enumeration tree based on our DFCF canonical form
that is equivalent to the canonical form in [6]. To com-
pare with the DFCF-extension algorithm, we have im-
plemented two versions of the HybridTreeMiner algo-
rithm: the first version, which we call BFCF-extension,
uses extension as the only operation for growing enu-
meration trees; the second version, which we call BFCF-
hybrid, uses both extension and join in growing enumer-
ation trees. For mining frequent free trees, we compare
the BFCF-hybrid version of our HybridTreeMiner algo-
rithm with our previous FreeTreeMiner algorithm [9],
which is an Apriori-like algorithm.

5.1.1 More Discussion. If we consider the exten-
sion operation as the only operation in our enumeration
tree growing (because as we mentioned before, the join
operation is just a special guided extension), then we
can compare the extension of a BFCF with the exten-
sion of a DFCF: for the BFCF, the extension operation
corresponds to adding a new vertex so that the new
vertex becomes the new last leg of the new BFCF (re-
call that the last leg of a BFCF is the rightmost leaf
at the bottom level); for the DFCF, the extension op-
eration corresponds to adding a new vertex so that the
new vertex becomes the new rightmost vertex of the

12

new DFCF (the rightmost vertex here means the last
vertex that will be visited if we traverse a DFCF in a
depth-first order). Therefore, the possible position for
applying the extension operation for the BFCF is the
lower border and for the DFCF is the rightmost path, as
given in Figure 12.

B C D

E F G

H K

A

B C D

E F G

H K L L

(a) BFCF−−The Lower Border (b) DFCF−−The Rightmost Path

A

Figure 12: Extending the BFCF and the DFCF

In addition, because the enumeration tree enumer-
ates all rooted unordered trees in their canonical forms,
we never need to convert an arbitrary rooted unordered
tree into its canonical form–we use the extension opera-
tion to add a new vertex to a rooted unordered tree in its
canonical form so we only need to check if the resulting
new tree is in the canonical form or not. As a result, the
time complexities O(k2c log c) and O(ck log k) for nor-
malizing a rooted unordered tree into the BFCF and the
DFCF do not contribute to the complexity of our min-
ing algorithm. Moreover, instead of extending and then
checking whether the result is in the canonical form,
we can compute the range of vertices that are allowable
at a given position before starting the extension oper-
ation. Figure 13 gives a running example for applying
the technique to the BFCF, while the same technique
can be applied to the DFCF. In Figure 13, if we add a
new vertex at the given position at the bottom, we may
violate the BFCF by changing the order between some
ancestor of the new vertex (including the vertex itself)
and its immediate left sibling. So in order to determine
the range of allowable vertex labels for the new vertex
(so that adding the new vertex will guarantee to result
in a new BFCF), we can check each vertex along the
path from the new vertex to the root. In Figure 13, the
result of comparison (1) is that the new vertex should
have label greater than or equal to A, comparison (2)
increases the label range to be greater than or equal to
B, and comparison (3) increases the label range to be
greater than or equal to C. As a result, before starting
the extension operation, we know that adding any ver-
tex with label greater than or equal to C at that specific
position will surely result in a BFCF. Our implementa-
tion incorporates this technique.

D

D D D D D D D

A B A C A B A

D

D

D

?

(2)

(3)

(1)

