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Abstract

Data in real world are usually noisy or uncertain. However, traditional data mining algorithms ignore
the uncertainty in data or take it into consideration in a very limited way. In this paper, we define
a relatively generic model for uncertainty in data in which each data item comes with a “tag” that
defines the degree of confidence in that value. This is more realistic in many cases where the data
items are derived from other evidence or more basic data. Simple examples are face recognition and
fingerprint identification where, for example, the raw data itself can influence the degree of confidence
in the identification. As an example problem, in this paper we study frequent itemset mining in such
uncertain data.

With uncertain data, finding frequent itemsets will not be perfect. There will be false positives
(itemsets which are estimated to be frequent but which are not) and false negatives (frequent itemsets
which are estimated not to be frequent). We consider several intuitive approaches and propose a new
scheme which significantly reduces the number of false positives and false negatives.

1 Introduction & motivation

Data mining is the process of discovering interesting patterns/knowledge from massive data. However, data
in the real world are usually imperfect, in the sense that there can be missing, wrong or ambiguous data
values. The uncertainty in data, if not taken into account, may lead data mining algorithms to report
erroneous patterns or, conversely, fail to report patterns which exist. Our goal is to begin to address the
issue of how we might be able to discover true patterns from an uncertain dataset?

There are two issues that have to be addressed: (a) How to model the uncertainty in data, and (b) how to
perform data mining algorithms on an uncertain dataset.
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Different models have been proposed in the literature to represent uncertainty in data, such as fuzzy set,
probability theory([ZCF+97]) and Dempster-Shafer evidence theory([Sha76]). Among them, probability
theory is perhaps the most popular and widely accepted model. For the same model, there are different
assumptions and representations for the uncertainty in data. For instance, many statistical techniques
assume that errors in a dataset follow some distribution. A common assumption is that the error for each
instance of an attribute value is an independent and identically distributed random variable; often Gaussian.
However, little work has dealt with datasets where each individual data value has a measure of its certainty,
though this representation contains more detailed uncertainty information.

Consider association rule mining ([AIS93], [AS94]) as an example. Association rule mining is used to detect
correlations among items of a dataset. Traditionally, we use confidence and support to estimate the correlation
among items and the significance of such correlation with regard to the whole population. These quantities
are well defined when the underlying dataset is deterministic and the values in it reflect the truth. However,
such a dataset may not always be available. For example, consider a dataset derived from a set of pictures
taken under certain circumstances. The list of people present in each picture forms a tuple in the dataset.
Assume people in all these pictures consist of a social circle. We want to detect the co-occurrence among
these people, such as, given that Person X is present, Person Y is likely to be present also. Such a dataset
is similar to market basket data where each item’s absence or presence in a transaction is indicated by 0 or
1. Unfortunately, with the limitations in image processing techniques, we can not be 100% sure if a person
is present in a picture or not. That is, due to the orientation of a face, shadows, partial occlusion, etc, each
individual data value may have an independent confidence(probability) associated with it. So the dataset
we get is uncertain.

The change in the dataset representation affects the data mining tasks. As we’ll see in Section 4, people
usually do not deal with such uncertain datasets directly. In fact, they are likely to make an uncertain dataset
deterministic before performing any tasks. A problem with such approaches is that the detailed uncertainty
information is lost in the transformation to a deterministic dataset and many important patterns can no
longer be discovered. This problem can be seen more clearly from our experiments in Section 6.

In this paper, we focus on the problem of frequent itemset mining, which is the first and most important step
in association rule mining. We provide a relatively generic model for uncertainty in data and an algorithm,
called EST, for discovering frequent itemsets in an uncertain dataset. The experiments show that EST can
significantly increase the number of true patterns being discovered, compared to existing approaches, without
introducing as many spurious patterns.

The remainder of this paper is organized as follows. Section 2 provides related work; Section 3 formally defines
the problem of frequent itemset mining in uncertain datasets. Three existing approaches are provided in
Section 4. Section 5 elaborates on our new algorithm EST. The experiments and comparison between EST
and other existing approaches are described in Section 6. The paper concludes with a short summary in
Section 7. A proof for the main theorem in the paper is provided in Appendix A.

