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I. Abstract 
Information theory had a broad, deep, and 
profound impact both in science and 
engineering.  It was based on a number of new 
fundamental concepts.  Of course, the 
proposed misinformation theory does not have 
those types of new and revolutionary concepts. 
In a sense, it is unlikely that any future theory 
related to semantic processing may have the 
simplicity and elegance of the theory and 
techniques related to syntax-only processing.  
However, we believe that misinformation 
theory can provide sound foundations and 
concepts to address issues related to the 
integrity of obtained and employed 
information and that it will have a broad 
spectrum of important applications. The theory 
can be generalized to address under-
constrained problems by requiring that after 
the misinformation, none of the initial 
constraints be violated while the solution space 
is skewed to the maximal extent in accordance 
with proper misinformation metrics. 
 
While the theory is generic and can be applied 
to many domains (e.g. information posted on 
the Internet and in social networks), we 
demonstrate it in the context of wireless 
embedded sensor networks.  The typical 
question that we address is what value a node 
should report in such a way that will 
maximally skew the conclusion of the user 
while not being detected as an attacker and not 
crossing a threshold where the user starts to 
suspect the obtained results. 
 
The misinformation problem is formulated 
using the canonical form for stating 
optimization problems (consisting of an 
objective function and constraints) and solved 
under a variety of assumptions about how the 

attacking nodes are detected, when the result is 
accepted as correct, protocols for information 
exchange, and knowledge of attacking sources.  
We begin by analyzing the simple scenario of 
single value reading and then conduct 
extensive simulations for trilateration and 
show under which conditions which type of 
misinforming is most effective. 

II. Introduction 
The birth and growth of the Internet is often 
considered the technological revolution.  
Furthermore, modern times are referred to as 
the information age.  Titles like this help stress 
the importance of information in modern 
society.  Having accurate information is 
critical in many circumstances.  For example, 
in the stock market, one can only hope to 
thrive if one has accurate information about 
the businesses and companies being invested 
in.  Inaccurate information about businesses 
and companies can yield significant financial 
losses.   The scientific community also 
requires accurate information; inaccurate 
measurements and results can yield worthless 
data, which in turn wastes not only money but 
time as well. 
 
The importance placed on accurate 
information helps motivate how important it is 
to study misinformation theory; only when one 
knows the means of misinforming can one 
adequately formulate a strategy for defense.  
Thus, these are the goals of our paper: to 
determine the foundations of a universal and 
systematic way in which one can deliver 
inaccurate information and to identify key 
ways in which one can defend against 
receiving inaccurate information. 
 
It is important to note that in our examples and 
methods, we assume that only one instance or 



scenario is examined, thus making the only 
likely attacker the most discrepant value.  Note 
that without loss of generality, one can adopt 
other metrics for the detection of the source of 
misinformation and when the information can 
be trusted. For example, one can take into 
account the geographical location of a sensor 
and the consequences of that positioning on 
the expected level of discrepancy. 

II.A. Motivational Examples 
Probably the best way to illustrate the key 
mechanisms, tradeoffs, and potential impact of 
misinformation theory is to use a conceptually 
simple yet illustrative example.  The simplest 
possible example is when a user combines 
measurements from three different sensors in 
order to conclude the reading as accurate as 
possible.  Let us denote the sources of 
information (sensors in a sensor network) by 
A, B, and C.  Further assume that each node is 
sensing the same particular phenomenon and 
produces measurement values vA, vB, and vC 
respectively.  The final result, vF, will be the 
average of these three sensor values.  Finally, 
the attacking node is determined as the node 
whose readings is the furthest from the 
calculated average.  Therefore, the equation to 
solve for vF is: 
 

FCBA vvvv 3???  (1) 
 
The equation to determine the attacking node 
therefore can be written as: 
 

? ?CFBFAF vvvvvv ??? ,,max  (2) 
 
Now, assume that C is the attacking node; i.e. 
C is the node that tries to skew its reported 
value in such a way to maximally affect the 
resulting calculation done by the user.  We 
denote this skewed value by vC’ and the 
skewed final result by vF’.  Furthermore, 
assume that the attacking node is the last one 
to report its value.  In addition, the attacking 
node is aware of the calculations used to 
determine the final result and to figure out if 
any nodes are not reporting accurately.  
Finally, the goal for the attacking node is to 
maximize the difference between the non-
skewed result and the skewed result without 
being detected.  The whole scenario can be 
abstracted using a set of equations and 
inequalities.  Specifically, after data skewing 

by node C, the skewed result is given by the 
following formula: 
 

'3' FCBA vvvv ???  (3) 
 
To avoid detection, the attacking node must 
also adhere to the following constraint: 
 

? ?BFAFCF vvvvvv ???? ','max''  (4) 
 
Finally, the goal of the attacker can be 
summarized by the following objective 
function: 
 

? ?FF vv ?'max  (5) 
 
From a mathematical perspective, the solution 
to this system of equations is unintuitive.  
However, if one approaches the problem from 
a different perspective, one can derive a 
solution that satisfies the above-mentioned 
constraints.  First, assume that vA ?  vB.  Now, 
there exists two possible scenarios: vC is closer 
to vA or vC is closer to vB.  If vC is closer to vA, 
the attacker wants to report a vC’ such that the 
resulting average is closer to vB (whereas 
originally the resulting average was closer to 
vA).  Thus, the attacker would report vC’ = 2vB 
– vA, making vF’ be vB.  However, if vC is 
closer to vB, the resulting average is closer to 
vB, and thus C would report a value such that 
the skewed average is closer to vA.  To do this, 
C would report vC’ = 2vA – vB, making vF’ be 
vA.  One might ask if it is possible to do better 
than these values, and in this example, the 
answer is no.  The above equations guarantee 
that the node whose value lies between the 
other two is exactly the midpoint of the other 
two values, and thus, neither point is more 
likely to be the attacker.  If one skews vC 
further by some amount ? , the average is only 
skewed by ? /3, and thus, skewing vC further 
results in vC being determined as the attacker, 
violating constraint (4). 
 