D

Figure 13: Computing the Range of New Legs

5.1.2 Time Complexity Analysis. From the tech-
nique introduced above we can derive an upper-bound
for our frequent subtree mining algorithm. First, for the
time to extend one node v in the enumeration tree (we
assume that the tree tv represented by v has k vertices
and has height h): to compute the allowable vertex label
range at each position at the lower border of the BFCF
(or the rightmost path of the DFCF) takes O(hk) time
because there are at most h comparisons and each com-
parison takes O(k) time; because the total number of
positions at the lower border of the BFCF (or the right-
most path of the DFCF) is bounded by k, the total time
for computing the allowable vertex labels at all possi-
ble positions is O(hk2). After computing the allowable
range, we begin scanning the database; for each transac-
tion in the database that supports tv, we have to check
for each position at the lower border of the BFCF (or
the rightmost path of the DFCF) all possible new ver-
tex the transaction can introduce; therefore the time for
each transaction is O(kc) where c is the maximal fan-out
in the transaction. The total time for this step for the
whole database is O(|D|kc). So finally, the time com-
plexity of our algorithm is O(|F | · (hk2 + |D|kc) where
F is the set of all frequent subtrees, D is the database,
h is the maximal height and k is the maximal size of all
frequent subtrees, and c is the maximal degree among
all vertices in all transactions of the database. This
bound should be independent of whether we choose the
BFCF or the DFCF in our enumeration tree. In addi-
tion, adding the join operation should not change this
upper-bound.

5.2 Synthetic Data Generator. To generate syn-
thetic data that reflect properties of real applications,
instead of generating datasets of trees arbitrarily, we
start from a graph that we call the base graph. To cre-
ate the base graph, we use the universal Internet topol-
ogy generator BRITE [17], developed by Medina et al at
Boston University, that generates random graphs sim-
ulating Internet topologies with some specific network

UCLA Computer Science Department Technical Report CSD-TR No. 030043 13

Table 1: Parameters for Synthetic Generators

Parameter Description
|D| the number of transactions

in the database
|T | the size of each transaction

in the database
|I| the maximal size of

frequent subtrees
|N | the number of frequent

subtrees with size |I|
|S| the minimum support [%] for

frequent subtrees
|L| the size of the alphabet

for vertex/edge labels

characteristics, such as the link bandwidth. We use the
bandwidths of the links as the edge labels of our base
graph and assign the vertex labels to the base graph
uniformly. The base graph created by BRITE has the
following characteristics: the number of vertex labels
is 10; the number of edge labels is 10; the number of
vertices is 1000; the average degree for each vertex in
the base graph is 20. Starting from the base graph,
we create datasets of trees with controlled parameters.
Table 1 provides these parameters and their meanings.
Note that the size of transactions and trees are defined
in terms of the number of vertices.

The detailed procedures that we followed to create
the synthetic datasets are as follows: starting from the
base graph, we first sample a set of |N | subtrees whose
size are determined by |I|. We call this set of |N |
subtrees the seed trees. (For data of rooted unordered
trees, for each seed tree we randomly select a vertex as
the root.) Each seed tree is the starting point for |D|·|S|·
100 transactions; each of these |D| · |S| ·100 transactions
is obtained by first randomly permuting the seed tree
then adding more random vertices to increase the size
of the transaction to |T |. After this step, more random
transactions with size |T | are added to the database to
increase the cardinality of the database to |D|. The
number of distinct edge and vertex labels is controlled
by the parameter |L|. In particular, |L| is both the
number of distinct edge labels as well as the number of
distinct vertex labels.

5.3 Results for Rooted Unordered Trees.

5.3.1 Synthetic Datasets. In our first experiment,
we want to study the effect of the size of maximal fre-

10 15 20 25 30
10

4

10
5

10
6

10
7

10
8

10
9

The Size of the Maximal Frequent Subtrees

T
he

 N
um

be
r

of
 F

re
qu

en
t S

ub
tr

ee
s

(A)

10 15 20 25 30
2

4

6

8

10
x 10

−4

The Size of the Maximal Frequent Subtrees

T
im

e
P

er
 P

at
te

rn
 (

S
ec

on
d)

DFCF−extension
BFCF−extension
BFCF−hybrid

(B)