2 Related work

Different types of uncertainty models have been proposed in the database field. [BGMP92], [LLRS97] define
models based on probability theory; [MPV94] makes use of fuzzy set theory; while [Lee92] is an instance
of Dempster-shafer theory. Among them, [BGMP92] has the most similar uncertainty model to ours. It
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uses stochastic attributes to capture non-deterministic properties of database entities. A stochastic attribute
for each individual entity corresponds to a set of values, with a discrete probability distribution over them,
indicating the values’ degree of truth.

All the above papers focus on extending relational algebra to handle uncertainty over basic operations, such
as projection, selection, and join. Little work has been done on how to deal with aggregate operations, such
as count. It is even not clear what the meaning is to perform a counting operation over an uncertain dataset,
though aggregate operations are the essential building blocks for data mining.

Uncertainty in data mining processes has been considered in a limited way. [YWYH02] mines frequent
sequential patterns in a sequence database with noise. The noise is defined by a compatibility matrix. Each
entry in the matrix corresponds to a pair of items (X, Y ) that specifies the conditional probability of X
being true given Y being observed. Because of such uncertainty in the data, the support measure for a
sequential pattern in the traditional algorithms is replaced by a new metric called match, which is essentially
the expected value for support. [KM02] assumes a noisy dataset is generated from a probabilistic model with
three components: a generative model of the clean data points, a generative model of the noise values, and
a probabilistic model of the corruption process. The goal of [KM02] is to identify and adjust for the noise.

Both [YWYH02] and [KM02] assume the noise in data is controlled by a single parametric statistical model,
which is not always true. In fact, the sources of uncertainty could be very diverse and they can not be handled
by a single model. The model we propose does not directly characterize the sources of uncertainty, but their
effect on each individual data value by a degree of truth. Despite the noise assumed in these papers, their
datasets are deterministic. In many situations, the original datasets obtained are uncertain, but they are
transformed to deterministic datasets before being presented to others or fed to any mining tasks. (Several
simple transformations of this type will be described shortly.) Important uncertainty information could be
lost during this process and the mining result may be biased.

[KFW98], [HV02] incorporate uncertainty in data mining based on fuzzy set theory. Fuzzy set theory
treats an item’s membership to a specific class as a continuous function over [0, 1]. It is most appropriate
for uncertainty that emerges when a strict demarcation between classes is inappropriate. This kind of
uncertainty is beyond the scope of this paper.

A research field that is parallel to our problem is privacy preserving data mining ([AS00], [ESAG02], [RH02],
[DZ03]). They deal with randomized datasets. The difference between this work and ours is that the noise
in a randomized dataset is injected on purpose and is known to the data mining algorithms; and again, the
actual datasets to be mined are deterministic.

3 Problem description

In this section, we define the problem of frequent itemset mining in an uncertain dataset.

3.1 Concept definitions

Definition 3.1 Deterministic dataset: Let DT be a binary dataset with M distinct items Ω = {I1, I2, . . . , IM}.
Ij = 1 (j ∈ [1,M ]) in a tuple t ∈ DT indicates that item Ij is present in t, while Ij = 0 means Ij is not
present in t. DT is called a deterministic dataset. If t contains Ij = 1, we say tuple t supports item
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Ij. Similarly, for a set of items I ⊆ Ω, we say a tuple t supports I if it supports all of the individual
items in I.

A frequent itemset I (I ⊆ Ω) in a deterministic dataset is defined as:

Definition 3.2 Frequent itemset: Itemset I is frequent if the number of tuples in DT supporting I is
above a user defined threshold. The number of tuples supporting I is called the support of I, and is denoted
by SI . If I consists of K distinct items, we call it a frequent itemset at level K.

In many situations, a deterministic dataset whose values perfectly reflect the truth is not available. Instead,
we get a set of uncertain values with different degrees of certitude or confidence. We define a generic
uncertainty model as follows:

Definition 3.3 Uncertain dataset: Let D be a dataset with M distinct items Ω = {I1, I2, . . . , IM}. For
any tuple t ∈ D, item Ij (j ∈ [1,M ]) does not correspond to a single, deterministic value, but a distribution
over the pair of values < 0, 1 >. (The value 1 and 0 have the same meanings as that in a deterministic
dataset.) The probability mass associated with each value we term the tag of the value. The tag of a value
indicates how likely that value is to be true. D is called an uncertain dataset.