Now, to demonstrate the potential damage an 
attacking node can have, we will solve this 
system of equations using actual numbers.  
Assume that vA = 2.0, vB = 2.5, and that vC = 
1.5.  Clearly, one can see that vF = 2.0.  
However, what happens to vF’ if vC’ is 
carefully chosen?  Using the system of 
constraints derived for the attacker and noting 
the above-mentioned solutions, one can 



conclude that vC’ = 3.0* and that the resulting 
vF’ = 2.5.  Thus, in this simple example, one 
can see that the difference between the actual 
result (2.0) and the skewed result (2.5) is quite 
significant, and therefore one must pay 
attention to attackers can pose significant 
threats. 
 
The next motivational example we present is 
more complicated than the simple average 
example presented earlier.  This problem deals 
with the idea of navigation through a sensor 
network.  Navigation makes use of not only 
Euclidean equations but also the laws of 
physics, thus making the system of constraints 
more difficult.  Note that although this 
problem contains an element of time, only one 
measurement is being made and thus does not 
violate our assumptions that we examine only 
one scenario. 
 
It is our goal to develop a general and 
systematic way of skewing data in a sensor 
network, and thus, we demonstrate the wider 
applicability of our general model of skewing 
data to the problem of navigation in a sensor 
network.  Although similar to atomic 
trilateration, navigation contains many 
different elements and aspects that make the 
problem more complex and interesting to 
study from a data skewing perspective. 
 
The problem of navigation in a sensor network 
is described as follows.  A node whose 
location is unknown travels through a sensor 
network and encounters different sensors at 
different times.  These sensors, like the sensors 
in atomic trilateration, are capable of 
measuring the distance between themselves 
and the target node.  However, in order to 
increase measurement accuracy and extract 
more data from the network, the target node is 
further equipped with sensors to measure 
velocity and acceleration.  It is important to 
note that although we focus on velocity and 
acceleration, the target node can contain any 
type of sensor that aids in increasing the 
accuracy of the measurements.  Thus, using 
the distance measurements from different 
nodes throughout the course of travel through 
the sensor network, and the additional 

                                                 
* In actuality, the final result is not 3.0 due to the strict 
inequality of the detection constraint, but is in fact some 
number infinitesimally smaller.  However, for purposes of 
this example, 3.0 will suffice. 

measurements from onboard sensors, the target 
node is able to calculate such attributes like 
position and trajectory. 
 
To further clarify the problem of navigation, 
we now discuss in detail the variables that are 
used in the canonical formulation of our 
problem, which consists of an objective 
function and constraints.  First, assume that 
there exists three sensors that are encountered 
at time t = 0: A, B, and C, with positions (xA, 
yA), (xB, yB), and (xC, yC) respectively.  In 
addition, there exists two more sensors, D and 
E, which are encountered at time t = ? t and 
have positions (xD, yD) and (xE, yE) 
respectively.  Furthermore, assume that node E 
is the attacking node.  The target node will 
have position (x0, y0) at time t = 0 and (x1, y1) 
at time t = ? t.  Finally, the target node 
measures the velocity vector (vx0, vy0) at time t  
= 0 and (vx1, vy1) at t = ? t and the acceleration 
vector (ax0, ay0) at time t = 0 and (ax0, ay0) at 
time t = ? t.  Before deriving the constraints 
and objective function for the canonical form, 
we must also associate error variables denoted 
by ? to represent errors associated with 
particular measurements. 
 
These variables are combined using a system 
of constraints and an objective function to 
determine the position of the target node.  It is 
important to note that although the velocity 
and acceleration constraints are redundant, 
they are still critical because they limit the 
amount by which the attacker can skew the 
data.  The system of constraints will contain 
two different types: the first type is due to 
Euclidean geometry and the second type is due 
to the physical laws of nature.  The first set of 
constraints states that the position of the target 
node at time t = 0 is related to the distance 
measured to each node at that time: 
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Similarly, the next set of constraints relate the 
position of the target node at time t = ? t to the 
distance measured to each node at time t = ? t : 
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The last set of constraints relates the position 
at time t = ? t to the position at time t = 0 by 
using classical physics: 
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(8) 

 
Finally, because multiple solutions exist to this 
problem, each solution must be evaluated 
according to some particular objective 
function.  Typically, this function will be to 
minimize some function of the discrepancy 
variables. 
 