Figure 14: Number of Frequent Subtrees and Running
Time vs. Size of Maximal Frequent Trees

quent subtrees on our algorithm. With all other param-
eters fixed (|D|=10000, |T |=50, |N |=100, |S|=1%), we
increase the maximal frequent tree size |I| from 10 to
30. Figure 14(A) gives the number of frequent subtrees
versus size |I|. From the figure we can see that the
number of frequent subtrees grows exponentially with
the size of the maximal frequent subtrees (notice the
logarithm scale of the y axis in the figure). As we know,
in all these databases, the number of maximum frequent
subtrees (a frequent subtree is maximum if it is not a
subtree of any other frequent subtree) is fixed to be
|N |=100. As a result, the experiment result suggests
that in some circumstances, the total number of fre-
quent subtrees can be dramatically larger than that of
maximum frequent subtrees. Figure 14(B) shows the av-
erage time to mine each frequent subtrees, using each of
the three methods: DFCF-extension, BFCF-extension,
and BFCF-hybrid. As can be seen, the average time for
all algorithms to mine each pattern is not affected very
much by |I|. (The curves are not smooth because of
the randomness in datasets generating.) However, this
average time decreases a little as the size |I| increases.
Our explanation for this decline is that for a node v in
the enumeration tree, as the size of tv, the tree repre-
sented by v, grows larger, v will have many children and
for these children we only need to scan database once
to check if they are frequent. Therefore the amortized
time for each child is decreased. Also from Figure 14(B)
we see that DFCF-extension has similar performance as
BFCF-extension. This is because the enumeration trees
based on the DFCF and the BFCF should have the same
number of nodes. In addition, the figure shows that
BFCF-hybrid is about 2 times faster than the other two
methods, which demonstrates the effectiveness of the
join operation in the growing of an enumeration tree.

Next, we want to check how sensitive the running
time is to the size of the database. We created a set of
databases with the same number (|N | = 100) of seed
trees embedded. With |T |=50 and |I|=20, we increased

14

0 1 2 3 4 5

x 10
4

0

1

2

3

4

5
x 10

−4

The Size of the Datasets

T
im

e
P

er
 P

at
te

rn
 (

S
ec

on
d)

DFCF−extension
BFCF−extension
BFCF−hybrid

(A)

0 1 2 3 4 5

x 10
4

0

1

2

3

4

5
x 10

−3

The Size of the Datasets

T
im

e
P

er
 P

at
te

rn
 (

S
ec

on
d)

DFCF−extension
BFCF−extension
BFCF−hybrid

(B)

Figure 15: Running Time vs. Size of the Datasets

the number of transactions |D| from 5000 to 50000 to
get different databases. In the first test, we fix the
occurrence of each seed tree to be 50. As a result, the
support |S| decreases from 1% to 0.1% as |D| increases.
The experiment result is given in Figure 15(A). As
revealed by the figure, for a fixed number of maximal
frequent subtrees, the running time is not sensitive
to the size of the database. This result seems to
contradict to the bound O(|F | · (hk2 + |D|kc) given in
the previous section. We believe that this is because in
computing the upper-bound, we have assumed the worst
case scenario in which each transaction has at least one
frequent subtree embedded in it; however, if frequent
subtrees occur only in some transactions, then by the
occurrence list we only need to check those transactions
with frequent subtrees embedded. To verify our belief,
in the second test, as |D| increases, we fix the support
|S| to be 1% (as a result, the occurrence of each frequent
subtree increases proportionally to the size |D| of the
databases). Figure 15(B) gives the performance for this
test. As we can see from the figure, the average time for
mining each pattern increases with the size |D|, which
verifies our argument.

Next, we study the effects of some other parameters
on the performance of our algorithm. First, in our
time complexity analysis, we assume that the number
of distinct labels is fixed so that it only contributes
a constant factor to the time complexity. Now we
check this assumption. We fixed other parameters
(|D|=10000, |T |=50, |I|=20, |N |=100, |S|=1%) while
changing |L| from 10 to 100. Notice that, for example
when |L| is 100, there are 100 distinct vertex labels
and 100 distinct edge labels, so totally there are 10000
distinct pairs of combinations. As can be seen from
Figure 16(A), the running time increases linearly with
the number of these pairs of combinations. Second,
we study whether the “shape” of trees affects the
performance of our algorithms. When generating the
synthetic trees, by fixing all other parameters but
increasing the heights (from 2 to 10), we get different