Unlike many existing models of uncertainty that assume a common noise distribution (often Gaussian) over
the whole dataset or the values of the same attribute, we assume a tag is assigned to each value in the dataset
individually. In this sense, our model of uncertainty is more generic. An uncertain dataset defined in this
way preserves the detailed information of uncertainty, of each value and thus could lead to more accurate
estimate of the true patterns. Intuitively, the values in which there is greater confidence should be weighted
more.

Table 1 gives an example of an uncertain dataset. In this example, item X and Y in each row of D correspond
to a pair of values with tags. The value pair {< 1, 0.3 >,< 0, 0.7 >} for X in the first tuple says that X is
present in this tuple with probability 0.3, and absent with probability 0.7. D can be simplified to DS which
contains tags for value 1s only without loss of any information. In the following, we will use the simplified
form to represent an uncertain dataset.

D
X Y

< 1,0.3 >, < 0,0.7 > < 1, 0.8 >, < 0, 0.2 >

< 1, 0.5 >, < 0, 0.5 > < 1, 0.4 >, < 0, 0.6 >

< 1, 0.7 >, < 0, 0.3 > < 1, 0.7 >, < 0, 0.3 >

< 1, 0.9 >, < 0, 0.1 > < 1, 0.9 >, < 0, 0.1 >

DS

X Y

0.3 0.8

0.5 0.4

0.7 0.7

0.9 0.9

Table 1: An example of uncertain dataset

3.2 Mining objectives

Suppose we are given an uncertain dataset D corresponding to a true deterministic dataset DT . We want to
discover from D the true frequent itemsets, that is, the itemsets that are frequent in DT .
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Based on the information in D, we may not be able to discover the exact set of frequent itemsets in DT ,
due to the inherent uncertainty in D. An infrequent itemset in DT that is discovered to be frequent by some
mining algorithm applied to D is called a false positive itemset. Symmetrically, a frequent itemset in DT that
is found to be infrequent in D is called a false negative itemset. A good mining algorithm should produce
both a small number of false negative itemsets and a small number of false positive itemsets.

To simplify the problem, we make the following two assumptions concerning uncertain datasets:

• The tags associated with values of different items in the same tuple are assigned independently given
the true values of these items.

• Values for different items in an uncertain dataset are independent given the tags.

4 Existing algorithms

To mine frequent itemsets in an uncertain dataset D, a straightforward approach is to convert D to a
deterministic dataset Ddet first, then apply a traditional mining algorithm on Ddet. Generally speaking,
there are two common ways to generate a deterministic dataset. For a tag tagX associated with value X = 1
in D, one way is to output

X =
{

1, if tagX ≥ threshold;
0, otherwise.

Another way is to output

X =
{

1, with probability tagX ;
0, with probability 1− tagX .

We call the mining algorithm based on the first transformation DET1, and that based on the second trans-
formation DET2. Ddet1 and Ddet2 in Table 2 give an example of the deterministic datasets generated from
the uncertain dataset D by DET1 and DET2. Here the threshold for DET1 is set to 0.5.

D
X Y

0.6 0.9

0.6 0.9

0.6 0.9

0.6 0.9

0.6 0.9

0.6 0.9

0.6 0.9

0.6 0.9

0.6 0.9

0.6 0.9

Ddet1

X Y

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

Ddet2

X Y

1 1

1 1

0 1

0 1

1 1

0 1

1 1

1 0

1 1

0 1

Table 2: The deterministic datasets derived from an uncertain dataset
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Both DET1 and DET2 discard the detailed uncertainty information in original data and this will affect the
quality of the mined result.

A third algorithm EXP uses a similar idea as that in [YWYH02]. It extends the traditional mining algorithm
to an uncertain dataset by replacing the support measure with the expected support value. For example,
itemset {XY } in D (Table 2) has expected support value E[SXY ] = 0.6 ∗ 0.9 ∗ 10 = 5.4. Itemset {XY } is
output as a frequent itemset by algorithm EXP if E[SXY ] is above the support threshold.

All three approaches discussed thus far can be easily implemented based on existing frequent itemset mining
algorithms. However, a common problem with them is that they often output either a large number of false
positive or a large number of false negative itemsets, as we will see in the experiments in Section 6. Another
problem they all have is that they have difficulty in recognizing the frequent itemsets at high level.