Min f(?Ax0, ?Ay0, ?Bx0, ?By0, ?Cx0, ?Cy0, 
?Dx1, ?Dy1, ?Ex1, ?Ey1, ?vx0, ?vy0, ?ax0, ?ax1) 

(9) 

 
From this system of constraints and an 
objective function, we are able to calculate the 
value of (x1, y1), and can use this value to 
maximally skew the result.  To formulate the 
skewed result, we follow the generic algorithm 
outlined above, with the first step being to 
calculate the non-skewed result.  The second 
step is to calculate the skewed result by 
replacing the variables and values reported by 
the attacker and replacing them: 
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Finally, the goal of the attacker is to maximize 
the difference between the original solution 
(x1, y1) and the skewed solution (x1

*, y1
*).  This 

can be done by maximizing the Euclidean 
distance between the two by using the 
objective function: 
 

? ? ? ?2*
11

2*
11 yyxxMax ???  (11) 

 
 

II.B. Objectives and 
Technical 
Contributions 

Our goal is to study and develop 
misinformation theory – the theory by which 
data can be skewed and the means by which 
one can protect oneself from skewed data.  In 
addition we hope to demonstrate the 
significance of misinformation theory through 
our simulation results.  Finally, we present 
additional simulation results that demonstrate 
the effectiveness of different means of 
defense.  Our main technological contributions 
are our generic algorithm for determining how 
to effectively skew data and our generic 
algorithm for protecting oneself from 
potentially skewed data. 

II.C. Paper Organization 
This paper is organized as follows.  In Section 
III we present the means by which we will test 
and evaluate our algorithm.  Section IV 
presents a generalized overview of 
misinformation theory.  Section V discusses 
our method by which one can skew data and 
presents simulation results that demonstrate 
the effectiveness of our method.  In Section VI 
we discuss the means by which one can protect 
oneself from skewed data and provide data 
showing how effective each method is.  In 
Section VII we present related work and we 
conclude in Section VIII, which is followed by 
our references. 

III. Preliminaries 
In this section we discuss the means by which 
we will test and evaluate misinformation 
theory.  Misinformation theory will be applied 
to sensor networks, and in particular, the 
problem of atomic trilateration [Sli02]. 



III.A. Sensor Networks 
We use sensor networks as a testing ground to 
demonstrate the applicability and accuracy of 
misinformation theory.  Recently, sensor 
networks have been receiving a significant 
amount of attention from the research 
community.  This new focus on sensor 
networks can be attributed to their 
revolutionary nature; sensor networks are 
revolutionary in that they represent a 
fundamental paradigm shift and provide a new 
means with which one can create exciting 
applications.  One key aspect of sensor 
networks is its infrastructure.  Unlike 
traditional networks (such as cellular phone 
networks), sensor networks often have no 
fixed infrastructure.  By not having a fixe d 
infrastructure, sensor networks are easier to 
deploy and can be adapted to particular 
situations much more rapidly.  In addition, 
combining inexpensive yet power-efficient 
reliable sensors in a wireless ad-hoc network 
with limited computation and communication 
resources provides a new field of engineering 
research. 

III.B. Atomic Trilateration 
One key problem related to sensor networks is 
that of location discovery.  Most significant 
applications of sensor networks assume that a 
node is aware of its own location; however, 
this is not a trivial matter.  When dealing with 
sensor networks containing 100, 1000, or more 
nodes, manually inputting sensor location 
information becomes tedious and time 
consuming, and thus, an algorithmic approach 
to location discovery is needed. 
 

The algorithmic approach to location 
discovery that we use throughout this paper is 
that of atomic trilateration.  With respect to a 
two-dimensional sensor network, atomic 
trilateration is the means by which a sensor in 
a network can determine its position by using 
the positions of and distances to at least three 
other nodes of known location.  From these 
positions and distances, a node that is trying to 
determine its location can create a system of 
equations.  To further specify this problem, we 
assume that a node P is attempting to 
determine its actual location (xF, yF) by 
contacting nodes whose location is known, A, 
B, and C, with positions (xA, yA), (xB, yB), and 
(xC, yC), and distances (radii) RA, RB, and RC 
respectively.  With the information obtained 
from the other nodes in the network, the node 
P is able to determine the following system of 
constraints for atomic trilateration to 
determine the final result: 
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When examining this system of nonlinear 
equations, it is difficult to determine whether 
or not a solution exists.  However, if one looks 
at this system of equations from a geometric 
perspective, one can see that (in non-
pathological cases) exactly one solution exists 
(see Figure 1). 
 
In reality, there exist errors in measurement, 
and these errors can have a significant impact 
on the determination of the querying node’s 
position.  Our model of error in measurements 
with sensor networks is defined as having a 
Gaussian distribution with the standard 

 
 
Figure 1: This figure demonstrates a geometric 
interpretation of atomic trilateration. 
 

 
 

Figure 2: This figure demonstrates how errors can 
affect the problem of atomic trilateration. 
 



deviation increasing as the measured distance 
increases [Rap60].  Assume that (?Fx, ?Fy) is 
the error associated with the calculated result.  
Further assume that ?A, ?B, and ?C are the errors 
associated with the measurements from nodes 
A, B, and C respectively.  When applying these 
errors to the original atomic trilateration 
system of constraints, we receive the following 
set of constraints: 
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Again, from this system of equations, it is 
difficult to visualize a solution.  When 
analyzing this system of equations from a 
geometric approach, it becomes easier to 
visualize a solution.  This can be seen in 
Figure 2.  As one can see, in this scenario there 
exists not a single solution but an area within 
which the actual solution exists.  In order to 
differentiate between and judge the possible 
solutions, it is necessary to evaluate each 
solution with respect to an objective function.  
We use the following objective function 
(which minimizes the sum of squares of the 
errors ?A, ?B, and ?C): 
 

222:min CBA ??? ??  (14) 
 
It is possible to use an optimization algorithm 
to solve this system of constraints with respect 
to the objective function.  For our purposes, 
we will use a grid-based optimization 
algorithm that works as follows.  The first step 
of this algorithm is to determine the area in 
which the solution exis ts.  Then, an n ?  n grid 
is superimposed over this area and each grid 
square is checked to see if it satisfies all 
constraints.  If the grid square satisfies all 
constraints and is optimal with respect to the 
objective function, it is selected.  We assume 
that if n is large enough, the entire grid square 

will either satisfy or not satisfy the constraint, 
and thus, only the midpoint of the grid square 
is checked.  An n ?  n grid is superimposed 
over the selected grid square and the algorithm 
is repeated until some user-defined search 
limit is reached.  The final selected grid square 
is reported to contain the solution. 

