
OPTIMALITY AND STABILITY STUDY OF TIMING-DRIVEN PLACEMENT
ALGORITHMS

Jason Cong, Michail Romesis, Min Xie

Computer Science Department
University of California, Los Angeles�

cong,michail,xie � @cs.ucla.edu

ABSTRACT

This work studies the optimality and stability of timing driven
placement algorithms. To our knowledge, it is the first study of this
kind. The contributions of this work include two parts: 1) We de-
velop an algorithm for generating synthetic examples with known
optimal delay for timing driven placement (T-PEKO). The exam-
ples generated by our algorithm can closely match the characteris-
tics of real circuits. 2) Using these synthetic examples with known
optimal solutions, we studied the optimality of several timing-
driven placement algorithms for FPGAs by comparing their so-
lutions with the optimal solutions, and their stability by varying
the number of longest paths in the examples. For examples with a
single longest path, the delay produced by the algorithms is from
10% to 18% longer than the optima on the average, and from 34%
to 53% longer in the worst case. Furthermore, their solution qual-
ity deteriorates as the number of longest paths increases. For ex-
amples with more than 5 longest paths, their delay is from 23% to
35% longer than the optima on the average, and is from 41% to
48% longer in the worst case.

1. INTRODUCTION

Placement is one of the most important steps in the post-RTL syn-
thesis process as it directly defines the interconnects, which have
now become the bottleneck in circuit and system performance in
DSM technologies. The placement problem has been studied ex-
tensively in the past 30 years. However, a recent study shows
that existing placement solutions are surprisingly far from optimal.
Using a set of constructed placement examples that match many
industrial circuit characteristics with known optimal wirelength
(PEKO), the study shows that the results of leading placement
tools from both industry and academia are 70% to 150% away
from the optimal solutions on those examples [1]. An extension
of PEKO was presented [2], where new examples called PEKU
(Placement Examples with Known Upper bounds) were created
by inserting a user-specified percentage of non-local nets into a
PEKO circuit. By relaxing the optimality constraint on a sub-
set of connections, PEKU more accurately emulates real circuits
in terms of wirelength distribution. Experiments showed that for
PEKU benchmarks, state-of-the-art placers can be far away from
the upper bound. In the extreme case, where each circuit consists
of global connections only (G-PEKU benchmarks), existing tools
can be 41% to 102% away in the worst case.

The examples with known optimal wirelength enable quanti-
tative analysis about how far away state-of-the-art placement algo-
rithms are from the optimal solutions. However, wirelength is not

the sole objective in circuit placement. In the era of DSM technol-
ogy, the most important goal of placement is performance (delay)
optimization. It is important that we extend the optimality study to
timing-driven placement algorithms.

Existing timing-driven placement algorithms can be divided
into two categories, net-based and path-based. Path-based algo-
rithms [3, 4, 5] try to directly minimize the longest path delay.
Since they maintain an accurate timing view during optimization,
their complexity is usually high. Net-based algorithms [6, 7, 8,
9] first transform timing constraints into either length constraints
or weights on individual nets. The information is then fed to a
weighted wirelength minimization based placement engine to ob-
tain a new placement with better timing. This process usually goes
through a few iterations until no improvement can be made, or
a certain iteration limit has been reached. Compared with path-
based algorthms, net-based algorithms have lower complexity.

There are several works on generating timing-driven place-
ment examples [10, 11]. However, none of them satisfy our need,
since their optimal solutions are unknown. In this paper, we present
an algorithm for generating timing-driven placement examples with
known optimal delay under a simplified delay model (T-PEKO).
These examples can closely match the characteristics of real cir-
cuits. Using these examples with known optimal delays, we stud-
ied the optimality of several timing-driven placement algorithms
for FPGAs from commercial and academic tools by comparing
their solutions to the optimal solutions, and their stability by vary-
ing the number of longest paths in the examples. We chose FPGA
placement since it gives the flexibility to specify our delay model
and cell library. To our knowledge, this is the first study of this
kind. Experimental results for the academic tools show that for
examples with a single longest path, the delay produced by the
algorithms is from 10% to 18% longer than the optima on aver-
age, and from 34% to 53% longer in the worst case. Furthermore,
their solution quality deteriorates as the number of longest paths
increases. For examples with more than 5 longest paths, their de-
lay is from 23% to 35% longer than the optima on average, and
is from 41% to 48% longer in the worst case. The performance
of the commercial tool that targets the Xilinx Virtex architecture
is much better. The difference there from the optima in terms of
delay ranges from 4% to 21%.

The rest of this paper is organized as follows: Section 2 presents
the T-PEKO algorithm for the construction of timing-driven place-
ment examples with a known optimal solution. Section 3 presents
the comparison of the placement results for the T-PEKO suite pro-
duced by state-of-the-art, timing-driven placement algorithms with
the optimal solutions. Section 4 presents conclusions and future

Administrator
1

Administrator
Technical Report #030030

Administrator

DFFClock
OutLUT

K - inputInputs

Figure 1: Graph of a basic logic element. It consists of a lookup
table (LUT), a flip-flop and a multiplexer

work.