5 Algorithm EST: using ESTimated support to discover frequent
itemsets in an uncertain dataset

Let DT denote a deterministic dataset representing ”ground truth”, i.e., the true contents of a set of trans-
actions. Let D denote an uncertaint dataset representing the same ground truth. Figure 1 (a) illustrates the
relationship of DT and D; figure 1 (b) illustrates how we model the relationship of DT and D.

true situation

evidence

DT

D

(a)

DT D
stochastic transformation

(b)

direct, perfect observation

 

Figure 1: The relationship between ”ground truth” and D

Let SI be the support of itemset I in DT . The basic idea of algorithm EST is to develop a good support
estimator e(SI) for I. Using e(SI), itemsets that are likely to be frequent in DT can be discovered according
to the following criterion C:

C : I is
{

frequent, if e(SI) ≥ threshold;
infrequent, otherwise.

In the following, we first give a different view of the uncertain dataset D, then talk about how to derive the
estimator e(SI).
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5.1 A different view of the uncertain dataset D
An uncertain dataset D with a set of items Ω can be viewed as generated through the following thought
experiment: Let DT be the true deterministic dataset behind D. We use a recognition tool to identify the
values for each item X in DT independently. Due to some sources of uncertainty in DT and the limitations
of the tool, the tool outputs for each value of X a pair of tagged values: {< 1, tagX >,< 0, 1− tagX >}. As
we mentioned in Section 3.1, only tags for value 1s are preserved in D. So for each tagX in D, it may come
from a true value 1 or 0. Given DT and D, we can compute the proportion of instances of X = 1 in DT that
have been assigned a tag value tagX in D, as well as the proportion of instances of X = 0 in DT that have
been assigned a tag value tagX . We call these tag proportions the tag distributions for item X, and denote
them by

fX(tagX) = P (X is assigned tagX in D|X = 1 in DT ),

and
gX(tagX) = P (X is assigned tagX in D|X = 0 in DT ).

The tag distributions for all items in DT is denoted by

T = {fX(tagX), gX(tagX)|X ∈ Ω}.

T defines a mapping from DT to a space Ψ of uncertain datasets. Each uncertain dataset in Ψ is generated
by assigning tags to values in DT following the distributions T. D can be viewed then as a sample point in
Ψ. Figure 2 illustrates this process.

Figure 2: A different view of the uncertain dataset D

5.2 An unbiased support estimator e(SI)

Let SI be the support of itemset I = {I1, I2, . . . , IK} in DT . The expected value of SI conditioned on the
given uncertain dataset D is denoted by S̃I = E[SI |D]. From Figure 2, we can see that D is a sample point
in space Ψ defined by the true dataset DT and the tag distributions T. Given DT and T, we can compute
the expected value of S̃I , denoted by E[S̃I ].

Theorem 1. Let SI be the support of itemset I = {I1, I2, . . . , IK} in DT , S̃I be the expected value of SI
conditioned on D. The expected value of S̃I conditioned on the true dataset DT and tag distributions T has
the following form:

E[S̃I ] = A(T) ∗ SI + B(T, {Sf |f ⊂ I}). (1)

Here, A(T) is a function of T; B(T, {Sf |f ⊂ I}) is a function of T and the true support for each of I’s
true subsets. Let {tagi|i = 1, 2, . . . , MIj} be the MIj distinct tag values item Ij can take, and FIj =
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∑
i[tagi ∗ fIj (tagi)], GIj =

∑
i[tagi ∗ gIj (tagi)], then,

A(T) =
∏

Ij∈I
(FIj −GIj ); (2)

B(T, {Sf |f ⊂ I}) =
∑

f⊂I

{
Sf ∗

∏

Ij∈f

(FIj
−GIj

) ∗
∏

Ij∈I\f
GIj

}
(3)

Proof. See Appendix A.

Intuitively, B(T, {Sf |f ⊂ I}) represents the contribution of tuples in DT that actually only partially support
I but, due to the uncertainty, contribute a non-zero value to E[S̃I ]. A(I) represents the degree to which a
tuple fully supporting I in DT is affected by the sources of uncertainty. In the extreme situation where there
is no uncertainty, the tag distributions will be fIj (1) = 1, and gIj (0) = 1 for each Ij ∈ I. D then becomes
equal to DT . According to formula (1), we have

E[S̃I ] = A(T) ∗ SI + B(T, {Sf |f ⊂ I})
= 1 ∗ SI + 0
= SI .