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

The Number of Distinct (pair of) Labels

T
im

e
P

er
 P

at
te

rn
 (

S
ec

on
d)

DFCF−extension
BFCF−extension
BFCF−hybrid

(A)

2 4 6 8 10
1.5

2

2.5

3

3.5

4

4.5

5
x 10

−4

The Maximal Height of Trees

T
im

e
P

er
 P

at
te

rn
 (

S
ec

on
d)

DFCF−extension
BFCF−extension
BFCF−hybrid

(B)

Figure 16: Running Time vs. Other Parameters

families of trees where trees in each family change
from flat (when the maximal height is small) to tall
(when the maximal height is large). Figure 16(B) shows
the running time for different families of trees. It is
very interesting that when the trees are extremely flat
(when the maximal height is 2 or 3), the performance
of BFCF-extension and BFCF-hybrid deteriorates a
little. This is counter-intuitive because we expected
BFCF-extension and BFCF-hybrid to scan the database
fewer times than DFCF-extension when the trees are
flat. We hypothesize that the reason for this result
is that although DFCF-extension scans the database
more times, it has higher pruning power because a lot
of siblings can help to determine the label range of a
newly-grown vertex.

5.3.2 Web Access Trees. In this section, we
present an application on mining frequent accessed
webpages from web logs. We ran experiments on
the log files at UCLA Data Mining Laboratory
(http://dml.cs.ucla.edu). First, we used the WWW-
Pal system [19] to obtain the topology of the web site
and wrote a program to generate a database from the
log files. Our program generated 2793 user access trees
from the log files collected over year 2003 at our labo-
ratory that touched a total of 310 web pages. In the
user access trees, the vertices correspond to the web
pages and the edges correspond to the links between
the webpages. We take URLs as the vertex labels and
each vertex has a distinct label. We do not assign labels
to edges. For support equals 1%, our HybridTreeMiner
algorithm mined 16507 frequent subtrees in less than
1 sec. Among all the frequent subtrees, the maximum
subtree has 18 vertices. Figure 17 shows this maximum
subtree. It turns out that this subtree is a part of web
site for the ESP2Net (Earth Science Partners’ Private
Network) project. From this mining result, we can in-
fer that many visitors to our web site are interested in
details about the ESP2Net project.

UCLA Computer Science Department Technical Report CSD-TR No. 030043 15

 16

 31 32 33 34 35 36 37 39

189 191 190 193 194 135 203 204 211

16 http://dml.cs.ucla.edu/projects/dml esip/
31 http://dml.cs.ucla.edu/projects/dml esip/Objectives/objectives.html
32 http://dml.cs.ucla.edu/projects/dml esip/Status/status.html
33 http://dml.cs.ucla.edu/projects/dml esip/Technology/technology.html
34 http://dml.cs.ucla.edu/projects/dml esip/Science/science.html
35 http://dml.cs.ucla.edu/projects/dml esip/Contacts/contacts.html
36 http://dml.cs.ucla.edu/projects/dml esip/Clustering/clustering.html
37 http://dml.cs.ucla.edu/projects/dml esip/Links/links.html
39 http://dml.cs.ucla.edu/projects/dml esip/index.html
189 http://dml.cs.ucla.edu/oasis/OASIS Overview/oasis overview.html
191 http://dml.cs.ucla.edu/˜weiwang/myresearch.shtml
190 http://dml.cs.ucla.edu/projects/dml esip/Technology/Conquest/conquest.html
193 http://dml.cs.ucla.edu/projects/dml esip/Technology/VPN/vpn.html
194 http://dml.cs.ucla.edu/projects/dml esip/Technology/SEML/seml.html
135 http://dml.cs.ucla.edu/people/index.html
203 http://dml.cs.ucla.edu/projects/dml esip/Clustering/ESP2Net-CaLSIP/esp2net-calsip.html
204 http://dml.cs.ucla.edu/projects/dml esip/Clustering/DM Search/dm search.html
211 http://dml.cs.ucla.edu/access/simple.html