IV. Foundations 
Our main purpose in this paper is to 
demonstrate the importance of data skewing.  
In order to show its importance, we must first 
discuss the ways by which an attacker can 
skew data, the means by which the attacker 
can skew data, and the assumptions required to 
do so.  In this section, we present the different 
methods for skewing data, how to achieve 
them, and what assumptions must be made. 
 
Although there are potentially many ways to 
skew data, we have determined two that we 
find to be of most significance.  The first (and 
simpler) means of skewing data is to exploit 
naturally occurring errors in the system.  By 
doing this, the attacker hopes to skew the 
result yet still have its reported value appear 
statistically correct.  The second (and more 
difficult) means of skewing data is to attempt 
to force the resulting calculation to an 
incorrect solution.  This scenario can only be 
realized when the system itself contains 
multiple possible solutions.  The attacker can 
then determine for itself the most likely 
solution and report a value such that a different 
solution results. 
 
To skew data for a particular problem, we 
assume that the problem can be represented in 
the canonical form consisting of a set of 
constraints and an objective function.  Writing 
a problem in this canonical form can be 
difficult depending on the nature of the 
particular problem.  However, this step is 
crucial because once this step is completed, it 
is possible to use any optimization method to 
solve the problem.  In Section III, We have 
demonstrated how the problem of trilateration 
in a wireless sensor network can be written in 
the canonical form. 
 



Before we can discuss the mechanisms that we 
have developed for an attacker to skew data, 
we must first discuss the assumptions that we 
hold.  These assumptions involve how the 
attacker wishes to skew data, which nodes are 
capable of receiving data, what data they can 
receive, and what prior knowledge about the 
existing system that an attacking node has.  
For all systems we analyze, we assume that all 
nodes are close enough to be able to 
communicate amongst each other.  In addition, 
we assume that the goal of the attacker is to 
maximize a function of the original solution 
and skewed solution subject to the constraint 
that the calculating node must not suspect the 
attacking node’s data as being faulty.  The 
function to be maximized should be 
representative of some sort of “distance” 
between the original solution and the skewed 
solution.  The remaining assumptions deal 
with what prior information the attacking node 
has about the system.  For example, we 
assume that the attacking node is aware of the 
procedure used to determine the final result, 
that the attacking node is capable of receiving 
values reported by other nodes, that the 
attacker is aware of the characteristics (i.e. 
error probability and so forth) of other nodes, 
and finally, what the procedure is being used 
to detect attacking nodes.  When determining 
what information is available to the attacking 
node, it is important to make a corresponding 
assumption – when the attacking node reports 
its value.  If an attacker reports its value before 
other nodes, it must rely upon assumptions 
about other nodes’ values in order to skew 
data. 
 
With these assumptions, it is possible to derive 
a generic means of skewing data in the system.  
Because the attacker is aware of what 
procedure is being used to calculate the final 
result, the attacker can determine a system of 
constraints and an objective function that can 
produce the non-skewed result.  With this 
system of equations, the attacker (after 
calculating the original solution) can modify 
this system of equations to utilize its skewed 
value, thus producing a skewed result.  The 
attacker must also add a constraint to this 
system of equations that prevents its value 
from being detected as skewed.  This is 
possible due to the assumption stating that the 
attacker is aware of what mechanism is being 
used to determine skewed values.  Finally, the 
attacker must optimize this system of 

constraints according to an objective function.  
The generic objective function is to maximize 
the difference between the original and skewed 
solutions.  A more formal algorithm describing 
this procedure can be seen in Figure 3. 
 
We have also developed two means of defense 
against these types of data skewing.  The first 
means of defense deals with the method of 
data skewing in which the attacker attempts to 
hide in naturally occurring errors in the 
system.  To reduce data skewing from this  
method, one can over-constrain the problem.  
By adding additional constraints, the range in 
which a solution can exist will potentially 
diminish.  With respect to atomic trilateration, 
this method of defense corresponds to 
querying additional sensors in the network. 
 
The second means of defense attempts to 
prevent the attacker from being able to skew 
the final result towards a different (yet still 
valid) solution.  The key behind doing this is 
to limit the amount of information the attacker 
has at its disposal.  With respect to atomic 
trilateration in a sensor network, this method 
of defense corresponds to varying the order in 
which sensors are queried in the network. 

 
Determine a system of constraints and an 
objective function for the original problem. 
 
Solve this system using any optimization 
method, and let the resulting solution be S. 
 
Modify the system of constraints from Step 
1 to use the attacker’s skewed reported 
value and produce a skewed result S’. 
 
Add to the constraints determined in Step 3 
the Detection Constraint. 
 
Solve this new system of equations using 
any optimization method with the objective 
function maximize(f(S, S’)), where f is 
representative of the distance in the 
solution space between S and S’. 
 
 
Figure 3: Formal algorithm describing the 
procedure used by an attacker to maximally skew a 
computation without being detected. 
 