By a simple transformation of formula (1), we get

SI = E[
S̃I −B(T, {Sf |f ⊂ I})

A(T)
]. (4)

So, S̃I−B(T,{Sf |f⊂I})
A(T) is an unbiased estimator of the true support SI . We denote it by:

e(SI) =
S̃I −B(T, {Sf |f ⊂ I})

A(T)
. (5)

By replacing each Sf in (5) with its unbiased estimate e(Sf ), we get:

e(SI) =
S̃I −B(T, {e(Sf )|f ⊂ I})

A(T)
. (6)

Equation (6) is a recursive expression. Given the uncertain dataset D, S̃I and {S̃f |f ⊂ I} are known. If we
have the information about T, we can recursively compute the unbiased support estimate for all I’s subsets
{e(Sf )|f ⊂ I}, and finally, we obtain e(SI).

5.3 Deriving the tag distributions T from the uncertain dataset D
In the previous discussion, the tag distributions T are given. In real situations, they are not provided.
However, if we assume that the tag associated with a value in D really reflects the value’s probability of
being true, the following constraint holds for any item X in Ω:
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Definition 5.1 Tag constraint: The probability of X = 1 in the true dataset DT given X being assigned
tag value tagX in the uncertain dataset D is tagX . That is:

tagX
∼= P (X = 1 in DT |X is assigned tagX in D)

=
fX(tagX)SX

fX(tagX)SX + gX(tagX)(N − SX)
. (7)

Here, N is the total number of tuples in DT (or D). For example, suppose D has 10 tuples with tagX = 0.9.
If the recognition tool that generated D has a perfect estimate about its errors, the expected number out of
the 10 tuples to have X = 1 in DT is 9.

Note: the tag constraint (7) is expected to hold under the assumption that the tool is perfect in assigning
tag values and in the limit as the number of tuples becomes large. However, it is only an approximation. For
a tag value close to 0 or 1, the tag constraint is expected to be a tight approximation, while for a tag value
close to 0.5, the approximation is expected to be loose.

Suppose there are m distinct tag values for item X, to estimate the tag distributions for X, we have 2m + 1
unknown values. They are:

• SX : the support of X in the true dataset DT ;

• {fX(tagi)|i = 1, 2, . . . ,m}: the percentage of X = 1 in DT that is assigned tag value tagi in D;

• {gX(tagi)|i = 1, 2, . . . , m}: the percentage of X = 0 in DT that is assigned tag value tagi in D.

We have a total 2m + 2 constraints:

• 2m soft constraints derived from the tag constraints:

fX(tagi)SX = tagiNtagi , i = 1, 2, . . . ,m; (8)
fX(tagi)SX + gX(tagi)(N − SX) = Ntagi , i = 1, 2, . . . , m. (9)

Here, N is the total number of tuples in D; Ntagi is the number of tuples in D that contain X with
tag value tagi.

• 2 strict constraints:
∑

i

fX(tagi) = 1; (10)

∑

i

gX(tagi) = 1. (11)

From equations (8), (9), (10) and (11), we get:

SX =
∑

i

tagiNtagi ; (12)

fX(tagi) =
tagiNtagi

SX
; (13)

gX(tagi) =
(1− tagi)Ntagi

N − SX
. (14)
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5.4 Level-wise mining of frequent itemsets in the uncertain dataset D
With the uncertain dataset D known and the tag distributions T computed according to the development
in Section 5.3, we are able to discover the frequent itemsets level by level, using formula (6). The estimated
support value for itemsets at lower levels can be used to estimate the support for their super-itemsets.
Algorithm 1 gives the complete procedure for EST.

