
UCLA Computer Science Department Technical Report #030041 1

Indexing and Mining Free Trees

Yun Chi, Yirong Yang, Richard R. Muntz
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90095

{ychi,yyr,muntz}@cs.ucla.edu

Abstract

Tree structures are used extensively in domains such as computational biology, pattern recog-
nition, computer networks, and so on. In this paper, we present an indexing technique for free
trees and apply this indexing technique to the problem of mining frequent subtrees. We first
define a novel representation, the canonical form, for rooted trees and extend the definition to
free trees. We also introduce another concept, the canonical string, as a simpler representation
for free trees in their canonical forms. We then apply our tree indexing technique to the frequent
subtree mining problem and present FreeTreeMiner, a computationally efficient algorithm that
discovers all frequently occurring subtrees in a database of free trees. Our mining algorithm
is a variation of the traditional a priori method for mining frequent itemsets. We study the
performance and the scalability of our algorithms through extensive experiments based on both
synthetic data and datasets from two real applications: a dataset of chemical compounds and a
dataset of Internet multicast trees. The experiments show that our algorithm scales linearly in
the cardinality of the database.

1 Introduction

Graphs are used extensively in various areas such as computational biology, chemistry, pattern
recognition, computer networks, etc. Among all graphs, a particularly useful family is the family
of free trees–the connected, acyclic and undirected graphs. Here are some examples: in analysis of
molecular evolution, an evolutionary tree (or phylogeny), which can be either a rooted tree or a free
tree, is used to describe the evolution history of certain species [10]; in pattern recognition, a free
tree called shape axis tree is used to represent shapes [15]; in computer networking, multicast trees
are used for packet routing [8]. In addition to being unrooted, trees in these applications are often
labeled, with labels attached to vertices and edges where these labels are not necessarily unique. In
this paper, we study some issues in databases of labeled free trees.

In the above applications, two problems are important from the database point of view. The
first one is how to index trees. For example, in the pattern recognition example [15], the first
step of recognizing a shape might be to look in a database of available objects (in the format
of shape axis trees) to find objects similar to the given shape. The second problem in these
applications is how to efficiently discover interesting patterns. One type of interesting patterns
consists of those patterns that are embedded in a lot of transactions in a database. In the multicast
example [8], the networking engineers are interested in aggregating parts of multicast trees that are

UCLA Computer Science Department Technical Report #030041 2

shared by different groups, so they want to know which parts are more beneficial to aggregate, i.e.,
which parts occur most frequently. In this paper, we present our approaches to solving these two
important problems. Some of the main contributions of our work are: (1) We introduce a unique
representation, the canonical form, for a free tree and give an efficient algorithm to convert a free
tree to its canonical form. An equivalent representation, the canonical string, is also introduced
to simplify certain operations such as comparing or searching free trees. With canonical forms,
free trees can be indexed using traditional indexing techniques such as B-tree and hashing. (2) We
apply the canonical form of free trees to the frequent subtree mining problem. In mining procedures,
canonical forms are used to index frequent trees and candidate trees; they are also used to speed
up the join step. (3) We have implemented all of our algorithms and have extensive experiments
analysis. We use both synthetic data and real application data to evaluate the performance of our
algorithm.

The rest of this paper is organized as follows. Section 2 introduces the canonical form and the
corresponding canonical string for free trees. Section 3 presents our algorithm for mining frequent
subtrees. Section 4 includes experiments and performance analysis. Section 5 discusses other
related work. Finally, section 6 concludes our work and gives future directions.

2 Canonical Form for Labeled Free Trees

In this section, we give a unique representation for labeled free trees, i.e. a canonical form that
represents labeled free trees in the same equivalence class where the relation defining the equivalence
classes is an isomorphism. Two labeled trees T1 and T2 are isomorphic to each other if there is a
one-to-one mapping from the vertices of T1 to the vertices of T2 that preserves vertex labels, edges
labels, and adjacency.

2.1 Labeled, Rooted, Ordered Trees

A rooted tree is a tree in which one vertex is singled out as the root. We say that a rooted tree
is ordered if the set of children of each vertex in the tree is ordered. If a labeled rooted tree is
ordered, then there are ways to represent the tree in a unique form. [21] is one example in which a
depth-first traversal is used to obtain unique string representations for rooted ordered trees. Notice
that when a rooted tree is ordered, the isomorphism does not really apply–two rooted ordered trees
are either the same or not.

2.2 Labeled, Rooted, Unordered Trees

We assume that for the trees in our databases, both vertices and edges are labeled and there exist
total orders among vertex labels and edge labels. We define the total order among trees based on
the ordering for labels.

Let’s first assume that the trees are rooted. (Later, we will extend our definition to free trees.) If
a tree is rooted, without loss of generality we can assume that all edge labels are identical, because
each edge connects a vertex with its parent and we can consider an edge, together with its label,
as a part of the child vertex. (For the root, we can assume that there is a null edge connecting to
it from above.)

UCLA Computer Science Department Technical Report #030041 3

There are two concepts we want to define: the canonical form for a rooted tree and the or-
der among rooted trees. These two concepts are defined mutually recursively (notice that in the
definition below we assume that all edge labels are identical):

Definition 1 (Canonical Form and Order for Labeled, Rooted, Unordered Trees). For
labeled rooted trees with height 0 (i.e., trees consisting of a single vertex), the canonical forms are
the vertices themselves and the order among such trees is defined by the order of the vertex labels.

For a labeled rooted tree with height h where h > 0, the canonical form is obtained by first
normalizing all subtrees of the root then rearranging the subtrees in increasing order (from the left
to the right in illustrating examples).

For a pair of labeled rooted trees (in their canonical forms) with heights less than or equal to h
where h > 0 , their order is defined by first comparing the labels of their roots then comparing their
corresponding subtrees from the left to the right until their relative order is resolved.