Figure 17: The Maximum Frequent Subtree Mined
From Web Log Files

5.4 Results on Free Trees. In this section, we
report our experiments on datasets of free trees. For
free trees, the enumeration tree based on the DFCF
does not work. Therefore we only use the enumeration
tree based on the BFCF and compare the BFCF-hybrid
version of our HybridTreeMiner algorithm with the
FreeTreeMiner algorithm, the only algorithm, to the
best of our knowledge, that mines frequent free trees.

5.4.1 Synthetic Datasets. In the first experiment,
we fix all parameters other than |I| (|D|=10000, |T |=30,
|N |=100, |S|=1%), while changing the maximal fre-
quent tree size |I|. For fair comparison, we watched
the memory usage for both algorithms carefully. Be-
cause in our experiments, when |I| grows larger than
18 the memory used by FreeTreeMiner will surpass the
available memory, we decided to compare the two al-
gorithms with |I| between 4 and 18. Figure 18 gives
the results. Figure 18(A) shows that, similar to that
of rooted unordered trees, the number of frequent sub-
trees grows exponentially with the size of maximal fre-
quent subtrees. Figure 18(B) gives the average time
for HybridTreeMiner and FreeTreeMiner to mine each
frequent subtree. We can see that our new algorithm
HybridTreeMiner is faster than FreeTreeMiner by 1 to
2 orders of magnitudes. In addition, we have observed
that the peak memory usage for HybridTreeMiner is
30MB and that for FreeTreeMiner is around 500MB.
This observation indicates that our new algorithm has
much smaller memory footprint compared to Apriori-
like algorithms.

5.4.2 The Chemical Compound Dataset. This
dataset was described in [9]. It contains 17,663 tree-

0 5 10 15 20
10

2

10
3

10
4

10
5

10
6

The Size of the Maximal Frequent Subtrees

T
he

 N
um

be
r

of
 F

re
qu

en
t S

ub
tr

ee
s

(A)

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

The Size of the Maximal Frequent Subtrees

T
im

e
P

er
 P

at
te

rn
 (

S
ec

on
d)

HybridTreeMiner
FreeTreeMiner

(B)

Figure 18: Number of Frequent Subtrees and Running
Time vs. Size of Maximal Frequent Trees

10
−1

10
0

10
1

10
2

10
0

10
2

10
4

10
6

Minimum Support [%]N
um

be
r

of
 (

M
ax

im
um

)
F

re
qu

en
t S

ub
tr

ee
s

All Frequent Subtrees
Maximum Frequent Subtrees

(A)

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

Minimum Support [%]

R
un

ni
ng

 T
im

e
[S

ec
]

HybridTreeMiner
FreeTreeMiner

(B)

Figure 19: Number of (Maximum) Frequent Subtrees
and Running Time vs. Support for the Chemical
Compound Dataset

structured chemical compounds sampled from a graph
dataset of the Developmental Therapeutics Program
(DTP) at National Cancer Institute (NCI) [18]. In
the tree transactions, the vertices correspond to the
various atoms in the chemical compounds and the
edges correspond to the bonds between the atoms.
We take atom types as the vertex labels and bond
types as the edge labels. There are a total of 80
distinct vertex labels and 3 distinct edge labels. We
explored a wide range of the minimum support from
0.1% to 50%. Figure 19(A) gives the numbers of
all frequent subtrees and maximum frequent subtrees
under different supports. We can see that compared to
all frequent subtrees, there are much fewer (about 10
times) maximum frequent subtrees. The numbers for
both frequent subtrees and maximum frequent subtrees
decrease exponentially with the support. Figure 19(B)
gives the running time for the two algorithms to mine
all frequent subtrees under different supports. Again,
HybridTreeMiner outperforms FreeTreeMiner by 1 to 2
orders of magnitudes.