Algorithm 1 EST
Input: the uncertain dataset D with a set of distinct items Ω; the support threshold tsup;
Output: F = {I|I ⊆ Ω, and e(I) ≥ tsup}.
1: derive the tag distributions T from D;
2: k ← 1;
3: F← ∅;
4: Ck ← Ω; /* Ck is the set of candidate itemsets at level k */
5: while Ck 6= ∅ do
6: Fk ← ∅; /* Fk is the set of frequent itemsets at level k */
7: for all f ∈ Ck do
8: compute e(Sf ) according to formula (6);
9: if e(Sf ) ≥ tsup then

10: add f to Fk;
11: end if
12: end for
13: F← F ∪ Fk;
14: generate Ck+1 from Fk; /* Ck+1 is generated by the way the Apriori algorithm uses in [AS94] */
15: k ← k + 1;
16: end while
17: return the set of frequent itemsets F;

Note: in Algorithm EST, the candidate itemsets are generated using what the traditional Apriori algorithm
[AS94] ueses. However, to discover the itemsets with estimated support values above the support threshold,
the a priori property does not hold. So the itemsets discovered by EST are a subset of those actually qualifying
under the criterion.
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6 Experiments

In our experiments, we compare algorithm EST with algorithms DET1, DET2 and EXP defined in Section
4.

An uncertain dataset D is generated in the following way: A true dataset DT with a set of items Ω is first
generated by the IBM Almaden generator [AS94] with parameters T=10, I=4, D=10K, and N=0.1K.1 DT

contains 10,000 tuples and 100 distinct items. Then for each item X ∈ Ω, its values in DT are assigned tags
according to the tag distributions fX(tagX), gX(tagX). Without loss of generality, let fX(tagX) for each
item X ∈ Ω be the same. Depending on the support value of X in DT , a corresponding tag distribution
gX(tagX) is determined so that the tag constraint for X is satisfied on D.

To study how the quality of an uncertain dataset affect the mining result, we use three different fX(tagX)s
(see Table 3). They correspond to an uncertain dataset with good, medium and bad quality respectively.
Based on each fX(tagX), 100 uncertain datasets are generated from DT . The total number of frequent
itemsets mined from DT under the support threshold 100 (1% of 10, 000) is 13, 243. The average mining
results over each 100 datasets by the four approaches are shown in Table 4. Here, Num represents the number
of frequent itemsets (Num) that are discovered, FPs and FNs represent the number of false positive itemsets
and false negative itemsets respectively.

Good

tagX fX(tagX)

0.7 0.1

0.8 0.4

0.9 0.4

1 0.1

Medium

tagX fX(tagX)

0.1 0.1

0.6 0.4

0.8 0.4

1 0.1

Bad

tagX fX(tagX)

0.3 0.4

0.4 0.4

0.9 0.1

1 0.1

Table 3: three tag distributions fX(tagX) for item X

The result indicates that DET1 has a very large number of false positive or false negative itemsets, so we
will not consider it further. DET2 and EXP have quite similar number of false positive and false negative
itemsets. However, neither of them discovered more than half of the true frequent itemsets.

In the following, we study the results obtained from one uncertain dataset with medium quality. Table 5
lists the number of frequent itemsets mined by DET2, EXP and EST, the FPs and FNs at each level. The
results indicate that DET2 and EXP have difficulty discovering frequent itemsets at level 6 or higher.

Figure 3 shows the true support value distributions for the false positive and false negative itemsets under
methods EXP and EST. We can see that most of the false positive and false negative itemsets in EST have
true support values around the support threshold 100.

One might consider an itemset with support value within ±5% of the support threshold is a “marginal”
frequent/infrequent itemset and not consider these as errors even if misclassified as frequent or not since
they are so close to the threshold. Table 6 shows the number of FNs and FPs remaining when those itemsets
with support within ±5% of the threshold are removed from the FP and FN sets in Table 5. For the EST

1The parameter’s notation follows the naming convention in [AS94]: T represents the average tuple size; I represents the
average size of the maximal potentially large itemsets; D represents the number of tuples; and N represents the number of
distinct items.
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quality method Num FPs FNs
mean sd mean sd mean sd

result on DT 13243 0 - - - -

Good DET1 27205.61 171.10 13962.61 171.10 0 0
DET2 8124.59 94.12 377.01 22.18 5495.42 81.93
EXP 7939.24 38.39 307.41 13.00 5611.17 33.66
EST 13203.68 116.44 572.33 68.79 611.65 65.09

Medium DET1 29906.84 290.84 17448.51 277.36 784.67 37.35
DET2 5935.18 79.03 702.8 29.50 8010.62 56.33
EXP 5783.6 26.45 624.72 11.28 8084.12 20.63
EST 13218.34 236.25 1504 141.60 1528.66 125.39