Essentially, after normalizing rooted trees into their canonical forms, we can compare two trees;
the normalization of a tree with height h > 0 depends on the order among the subtrees (whose
heights are less than h) of the root. It’s very easy to see that the above definition introduces a
total order among all rooted trees. Figure 1 gives a rooted tree and its canonical form. Notice two
things in the example: first, an edge connects a child vertex to its parent and the edge label is
considered as a part of the vertex label of the child–this is why the branch “2,D” is less than branch
“3,C” at the leaf level; second, in comparing two (sub)trees, if root nodes have different number
of subtrees, then we need to conceptually pad the smaller set of subtrees with subtrees having the
largest possible label–this is why we switch the two subtrees of the root to get the canonical form
in our example.

2

A

C

B B

D D

1 1

2 23

A

BB

D C D

1 1

32

Figure 1: A Labeled, Rooted, Unordered Tree (left) and Its Canonical Form (right)

2.3 Labeled Free Trees

Free trees do not have roots, but we can uniquely create roots for them for the purpose of con-
structing a unique canonical form for each free tree. Starting from a free tree in each step we
remove all leaf vertices (together with their incident edges), and we repeat the step until a single
vertex or two adjacent vertices are left. For the first case, the tree is called a central tree and the
remaining vertex is called the centre; for the second case, the tree is called a bicentral tree and the
pair of remaining vertices are called the bicentre [3]. The procedure takes O(k) time where k is the
number of vertices in the free tree. Figure 2 shows a central tree and a bicentral tree as well as the
procedure to obtain the corresponding centre and bicentre.

UCLA Computer Science Department Technical Report #030041 4

Figure 2: A Central Tree (above) and A Bicentral Tree (below)

If we relax the definition of rooted trees to allow a pair of roots (together with an edge connecting
them) then from an arbitrary free tree we can obtain a rooted tree. After obtaining such a rooted
tree with a root or a pair of roots, we can extend the definition of canonical form to an arbitrary
labeled free tree. Notice that for a bicentral tree, the order of the pair of roots is fixed in its
canonical form.

2.4 Some Practical Issues in Canonical Form

In this section, we give a method to transform a labeled rooted tree (which can be obtained from
a free tree using the above procedure) into its canonical form. Then we describe how to convert
canonical forms into an equivalent but simpler representation–the canonical string. We also describe
how to convert from canonical strings back to trees in their canonical forms.

2.4.1 Normalizing Rooted Trees

We now show a bottom-up procedure to normalize labeled rooted trees. The procedure is based
on a tree isomorphism algorithm given in [2]. For the reason explained earlier, without loss of
generality, we assume that all edge labels are identical. Figure 3 gives a running example on how
to obtain the canonical form for a labeled rooted tree. In the figure, we start from the original tree,
normalize level by level bottom-up using the orders among subtrees at each level, until finally we
obtain the canonical form. Notice that we have used (acyclic, directed) multigraph to represent
trees in intermediate steps in order to combine subtrees that are equal. It is straightforward to
extend this procedure to rooted trees obtained from bicentral free trees.

The key step in each level of the procedure is sorting. With appropriate data structures, the
running time for the normalization is O(c · k log k), where c is the maximal fan-out of the tree and
k is the number of vertices in the tree: assuming there are kh vertices in each level of the tree
for h = 0, 1, 2, . . . , to sort vertices at level h, it takes O(kh log kh) comparisons; the total number
of comparison for normalizing the whole tree is

∑
h O(kh log kh) which is O(k log k) (notice that∑

h(kh log kh) ≤ ∑
h(kh log k) = k log k); the time for each comparison is bounded by the maximal

fan-out c of the tree because we can consider c as the length of the “keys” to be compared.

UCLA Computer Science Department Technical Report #030041 5

Canonical Form
A CB B A

G

FF F

E D E

A B C

G

FF F

E D E

A B C

G

FF F

D E

A

G

FF F

D E

B C

F F

EE

F

D

BB C A A

G

Original Tree

Figure 3: To Obtain the Canonical Form of A Rooted Tree

2.4.2 Converting to Canonical Strings

A canonical string representation for labeled trees is equivalent to, but simpler than, canonical
forms. There are two ways to define a canonical string–one based on depth-first tree traversal and
the other based on breadth-first tree traversal. Assume two special symbols, “#” and “$”, are
not in the alphabet of edge labels and vertex labels. To get the first canonical string, we traverse
a tree in canonical form in depth-first fashion, using “$” to represent a backtrack and “#” to
represent the end of the string. The depth-first canonical string for the example in Figure 3 is
G1F1D1B$1B$1C$$1E1A$$$1F1E1A$$$1F#, assuming all edges have label “1”. If we assume
“#” is greater than “$” and both are greater than any other symbols in the alphabet of vertex
labels and edge labels, then the alphabetical order among depth-first canonical strings turns out
to be the same as the order among trees in canonical forms. In other words, we could have defined
the canonical form for a rooted unordered tree as the ordered tree derived from the unordered tree
that gives the minimum depth-first string encoding.

We obtain the second type of canonical string by scanning a tree in canonical form top-down
level by level in a breadth-first fashion: we use “$” to partition the families of siblings and use “#”
to indicate the end of the canonical string. The canonical string for the example in Figure 3 is
G$1F1F1F$1D1E$1E$$1B1B1C$1A$1A#, assuming all edges have label “1”. The order among
breadth-first canonical strings is a total order, although it is not the same total order as the order
among trees in canonical form. Because we use canonical form for indexing and any total order
will work for this purpose, we can use either the depth-first canonical string or the breadth-first
canonical string.