V. Attack Protocols 
In this section, we clarify two primary means 
by which an attacker can skew data by 
demonstrating how they can be applied to the 
problem of atomic trilateration in a wireless 
sensor network.  The first means is to exploit 
the naturally occurring errors in a 
measurement from a sensor in the network.  
By doing so, the attacker hopes that its value 
will not appear statistically significant when 
compared to the final value calculated. 
 
When a problem contains more than one 
possible solution, an attacker can have a more 
significant impact on the final value calculated 
by trying to manipulate it towards an alternate 
solution.  By moving the final value calculated 
towards an alternate solution, the attacker not 
only has the potential to seriously impact the 
final value calculated but also is able to remain 
undetected because the final value calculated 
is a valid solution as well. 
 
How does one determine which method is best 
in a particular scenario?  This question is 
inherently answered by the canonical form in 
which we assume misinformation problems to 
be stated.  If multiple solutions exist for a 
particular problem, solving the problem (stated 
in canonical form) with an appropriate 
optimization algorithm will automatically 
select a valid solution (due to the constraints 
listed in the canonical form) and it will be as 
skewed as possible (due to the objective 
function). 
 
To promote further understanding of 
misinformation theory, we will demonstrate 
how the generic procedure of attacking derived 
in Section IV can be applied to the problem of 
atomic trilateration in a sensor network.  
Recall from Section III the canonical form for 
the problem of atomic trilateration (the system 
of constraints (13) and objective function 
(14)). 
 
Now, assume that node C is the attacking 
node, and that it will report a distance (radius) 
of RC’ to produce a skewed result of (xF’, yF’).  
From this system of constraints and an 
objective function to calculate the original, 
non-skewed result (xF, yF), the attacker is now 
able to calculate the non-skewed results and 
modify this system to produce a skewed result.  
The first step in doing so is to modify the 

constraints to utilize the skewed reported value 
(RC’) instead of the non-skewed value (RC) 
thus producing a skewed result (xF’, yF’): 
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At this point, the attacker must also ensure that 
its reported value is not discovered to be 
skewed.  To ensure this, the attacker must add 
a detection constraint to its list of constraints.  
This is possible because it is assumed that the 
attacker is aware of the procedure used to 
determine if a particular value has been 
skewed.  In our example, we assume that a 
value is detected as skewed if it is determined 
to be the most discrepant from the final result.  
Thus, the detection constraint can be written: 
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Again, because there exists many solutions to 
this system of constraints, the attacker must be 
guided by some objective function to choose 
the best possible solution.  Intuitively, the 
objective function should maximize the 
difference between the non-skewed result and 
the skewed result.  This is the root-mean-

 
 

Figure 4:  In this figure, the two dots represent the 
possible solutions before the attacking node (C) reports 
its value.  As one can see, the attacking node’s radius 
determines which of the two possible solutions is 
correct. 
 



square function, and can be written 
mathematically as: 
 

? ? ? ?22 '':max FFFF yyxx ???  (17) 

 
Now that we have determined an appropriate 
system of constraints and an objective function 
to determine the skewed and non-skewed 
results, we must solve these systems using an 
optimization method. 
 
The method for determining the actual solution 
can be modified to produce a skewed value for 
the attacker and a skewed solution.  To do so, 
note that before the attacking node (C) reports 
its value there exists two possible valid 
solutions to the system of equations.  This can 
be seen in Figure 4.  Intuitively, node C simply 
needs to report a value that skews the result 
towards the incorrect solution.  To do this, 
node C calculates the intersection of the circles 
defined by nodes A and B and their 
corresponding radii.  It then, using its own 
correct value, calculates the correct area in 
which the solution exists.  Next, it 
superimposes an n ?  n grid over the area 
where the correct solution does not exist.  The 
attacking node then calculates for each grid 
square the objective function and checks to see 
if it adheres to all constraints.  If the grid 
square does adhere to all constraints and its 
objective function value is maximum, an n ?  n 
grid is superimposed inside of it  and the 

process continues, until a user-specified 
number of iterations has been reached. 

V.A. Attack Simulation 
Results 

We ran several simulations that determine the 
effectiveness of this method for skewing data 
and when it is easier for an attacker to skew 
data.  The goal of our first simulation was to 
show how much damage an attacking node 
could do when a node P is trying to determine 
its position using atomic trilateration and 
distances and positions of three other nodes (A, 
B, and C) of known location.  The value used 
to determine the effectiveness of our algorithm 
is the skewed/non-skewed ratio.  This value is 
defined as being the distance from the skewed 
solution to the actual value divided by the 
distance from the non-skewed solution to the 
actual value.  If this ratio is larger than one, it 
implies that the attacker was able to do more 
damage to the final result by skewing its data 
than by not skewing it.  If the ratio is less than 
one, the attacker actually did less damage to 
the final result by skewing its data than by not 
skewing it.  In other words, the skewed 
solution was in fact closer to the actual value 
than the non-skewed solution.  The results of 
our simulation can be seen in Figure 5.  In this 
graph, we show a histogram of the 
skewed/non-skewed ratio.  The bins for the 
histogram are [0, 1], [1, 2], and so forth.  In 
addition, we plot the cumulative probability 
function in red (the increasing line) for the 
skewed-non-skewed distance ratio.  This line 
represents the probability of calculating a ratio 
that lies in a bin that is less than or equal to a 
particular bin.  The decreasing line in the 
graph is equal to one minus the cumulative 
probability function (i.e. it is the probability 
that a particular value will land in a bin larger 
than the current bin).  The intersection of these 
two lines represents the value at which half the 
time the result is above and half the time the 
result is below (the median).  Thus, in Figure 
5, one can see that the median skewed/non-
skewed ratio is near 6 (5.822581).  In other 
words, the attacker, when skewing its result, is 
on average able to produce a result that is 
approximately six times farther away than the 
non-skewed solution. 
 