Bad DET1 58.12 1.45 0 0 13184.88 1.45
DET2 5156.58 74.93 991.58 37.45 9078 43.23
EXP 5034.17 15.22 917.7 9.02 9126.53 10.04
EST 12426.89 480.21 3869.76 313.56 4685.87 202.95

Table 4: Results of DET1, DET2, EXP and EST under uncertain datasets with different quality

algorithm, approximately 1/4 of the FP and 1/2 of the FN itemsets in Table 5 are in this marginal category.
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level true number EXP DET2 EST
FPs FNs Num FPs FNs Num FPs FNs Num

1 70 0 0 70 0 0 70 0 0 70

2 1177 119 36 1260 120 36 1261 23 29 1171

3 4210 453 1111 3552 538 1109 3639 321 339 4192

4 4228 45 3382 891 82 3253 1057 699 471 4456

5 2389 0 2357 32 0 2341 48 342 330 2401

6 937 0 937 0 0 936 1 122 191 868

7 209 0 209 0 0 209 0 21 39 191

8 22 0 22 0 0 22 0 2 1 23

9 1 0 1 0 0 1 0 0 0 1

All 13243 617 8055 5805 740 7907 6076 1530 1400 13373

Table 5: Comparison of DET2, EXP and EST at each level

Figure 3: True support distribution for FPs&FNs under method EXP and EST

level true number EXP DET2 EST
FPs FNs FPs FNs FPs FNs

1 70 0 0 0 0 0 0

2 1177 94 29 94 27 9 17

3 4210 387 914 467 923 227 182

4 4228 34 2978 64 2859 508 262

5 2389 0 2060 0 2044 272 188

6 937 0 789 0 788 80 101

7 209 0 174 0 174 14 15

8 22 0 21 0 21 1 1

9 1 0 1 0 1 0 0

All 13243 515 6966 625 6837 1111 766

Table 6: FPs&FNs after the removal of the marginals
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7 Conclusion and future work

In this paper, we define a generic model of uncertainty for binary datasets, and provide an algorithm EST
to discover frequent itemsets under this model. Compared with existing approaches, EST makes use of a
support estimator that can greatly reduce the number of false positive and false negative itemsets. In the
future, we plan to study the variance of the estimator. Furthermore, since the estimator is based on the
assumption that the tag constraints are satisfied, we plan to study how sensitive the estimator will be if the
tag constraints are violated to some degree.

The uncertainty model in this paper is defined on a binary dataset, it could be extended to dataset with
categorical or numeric values. We plan to study how the data mining algorithms should be adapted to such
datasets.
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Appendix

A Proof of Theorem 1

Assume itemset I = {I1, I2, . . . , IK}. Each item Ij in I has tag distributions fIj (α), gIj (α). Let the number
of distinct tag values item Ij can take on be MIj . Then, itemset I could take on a total of J =

∏K
j=1 MIj

distinct combinations of tag values. We denote the ith tag combination by

αi =< αi1, αi2, . . . , αiK >, i ∈ {1, 2, . . . , J}.

The true dataset DT can be viewed as composed of 2K disjoint blocks: DT =
⋃

f⊆I Bf . All the tuples in block
Bf support f and no other subset of I that contains f . For example, for I = {X, Y }, DT can be partitioned
into 4 blocks: B∅, BX , BY and BXY . BX contains tuples that support X but not XY . Correspondingly,
the uncertain dataset D derived from DT can also be partitioned into 2K blocks: D =

⋃
f⊆I B′

f , where B′
f

is generated from Bf . We denote the number of tuples in Bf by Nf , Nf = |Bf | = |B′
f |.

Now let’s look at block Bf . An indicator function r(Ij) is defined in Bf for item Ij ∈ I, such that:

r(Ij) =
{

1, if Ij ∈ f ;
0, otherwise.

The probability of I having the ith tag combination αi in Bf is:

pαi = p(αi1, αi2, . . . , αiK) =
K∏

j=1

[fIj (αij)]r(Ij)[gIj (αij)]1−r(Ij).
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Let Nαi be the number of tuples in B′
f where I takes the ith tag combination, then

∑J
i=1 Nαi = Nf .

Actually, Nα1 , Nα2 , . . . , NαJ
follow a multinomial distribution with parameters pα1 , pα2 , . . . , pαJ

. That is,

p(Nα1 = n1, Nα2 = n2, . . . , NαJ
= nJ ) = Nf !