It is easy to see that the procedures for obtaining both types of canonical strings take O(k)
time where k is the number of vertices in the original tree. In addition, it is easy to prove that

UCLA Computer Science Department Technical Report #030041 6

the length of the two types of canonical strings are both bounded by 3k. In contrast, adjacency
list representation will take 5k-3 space–k for vertex labels, k for head pointers for adjacency lists,
for each of the k − 1 nodes in adjacency lists: spaces for edge label, vertex connects to, and next
pointer. In the actual implementation we have chosen the breadth-first canonical string and put
some additional information, such as the number of roots and the number of vertices of a tree, in
the canonical strings to expedite other operations on them.

2.4.3 Obtaining Trees from Breadth-first Canonical Strings

Converting from breadth-first canonical strings to trees in their canonical forms is also very straight-
forward: the order that vertices appear in the canonical string is the same order as they appear in
the tree, from the left to the right level by level top-down; the vertices (together with the corre-
sponding edges) between the i-th and the (i+1)-th symbol $’s are the children of the i-th vertex of
the tree. The time complexity of this procedure is also O(k) where k is the number of vertices in
the original tree.

2.5 Indexing Labeled Free Trees

With canonical forms (or canonical strings), we introduce a unique representation for labeled free
trees. With such a unique representation, a traditional indexing method such as hashing can be
used on databases of free trees. In addition, we also introduce a total order among labeled free
trees. Hence we can apply traditional database indexing methods that depend on such a total
order, such as B-trees, on databases of free trees. Notice that our canonical form applies to rooted,
unordered trees as well. Therefore, it can be used in many applications related to rooted trees such
as indexing XML documents.

3 Mining Frequent Subtrees

As we have mentioned before, one important problem in databases of free trees is to find patterns
that are embedded in a lot of transactions. In this section, we apply our tree indexing technique
to the frequent subtree mining problem. First, let’s define the problem.

Frequent Subtree Mining Problem Let D denote a database where each transaction t ∈ D
is a labeled free tree. For a given pattern s (which is a free tree) we say s occurs in a transaction
t (or t supports s) if there exists a subtree of t that is isomorphic to s. The support of a pattern s
is the fraction of transactions in database D that supports s. A pattern s is called frequent if its
support is greater than or equal to a minimum support (minsup) specified by a user. The frequent
subtree mining problem is to find all frequent patterns in a given database.

Figure 4 gives FreeTreeMiner, our algorithm for solving the frequent subtree mining problem.
In the algorithm (and in our future discussion as well), we call a tree with k vertices a k-tree. Our
algorithm, like most previous studies on the frequent itemsets mining problem, is based on the
bottom up Apriori method [1]. However, the number of patterns with 4 or fewer vertices is not
very large; so for these patterns, to avoid the step of support checking which is time-consuming,
we have used a brute-force method: we scan all transactions in the database to find and count
all subtrees with 2, 3, and 4 vertices then remove those that do not meet the minimum support
requirement.

UCLA Computer Science Department Technical Report #030041 7

Algorithm FreeTreeMiner(D,minsup)
1: F2, F3, F4 ← {frequent 2, 3, and 4-trees};
2: for (k ← 5; Fk−1 6= ∅; k++) do
3: Ck ← candidate-generate(Fk−1);
4: for each transaction t ∈ D do
5: for each candidate c ∈ Ck do
6: if (t supports c) then c.count++;
7: Fk ← {c ∈ Ck|c.count ≥ minsup};
8: Answer ← Union all Fk’s;

Figure 4: The FreeTreeMiner Algorithm

The two main steps in the above algorithm are (1) candidate generation and (2) frequency
counting. We now describe each in detail.

3.1 Candidate Generation

3.1.1 Basic Ideas

By the downward closure property, for a (k+1)-tree to be frequent, all its k-subtrees must be
frequent. On the other hand, if we have discovered all the frequent k-trees, we can combine a
pair of frequent k-trees to get a candidate for frequent (k+1)-trees, as long as this pair of k-trees
share all structure but one leaf vertex. This method is usually called a priori in the data mining
literature.

For a (k+1)-tree, how many k-subtree does it have? For simplicity, we first assume the vertices
of the (k+1)-tree are distinct. As we can see from the example given in Figure 5, the answer is
equal to the number of leaves the (k+1)-tree has: to obtain a k-subtree, we need to remove one
vertex (together with all edges incident with it) from the (k+1)-tree; the vertex to be removed can
be any of the leaves but not any of the internal nodes, whose removal will make the remaining
graph disconnected.

In order to create candidate (k+1)-trees, a self-join on the list of all the frequent k-trees is
needed. During the self-join, it is time consuming to determine if two frequent k-trees share all
structure other than one leaf vertex (i.e., to determine if the two frequent k-trees are joinable). Here
we use the indexing technique that we introduced previously to expedite the self-join step. For a
frequent k-tree, we remove one of its leaves. The remaining graph is a tree with k− 1 vertices. We
call this (k-1)-tree a core of the k-tree and the removed vertex (together with the removed edge) the
corresponding limb. The number of cores for a frequent k-tree is equal to the number of its leaves
because each leaf can be a limb. A pair of frequent k-trees can be joined to obtain a candidate
(k+1)-tree if and only if they share a core with k − 1 vertices. For each frequent k-tree, we can
remove one leaf at a time to obtain all its possible cores, then register the k-tree to all its cores
where the cores are indexed using our free tree indexing technique. Two frequent k-trees registered
at the same core can be joined together to create candidate (k+1)-trees.

UCLA Computer Science Department Technical Report #030041 8

BF

A

E

C

BF

A

D

C

B

A

E D

C

BF

A

E D

BF

A

E D

C

Figure 5: A 6-tree and It’s Cores

3.1.2 How Many Limbs Are Enough?

A frequent k-tree can have as many as k − 1 cores. If each k-tree is registered to all its cores,
considerable redundancy can result because there are multiple ways to create a candidate (k+1)-
tree from frequent k-trees. For example in Figure 5, any two of the given 5-subtrees can be joined
to get the 6-tree in the figure. We want to reduce the redundancy as much as possible. In other
words, we want a candidate to be generated in a unique way.