16

6 Conclusion.

In this paper, we presented a novel canonical form, the
breadth-first canonical form (BFCF), for both rooted
unordered trees and free trees. In addition, we built
enumeration trees to enumerate all (frequent) rooted
unordered trees in their BFCFs and all (frequent) free
trees in their supplementary canonical forms. We also
defined two operations, extension and join, to efficiently
grow the enumeration trees. In our construction, rooted
unordered trees and free trees share similar canonical
forms, similar enumeration trees, similar operations on
the enumeration trees, and identical frequent subtree
mining algorithms. Our algorithm is shown to be
competitive in comparison to other rooted unordered
subtree mining algorithms and one to two orders of
magnitudes faster than the previously known free tree
subtree mining algorithm. The following are some
additional observations.

6.1 Canonical Forms. Different canonical forms
have been introduced by researchers to represent graphs.
The one defined by Inokuchi et al. [14] is based on the
lexicographical order among the adjacency matrix of a
graph. The canonical form for graphs given by Yan et
al. [22, 23] is defined based on the depth-first graph
traversal while the one given by Huan et al. [13] is de-
fined based on the breadth-first graph traversal. How-
ever, because it is a problem not known to be in P or
NP-complete, there is no known efficient algorithm to
obtain a canonical form for a graph. All of the above
work has used some permutation-and-test techniques.
On the other hand, we have given in this paper poly-
nomial algorithms for normalizing trees. The canonical
form for trees was discussed in [24], [6], and [9]. In all
three cases the canonical form is defined by the depth-
first traversal. In contrast, our canonical form for trees
in this paper is defined by the breadth-first traversal.
The two canonical forms are similar to each other, but
the breadth-first canonical form makes it possible to in-
troduce the join operation in enumeration tree growing,
which is shown in our experiments to be very effective
in improving the running time of our algorithm. In ad-
dition, the breadth-first canonical form can be extended
easily from rooted unordered trees to free trees, there-
fore our frequent subtree mining algorithm applies to
both rooted unordered trees and free trees.

6.2 Enumeration Trees. It is very interesting that
enumeration trees can be defined for three types of
trees–rooted ordered trees, rooted unordered trees, and
free trees. In that order, the structures of the three
types of trees become simpler and simpler; in contrast,
their enumeration trees become more and more compli-

cated (restricted). In other words, the simpler the tree
structure, the more difficult to represent the tree as a
node in the enumeration tree. This is because for all
three types of trees, the final representation (the canon-
ical form) must be rooted ordered trees.

6.3 Future Directions. First, from the experiment
results we can see that the number of subtrees grows
exponentially with respect to the size of the tree. As a
result, efficient algorithms to mine maximum frequent
trees, instead of mining all frequent subtrees, are called
for. Second, we are working on algorithms that mine
frequent subgraphs with mining frequent spanning trees
as the first step. Third, it is our belief that vertices in
the graph do not necessarily have only a single label–
each vertex can have multiple attributes. We will extend
our algorithm to handle multiple-attributes labels in the
future.

Acknowledgements.

This material is based upon work supported by the
National Science Foundation under Grant Nos. 0086116
and 0085773. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of
the National Science Foundation.

References

[1] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad.
A tree projection algorithm for generation of frequent
item sets. Journal of Parallel and Distributed Comput-
ing, 61(3):350–371, 2001.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In Proc. of the 20th Intl. Conf. on
Very Large Databases (VLDB’94), September 1994.

[3] A. V. Aho, J. E. Hopcroft, and J. E. Ullman. The De-
sign and Analysis of Computer Algorithms. Addison-
Wesley, 1974.

[4] J. M. Aldous and R. J. Wilson. Graphs and Applica-
tions, An Introductory Approach. Springer, 2000.

[5] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sata-
moto, and S. Arikawa. Efficient substructure discovery
from large semi-structured data. In 2nd SIAM Int.
Conf. on Data Mining, April 2002.