 
 
Figure 5: This figure shows a histogram of ratios with 
bin 1 containing values from 0 to 1, bin 2 containing 
values from 1 to 2, and so forth.  The two lines 
represent the cumulative probability function. 
 



The results of the first simulation demonstrate 
the importance of data skewing using a sensor 
network as the target platform.  However, 
there exist times when achieving particular a 
skewed/non-skewed ratio is more difficult.  
Thus, in our next simulation, we attempt to 
determine when it is easier for an attacker to 
significantly skew data and when it is not 
(again, using a sensor network as the target 
platform).  In this simulation, we are assuming 
that a node P is trying to calculate its location 
by using distances and locations of three other 
nodes – A, B, and C.  In this simulation, node 
A’s location was fixed at (0, 0).  Node B’s 
location was fixed at (1, 0).  Node C’s location 
was placed somewhere on the semicircle 
defined by the circle with node A located in 
the center and node B on the circle itself.  The 
angle between AB and AC was varied from 1 
to 179 and we measured the skewed-non-
skewed distance ratio.  In doing so, we hope to 
determine the orientation of nodes that yields 
the maximum potential for skewing data.  In 
all circumstances, node P was randomly 
placed inside the triangle formed by nodes A, 
B, and C.  For each triangle orientation of 
nodes A, B, and C, node P was randomly 
placed inside 10,000 times and the 
skewed/non-skewed ratio was measured.  The 
results can be seen in Figure 6. 

VI. Defense Protocols 
In this section we discuss two basic methods 
of defending oneself from an attacker.  The 
first line of defense can be mathematically 
described as over-constraining the system.  By 
adding more constraints to the system, the 
attacking node has less room by which it can 
skew the resulting calculated solution.  
Furthermore, adding constraints has the 
potential to reduce the number of possible 
solutions to a system of equations, which thus 
can provide a significant amount of protection. 
 
The second method for defending oneself from 
an attacker is to vary the order in which nodes 
are queried.  By varying the order, the 
attacking node does not always receive 
complete information about the network and 
thus must estimate any remaining values.  In 

order to skew the data effectively and reduce 
the chance of detection, the attacking node 
must, when the query order is varied, 
determine some level of certainty that it will 
not be detected.  The amount that the attacker 
can skew the result is dependent upon this 
threshold of detection, which we demonstrate 
later. 

VI.A. Over-Constrain 
A node can defend itself from attacking nodes 
using several different means.  One simple 
means of defense is to over-constrain the 
problem.  In doing so, a node hopes that it will 
receive enough non-skewed responses to not 
only accurately calculate a solution but also to 
reduce the possibilities by which an attacking 
node can skew data. 
 
We will illustrate this idea of over-
constraining a problem by showing how it 
applies to the example of atomic trilateration – 
the situation in which a node determines its 
location through distances to and positions of 
other nodes.  Assume that node P is trying to 
determine its own position  using nodes A, B, 
C, and D with positions (xA, yA), (xB, yB), (xC, 
yC), (xD, yD) and radii (measured distances to 
node P) RA, RB, RC, and RD.  Assume that node 
D is trying to skew the final result, (xF, yF), 
such that the distance between the skewed 
result, (xF’, yF’), and the non-skewed result is 
maximal.  Also assume that node D is the last 
node to reports its value. 

 
 
Figure 6: This figure shows how the skewed/non-
skewed ratio changes as the angle formed by the nodes 
varies from 1 to 179 degrees.  
 



 
Since node D is the last node queried for its 
value, D is able to overhear the values reported 
by nodes A, B, and C.  With this information, 
node D is able to determine the following 
constraints to determine (xF, yF): 
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Note that there are two paradigms by which an 
attacker can skew its data.  The first paradigm 
is that the attacker attempts to skew data by 
manipulating its reported by hiding within 
existing errors in measurement.  The second 
paradigm by which the attacker can skew its 
data is to force the calculated result to different 
(yet still mathematically valid) solution.  
However, when one over-constrains the 
system, the number of alternate solutions 
decreases, and thus, the attacker’s ability to 
skew data diminishes significantly.  In 
addition, because more readings are being 
used in the calculation of the final answer, the 
attacker’s ability to exploit errors in 
measurement is reduced (due to having to stay 
within acceptable margins of these additional 
readings). 
 

From a geometric perspective, over-
constraining the problem of atomic 
trilateration results in more intersecting circles, 
and when using four readings in two-
dimensional space, the four radii (for a non-
pathological placement of sensors) intersect at 
only one point.  Thus, if a node trying to 
position itself uses only one extra sensor 
(assuming that the system contains only one 
liar), the node is able to greatly enhance its 
approximation of its actual position.  This can 
be seen in Figure 4. 

VI.B. Over-Constrain 
Simulation Results 

We have run several simulations 
demonstrating how increasing the number of 
constraints provides greater assurance that the 
calculated result is accurate.  To demonstrate 
this increase in accuracy, we use 3-sensor, 4-
sensor, and 5-sensor networks.  For each type 
of network, we randomly generate 1000 
examples and record the skewed/non-skewed 
ratio.  
 