We use the idea from the traditional market-basket data mining problem. In traditional market-
basket problem, for example, although a 4-itemset abcd can be obtained in multiple ways by joining
3-itemsets, if we join a pair of 3-itemsets only if they share the prefix (after sorting by items) then
the candidate abcd is generated in a unique way by joining abc and abd.

Following the same idea, we take advantage of the labels of the leaves of a tree. Again we first
assume the labels among the leaves of our frequent trees are distinct. For a (k+1)-tree, we first sort
all its leaves by their labels. Let’s call the two maximal leaves leaf A and leaf B. One k-subtree can
be obtained from the (k+1)-tree by removing leaf A (let’s call it tree1) and another by removing
leaf B (let’s call it tree2). Tree1 and tree2 share the same core. The core can be obtained from tree1
by removing leaf B, tree2 by removing leaf A. A (k+1)-tree always has such two special k-subtrees.
As a result, in order to generate a candidate (k+1)-tree in a unique way, we combine two frequent
k-trees only if they share the same core and the corresponding limbs are the top 2 leaves in the
resulting (k+1)-tree. The following lemma is very obvious:

Lemma 1. In generating candidate (k+1)-trees, we have to combine two frequent k-tree only if they
share the same core and the corresponding limbs are the top 2 leaves in the resulting (k+1)-tree,
where “top 2” is defined by the order of labels.

As a result of Lemma 1, registering a frequent k-tree to all its cores is not necessary, because
not all leaves can become top 2 in the generated candidate (k+1)-tree. Continuing the previous
example, leaf B is the top leaf of tree1, or the second top leaf if removing leaf A from the candidate
(k+1)-tree exposes a new leaf with higher order than leaf B; leaf A is the top or the second top leaf

UCLA Computer Science Department Technical Report #030041 9

of tree2. Consequently for tree1, we only need to remove the top 2 leaves to guarantee leaf B is one
of the limbs, similarly for tree2. As a result, a frequent k-tree only has to register to two cores, as
given in the following lemma:

Lemma 2. In generating candidate (k+1)-trees, for a frequent k-tree whose vertex labels are dis-
tinct, we only have to consider two cores created by removing each of the top 2 leaves.

In the discussions above, we have assumed that the leaf labels are distinct. If this is not the
case, the following lemma extends the above results:

Lemma 3. For trees with leaf labels that are not necessarily distinct, Lemma 2 still holds, provided
we define “top 2” as all leaves with “top 2” label(s).

For example, if the leaf labels of a frequent k-tree are {C, C, B, B,B,A}, then we have to register
the tree to cores with limbs {C, C}; if the leaf labels are {C, B, B, B,A}, then we have to register
the tree to cores with limbs {C, B, B,B}.

3.1.3 Tree Automorphisms

By automorphisms of a tree we mean non-identity isomorphisms of the tree to itself. If the core
of a tree has automorphisms, then the join procedure becomes more complicated. For example,
the two trees in Figure 6 create 9 candidate trees because of the automorphisms of the core shared
by the two trees. From Figure 6 we can also see that in creating candidate (k+1)-trees, joining a
frequent k-tree with itself is necessary.

Therefore, we need an efficient scheme to record all possible automorphisms of a tree and
consider all of them when generating candidates. In order to record the information on tree auto-
morphisms, we introduce a partition among vertices of a tree in its canonical form:

Definition 2 (Equivalence Classes Defined by Automorphisms). Vertices of a given tree in
its canonical form belong to the same equivalence class if

(1) They are at the same level of the tree; and

(2) Attaching the same leaf to any of these vertices will result in a tree with the same canonical
form.

We can create the partition for the vertices of a tree into equivalence classes at the last step
of normalization. In the last step of normalization, a multi-graph is unfolded into a tree from top
to bottom and a partition can be created at the same time, following two rules: (1) A single edge
will introduce an equivalence class with a single vertex; a multi-edge will introduce an equivalence
class whose number of elements is equal to the number of edges. (2) The corresponding children
of vertices in the same equivalence class belong to the same equivalence class. Figure 7 gives an
example that shows how to obtain the partition of vertices into equivalence classes in the unfolding
step by following the above two rules.

We can use the equivalence classes defined above to explore all the automorphisms of a core
in the joining procedure: a limb attaches to its core through a vertex; if the vertex belongs to
an equivalence class with multiple elements, then in the joining procedure, we consider all the
combinations that are resulted from attaching the limb to each element in the equivalence class.

UCLA Computer Science Department Technical Report #030041 10

=

A

C C D

B

C C D

B

C

B

A

C C D

B

C C D

B

C

B

E F

A

C C D

B

C C D

B

C

B

A

C C D

B

C C D

B

C

B

A

C C D

B

C C D

B

C

B

E E E E E E

A

C C D

B

C C D

B

C

B

A

C C D

B

C C D

B

C

B

A

C C D

B

C C D

B

C

B

E F E F E F

A

C C D

B

C C D

B

C

B

A

C C D

B

C C D

B

C

B

A

C C D

B

C C D

B

C

B

F F F F F F

+

Figure 6: Different Joins for Trees Whose Core Has Automorphisms

Rule 2Rule 1 Rule 1

A

BB

DC C

B

DC

B

CC D

B

C

A

C

B

D

B

CC D

B

C

A

C

B

A

B

DC

B

Figure 7: A Partition of the Vertices of a Tree

UCLA Computer Science Department Technical Report #030041 11

3.1.4 Downward Closure Checking

In the last step of candidate generation we use the downward closure checking to filter out those
candidates that cannot be frequent. The downward closure property says that in order for a
candidate (k+1)-tree to be frequent, each of its k-subtrees must be frequent. As a result, after
all candidate (k+1)-trees have been created, we check the downward closure property for each
candidate by removing a leaf at a time from the candidate and checking if the remaining k-subtrees
are all frequent. If any of its k-subtree fails to be frequent, a candidate (k+1)-tree will fail the
downward closure checking and therefore can be eliminated.