2. CONSTRUCTION OF PLACEMENT EXAMPLES
WITH KNOWN TIMING OPTIMAL SOLUTION

2.1. Discussion of the FPGA Architecture and the Delay Model

We first present the architecture of the FPGA device that we as-
sume during the construction of the examples. Each logic block
(CLB) consists of two basic logic elements (BLE). One BLE is
shown in Figure 1, and it contains a K-input LUT, a flip-flop and a
multiplexer. The flip-flop’s input is connected to the output of the
LUT. The multiplexer selects the output of the LUT or the flip-flop.

Several delay models have been proposed to calculate the per-
formance of a circuit. The most popular is the Elmore delay model
[12]. Recent studies [13] have shown that under optimal buffer in-
sertion, sizing and wire sizing, the delay of a wire is approximately
linear to its length. For this reason, in this paper we use a linear
delay model which can be summarized as follows:

(i) The delay inside any LUT is a constant ��� , while any other
delay inside a BLE is assumed to be zero.

(ii) The delay of any interconnect �������	��
� between two BLEs
A and B is given by the following formula: � � ������
���
��������������
�������� , where �����������	��
� is the Manhattan dis-
tance of BLE A from BLE B, while � � is the constant delay
between two adjacent BLEs (Manhattan distance equal to
1).

In reality, the BLEs of FPGA devices are more complex and
include more connections, as will be shown in the Xilinx exper-
iment section. The delay model also can be more complicated.
However, our methodology is generic in that it is applicable as long
as the interconnect delay between two adjacent nodes is always
smaller than any delays between non-adjacent nodes and � � ��� �
are constants. Furthermore, it can be applied to ASICs as well,
especially to standard-cell row-based architectures.

2.2. The T-PEKO Algorithm

Our methodology for the construction of the timing-optimal bench-
marks works as follows: The first step is to obtain a placement
solution of an existing combinational or sequential circuit. The
second step is to perform timing analysis to find the longest path
in the circuit using our delay model. Let �! be the delay of the
longest path, and "#��$ be the number of rows and columns of the
device, respectively. The algorithm perturbs the netlist by insert-
ing a path %'&�(�) that connects *,+.- adjacent nodes, where r is given
by *	�0/21�"3�546� 87 �9� � +.� � ��:8�;4����9"<+.$=�'�>� � +.� � � 7 �6� � +?� � �@:A�
(see Figure 2). Since the new netlist is the result of a perturbation
of the original netlist, the smaller the perturbation, the stronger the
similarities it has with the original circuit.

Before we present in detail the construction of the path % &�(�) ,
we denote some terms here:

B We call a netlist valid if: 1) It has no combinational loops,
2) It has no dangling BLEs, i.e., BLEs with at least one
input (output) and no outputs (inputs), and 3) Each BLE
has at most C inputs and 1 output. If a netlist is not valid,
it is called invalid.

B Static timing analysis [14] constructs a timing graph whose
vertices correspond to the pins of the circuit. The timing
edges that connect the vertices of this graph are constructed
in two ways: 1) Each net is converted into a set of directed
edges that connect each source of the net to all sinks of the
net. 2) Each LUT is represented by a set of intracellular
edges that connect all the inputs of the LUT to its output.

B Each LUT is assigned a number called the level of the LUT,
such that the following property is satisfied:
Property (1): For every timing edge of the timing graph of
the circuit originating from the output pin of an LUT 1 to an
input pin of another LUT D , we have EGFIH�FIJ��91=�LKMENF5H�F5J��6D�� .
It is easy to see that if this property is satisfied, there are
no combinational loops in the circuit. If some timing edges
violate the above property, we can guarantee that by remov-
ing them the circuit is free of combinational loops. Note
that this property does not have to hold for timing edges be-
tween pins of the same LUT, or between pins of a LUT and
a flip-flop.

B A flip-flop O is disconnected if the multiplexer of the BLE
selects the output of the LUT J , otherwise it is connected. In
the remainder of this paper, when we mention that the status
of a flip-flop is changed from connected to disconnected,
we perform the following changes to the netlist: The flip-
flop is removed from the netlist and all the fanouts of the
flip-flop become fanouts of the LUT except for the ones
that cause a violation of Property (1). Similarly, when we
mention that the status of a flip-flop is changed from discon-
nected to connected the following changes are performed:
A new net is added to the netlist from the output of the LUT
to the input of the flip-flop, and all the previous fanouts of
the LUT become fanouts of the flip-flop.

Before the construction of the path % &�(�) these initial steps take
place:

(i) The original mapped netlist is placed on the FPGA device.

(ii) Static timing analysis is performed on the placed circuit.
The longest path delay �= is computed as well as the integer
* according to the formula :
*P�0/�1;"Q�546�= 7 �9� � +P� � ��:R�;4����9"S+P$=��� � +�� � � 7 �9� � +P� � ��:I��� .
Every LUT is assigned to a level equal to the highest arrival
time among its pins.

The construction of the path % &�(5) is as follows:

(i) A BLE is selected at a corner of the device as the first node
of the path. If the flip-flop of the BLE is disconnected its
status is changed to connected. A new timing edge (if it
does not exist already) is added 1 from the output pin of
that flip-flop to an input pin of an adjacent LUT, which we

1The insertion of a timing edge on the timing graph from the output
pin T of LUT U to an input pin V of LUT W corresponds to the following
changes on the netlist: If pin T is used and X is the corresponding net, add
pin V to the sinks of X . If T is not used, create a new 2-pin net with T as its
source and V as its sink.