Figure 8 is a plot of the numb er of sensors 
used in trilateration versus the corresponding 
skewed/non-skewed ratio.  Each ratio in this 
measurement was determined by calculating 
the median value over 1000 randomly 
generated scenarios.  As one can see, when the 
number of sensors is increased from 3 to 4, the 
skewed/non-skewed ratio decreases 
significantly. However, further increasing the 
number of sensors used in atomic trilateration 
does not have as significant an impact.  This 
figure demonstrates two concepts.  First, over-
constraining the problem decreases the 
attacker’s ability to skew its data effectively.  

 
 

 
 

Figure 7: This figure demonstrates how increasing the 
number of sensors (and thus constraints) reduces the 
attackers ability to skew the final result. 
 

 
 
Figure 8: This figure demonstrates the trend of the 
skewed/non-skewed ratio as the number of sensors 
increases. 
 



Second, further over-constraining the problem 
does not yield significant benefits. 

VI.C. Query Order 
One method to defend oneself against an 
attacking node is to vary the order in which 
nodes are queried for data.  By doing this, the 
attacking node does not know when it will be 
selected to report its value, and thus, it is not 
able to know in advance what information 
from the other nodes it can rely upon.  
Therefore, the attacking node’s  ability to skew 
data is limited, and if the attacker does not 
skew the data properly, its likeliness for 
detection increases. 
 
To further illustrate this idea, we will 
demonstrate how this problem applies to 
atomic trilateration.  In this example , assume 
that node P is trying to determine its own 
position  using nodes A, B, and C with 
positions (xA, yA), (xB, yB), and (xC, yC) and 
radii (measured distances to node P) RA, RB, 
and RC.  Assume that P queries node A first, 
followed by node C, and then node B.  Further 
assume that node C is trying to skew the final 
result, (xF, yF), such that the distance between 
the skewed result, (xF’, yF’), and the non-
skewed result is maximal. 
 
Since C is queried second, it is only able to 
overhear the radius reported by node A.  
However, because C is also able to determine 
its own radius to point P, C is able to narrow 
down the list of possibilities of where P can be 
to two regions, which are defined by the 
intersection of the two radii of nodes A and C.  
Using our generic method for skewing data, 
we will derive a system of equations to 
forma lize this problem of when the attacker 
reports second in atomic trilateration.  Because 

node C is only able to determine its value and 
the value reported by node A, node C is only 
able to determine two constraints to define (xF, 
yF), which are similar to (15) except that the 
reading from node B is not present. 
 
Node C does not know node B’s radius or 
position because these values have not been 
reported by node B yet.  Because this system is 
under constrained, node C is not able to 
uniquely determine a value for (xF, yF), and 
thus might not be able to skew the data 
accurately. 
 
Because of a lack of information (in this case, 
the value reported by node B), the attacker 
must make an educated guess as to where the 
final result will be (and when using method 2, 
where an alternate result will be).  To do this, 
we propose a Monte Carlo simulation method.  
The Monte Carlo method depends on several 
parameters: the number of Monte Carlo tries 
per reported value (N), the success rate of the 
attacker (R), and the granularity of the reported 
values (G).  The Monte Carlo method works as 

 
 

Figure 9:  In this figure, point 2 represents where the 
actual result lies and what node C is trying to 
approximate using method 1.  Point 3 represents an 
alternate solution if node B’s value were known, and 
what node C is trying to approximate using method 2. 
 

 
Estimate the solution using the known 
reported values. 
 
Determine upper and lower bounds for the 
skewed reported value. 
 
For each value between the upper and 
lower bounds (separated by intervals of 1 / 
G): 
 
 Calculate N scenarios by 

randomly choosing the remaining 
values. 

 
 For each scenario, calculate the 

resulting solution and determine 
the suspected attacking node. 

 
 If the attacking node is 

unsuspected in at least R ?  N 
scenarios, record this solution if it 
is maximally offset from the 
estimated solution. 

 
 
Figure 10: Formal algorithm describing the Monte 
Carlo procedure used by an attacker to maximally 
skew a computation while maintaining a certain 
probability of detection. 
 



follows.  The attacking node must first 
estimate the final solution.  Then, the attacking 
node must determine a set of boundaries 
within which it can report.  Next, for each 
value within the boundaries (with each value 
occurring at intervals of 1 / G), the attacker 
will create N scenarios by randomly choosing 
the values to be reported by the remaining 
nodes N times.  For each scenario, the attacker 
will calculate the resulting solution and 
determine if it is suspected to be skewing its 
data.  If the number of scenarios in which the 
attacker is unsuspected is larger than R ?  N, 
the current value is remembered.  Finally, the 
attacker chooses from each remembered value 
the value that is maximally offset from its 
original estimated value.  This Monte Carlo 
method is more formally stated in Figure 10. 
 