3.1.5 Putting Together

To summarize, Figure 8 gives the candidate generation procedure in our FreeTreeMiner algorithm.
In the figure, Fk represents the list of frequent k-trees, CL is the core list, and Ck+1 is the list of
candidate (k+1)-trees. To guarantee a candidate is created only once, in step 12 of the algorithm,
we use our indexing technique to index all candidate (k+1)-trees in Ck+1. Due to space limitations,
the implementation details for the downward closure checking are skipped.

Algorithm candidate-generate(Fk)
1: Ck+1 ← ∅, CL ← ∅;
2: for each tree f ∈ Fk do
3: for each leaf l among top 2 leaves of f do
4: cl ← remove l from f ;
5: if cl /∈ CL then CL ← cl ∪ CL;
6: register l to cl in CL;
7: for each core cl ∈ CL do
8: for each limb pair (l1, l2) of cl do
9: for each automorphism of cl related to l1,l2 do

10: c ← attach l1 and l2 to cl;
11: if downward-check(c,Fk) = success then
12: Ck+1 ← c ∪ Ck+1;
13: return Ck+1;

Figure 8: The candidate-generate Algorithm

3.2 Frequency Counting

In the frequency counting step, we verify if a candidate tree is frequent or not by checking its
support in the database. The key work is for each transaction t in the database and each candidate
c, we want to check if t supports c. That is, we want to detect if c is embedded in t. This is a
subtree isomorphism problem. We have implemented, with some variations, the O(k1.5n) algorithm
described in [7] (where n is the number of vertices in t and k is the number of vertices in c). The
main idea of the algorithm is to first fix a root r for t (we call the resulting rooted tree tr) then
test for each vertex v of c if the rooted tree cv with v as the root is isomorphic to some subtree

UCLA Computer Science Department Technical Report #030041 12

of tr. The test is done on each subtree of tr in a postorder and is reduced to maximum bipartite
matching problems. For the maximum bipartite matching problem we have adopted the algorithms
described in [18]. Besides, in order to speed up the frequency counting step, we attached a Tid-List
to each candidate to record the transactions that potentially support the candidate.

4 Experimental Results

We performed three sets of experiments to evaluate the performance of the FreeTreeMiner algo-
rithm. In the first set of experiments we used various synthetic datasets, and in the last two sets
of experiments we used real application data of chemical compounds and multicast trees. All ex-
periments were done on a 2GHz Intel Pentium IV PC with 2GB main memory, running Linux 7.3
operating system. All algorithms are implemented in C++ using g++ 2.96 compiler.

4.1 Synthetic Dataset

In order to study the performance of FreeTreeMiner on various datasets with different characteris-
tics, we developed a synthetic dataset generator which is controlled by a set of parameters shown
in Table 1. In this section, we first describe the synthetic tree generator followed by a detailed
experimental evaluation of FreeTreeMiner on the synthetic datasets.

Table 1: Synthetic dataset parameters

Notation Parameter
|D| The total number of transactions
|T | The size of each transaction

(in terms of the number of vertices)
|I| The maximum size of frequent subtrees

(in terms of the number of vertices)
|N | The number of frequent subtrees with size |I|
|S| Minimum Support [%] for frequent subtrees
|L| The maximum number of distinct edge/vertex

labels in the dataset
|F | Maximum vertex degrees in the dataset
|H| Maximum diameter of trees in the dataset

4.1.1 Synthetic Tree Generator

In order to study the performance of FreeTreeMiner on datasets with different characteristics, we
want to generate datasets which have some fixed properties and a certain number of varying prop-
erties, and also reflect real application data. Therefore, we want to take subtrees of a base graph as
seeds to generate tree transactions. To create the base graph, we used the universal Internet topol-
ogy generator BRITE [16], developed by Medina et al at Boston University. BRITE can generate

UCLA Computer Science Department Technical Report #030041 13

random graphs that simulate Internet topologies with some specific network characteristics, such
as the link bandwidth. We use the bandwidths of the links as edge labels of our base graph and
assign vertex labels uniformly. The base graph created by BRITE has the following characteristics:
number of vertex labels is 10; number of edge labels is 10; number of vertices is 1000; average
degree for each vertex in the base graph is 20.

From the base graph, we first generate a set of |N | subtrees whose size is determined by |I|.
We call this set of |N | subtrees seed trees. Each seed tree is the starting point for |D| · |S| · 100
transactions; each of these |D| · |S| · 100 transactions is obtained by first randomly permuting the
seed tree then adding more random vertices to increase the size of the transaction to |T |. After this
step, more random transactions with size |T | are added to the database to increase the cardinality
of the database to |D|. The number of distinct edge and vertex labels is controlled by the parameter
|L|. In particular, |L| is both the number of distinct edge labels as well as the number of distinct
vertex labels.

4.1.2 Experiments on Synthetic Datasets

We first study the performance of FreeTreeMiner as a function of different structural characteristics
of the trees. Using the synthetic tree generator we obtained a number of different tree datasets
by using different combinations of |T |, |I|, |N |, |L|, |F |, |H|, while keeping |D| and |S| fixed. In
the following experiments, we use the combinations of the parameters shown in Table 2. When
the average transaction size |T | is smaller than the maximum size of the frequent subtrees |I|, no
datasets are generated.

Table 2: Parameter settings

Parameter Values
|D| 10000
|T | 10, 15, 20, 30
|I| 6, 8, 10, 12, 14
|N | 5, 10, 20, 40
|S| 1%
|L| 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
|F | 2, 3, 4, 5
|H| 1, 2, 3, 4, 5, 6, 7, 8

Table 3 shows the total running time and the total number of discovered frequent subtrees for
various datasets with |L| = 10 and without restriction on maximum vertex degrees and maximum
tree diameter, using a support of 1%.