Administrator
2

call the current LUT of the path. Then, we check if the in-
put constraint of the current LUT of the path is violated. If
the current LUT had all its C input pins used before the ad-
dition of the new edge, the algorithm randomly selects one
of them and removes the timing edge 2 that corresponds to
this pin. After removing a timing edge, it is possible that an-
other BLE becomes dangling. This is fixed by the following
process: We find the closest BLE to the dangling one that
has its flip-flop connected and at least one unused input (if
the dangling node does not have outputs) and connect the
dangling node to it. If a feasible BLE cannot be found, a
PI/PO pad at the boundary of the circuit is randomly se-
lected and connected to the dangling node. Although this
process can increase the number of PI/POs, it does so only
slightly as the experimental results will show.
Note that any of the BLEs corresponding to these 2 LUTs
may be initially unused in the placement solution. If this is
the case, the LUTs and the connected flip-flop will be added
to the netlist.

(ii) The following procedure is repeated *�� - times:
A new timing edge is added (if it does not exist already)
connecting the output pin of the current LUT 1 of the path
to an input pin of an adjacent LUT D , as in the previous case.
The selection of the adjacent LUT is such that the path has
a zig-zag shape (see Figure 2), in order to guarantee that all
the LUTs can be visited exactly once. LUT D becomes the
current LUT of the path, and its flip-flop gets disconnected.
If the disconnection of a flip-flop causes a BLE to become
dangling (because some connections are removed if Prop-
erty (1) is violated), the algorithm performs the same steps
as in (i). The algorithm will check if the input constraint of
the current LUT is violated and, if so, will fix it in the same
way as in (i). Furthermore, it will check if Property (1) is vi-
olated. If it is violated, we will have EGF5H�F5J��61!� � ENF�H�FIJ��9D5� .
The violation is fixed by reassigning the level of LUT D and
by removing some timing edges if necessary. We divide the
fanouts of D into two groups: those that belong to LUTs
with level higher than Level(a), and those that belong to
LUTs with level equal to or lower than Level(a). These two
sets are denoted as ��� and ��� respectively. All the timing
edges from D to � � will be removed. Let the LUT with
the lowest level in � � be � . Level(b) will be assigned as
�9E F�H�FIJ��91!�,+ EGF5H�F5J��	�I��� 7�
 . If the set ��� is empty, Level(b)
can be assigned to any value higher than Level(a). It is ob-
vious that after these changes, Property (1) is satisfied.

(iii) At the end of step (ii), the current LUT is the last node of
the path %'&�(5) . If its corresponding flip-flop is disconnected,
it is changed to connected.

The path % &�(�) connects *,+.- adjacent BLEs. It goes through *
LUTs and * connections between adjacent BLEs, so the total delay
of % &�(�) is �� � *L���6�;� + ���=� � �= . If this path is the longest of
the circuit for this placement, it is obvious that �� is the optimal
delay of the circuit for the given LUT mapping and delay model.

However, the addition of new timing edges and the discon-
nections of the flip-flops during the construction of % &�(�) may cre-
ate some new paths that have longer delays than TD. In order to

2The removal of a timing edge from the output pin T of LUT U to an
input pin V of LUT W corresponds to the following changes on the netlist:If
the corresponding net X has more than 2 pins, remove pin V from its sinks.
If X has only 2 pins, remove the net from the netlist.

Figure 2: Example of an artificial longest path. It starts from a
corner of the device and has a zig-zag shape in order to guarantee
that all the nodes can be visited exactly once

shorten these paths, we iteratively perform timing analysis on the
perturbed circuit until the delay of the circuit becomes equal to
TD. If the timing analysis shows that the longest path’s delay TD’
is longer than TD, we identify the critical path, and remove the
interconnect timing edges along that path that are not in % &�(5) . Dur-
ing this process, we will also fix dangling BLEs, as in the previous
step. Eventually our artificial path will become the longest of the
circuit, as we will prove later.

The T-PEKO algorithm can be summarized as follows :

THE T-PEKO ALGORITHM
Obtain a placement solution of the original netlist.
Compute the longest path delay � and the length * of the path
%'&�(5) .
Create a path % &�(�) of delay �� containing only adjacent nodes.
Make the necessary modifications so that the netlist remains
valid.
While the longest path of the circuit TD’ is longer than TD

Delete edges in the longest path that are not in % &�(�) . Make
the necessary modifications so that the netlist remains valid.

The following theorem states the validity of the algorithm:
Theorem 1 : The T-PEKO algorithm guarantees that the per-

turbed netlist is valid, and that %'&�(5) is the longest path of the
placed netlist.

Proof: There are four kinds of modifications to the netlist by
the T-PEKO algorithm. We will first show that a valid netlist is not
transformed to invalid after any of these modifications:

(i) Insertion of a new timing edge: When a new timing edge
is inserted to a valid netlist, as we showed before, the fol-
lowing steps are performed: 1) The input/output constraint
violations of the LUTs connected by the new edge are fixed.
2) The dangling node violations are fixed. 3) The violations
of Property (1) are fixed. From the definition of Property
(1), it is easy to see that if it is satisified, there is no com-
binational loop in the circuit. Thus, after the insertion of a
new timing edge in the T-PEKO algorithm, a valid netlist
remains valid.