This Monte Carlo method of defense can be 
applied to atomic trilateration in the following 
way.  Node C must first store the two 
intersection areas where it believes the actual 
solution lies.  Then, node C sets its skewed 
reported radius to the minimal radius, which 
can be determined by calculating the distance 
from node A to node C and subtracting from 
that the measured radius reported by node A.  
This minimal radius corresponds to the 
scenario where the radii from nodes A and C 
intersect at exactly one point between nodes A 
and C.  Using this radius, node C then 
randomly chooses N locations and radii for 
node B.  The radii are determined by randomly 
choosing from the two areas where the 
solution may lie and adding a random error.  
For each scenario, node C then calculates the 
final solution and checks to see which node is 
determined to be the attacker.  This is repeated 
N times, and if node C is not suspected in R ?  
N Monte Carlo simulations, node C’s current 
reported radius is stored.  Node C’s radius is 
incremented by 1 / G (where G is the 

granularity of measurements) and the Monte 
Carlo procedure is repeated until the maximum 
radius is reached, which is determined by 
calculating the distance from node A to node C 
and adding to that the measured radius 
reported by node A.  This radius corresponds 
to the scenario when the circles from nodes A 
and C intersect at exactly one point that is not 
between nodes A and C.  From each value of 
node C’s radius that is unsuspected at least R ?  
N times node C selects the value that 
maximally offsets the calculated solution.  The 
offset to a solution is calculated by 
determining the distance between the 
calculated solution and the closer of the two 
initial solution estimations. 

VI.D. Query Order 
Simulation Results 

We ran several Monte Carlo simulations, with 
N being equal to 100, R varying from 0.65 to 
0.95, and G being 100.  These simulations 
were designed to validate the intuitive idea 
that as the Monte Carlo success rate increases, 
the ability to skew data decreases.  In our 
Monte Carlo method simulations, we show 
how the attacker has less potential to skew its 
data and thus the effectiveness of the Monte 
Carlo method.  As one can see from Figure 11, 
as the attacker’s success rate (probability of 
not being detected) increases, its ability to 
skew data decreases. 

VI.E. Comparison 
From Figures 8 and 11, one can see that both 
over-constraining the problem and varying the 
query order can significantly reduce the 
attacker’s potential to skew data.  However, 
judging from the skewed/non-skewed ratios 
determined by each method, it appears that 
over-constraining the problem actually causes 
an attacker (when attacking) to skew the result 
closer to the actual solution, and thus, is a 
better method for defending oneself from 
attackers.  However, the tradeoff associated 
with this approach is that it is more costly and, 
in the context of sensor networks, requires not 
only more sensors but also more 
communication, which uses more energy and 
thus reduces the lifetime of the network.  On 
the other hand, varying the query order is a 
simple mechanism that achieves significant 
results without increasing the size of the 

 
Figure 11: This figure demonstrates the trend of the 
skewed/non-skewed ratio as the success (non-
detection) rate of the attacker increases. 
 



network or reducing its lifetime through excess 
communications. 

VII. Related Work 
Misinformation theory and application is a 
new topic and therefore there are no directly 
related efforts.  From a more general 
perspective, information theory, fault-
tolerance, and in particular fault-tolerance in 
distributed systems, security and cryptography 
in sensor networks, and several other efforts 
relate to the treatment of skewed data in the 
computer science theory community. 
 
Shannon started Information theory [Sha48].  
The standard references include [Ash65] and 
[Cov91].  It is interesting to note that Shannon 
also introduced the first set of principles for 
obfuscation of information [Sha49] that form 
the basis for building cryptographic systems.  
Although no work has had as much impact and 
broad importance and applicability as that 
done by Shannon, we hope to build upon the 
theory presented by Shannon with our 
misinformation theory. 
 
Location discovery is an important problem 
that occurs frequently in wireless embedded 
sensor networks.  The works done by [Bul00], 
[Doh01], and [Bul02] help demonstrate the 
importance of this problem and illustrate how 
trilateration is  a common technique used for 
location discovery. 
 
Fault tolerance studies techniques on how to 
handle misinformation that is introduced 
randomly.  There exists a vast quantity of 
literature on this topic ([And81], [Jal94], 
[Lyu95]).  Most related fault tolerance work is 
one done in the distributed systems community 
[Lyn96], and in particular the Byzantine 
generals problem [Lam82] and [Lam83]. 
Another related approach is Rabin's scheme 
for efficient dispersal of information for 
security, load balancing and fault tolerance.  In 
a sense, the most closely related fault tolerance 
work is that done by Marzullo in a series of 
papers ([Mar90] and [Mar97]). These papers 
propose techniques on how to aggregate 
information from faulty sensors.  The main 
difference between our work and that of 
Marzullo is that Marzullo determines bounds 
within which a solution may exist.  We, on the 
other hand, hope to push the reported solution 
to a different (yet still valid) solution.  Finally, 

in the theoretical computer science 
community, several versions of how to play 
the twenty questions game when one of 
players is reporting incorrectly was addressed 
from several different points viewpoints 
([Dha92] and [Amb99]).  Furthermore, 
Koushanfar et al. studied fault tolerance 
techniques for sensor networks [Kou02].  
Although the addition of constraints can 
restrict the amount by which one can skew 
data, because errors will continue to exist in 
the network, it will still be possibly to 
maximally skew data even with additional 
constraints, although the extent may become 
significantly lessened. 
 
Two techniques for facilitating security and 
privacy in sensor networks have been 
proposed. One uses cryptographic techniques 
[Per01] and one uses system-building 
techniques [Cor02]. Good starting points for 
sensor network research include [Ten00], 
[Pot00] and [Est00], and good starting points 
for semantic misinformation can be seen in 
from [Lib94] and [Sch00]. 

VIII. Conclusion 
We have developed the first quantitative 
misinformation scheme for sensor networks. 
The important aspects of this task are 
identified and abstracted so that the problem 
can be posed as either an instance of nonlinear 
programming or as a Monte Carlo-based 
optimization. A number of attacks and defense 
schemes have been proposed and analyzed.  
We demonstrated the effectiveness of this 
approach with techniques and algorithms on 
two canonical tasks in sensor networks: single 
value averaging and atomic trilateration. 
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