From Table 3, we can observe a number of interesting points regarding the performance of Free-
TreeMiner on different dataset structural characteristics. First, as the average size of transactions
|T | increases the total running time increases as well while |T | does not affect the number of frequent
trees very much. This increase in running time is because of that subtree isomorphism checking
time is proportional to the transaction size. The relative increase is slightly affected by |I| and |N |.
Second, as |I| increases the total running time also increases. This increase is in nonlinear fashion

UCLA Computer Science Department Technical Report #030041 14

Table 3: Running time and number of frequent subtrees for synthetic datasets. The other param-
eters are: |D| = 10000, |S| = 1%, |L| = 10, no restriction on vertex degrees and tree diameter.

|N| |I| |T | RunTime Number of
[sec] Frequent Subtrees

5 6 10 19 537
15 39 620
20 62 628
30 126 623

5 8 10 24 694
15 50 789
20 83 774
30 165 809

5 10 10 32 987
15 59 1145
20 102 1068
30 206 1053

5 12 15 78 1906
20 130 2072
30 260 2579

5 14 15 105 3844
20 162 3595
30 324 3954

|N| |I| |T | RunTime Number of
[sec] Frequent Subtrees

10 6 10 18 609
15 39 707
20 63 704
30 126 687

10 8 10 24 894
15 50 943
20 83 989
30 165 1006

10 10 10 34 1807
15 65 1792
20 105 1630
30 213 1700

10 12 15 93 4012
20 140 3573
30 272 3342

10 14 15 138 6977
20 214 7906
30 400 8684

|N| |I| |T | RunTime Number of
[sec] Frequent Subtrees

20 6 10 19 749
15 39 861
20 63 827
30 127 848

20 8 10 26 1280
15 51 1402
20 83 1397
30 169 1461

20 10 10 38 2809
15 70 2765
20 116 3078
30 221 2865

20 12 15 123 6826
20 175 6548
30 326 7007

20 14 15 215 13988
20 325 16428
30 478 13681

|N| |I| |T | RunTime Number of
[sec] Frequent Subtrees

40 6 10 19 1045
15 38 1085
20 64 1144
30 125 1152

40 8 10 27 2244
15 53 2336
20 88 2311
30 173 2251

40 10 10 52 5115
15 86 4976
20 131 5080
30 248 5450

40 12 15 185 13624
20 263 12328
30 538 11245

40 14 15 376 29075
20 473 28929
30 771 31479

because firstly the time to check subtree isomorphism is asymptotically proportional to |I|1.5 (as
we have mentioned in Section 3.2) and secondly the number of frequent subtrees increases as |I|
increases. The relative increase is higher for larger |N |. Third, when |N | increases, the number of
frequent subtrees increases, and thus the total running time increases as well.

We also did experiments on various datasets with different number of vertex labels, vertex
degrees and tree diameters, while fixing other parameters. From the experimental results (which
are not included due to space limitations), we observe that the shape of trees (the maximum
vertex degrees |F | and the maximum tree diameter |H|) do not have much effect on the total
running time. However, as the number of edge/vertex labels |L| decreases, the total running time
increases, because there are more automorphisms and subtree isomorphisms, and thus there are
longer generating time and checking time.

Finally, we did experiments to study the performance of FreeTreeMiner on the number of
transactions. We used datasets of |D| = 10000, 20000, 40000 and 80000. The other parameters are:
|S| = 1%, |N | = 10, |I| = 10, |L| = 10, no restriction on vertex degrees and tree diameter, and |T |
ranges within {10, 15, 20, 30}. These results are shown in Figure 9. As we can see from the figure,
the total running time scales linearly with the number of transactions.

UCLA Computer Science Department Technical Report #030041 15

1 2 3 4 5 6 7 8

x 10
4

0

500

1000

1500

2000

2500

3000

Number of Transactions

T
ot

al
 R

un
ni

ng
 T

im
e

[s
ec

]

N10.T10.I10
N10.T15.I10
N10.T20.I10
N10.T30.I10

Figure 9: Scalability on the number of transactions

4.2 Chemical Compound Dataset

Our first application data contains 17,663 tree-structured chemical compounds sampled from a
graph dataset of the Developmental Therapeutics Program (DTP) at National Cancer Institute
(NCI) [17]. In the tree transactions, the vertices correspond to the various atoms in the chemical
compounds and the edges correspond to the bonds between the atoms. We take the various atom
types as vertex labels and the various types of bonds as edge labels. There are a total of 80 distinct
vertex labels and 3 distinct edge labels. Figure 10 and Figure 11 show the experimental results by
FreeTreeMiner for finding frequent subtrees. We explored a wide range of the minimum support
from 0.1% to 50%.

Figure 10 shows the total running time required for different values of support threshold. The
total running time includes the time to check subtree isomorphism in the dataset and the time to
generate candidate subtrees. Figure 11 displays the total number of discovered frequent subtrees, as
well as the total number of maximum frequent subtrees, on those support levels. The running time
and the number of frequent subtrees increase exponentially as |S| decreases. With |S| = 0.1%, the
largest frequent subtree discovered has 43 vertices. Figure 12 shows the number of frequent subtrees
with respect to tree size for some of the support threshold values. There are not many frequent
subtrees with small size or large size. These experiments on the chemical compound dataset show
that our FreeTreeMiner algorithm can handle large real application data well with a large range of
support thresholds.

4.3 Multicast Trees Dataset

Our second application dataset is a dataset of IP multicast trees. IP multicast is an efficient way
to send messages to a group of users. Usually on the Internet there are multiple multicast groups
running at the same time, where typically each group is set up for an event such as a meeting,

UCLA Computer Science Department Technical Report #030041 16

10
−1

10
0

10
1

10
2

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Minimum Support [%] (out of 17663 in total)

R
un

ni
ng

 T
im

e
[s

ec
]

Total Running Time
Generating Time
Checking Time

Figure 10: Total running time vs. support
threshold.