(ii) Removal of a timing edge: When a timing edge is removed,
the only possible violation for a valid netlist is the creation
of dangling BLEs. The algorithm takes care of this viola-
tion by connecting every dangling node to a BLE that has its
flip-flop connected and has at least one unused input (if the
dangling node does not have outputs) or to an IO pad. It is

Administrator
3

easy to see that this additional connection does not violate
Property (1).

(iii) A flip-flop becomes connected: This modification does not
change a valid netlist to invalid because: 1) There is no BLE
with more inputs or outputs than before, 2) No dangling
nodes are created, 3) No combinational loops are created.

(iv) A flip-flop becomes disconnected: When a flip-flop becomes
disconnected, its fanouts become fanouts of the correspond-
ing LUT, except for the ones that cause a violation of Prop-
erty (1). If any dangling nodes are created, they are con-
nected to an IO pad or a BLE. It is easy to see that no other
violations occur, so a valid netlist remains valid in this case.

Assuming that the original netlist is valid, and since all the inter-
mediate changes do not change a valid netlist to invalid, the final
netlist created by the T-PEKO algorithm is valid.

After the construction of % &�(5) , the algorithm iteratively per-
forms timing analysis to identify paths that are longer than % &�(�) .
The interconnect timing edges of these paths that do not belong to
% &�(�) are removed. In this process it is possible to insert new tim-
ing edges, if dangling nodes are created. At the same time how-
ever, the corresponding flip-flop of the dangling node gets con-
nected. As a result, the maximum possible delay of any path that
includes these new edges is : ��������� �9" + $!��� ����+ �;� , since
�9"2+ $=� �<�;� is the maximum possible delay of a net according
to our timing model. Since at every iteration we insert edges only
for the dangling nodes and we remove edges that are not in the
% &�(�) , eventually the longest path of the circuit will be either %'&�(�) ,
or another path that includes the new edges with a maximum delay
of ������� . But we have that the delay TD of % &�(�) is *<���9�;� +M���=�
and that * � 4���� " + $=�Q� � � + � � � 7 �9� � + � � ����: , so we have that
 � � � ����� . This proves that after a finite number of iterations,
% &�(�) becomes the longest path of the circuit.

2.3. Increasing the Difficulty of the T-PEKO examples

In this work we study not only the optimality of the timing-driven
placement algorithms, but also their stability for circuits with dif-
ferent characteristics. Ideally an algorithm is expected to perform
well on various kinds of circuits. For this stability study we intro-
duce two parameters for the construction of the circuits that control
their difficulty for a placer, including:

(i) The number of longest paths : The algorithm can create
a user-specified number of disjoint longest paths. Assume
that this number is

�
, that the delay of the critical path

of the original circuit is �) , and that integer * is computed
as before. We create a path % &�(�) according to the same
methodology as described earlier with the only difference
that it connnects

� � *#+ - adjacent BLEs, instead of *3+.- .
The total delay of that path will be � � � � *<�	� � � +
� � � � � �>��) . Along this path at equal distances, we con-
nect

� � - flip-flops. As a result, the initial longest path is
replaced by

�
paths, each one with a delay greater than or

equal to �) . Note that after this change, some other paths in
the circuit might become longer, and they will be removed
according to the same procedure as the one described in the
previous subsection. In the end, these

�
paths will be the

longest of the circuit.

(ii) The number of edges that connect longest paths : To in-
crease the degree of path sharing, T-PEKO will create some

Figure 3: Bridge construction. A bridge will be inserted between
s and t.

nets to connect BLEs located on different longest paths.
Figure 3 provides an example. ��
 and 	 � are two longest
paths constructed as described in the previous paragraph.

is a BLE along the path �
 , � is a BLE along the path
	 � . T-PEKO will connect

’s output � with one of � ’s un-

used inputs � . This corresponds to inserting a timing edge
between � and � in the timing graph. We call the newly
added timing edge a bridge, denoted as DR�@�8����� . The follow-
ing theorem guarantees that the netlist remains valid after
this operation.
Theorem 2: The netlist after inserting D8�@�8����� is valid if
� �@�5��+0�;� �����
 �����G��� � + � �� � �6���6� . Here, � �@�A� is the
arrival time of � , � � is the output pin of � , � �6� � � is the ar-
rival time of � � , and dist(E,F) is the Manhattan distance of

from � . The longest paths in the original netlist remain
the longest after DA�@������� is inserted.
Proof: It is obvious that the IO constraints on the BLEs will
still be satisfied. If the netlist has combinational loops after
the insertion of D8�@�R����� , D8�@�R����� should be on a loop in the
timing graph. Therefore, there exists a path from � � to �
before inserting DR�@�R����� , indicating � � � � � K � �9�A� . Contra-
diction.
If a path exists with a delay longer than � after insert-
ing D8�@�8����� , D8�@�8����� should be on this path. However, since
� �@�5�>+ �;�������
 ���	�>� ���	+ �;� � �6� � � , DR���8����� will not in-
crease the arrival time of any vertex in the timing graph.
Therefore, a vertex exists in the timing graph with a delay
higher than � before inserting D8�@�8����� . Contradiction.

2.4. Extension to the Xilinx Architecture

The previously described algorithm targets our simplified model
and FPGA architecture. With some modifications, T-PEKO is ex-
tended to create placement examples constructed for commercial
tools. More specifically, in this subsection we describe how we
created examples for the Xilinx Virtex architecture. In this archi-
tecture a CLB (configurable logic block) contains two logic cells,
and each cell contains 2 LUTs (see Figure 4). Due to the inter-
connect architecture of Virtex [15], it is not guaranteed that the
interconnection delay between non-adjacent nodes is shorter than
the delay between two adjacent nodes.