J∏

i=1

pni
αi

ni!
.

Now consider a tuple t′ in B′
f where itemset I has the ith tag combination αi. Since αij represents the

probability of item Ij being present in t —— the corresponding tuple of t′ in Bf , the probability of itemset
I being present in t (i.e., all items in I are present in t) is:

δαi
=

K∏

j=1

αij .

Let Xt be a binary variable, indicating whether itemset I is present in t. Then,

Xt =
{

1, with probability δαi
;

0, with probability 1− δαi .

The z-transform for Xt is:
GXt(z) = 1− δαi + δαiz = 1− δαi(1− z).

If there are Nαi tuples in B′
f where I takes the ith tag combination αi, then the z-transform for

∑
Xt over

those tuples is:
[GXt(z)]Nαi .

In the following, we simplify the notation Nαi as Ni; δαi as δi, and pαi as pi.

Given Ni for i = 1, 2, . . . , J in B′
f , the z-transform for

∑
t∈Bf

Xt is:

J∏

i=1

[1− δi(1− z)]Ni .

Unconditioned on N1, . . . , NJ , the z-transform for
∑

t∈Bf
Xt is:

G(z) =
∑

n1+n2+...+nJ=Nf

{p(N1 = n1, . . . , NJ = nJ)
J∏

i=1

[1− δi(1− z)]ni}

=
∑

n1+n2+...+nJ=Nf

{[Nf !
J∏

i=1

pni
i

ni!
] ∗

J∏

i=1

[1− δi(1− z)]ni}

=
∑

n1+n2+...+nJ=Nf

{Nf !
J∏

i=1

[pi(1− δi(1− z))]ni

ni!
}

= [
J∑

i=1

pi(1− δi(1− z))]Nf .
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According to the z-transform, the mean of
∑

t∈Bf
Xt can be computed as follows:

mBf
=

∂G
∂z

∣∣
z=1

= Nf [
J∑

i=1

pi(1− δi(1− z))]Nf−1[
J∑

i=1

piδi]
∣∣
z=1

= Nf

J∑

i=1

piδi

= Nf

J∑

i=1

pαi
δαi

= Nf

J∑

i=1

{ K∏

j=1

{[fIj (αij)]r(Ij)[gIj (αij)]1−r(Ij)}
K∏

j=1

αij

}

= Nf

J∑

i=1

{ K∏

j=1

{[fIj (αij)]r(Ij)[gIj (αij)]1−r(Ij)αij}
}

= Nf

K∏

j=1

{ MIj∑

l=1

{[fIj (αl)]r(Ij)[gIj (αl)]1−r(Ij)αl}
}
.

Let FIj =
∑MIj

l=1 fIj (αl)αl, GIj =
∑MIj

l=1 gIj (αl)αl. We get,

mBf
= Nf

K∏

j=1

[F r(Ij)
Ij

G
1−r(Ij)
Ij

]. (15)

Since the tuples are independent of each other, we have,

E[S̃I ] =
∑

f⊆I
mBf

. (16)

According to the Principle of Inclusion/Exclusion, we have

Nf = Sf −
∑

f⊂ω⊆I,|ω|=|f |+1

Sω + . . . + (−1)i
∑

f⊂ω⊆I,|ω|=|f |+i

Sω + . . . + (−1)|I|−|f |SI . (17)

Here, Sf , Sω are the true support for itemset f and ω in DT respectively. Replacing Nf in equation (13)
with (12) and (14), we get

E[S̃I ] = SI ∗
∏

Ii∈I
(FIi −GIi) +

∑

f⊂I

{
Sf ∗

∏

Ii∈f

(FIi −GIi) ∗
∏

Ii∈I\f
GIi

}
. (18)

Following is an example:
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For itemset I = {X, Y }, from equation (13), we get

E[S̃XY ] = NXY FXFY + NY GXFY + NXFXGY + N∅GXGY . (19)

Since

NY = SY − SXY ; (20)

NX = SX − SXY ; (21)

N∅ = S∅ − SX − SY + SXY ; (22)

Replacing NY ,NX and N∅ in Equation (16) with (17), (18), (19), we get:

E[S̃XY ] = (FX −GX)(FY −GY )SXY +

(FX −GX)GY SX + GX(FY −GY )SY + GXGY S∅. (23)
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