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Minimum Support [%] (out of 17663 in total)

N
um

be
r

of
 (

M
ax

im
um

)
F

re
qu

en
t S

ub
tr

ee
s

D
is

co
ve

re
d

Number of Frequent Subtrees
Number of Maximum Frequent Subtrees

Figure 11: Total number of (maximum) fre-
quent subtrees vs. support threshold.

a seminar, an online game, etc. One of the key issues in IP multicast is the scalability to large
numbers of groups because the size of the forwarding state table at each router is proportional to
the number of groups passing by the router. One solution to the scalability issue in IP multicast is
to aggregate parts or all of multicast trees from different groups that are running at the same time
[8]. There are several factors that affect the performance of aggregating multicast trees: Which
groups to aggregate? Which parts of multicast trees to aggregate from different groups? Do we have
to change the aggregation scheme very often? Our frequent tree mining algorithm can provide data
to help answer these questions. By applying our FreeTreeMiner algorithm to a family of mutlicast
trees where each tree has its own group ID, we can obtain the maximum frequent mutlicast subtrees
and their supports. The size of maximum frequent multicast subtrees provides information on the
reduction of the forwarding state tables using aggregation scheme. The corresponding supports
give information on the number of groups that can be aggregated based on the given maximum
frequent multicast subtrees.

To address the question of how often we should change the aggregation scheme, we apply our
FreeTreeMiner algorithm to data measured from a single multicast group. For a single multicast
group, we are interested in some dynamic characteristics such as which part of the multicast tree
does not change very much during the whole event and what the temporal coherence for the change
of the multicast tree is. We have used the MBONE multicast data provided by Chalmers and
Almeroth from University of Santa Barbara ([5, 6]). The data were measured during the NASA
shuttle launch between 14th and 21st in the February of 1999. It has 333 vertices (each vertex
takes the IP address as its label) and 397 edges. Since we do not have information on edges, we
assume a single label for all the edges. Therefore the multicast trees in this dataset are special in
that each vertex in a multicast tree have a distinct label and all the edges have the same label.

First we sampled the data from this NASA dataset with 10 minutes sampling interval and got a
dataset with 1,000 transactions. The transactions are the multicast trees for the same NASA event
at different time. Our experimental results show that using very high support threshold, there
are very few maximum frequent subtrees with more than 5 vertices. From the experiment with
support threshold 80%, there are 20,765 frequent subtrees discovered with 6 maximum frequent

UCLA Computer Science Department Technical Report #030041 17

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

1400

1600

1800

Size of Frequent Subtrees [number of vertices]

N
um

be
r

of
 F

re
qu

en
t S

ub
tr

ee
s

D
is

co
ve

re
d

Support = 0.2%
Support = 0.5%
Support = 1.0%
Support = 5.0%

Figure 12: The number of frequent subtrees vs. frequent tree size.

subtrees, and the maximum size of discovered frequent subtrees is 29 (comparing to the average
size 164 of all trees in the dataset). The result indicates that a relatively large part of the multicast
tree does not change during 80% of the span of the event. We also did experiments on a wide
range of sampling interval from 10 minutes up to 500 minutes with fixed support threshold of
80%. It turns out that the discovery results (number of frequent subtrees, maximum frequent
subtrees and maximum size of frequent subtrees) are the same. However, as the sampling interval
increases, the running time for discovering all these frequent subtrees decreases (from 5 hours to 10
minutes), because the increase of sampling interval results in decrease of number of transactions.
This information provides multicast protocol designers with the approximate measure on the rate
of change of (the main part of) the multicast tree. Unfortunately, our algorithm cannot handle the
cases of high sampling rate with lower support thresholds in reasonably short time, because the
large number of frequent subtrees exhausts the main memory. This reveals some weak points of
the FreeTreeMiner algorithm: first, it is not quite scalable to the size of maximum frequent trees
because of the combinational explosion–there are too many subtrees for a tree with very large size;
second, in our candidate generating, we have recorded the Tid-List of each candidate to speed up
the support counting step, but when the support is very large (around 80% in our case), almost
every transaction supports every candidate, then the Tid-List does not help very much.

5 Related Work

In a recent paper, Zaki [21] presented an algorithm called TreeMiner to discover all frequent
subtrees in a forest or a database of trees. In TreeMiner, Zaki also used string encoding to
represent trees, but in contrast to our breadth-first traversal he used depth-first traversal for string
encoding. We choose to use breadth-first traversal because of our definition of order and canonical
form. In [4] Asai et al. modelled semi-structure data such as webpages and XML data using
labeled ordered trees and presented algorithm FREQT to discover frequent subtrees. In [20], Wang

UCLA Computer Science Department Technical Report #030041 18

et al. also used tree structures to express semi-structured documents and presented algorithm to
discovery frequent patterns. All the above algorithms focused on databases of rooted trees (either
ordered or unordered) while we focus on free trees. On the one hand, in the middle steps of our
algorithm, we convert free trees into rooted trees for indexing, but vertices in our transactions
and subtrees do not have inherent descendent/anscestor relationships. This conversion to rooted
trees therefore has to be done in each level of mining and consequently the descendent/ancestor
relationships are potentially changing at each level. Consequently, the above algorithms for rooted
trees are not applicable to the free tree mining problem. On the other hand, we can restrict our
canonical form to rooted trees, i.e., we can skip the first step of creating root(s), therefore our
algorithm can be used for applications with rooted trees with little change.