To address this problem the artificial path we constructed for
this architecture was slightly different from the general case of the
previous section. The path must first visit all four nodes of a CLB
before moving to an adjacent CLB. Figure 5 shows an example
of two artificial paths that we created for a Xilinx Virtex device.
These paths share the same CLBs in the middle row, but the first

Administrator
4

Figure 4: A Virtex CLB contains 4 LUTs in 2 slices. Picture taken
from the web site of Xilinx

Figure 5: An example of the artificial path on a Xilinx Virtex de-
vice. A box represents an LUT, while the dashed lines show the
borders between different CLBs. The path traverses all the LUTs
of a CLB, before moving to an adjacent CLB.

path moves to the CLBs of the upper row, while the other path
moves to the CLBs of the bottom row. For our Xilinx experiments,
we used this technique to create multiple paths. Similar changes
must be performed when working on other FPGA architectures.

One additional problem when working with commercial tools
is that the delay model is no longer known. It is true that delay
tables can be extracted 3, but they are not 100% accurate. There-
fore, the timing analysis we perform is an approximation. It is not
guaranteed that the artificial path is the longest path in the circuit.
Still, we can consider the delay of that path as a tight upper bound
of the optimal delay of the circuit.

In the experimental results section we are investigating the per-
formance of the Xilinx place and route tool PAR on the T-PEKO
examples tailored for the Virtex architecture.

3. EXPERIMENTAL RESULTS

We have implemented T-PEKO on a Sun Blade 1000 using C++.
To generate the initial placement configurations needed by T-PEKO,
we ran VPR [16] on 20 MCNC benchmarks using its timing driven

3We extracted the delay tables in the Virtex architecture as follows: We
constructed nets connecting 2 LUTs. One LUT was fixed at a corner of
the chip. The other was moved to every location on the chip. We filled the
delay table with the delays reported by the Xilinx timing analysis tool in
every case.

mode. The placement results were then fed into T-PEKO and per-
turbed. We varied

�
from 1 to 5 and generated 100 circuits. The

maximum number of inputs and outputs on each BLE is 6 and 1
respectively. As for the delay parameters, ���.� - and ��� � - .
When possible, a maximum of 50 bridges were inserted between
the

�
longest paths. The circuits were grouped as the T-PEKO

suite and can be downloaded from [17].
Table 1 gives the characteristics of T-PEKO in terms of the

number of CLBs, PIs, POs, flip-flops and nets. The column “Orig”
shows the name of the original MCNC circuit from which the ini-
tial placement configuration is derived. The columns for

� ���
show the characteristics of the original MCNC circuits. Column
“Opt” gives the optimal delay under our simplified delay model.
For the same initial placement configuration, the optimal delay
does not change for any value of

��� � (of course, we do not
know the optimal delay for

� ���). The perturbed circuits are
very close to the original ones in these aspects for most cases. The
circuits that were initially combinational were transformed into se-
quential after the insertion of flip-flops (40 in the worst case). The
circuits are given in the format specified in [18]. Each circuit has a
.net file describing the netlist of each circuit. It also has a .arch file
specifying the combinational delay of each LUT, and the number
of IOs for each CLB. To guarantee a fair comparison, we generated
a .pad file for each circuit, which gives the pad locations extracted
from the optimal solutions by our construction.

For our optimality and stability study, we experimented with
two state-of-the-art FPGA placement algorithms, including:

B VPR [16], a well-known FPGA placement and routing pack-
age widely used for FPGA architecture evaluation [19]. Its
optimization engine is based on simulated annealing. It
combines connection-based and path-based timing-analysis.
The cost function it uses trades off between wirelength and
critical path delay. We used VPR v.4.3 downloaded from
[20] in our experiment.

B PATH [21], the latest FPGA placement algorithm which
presents a significant enhancement to VPR in timing opti-
mization. It takes into consideration the path sharing effect.
PATH introduces a new net weighting algorithm based on
the concept of path-counting. We used PATH v.1.0 in our
experiment.

One complication of FPGA architecture is that the delay be-
tween two BLEs depends not only on their Manhattan distance, but
also the routing segments that connect the BLEs. Therefore, both
algorithms use a preliminary routing procedure before placement
to determine the delay between BLEs. To accommodate our sim-
plified delay model, we modified the delay computation in each al-
gorithm, so that the delay between BLEs is always the Manhattan
distance between them multiplied by � � . This change, in effect,
makes our study of these algorithms independent of the FPGA ar-
chitecture and their routing procedure. In our experiment, we set
the tradeoff parameter of wirelength vs. delay to be 0.5, as sug-
gested by [16]. Changing the value of this parameter to favor the
critical path delay minimization did not seem to improve the final
results.