[6] T. Asai, H. Arimura, T. Uno, and S. Nakano. Discov-
ering frequent substructures in large unordered trees.
Technical Report DOI-TR-CS 216, Department of In-
formatics, Kyushu University, June 2003.

[7] R. J. Bayardo, Jr. Efficiently mining long patterns
from databases. In Proceedings of the ACM SIGMOD,
June 1998.

[8] Z. Chen, H. V. Jagadish, F. Korn, N. Koudas,
S. Muthukrishnan, R. T. Ng, and D. Srivastava.

UCLA Computer Science Department Technical Report CSD-TR No. 030043 17

Counting twig matches in a tree. In ICDE, pages 595–
604, 2001.

[9] Y. Chi, Y. Yang, and R. R. Muntz. Index-
ing and mining free trees. In Proceedings of
the 2003 IEEE International Conference on Data
Mining (ICDM’03, to appear), November 2003.
Full version available as Technical Report CSD-TR
No. 030041 at ftp://ftp.cs.ucla.edu/tech-report/2003-
reports/030041.pdf.

[10] J. Cui, J. Kim, D. Maggiorini, K. Boussetta, and
M. Gerla. Aggregated multicast–a comparative study.
In Proceedings of IFIP Networking 2002, May 2002.

[11] M. R. Garey and D. S. Johnson. Computers
and Intractability–A Guide to the Theory of NP-
Completeness. W. H. Freeman And Company, New
York, 1979.

[12] J. Hein, T. Jiang, L. Wang, and K. Zhang. On the
complexity of comparing evolutionary trees. Discrete
Applied Mathematics, 71:153–169, 1996.

[13] J. Huan, W. Wang, and J. Prins. Efficient mining of
frequent subgraph in the presence of isomorphism. In
Proc. 2003 Int. Conf. on Data Mining (ICDM’03, to
appear), 2003.

[14] A. Inokuchi, T. Washio, and H. Motoda. An apriori-
based algorithm for mining frequent substructures from
graph data. In Proc. of the 4th European Conference
on Principles and Practice of Knowledge Discovery in
Databases (PKDD’00), pages 13–23, September 2000.

[15] M. Kuramochi and G. Karypis. Frequent subgraph
discovery. In Proceedings of the 2001 IEEE Interna-
tional Conference on Data Mining (ICDM’01), Novem-
ber 2001.

[16] T. Liu and D. Geiger. Approximate tree matching
and shape similarity. In International Conference on
Computer Vision, September 1999.

[17] A. Medina, A. Lakhina, I. Matta, and J. Byers.
Brite: Universal topology generation from a user’s
perspective. Technical Report BUCS-TR2001-003,
Boston University, 2001.

[18] National Cancer Institute (NCI). DTP/2D and
3D structural information. World Wide Web,
ftp://dtpsearch.ncifcrf.gov/jan03 2d.bin, 2003.

[19] J. Punin and M. Krishnamoorthy. WWWPal system–
a system for analysis and synthesis of web pages. In
WebNet 98 Conference, November 1998.

[20] D. Shasha, J. T. L. Wang, and R. Giugno. Algorith-
mics and applications of tree and graph searching. In
Symposium on Principles of Database Systems, pages
39–52, 2002.

[21] A. Termier, M-C. Rousset, and M. Sebag. TreeFinder:
a first step towards xml data mining. In Proceedings
of the 2002 IEEE International Conference on Data
Mining (ICDM’02), pages 450–457, 2002.

[22] X. Yan and J. Han. gSpan: Graph-based substructure
pattern mining. In Proc. 2002 Int. Conf. on Data
Mining (ICDM’02), 2002.

[23] X. Yan and J. Han. CloseGraph: Mining closed
frequent graph patterns. In Proc. 2003 Int. Conf.

Knowledge Discovery and Data Mining (SIGKDD’03),
2003.

[24] M. J. Zaki. Efficiently mining frequent trees in a
forest. In 8th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, July 2002.