Inokuchi et al. [12] presented an algorithm, AGM, for mining frequent induced subgraphs, which
are not necessarily connected, in a graph database, where an induced subgraph Gi of a graph G has
vertex set Vi a subset of vertices of G and edge set Ei consisting of all those edges of G incident with
two elements of Vi. Kuramochi et al. [13] presented another algorithm, FSG, for mining general
subgraphs in a graph database. Both methods used a level-wise Apriori [1] approach: the AGM
algorithm extends subgraphs by adding a vertex per level; the FSG extends by adding an edge. To
check if a transaction supports a graph is an instance of the subgraph isomorphism problem which
is NP-complete [9]. To check if two graphs are isomorphic (in order to avoid creating a candidate
multiple times) is an instance of the graph isomorphism problem which is not known to be in either
P or NP-complete [9]. Therefore without taking advantage of the restriction to tree-structured
transactions these algorithms are not likely to be efficient for the frequent tree mining problem.

6 Conclusions and Future Work

In this paper we introduced a novel indexing technique for databases of labeled free trees. Our
technique is based on a unique representation, the canonical form, for free trees that represents a
free tree by its isomorphism family. With the canonical form and its equivalent representation the
canonical string, we assigned a total order among all labeled free trees and therefore we can apply
traditional indexing techniques to databases of free trees. Our indexing technique can be extended
to unlabeled trees or unordered rooted trees because they are just special case of labeled free
trees. We also defined the frequent subtree mining problem and presented an efficient algorithm,
which is based on our indexing technique, to discover all frequent subtrees in a database. We
used both synthetic and real application datasets to study the performance of our algorithm. The
experiments showed that our algorithm is scalable with the cardinality of databases and the average
size of transactions in databases.

We plan to extend our work in several directions in the future. First, the bottleneck of our
algorithm is the subtree isomorphism checking, i.e., to verify if a transaction supports a candidate.
In our implementation, the subtree isomorphism checking in each level is done independent of that
of previous levels. We have taken this approach because to record the exact locations of subtree
embedding in previous levels will require large amount of memory. Our next implementation
will use incremental checking to speed up this procedure by memorizing all or parts of locations of
embedding in previous levels. Second, in many applications, such as chemical compounds, there are
2D or 3D coordinates for vertices of trees. In the future, we will include this geometric information
in our implementation to see if such information will improve the performance of our algorithm.

UCLA Computer Science Department Technical Report #030041 19

Acknowledgement

Thanks to Jun-Hong Cui in the CS Department at UCLA for providing us with the multicast dataset
and for the stimulating discussions. Thanks to Michihiro Kuramochi in the CS Department at the
University of Minnesota for pointing us to the chemical compound dataset. This material is based
upon work supported by the National Science Foundation under Grant Nos. 0086116 and 0085773.
Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the National Science Foundation.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. of the 20th
Intl. Conf. on Very Large Databases (VLDB), September 1994.

[2] A. V. Aho, J. E. Hopcroft, and J. E. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

[3] J. M. Aldous and R. J. Wilson. Graphs and Applications, An Introductory Approach. Springer,
2000.

[4] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Satamoto, and S. Arikawa. Efficient substructure
discovery from large semi-structured data. In 2nd SIAM Int. Conf. on Data Mining, April
2002.

[5] R. Chalmers and K. Almeroth. Modeling the branching characteristics and efficiency gains of
global multicast trees. In Proceedings of the IEEE INFOCOM’2001, April 2001.

[6] R. Chalmers and K. Almeroth. On the topology of multicast trees. UCSB Technical Report,
March 2002.

[7] M. J. Chung. O(n2.5) time algorithm for subgraph homeomorphism problem on trees. Journal
of Algorithms, 8:106–112, 1987.

[8] J. Cui, J. Kim, D. Maggiorini, K. Boussetta, and M. Gerla. Aggregated multicast–a compar-
ative study. In Proceedings of IFIP Networking 2002, May 2002.

[9] M. R. Garey and D. S. Johnson. Computers and Intractability–A Guide to the Theory of
NP-Completeness. W. H. Freeman And Company, New York, 1979.

[10] J. Hein, T. Jiang, L. Wang, and K. Zhang. On the complexity of comparing evolutionary trees.
Discrete Applied Mathematics, 71:153–169, 1996.

[11] J. E. Hopcroft and R. M. Karp. A n5/2 algorithm for maximum matching in bipartite graphs.
SIAM Journal on Computing, 2:225–231, 1973.

[12] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent
substructures from graph data. In Proc. of the 4th European Conference on Principles and
Practice of Knowledge Discovery in Databases (PKDD’00), pages 13–23, September 2000.

UCLA Computer Science Department Technical Report #030041 20

[13] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Proceedings of the 2001 IEEE
International Conference on Data Mining (ICDM 2001), November 2001.

[14] M. Kuramochi and G. Karypis. Discovering frequent geometric subgraphs. In Proceedings
of the 2002 IEEE International Conference on Data Mining (ICDM 2002), pages 258–265,
December 2002.

[15] T. Liu and D. Geiger. Approximate tree matching and shape similarity. In International
Conference on Computer Vision, September 1999.

[16] A. Medina, A. Lakhina, I. Matta, and J. Byers. Brite: Universal topology generation from a
user’s perspective. Technical Report BUCS-TR2001 -003, Boston University, 2001.

[17] National Cancer Institute (NCI). DTP/2D and 3D structural information. World Wide Web,
ftp://dtpsearch.ncifcrf.gov/jan03 2d.bin, 2003.

[18] J. C. Setubal. Sequential and parallel experimental results with bipartite matching algorithms.
Technical Report IC-96-09, Institute of Computing, State University of Campinas (Brazil),
1996.

[19] R. Shamir and D. Tsur. Faster subtree isomorphism. Journal of Algorithms, 33:267–280, 1999.

[20] K. Wang and H. Liu. Discovering typical structures of documents: A road map approach. In
21st Annual International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pages 146–154, 1998.

[21] M. J. Zaki. Efficiently mining frequent trees in a forest. In 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, July 2002.