For each circuit of T-PEKO, we run each algorithm 5 times.
The results are summarized in Table 2 and Figure 6. The average
difference between each algorithm’s result and the optimal solu-
tion is listed. For completeness, the best results for every circuit
are reported. From the results, we make the following observa-

Administrator
5

Table 1: Characteristics of the TPeko suite. Column “Orig” gives the initial circuit from which the perturbed circuits are derived.
� � �

corresponds to the characteristics of the original circuit. The perturbed circuits are very close to the original circuits in the number of CLBs,
PIs, POs, flip-flops and nets. Column “Opt” gives the optimal delay for each circuit. It is the same for circuits derived from the same initial
placement for

� � - .
Ckt Orig Opt

M = 0 M = 1 M = 3 M = 5
CLB PI PO FF NET CLB PI PO FF NET CLB PI PO FF NET CLB PI PO FF NET

TPeko01 tseng 88 1047 51 122 385 1098 1056 51 105 371 1107 1059 51 85 341 1128 1060 51 81 326 1162
TPeko02 ex5p 108 1064 8 63 0 1072 1067 8 57 5 1075 1068 8 56 6 1102 1068 8 50 32 1127
TPeko03 apex4 106 1261 9 19 0 1271 1275 9 22 25 1284 1287 9 17 24 1310 1287 9 18 38 1347
TPeko04 dsip 116 1370 228 197 224 1598 1424 228 192 226 1652 1537 228 189 228 1789 1653 228 189 230 1932
TPeko05 misex3 92 1397 14 14 0 1411 1415 14 34 40 1429 1427 14 15 19 1461 1431 14 11 23 1496
TPeko06 diffeq 84 1497 63 39 377 1560 1502 63 26 366 1565 1511 63 19 354 1596 1512 63 18 343 1626
TPeko07 alu4 100 1522 14 8 0 1536 1535 14 8 2 1549 1546 14 8 6 1579 1561 14 8 11 1626
TPeko08 des 132 1591 256 245 0 1847 1604 255 206 10 1859 1686 254 194 16 1971 1772 254 191 17 2077
TPeko09 bigkey 124 1707 228 197 224 1935 1766 228 197 226 1994 1793 224 188 239 2036 1801 223 166 227 2075
TPeko10 seq 122 1750 41 35 0 1791 1754 41 40 18 1795 1756 41 38 27 1814 1756 41 28 24 1848
TPeko11 apex2 128 1878 38 3 0 1916 1894 38 8 13 1932 1912 38 5 17 1977 1913 38 8 25 2002
TPeko12 s298 166 1931 3 6 8 1934 1934 3 6 11 1937 1934 3 6 15 1986 1934 3 6 42 1988
TPeko13 frisc 170 3556 19 116 886 3575 3568 19 113 896 3587 3576 19 109 893 3628 3578 19 105 876 3648
TPeko14 elliptic 146 3604 130 114 1122 3734 3616 130 81 1099 3746 3628 130 68 1054 3789 3638 130 63 1027 3819
TPeko15 spla 184 3690 16 46 0 3706 3698 16 50 14 3714 3706 16 47 25 3773 3706 16 53 35 3773
TPeko16 pdc 240 4575 16 40 0 4591 4595 16 55 30 4611 4607 16 48 35 4667 4607 16 39 27 4674
TPeko17 ex1010 290 4598 10 10 0 4608 4610 10 21 22 4620 4612 10 10 14 4673 4612 10 10 21 4673
TPeko18 s38417 164 6406 28 106 1463 6434 6417 28 96 1477 6445 6434 28 94 1485 6501 6441 28 88 1435 6520
TPeko19 s38584 164 6435 37 304 1260 6484 6457 37 262 1250 6494 6476 37 236 1236 6552 6487 37 233 1211 6575
TPeko20 clma 328 8382 61 82 33 8444 8393 60 60 128 8453 8402 60 57 117 8513 8408 60 53 120 8519

tions:

B For
� � - , the delay produced by the algorithms is from

10% to 18% longer than the optima of T-PEKO on average,
and from 34% to 53% longer in the worst case.

B The solution quality of both algorithms deteriorates as
�

increases. For
� � �

, the gap between their solutions and
the optima is from 23% to 35% on average, and from 41%
to 48% in the worst case.

B PATH outperforms VPR in all cases. The best results from
PATH are on average 4% worse than the optima when

� �
- , and 18% worse when

� � �
.

Figure 7 shows the optimal configuration of TPeko20 with
�

= 5 and the results generated by both VPR and PATH. The nodes
on the longest paths by our construction are colored in black in
each solution. Furthermore, the critical timing edges in each solu-
tion are also colored in black. It can be seen that these nodes are
indeed on the longest paths of both VPR and PATH’s results. How-
ever, the delay produced by both algorithms is far away from the
optimal. Note that besides the longest path created by T-PEKO,
there exist some other paths with the same delay, that include nets
from the original circuit. Figure 7 shows several such paths in the
optimal solution.

Using the method described in the previous section, we ex-
tended our study to the Xilinx placement engine, PAR, and con-
structed 15 synthetic circuits for it. The version we experimented
is Release 5.1.03i - PAR F.26. To guarantee that PAR can find the
minimum possible delay in this experiment, we set a loose delay
constraint at the beginning and gradually tighten it until PAR can

Figure 6: Divergence vs
�

. The divergence from the optima is
increasing with

�
.

no longer find a solution satisfying this constraint. For compari-
son, we used PAR to do routing on our constructed solutions and
quoted the delay reported by its timing analysis tool. This value
served as an upper bound to the optimal delay for our constructed
circuit.

Table 3 gives the experimental results on these circuits. The
first few columns give the circuit characteristics. The upper bound
of the optimal delay by our construction is given in the column
“UB,” the result by PAR is given in the column “PAR.” On av-
erage, the delay generated by PAR is 8.7% worse than our con-
structed solutions, and is 21.4% worse in the worst case. Com-

Administrator
6

Optimal solution VPR’s solution PATH’s solution

Figure 7: Three solutions for TPeko20. The nodes on the longest paths by our construction are colored in black. The timing edges on
critital paths in each solution are colored in black, too. It can be seen these nodes are indeed on the longest paths in both VPR and PATH’s
results. However, the delay produced by both algorithms are far away from the optima. Note that besides the longest paths created by
T-PEKO, there exist other paths with the same delay, that include nets from the original circuit. Several of them are shown in the optimal
solution.

Table 2: Experimental results by VPR and PATH on the TPEKO
suite. M correponds to the number of initial longest paths. Average
and minimum divergence from the optima by VPR and PATH is
listed.

Circuit Opt
M = 1 M = 3 M = 5

VPR PATH VPR PATH VPR PATH
Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best

TPeko01 88 4% 0% 7% 0% 21% 17% 17% 15% 35% 27% 25% 20%
TPeko02 108 6% 1% 4% 1% 23% 15% 17% 13% 38% 31% 16% 14%
TPeko03 106 12% 4% 6% 0% 30% 23% 12% 8% 27% 24% 15% 10%
TPeko04 116 7% 0% 0% 0% 10% 7% 5% 3% 18% 14% 15% 9%
TPeko05 92 22% 7% 10% 0% 34% 25% 15% 5% 34% 24% 16% 11%
TPeko06 84 10% 5% 5% 1% 26% 20% 19% 8% 34% 20% 17% 14%
TPeko07 100 22% 10% 4% 0% 25% 20% 11% 7% 33% 27% 17% 13%
TPeko08 132 53% 44% 18% 7% 52% 47% 30% 24% 40% 20% 33% 27%
TPeko09 124 9% 2% 0% 0% 19% 14% 24% 15% 29% 28% 21% 18%
TPeko10 122 11% 6% 7% 1% 27% 25% 18% 12% 33% 29% 15% 13%
TPeko11 128 15% 10% 8% 0% 26% 19% 10% 6% 40% 33% 15% 12%
TPeko12 166 11% 4% 4% 1% 40% 16% 13% 11% 39% 15% 16% 14%
TPeko13 170 31% 25% 15% 8% 39% 22% 35% 19% 35% 29% 32% 22%
TPeko14 146 12% 8% 2% 1% 26% 21% 21% 12% 32% 26% 31% 25%
TPeko15 184 15% 11% 7% 1% 25% 22% 17% 10% 36% 33% 23% 18%
TPeko16 240 17% 7% 13% 3% 61% 55% 14% 12% 36% 25% 19% 13%
TPeko17 290 24% 17% 10% 2% 24% 15% 17% 12% 30% 21% 26% 21%
TPeko18 164 32% 15% 19% 5% 33% 15% 30% 20% 29% 22% 30% 16%
TPeko19 164 17% 13% 34% 26% 46% 25% 45% 38% 48% 41% 41% 37%
TPeko20 328 32% 25% 24% 14% 49% 37% 25% 19% 47% 30% 38% 31%

Avg. 18% 11% 10% 4% 32% 23% 20% 13% 35% 26% 23% 18%

pared with our experiment with VPR and PATH, the divergence
here is much smaller. One possible reason is that the delay be-
tween two elements on a Virtex chip is not monotone with regard
to their Manhattan distance and the PAR takes full advantage of the
Virtex routing architecture to reduce the delay of long connections.
Still, there is room for improvement that is not negligible.

4. CONCLUSIONS AND FUTURE WORK

This work studied the optimality and stability of timing-driven
placement algorithms. We developed an algorithm for generating

Table 3: Experimental results on Xilinx PAR.
Circuit Orig chip package IOB Slice Net UB (ns) PAR (ns) diff

TPeko01 ex5p xcv50 bg256 73 573 1130 70.0 80.4 15.0%
TPeko02 tseng xcv200 fg456 176 582 1182 78.2 90.5 15.7%
TPeko03 apex4 xcv50 bg256 33 669 1302 62.7 67.5 7.7%
TPeko04 misex3 xcv50 bg256 31 760 1415 54.7 56.9 4.1%
TPeko05 alu4 xcv50 bg256 27 766 1537 49.0 53.5 9.2%
TPeko06 dsip xcv600 fg680 435 832 1690 78.2 95.0 21.4%
TPeko07 seq xcv100 bg256 79 941 1832 64.6 69.9 8.3%
TPeko08 apex2 xcv100 bg256 49 968 1940 60.7 64.4 6.0%
TPeko09 s298 xcv100 bg256 16 1199 1964 64.8 67.9 4.7%
TPeko10 frisc xcv200 fg456 152 1824 3562 57.4 61.3 6.9%
TPeko11 spla xcv200 fg456 62 1961 3731 61.8 65.6 6.2%
TPeko12 elliptic xcv200 fg456 248 1985 3766 62.7 69.4 10.6%
TPeko13 pdc xcv200 fg456 59 2350 4593 50.5 53.5 6.0%
TPeko14 ex1010 xcv200 fg456 29 2350 4614 53.1 55.6 4.6%
TPeko15 clma xcv600 fg680 130 4704 8463 64.3 67.3 4.7%

Avg. 8.7%

synthetic examples with known optimal delay for timing driven
placement (T-PEKO). The synthetic examples generated by our al-
gorithm can closely match the characteristics of real circuits. Us-
ing these synthetic examples with known optimal solutions, we
studied the optimality of several timing-driven placement algo-
rithms by comparing their solutions to the optimal solutions, and
their stability by varying the number of longest paths in the ex-
amples. The results produced by the algorithms could be as far as
54% away from the optimal for our most difficult examples. The
results seem to suggest that timing-driven placement algorithms,
both net-based and path-based, have much room for improvement.
Similar experiments for commercial FPGA architectures showed a
smaller, but not negligible gap.

Future work includes the generation of similar placement ex-
amples that study the performance of placement algorithms for
other objectives such as routability and power on both ASIC and
FPGA designs.

Administrator
7

5. ACKNOWLEDGEMENTS

This work is partially supported by the Semiconductor Research
Corporation under Contract 98-TJ-686, partially supported by the
National Science Foundation under Grant CCR0096383, and par-
tially supported by DARPA/GSRC under contract number SA2211-
23106. The authors would like to thank Dr. T. Kong for providing
the latest version of PATH for our experiments. They would also
like to thank Dr. R. Jayaraman for his valuable suggestions regard-
ing the Xilinx experiments.

6. REFERENCES

[1] C. Chang, J. Cong, and M. Xie, “Optimality and scalability
study of existing placement algorithms,” in Proc. Asia South
Pacific Design Automation Conference, pp. 621 – 627, 2003.

[2] J. Cong, M. Romesis, and M. Xie, “Optimality, scalability
and stability study of partitioning and placement algorithms,”
in Proc. International Symposium on Physical Design, pp. 88
– 94, 2003.

[3] M. Jackson and E. S. Kuh, “Performance-driven place-
ment of cell based IC’s,” in Proc. Design Automation Conf,
pp. 370–375, 1989.

[4] A. Srinivasan, K. Chaudhary, and E. S. Kuh, “RITUAL: A
performance driven placement for small-cell ICs,” in Proc.
Int. Conf. on Computer Aided Design, pp. 48–51, 1991.

[5] T. Hamada, C. K. Cheng, and P. M. Chau, “Prime: a timing-
driven placement tool using a piecewise linear resistive net-
work approach,” in Proc. Design Automation Conf, pp. 531–
536, 1993.

[6] A. E. Dunlop, V. D. Agrawal, D. N. Deutsch, M. F. Jukl,
P. Kozak, and M. Wiesel, “Chip layout optimization using
critical path weighting,” in Proc. Design Automation Conf,
pp. 133–136, 1984.

[7] R. Nair, C. L. Berman, P. Hauge, and E. J. Yoffa, “Genera-
tion of performance constraints for layout,” IEEE Trans. on
Computer-Aided Design, vol. 8, no. 8, pp. 860–874, 1989.

[8] R. S. Tsay and J. Koehl, “An analytic net weighting approach
for performance optimization in circuit placement,” in Proc.
Design Automation Conf, pp. 620–625, 1991.

[9] H. Eisenmann and F. M. Johannes, “Generic global place-
ment and floorplanning,” in Proc. Design Automation Conf,
pp. 269–274, 1998.

[10] M. Hutton, J. P. Grossman, J. Rose, and D. Corneil, “Char-
acterization and parameterized random generation of digital
circuits,” in Proc. Design Automation Conf, pp. 94–99, ACM
Press, 1996.

[11] P. Verplaetse, D. Stroobandt, and J. Van Campenhout, “Syn-
thetic benchmark circuits for timing-driven physical design
applications,” in Proc. International Conference on VLSI,
pp. 31–37, CSREA Press, 2002.

[12] W. C. Elmore, “The Transient Response of Damped Linear
Networks,” Journal of Applied Physics, vol. 19, pp. 55 –63,
1948.

[13] J. Cong, and D. Pan, “Interconnect delay estimation models
for synthesis and design planning,” in Asia Pacific Design
Automation Conference, pp. 97–100, 1999.

[14] R. Hitchcock, G. Smith, and D. Cheng, “Timing Analy-
sis of Computer Hardware,” IBM J. Res. Develop., vol. 26,
pp. 100–108, 1982.

[15] Xilinx Inc., Virtex 2.5V FPGA Complete Data Sheet (all four
Modules).

[16] A. Marquardt, V. Betz, and J. Rose, “Timing-driven place-
ment for FPGAs,” in Proc. of the ACM/SIGDA international
symposium on Field programmable gate arrays, pp. 203–
213, ACM Press, 2000.

[17] “http://cadlab.cs.ucla.edu/ � pubbench/tpeko.htm,”

[18] V. Betz and J. Rose, “VPR: A New Packing, Placement and
Routing Tool for FPGA Research,” in Proc. of Seventh Inter-
national Workshop on Field-Programmable Logic and Appli-
cations, pp. 213–222, 1997.

[19] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD
for Deep-Submicron FPGAs. Kluwer Academic Publishers,
1999.

[20] “http://www.eecg.toronto.edu/ � vaghn/vpr/vpr.html,”

[21] T. Kong, “A novel net weighting algorithm for timing-driven
placement,” in Proc. Intl. Conf. on Computer-Aided Design,
pp. 172 – 176, 2002.

Administrator
8

